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Weighted Carleson Measure Spaces
Associated with Different Homogeneities
Xinfeng Wu

Abstract. In this paper, we introduce weighted Carleson measure spaces associated with different ho-
mogeneities and prove that these spaces are the dual spaces of weighted Hardy spaces studied in a
forthcoming paper. As an application, we establish the boundedness of composition of two Calderón–
Zygmund operators with different homogeneities on the weighted Carleson measure spaces; this, in
particular, provides the weighted endpoint estimates for the operators studied by Phong–Stein.

1 Introduction and Statement of Main Results

The purpose of this paper is to develop a new theory of weighted Carleson mea-
sure spaces associated with different homogeneities, identify the dual of the weighted
Hardy spaces studied in [Wu] with these new spaces, and prove that the composition
of two Calderón–Zygmund operators with different homogeneities studied in [PS]
is bounded on these spaces. This is a continuation of the paper [Wu] studying the
questions of the composition of operators that cannot be answered by using the prop-
erties of each operator separately. To be more precise, let e(ξ) and h(ξ) be functions
on RN homogeneous of degree 0 in the isotropic sense and the anisotropic sense,
and smooth away from the origin. Then it is well known that the Fourier multipliers
T1 defined by T̂1( f )(ξ) = e(ξ) f̂ (ξ) and T2 given by T̂2( f )(ξ) = h(ξ) f̂ (ξ) are both
bounded on Lp for 1 < p < ∞, and satisfy various other regularity properties such
as being of weak-type (1, 1) and bounded on the classical isotropic and non-isotropic
Hardy spaces, respectively. Rivieré in [WW] asked the question: is the composition
T1 ◦ T2 still of weak-type (1, 1)? Phong and Stein in [PS] answered this question and
gave a necessary and sufficient condition for which T1 ◦T2 is of weak-type (1, 1). The
operators Phong and Stein studied are in fact compositions with different kinds of
homogeneities that arise naturally in the ∂-Neumann problem.

There are some other questions of this kind about the composition operator T1◦T2

that cannot be answered by using the properties of T1 and T2 separately. Recently,
Han et al. [HLLRS] developed a theory of multiparameter Hardy spaces and proved
that the composition T1 ◦ T2 is bounded on these Hardy spaces. More recently, the
author [Wu] introduced and studied a new class of Muckenhoupt weights AC

p . In

terms of these weights, a theory of weighted Hardy space H p
C ,w(RN ) was established,

and weighted norm inequalities for T1◦T2 in H p
C ,w(RN ) were derived. Such questions
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also arise in the context of BMO and Lipschitz spaces due to the examples constructed
in [MR]. These questions motivate this paper.

In order to describe more precisely the questions and results studied in this paper,
we begin by considering all functions and operators on RN = Rn1 × · · · × Rnm . For
x = (x1, . . . , xm) ∈ RN and δ > 0, we consider the isotropic homogeneity on RN :

δ ◦ (x1, . . . , xm) = (δx1, . . . , δxm),

and two kinds of anisotropic homogeneities on RN :

δ ◦1 (x1, . . . , xm) = (δa1 x1, . . . , δ
am xm),

δ ◦2 (x1, . . . , xm) = (δb1 x1, . . . , δ
bm xm),

with 1 ≤ a1 ≤ · · · ≤ am < ∞ and 1 ≤ b1 ≤ · · · ≤ bm < ∞. Note that the additive
group (RN ,+) equipped with either of the dilations ◦1 and ◦2 is a homogeneous Lie
group (see [FS2]). Let N1 = a1n1 + · · ·+amnm and N2 = b1n1 + · · ·+bmnm denote the

homogeneous dimensions and let |x|1 = sup1≤i≤m |xi |
1
ai and |x|2 = sup1≤i≤m |xi |

1
bi

be the homogeneous norms. For α = (α1, . . . , αm) ∈ Rm, set

‖α‖ = |α1| + · · · + |αm|,

‖α‖1 = |α1|a1 + · · · + |αm|am,

‖α‖2 = |α1|b1 + · · · + |αm|bm.

For j, k ∈ Z, we will frequently use the discrete dilations

2 j ◦1 (x1, . . . , xm) = (2 j1 x1, . . . , 2
jm xm),

2k ◦2 (x1, . . . , xm) = (2k1 x1, . . . , 2
km xm),

where ji = ai j and ki = bik for i = 1, . . . ,m.
As pointed out in [Wu], the weighted theory of function spaces is closely related

to the family of acceptable rectangles, which nicely reflects the geometry structure of
RN with mixed homogeneities. Throughout this paper, all rectangles are assumed
to have edges parallel to coordinate axes. We say that a rectangle R is acceptable if
R = I1 × · · · × Im, where each Ii is a Euclidean cube in Rni with side-length `(Ii) =
2 ji∨ki = 2(ai j)∨(bi k), 1 ≤ i ≤ m for some j, k ∈ Z. Denote by RC the set of all
acceptable rectangles and by Rd

C the set of all dyadic acceptable rectangles. Let R j,k
C

be the subset of Rd
C that consists of all dyadic acceptable rectangles R = I1× · · ·× Im

with side-length `(Ii) = 2 ji∨ki , 1 ≤ i ≤ m.
The maximal function and Muckenhoupt weights associated with different ho-

mogeneities were introduced in [Wu] as follows.

Definition 1.1 The maximal function associated with different homogeneities is
defined by

MC ( f )(x) = sup
R∈RC

R3x

1

|R|

∫
R
| f (y)|dy.
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Definition 1.2 Let w be a nonnegative locally integrable function on RN . For 1 <
p <∞, we say that w is in AC

p (RN ) if there is a constant 0 < C <∞ such that

sup
R∈RC

( 1

|R|

∫
R

w(x)dx
)( 1

|R|

∫
R

w(x)−1/(p−1)dx
) p−1

< C.

We say that w ∈ AC
1 (RN ) if there is a constant C > 0 such that

MC (w)(x) ≤ Cw(x), for almost every x ∈ RN .

The weight class AC
∞(RN ) is defined by AC

∞(RN ) =
⋃

1≤p<∞ AC
p (RN ). We use qw ≡

inf{q : w ∈ AC
q (RN )} to denote the critical index of w. For any subset A ⊆ RN ,

denote w(A) =
∫

A w(x)dx.

Let R(1) denote the set of all “cubes” associated with ◦1 (i.e., rectangles with side-
length (2 j1 , . . . , 2 jm ) for some ji ∈ Z) and similarly for R(2). Associated with ◦i , i =
1, 2, the anisotropic Hardy–Littlewood maximal function M(i) and the Muckenhoupt
weight class A(i)

p can be defined by replacing RC with R(i) in the definitions above.
Let w be a weight function (i.e., a nonnegative measurable function) on RN . The

characterizations of the Muckenhoupt weight class AC
p (RN ) are given by the follow-

ing theorem.

Theorem 1.3 ([Wu]) Suppose 1 < p < ∞. Then the following four statements are
equivalent:

(i) w ∈ AC
p (RN );

(ii) w ∈ A(1)
p ∩ A(2)

p (RN );

(iii) M(1) ◦M(2) is bounded on Lp
w(RN ) or on Lp

w(`q; RN );
(iv) MC is bounded on Lp

w(RN ) or on Lp
w(`q; RN ).

The singular integral operators considered in this paper are defined as follows.

Definition 1.4 A locally integrable function Ki , i = 1, 2 on RN\{0} is said
to be a Calderón–Zygmund kernel associated with ◦i if for any multi-index α =
(α1, . . . , αm),

|∂αKi(x)| ≤ A|x|−Ni−‖α‖i

i , for x ∈ RN\{0},(1.1)

and ∣∣∣∫
δ<|x|i<r

Ki(x)dx
∣∣∣ ≤ C, uniformly for all r > δ > 0.(1.2)

The Calderón–Zygmund singular integral operator associated with ◦i is defined by
Ti( f )(x) = p.v.(Ki ∗ f )(x), where Ki satisfies conditions of (1.1) and (1.2).
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When w ∈ AC
p , the composition T1◦T2 is bounded on Lp

w, 1 < p <∞, but in gen-
eral, it is bounded neither on H p

(1),w nor on H p
(2),w. Recently, in [Wu], new weighted

Hardy spaces associated with different homogeneities were developed and weighted
norm inequality in H p

C ,w was established. The main goal of this paper is to char-
acterize the dual of the weighted Hardy spaces H p

C ,w and prove the boundedness of
composition operator on the dual spaces. We would like to mention that characteri-
zations of product BMO spaces have been established earlier by many authors (Chang
and Fefferman [CF1, CF2], Krug and Torchinsky [KT], Ferguson and Lacey [FL],
Lacey, Petermichl, Pipher, and Wick [LPPW], etc.). We will provide further details
regarding these earlier works in what follows.

We now introduce the weighted Carleson measure spaces associated with different
homogeneities. Our crucial idea is to use the family of acceptable rectangles to define
the weighted multiparameter Carleson measure. More precisely, let ψ(1) ∈ S(RN )
satisfy

supp ψ̂(1)(ξ) ⊆ {ξ : 1/2 < |ξ| ≤ 2},(1.3)

and ∑
j∈Z

ψ̂(1)(2 j ◦1 ξ) = 1, for all ξ ∈ RN\{0},(1.4)

and let ψ(2) ∈ S(RN ) satisfy

supp ψ̂(2)(ξ) ⊆ {ξ : 1/2 < |ξ| ≤ 2},(1.5)

and ∑
k∈Z

ψ̂(2)(2k ◦2 ξ) = 1, for all ξ ∈ RN\{0}.(1.6)

Let ψ j,k = ψ(1)
j ∗ ψ

(2)
k , where

ψ(1)
j (x) = 2− jN1ψ(1)(2− j ◦1 x) and ψ(2)

k (x) = 2−kN2ψ(2)(2−k ◦2 x).

We now formally define the weighted Carleson measure spaces CMOp
C ,w(RN ) as fol-

lows.

Definition 1.5 Suppose 0 < p ≤ 1 and w ∈ AC
∞(RN ). Let ψ j,k be defined as above

and f ∈ S ′/P(RN ) (the space of tempered distributions modulo polynomials). We
say that f belongs to CMOp

C ,w(RN ), if

‖ f ‖CMOp,ψ
C ,w(RN ) ≡ sup

Ω

{
1

[w(Ω)]
2
p−1

∑
j,k∈Z

∑
R∈R j,k

C
R⊆Ω

|R|2

w(R)
|ψ j,k ∗ f (xR)|2

} 1
2

<∞

for all open sets Ω in RN with w(Ω) < ∞, where xR denotes the minimal corner of
R, i.e., the corner of R with each coordinate component attaining the minimal value.
When p = 1, we denote by BMOC

w the space CMO1
C ,w.
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Note that multiparameter structures are involved in the definition of Carleson
measure spaces. These new multiparameter structures are described via the family
of dyadic acceptable rectangles, which nicely reflects the mixed homogeneities of the
underlying space RN .

To see that the weighted Carleson measure spaces are well defined, we need to
show that the definition of weighted Carleson measure spaces is independent of the
choice of ψ j,k. This will follow from the next result.

Theorem 1.6 Let 0 < p ≤ 1 and w ∈ AC
∞(RN ). Suppose that ψ j,k = ψ(1)

j ∗ ψ
(2)
k

are defined as above and ϕ j,k = ϕ(1)
j ∗ ϕ

(2)
k satisfy the same conditions as ψ j,k. Then for

f ∈ S ′/P(RN ),

‖ f ‖CMOp,ψ
C ,w(RN ) ≈ ‖ f ‖CMOp,ϕ

C ,w(RN ).

Before stating the main results of this paper, let us first recall the definition
of weighted Hardy spaces H p

C ,w introduced in [Wu]. For f ∈ S ′/P(RN ), the
Littlewood–Paley–Stein square function gC ( f ) of f was defined by

gC ( f )(x) =

{∑
j,k∈Z

∑
R∈R j,k

C

|ψ j,k ∗ f (xR)|2χR(x)

} 1
2

,

where xR denotes the minimal corner of R. Let 0 < p < ∞ and w ∈ AC
∞(RN ). The

weighted Hardy space H p
C ,w(RN ) was introduced by

H p
C ,w(RN ) ≡

{
f ∈ S ′/P(RN ) : gC ( f ) ∈ Lp

w(RN )
}
.

The H p
C ,w(RN ) quasi-norm of f was given by ‖ f ‖H p

C ,w(RN ) ≡ ‖gC ( f )‖Lp
w(RN ).

The main results of this paper are as follows.

Theorem 1.7 Let 0 < p ≤ 1 and w ∈ AC
∞(RN ). Then(

H p
C ,w(RN )

)∗
= CMOp

C ,w(RN ).

More precisely, if g ∈ CMOp
C ,w(RN ), the mapping `g given by `g( f ) = 〈 f , g〉, defined

initially for f ∈ S∞(RN ), extends to a continuous linear functional on H p
C ,w(RN ) with

‖`g‖ ≈ ‖g‖CMOp
C ,w(RN ). Conversely, for every ` ∈ (H p

C ,w(RN ))∗, there exists some

g ∈ CMOp
C ,w(RN ) so that ` = `g . In particular, (H1

C ,w(RN ))∗ = BMOC
w (RN ).

Theorem 1.8 Let 0 < p ≤ 1 and w ∈ AC
∞(RN ). Suppose that T1 and T2 are

Calderón–Zygmund singular integral operators as defined in Definition 1.4. Then
the composition operator T1 ◦ T2 is bounded on CMOp

C ,w(RN ), in particular, on

BMOC ,w(RN ). Moreover, there exists a constant C such that

‖T1 ◦ T2( f )‖CMOp
C ,w(RN ) ≤ C‖ f ‖CMOp

C ,w(RN ).
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Remark 1.9 It is worthwhile to point out that the homogeneities considered in
this paper are more general than the ones considered in [PS, HLLRS]. The weighted
endpoint estimates for the operators studied in [PS] are thus given by a special case
of Theorem 1.8. Moreover, if ◦1 = ◦2 = ◦, our results also cover the classical ones
in [Ga, ST, LLL]. We also point out that if the regularity condition (1.1) is weakened,
then the result in Theorem 1.8 continues to hold for certain range of p.

Finally, we make the following remarks.
To prove Theorem 1.6, our strategy is to use the discrete Calderón reproducing

formula (see Lemma 2.3) and the geometric argument involving certain annuli de-
composition of the set of acceptable rectangles (See Sections 3 for more details).
These ideas will also be used in the proofs of the other main results.

To establish the dual of H1(R2
+ × R2

+) with BMO(R2
+ × R2

+), Chang and Fef-
ferman [CF1] invoked the bi-Hilbert transform characterization of product Hardy
spaces. Krug and Torchinsky [Kr, KT] described the dual of weighted product Hardy
spaces H p

w(R2
+ × R2

+) in a quite different way, and the method employed there re-
lied on atomic decomposition characterizations of H p

w(R2
+ × R2

+) and Journé’s cov-
ering lemma. Journé’s proof in [Jo] that a class of product singular integrals maps
L∞(Rn×Rm) boundedly to BMO(Rn×Rm) also invokes the covering lemma of fun-
damental importance. However, these methods cannot be applied to our case, since
these characterizations for H p

C ,w and Journé’s covering lemma in our setting are still
absent.

We shall use techniques of weighted sequence spaces to prove Theorem 1.7. To be
more specific, we first introduce weighted sequence spaces sp

w, cp
w, the lifting operator

L and the projection operator T. We then show in Theorem 4.2 that cp
w is the dual

space of sp
w. The H p

C ,w − sp
w boundedness of L and CMOp

C ,w − cp
w boundedness of

T are then established in Theorem 4.3. The proof of Theorem 1.7 then follows from
Theorems 4.2 and 4.3.

To prove Theorem 1.8, we first note that CMOp
C ,w(RN ) ⊆ S ′/P(RN ). Thus the

composition operator T1 ◦ T2 may not be well defined on CMOp
C ,w(RN ). Therefore,

to prove Theorem 1.8, we first have to define T1◦T2 on CMOp
C ,w(RN ). Recall that the

key method used in [Wu, DHLW] to derive the boundedness of T1 ◦ T2 on weighted
Hardy spaces is based on the denseness of L2 in weighted Hardy spaces. Unfortunately
this method is not directly applicable to the current setting, since L2∩CMOp

C ,w is not

dense in the CMOp
C ,w norm. However, a weaker version of the density result holds.

Namely, L2 ∩ CMOp
C ,w is dense in CMOp

C ,w in the weak topology 〈H p
C ,w,CMOp

C ,w〉
(see Lemma 5.1). This implies that T1 ◦T2 can first be defined on L2 ∩CMOp

C ,w, and
then be extended to CMOp

C ,w. Furthermore, to show the boundedness of T1 ◦ T2 on

CMOp
C ,w, it suffices to establish the boundedness on L2∩CMOp

C ,w. The boundedness

on L2 ∩ CMOp
C ,w can be achieved by applying the Calderón type formula and the

geometric argument.
The paper is organized as follows. In Section 2, we give some lemmas. The proof of

Theorem 1.6 is presented in Section 3. Section 4 is devoted to the proof of the duality
of H p

C ,w with CMOp
C ,w. In Section 5, we establish the boundedness of composition

operators on CMOp
C ,w.

https://doi.org/10.4153/CJM-2013-021-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-021-1


1388 X. Wu

2 Some Lemmas

The following lemma can be proved as in the classical case; see [St, GR].

Lemma 2.1 Suppose w ∈ AC
∞(Rn) and q > qw. Then there exist 0 < C1,C2, δ <∞

such that for all acceptable rectangles R and all measurable subsets A of R,

C1

( |A|
|R|

) q
≤ w(A)

w(R)
≤ C2

( |A|
|R|

) δ
.

In particular, the measure w(x)dx is doubling with respect to acceptable rectangles.

Lemma 2.2 Let w ∈ AC
∞(RN ). Then for all acceptable rectangles R and R ′ and for

q > qw,

w(R ′)

w(R)
.

m∏
i=1

[
|Ii |
|I ′i |
∨ |I

′
i |
|Ii |

] q[
1 +

|xIi − xI ′i
|

`(Ii) ∨ `(I ′i )

] ni q

.

Here and in what follows, xIi and xI ′i
denote the minimal corners, and `(Ii) and `(I ′i )

denote the side-lengths of Ii and I ′i , respectively.

Proof Note that for i = 1, . . . ,m, I ′i ⊆ AiIi , where

Ai = C
`(Ii) ∨ `(I ′i ) + |xIi − xI ′i

|
`(Ii)

,

with C being a constant depending only on the dimensions. This implies R ′ ⊆ R,
where R = C[(A1I1)× · · · × (AmIm)]. Then by Lemma 2.1, for any q > qw,

w(R ′)

w(R)
≤ w(R)

w(R)
≤ C

[
|R|
|R|

] q

≤ C
m∏

i=1

[
`(Ii) ∨ `(I ′i ) + |xIi − xI ′i

|
`(Ii)

] ni q

≤ C
m∏

i=1

[
|Ii |
|I ′i |
∨ |I

′
i |
|Ii |

] q[
1 +

|xIi − xI ′i
|

`(Ii) ∨ `(I ′i )

] ni q

.

Hence the proof of Lemma 2.2 is concluded.

Let S∞(RN ) be the set of all f ∈ S(RN ) satisfying∫
RN

f (x)xαdx = 0, for all multi-index α.

One of the key tools in this paper is the following discrete Calderón reproducing
formula. The proof is essentially the same as that of [HLLRS, Theorem 1.3] and thus
will be omitted. For the classical case, see [Ha, FJ, FJW].

Lemma 2.3 Let ψ j,k = ψ(1)
j ∗ ψ

(2)
k satisfy (1.3)–(1.6). Then

f (x) =
∑
j,k∈Z

∑
R∈R j,k

C

|R|ψ j,k ∗ f (xR)ψ j,k(x − xR),

where xR = (xI1 , . . . , xIm ) is the minimal corner of R and the series converges in L2(RN ),
S∞(RN ), and S ′/P(RN ).
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Throughout this paper, for j, k ∈ Z, let j = ( j1, . . . , jm) and k = (k1, . . . , km).
The following almost orthogonality estimate will be frequently used in the sequel (see
[Wu, Lemma 3.1]).

Lemma 2.4 Let ψ j,k = ψ(1)
j ∗ ψ

(2)
k , ϕ j,k = ϕ(1)

j ∗ ϕ
(2)
k satisfy the conditions (1.3)–

(1.6). Given any positive integers L and M, there exists a constant C = C(L,M) > 0
such that

|ψ j,k ∗ ϕ j ′,k ′(x)| ≤ C2−‖j−j ′‖L2−‖k−k ′‖L
m∏

i=1

2( ji∨ j ′i ∨ki∨k ′i )M

(2 jk∨ j ′k∨ki∨k ′i + |xi |)ni +M
.

Remark 2.5 The almost orthogonality estimate also holds if the functions ψ(1),
ψ(2), ϕ(1), ϕ(2) only satisfy moment conditions up to order M0,∫

RN

ψ(i)(x)xαdx = 0 =

∫
RN

ϕ(i)(y)yβdy

for any multi-indices |α|, |β| ≤ M0, i = 1, 2. In this case, the almost orthogonality
estimate indeed holds for all M > 0 and all 0 < L ≤ M0 + 1.

The following useful estimate is also needed; see [Wu, Lemma 3.2].

Lemma 2.6 Let R ∈ R
j,k
C . Then for any x ∈ R, xR = (xI1 , . . . , xIm ) ∈ R, xR ′ =

(xI ′1
, · · · , xI ′m ) ∈ R ′ and for any M, δ > 0 satisfying N

N+M < δ ≤ 1,

∑
R ′∈R j ′ ,k ′

C

|R ′|
[

m∏
i=1

2M( ji∨ j ′i ∨ki∨k ′i )

(2 ji∨ j ′i ∨ki∨k ′i + |xIi − xI ′i
|)ni +M

]
|g(xR ′)|

≤ C
{ m∏

i=1

[
2ni ( ji− j ′i ) ∨ 1

]} 1
δ−1
{
MC

[( ∑
R ′∈R j ′ ,k ′

C

|g(xR ′)|2χR ′

) δ
2

]
(x)

} 1
δ

,

where the constant C depends only on M and the dimensions n1, . . . , nm.

3 Proof of Theorem 1.6

For R = I1 × · · · × Im,R ′ = I ′1 × · · · × I ′m ∈ Rd
C , set

r(R,R ′) =
m∏

i=1

[
|Ii |
|I ′i |
∧ |I

′
i |
|Ii |

] L

,

P(R,R ′) =
m∏

i=1

1

(1 + [`(Ii) ∨ `(I ′i )]−1|xIi − xI ′i
|)ni +M

,

where xR = (xI1 , . . . , xIm ) is the minimal corner of R and `(Ii) denotes the side-length

of Ii and similarly for xR ′ and `(I ′i ). For R ∈ R
j,k
C and R ′ ∈ R

j ′,k ′

C , denote

SR = |ψ j,k ∗ f (xR)|2, TR ′ = |ϕ j ′,k ′ ∗ f (xR ′)|2.
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For any L,M > 0, applying the discrete Calderón reproducing formula in Lemma
2.3 and the almost orthogonality estimate in Lemma 2.4 yields

S
1
2
R =

∣∣∣ ∑
j ′,k ′∈Z

∑
R ′∈R j ′ ,k ′

C

|R ′|ϕ j ′,k ′ ∗ f (xR ′)ψ j,k ∗ ϕ j ′,k ′(xR − xR ′)
∣∣∣

.
∑

j ′,k ′∈Z

∑
R ′∈R j ′ ,k ′

C

2−L(‖j−j ′‖+‖k−k ′‖)

m∏
i=1

|R ′|2( ji∨ j ′i ∨ki∨k ′i )M

(2 ji∨ j ′i ∨ki∨k ′i + |xIi − xI ′i
|)ni +M

|ϕ j ′,k ′ ∗ f (xR ′)|

=
∑

j ′,k ′∈Z

∑
R ′∈R j ′ ,k ′

C

r(R,R ′)P(R,R ′)T
1
2

R ′ .

Squaring both sides first, then multiplying by |R|2[w(R)]−1, adding up all the

terms over j, k ∈ Z, R ∈ R
j,k
C ,R ⊆ Ω, and finally applying Hölder’s inequality,

we obtain ∑
j,k∈Z

∑
R∈R j,k

C
R⊆Ω

|R|2[w(R)]−1SR

.
∑
j,k∈Z

∑
R∈R j,k

C
R⊆Ω

|R|2[w(R)]−1
[ ∑

j ′,k ′∈Z

∑
R ′∈R j ′ ,k ′

C

r(R,R ′)P(R,R ′)T
1
2

R ′

] 2

.
∑
j,k∈Z

∑
R∈R j,k

C
R⊆Ω

|R|2[w(R)]−1
[ ∑

j ′,k ′∈Z

∑
R ′∈R j ′ ,k ′

C

r(R,R ′)P(R,R ′)
]

×
[ ∑

j ′,k ′∈Z

∑
R ′∈R j ′ ,k ′

C

r(R,R ′)P(R,R ′)TR ′

]
.

(3.1)

Note that for y = (y1, . . . , ym) ∈ R ′, `(I ′i )+|xIi−xI ′i
| ≈ `(I ′i )+|xIi−yi |, i = 1, . . . ,m.

Consequently,∑
R ′∈R j ′ ,k ′

C

P(R,R ′) ≈
∑

R ′∈R j ′ ,k ′
C

m∏
i=1

∫
I ′i

2( ji∨ j ′i ∨ki∨k ′i )M

(2 ji∨ j ′i ∨ki∨k ′i + |xIi − yi |)ni +M
dyi

=

∫
RN

( m∏
i=1

2( ji∨ j ′i ∨ki∨k ′i )M

(2 ji∨ j ′i ∨ki∨k ′i + |xIi − yi |)ni +M

)
dy . 1.

It follows that∑
j ′,k ′∈Z

∑
R ′∈R j ′ ,k ′

C

r(R,R ′)P(R,R ′) .
∑

j ′,k ′∈Z

2−L[‖j−j ′‖+‖k−k ′‖] . 1.(3.2)
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For R,R ′ ∈ Rd
C , by Lemma 2.2, we also have

(3.3) |R|2[w(R)]−1 . |R ′|2[w(R ′)]−1
m∏

i=1

[
|Ii |
|I ′i |
∨ |I

′
i |
|Ii |

] q+2[
1 +

|xIi − xI ′i
|

`(Ii) ∨ `(I ′i )

] ni q

.

Combining the estimates in (3.1), (3.2), and (3.3) yields

∑
j,k∈Z

∑
R∈R j,k

C
R⊆Ω

|R|2[w(R)]−1SR .

∑
j,k∈Z

∑
R∈R j,k

C
R⊆Ω

∑
j ′,k ′∈Z

∑
R ′∈R j ′ ,k ′

C

|R ′|2[w(R ′)]−1r̃(R,R ′)P̃(R,R ′)TR ′ ,

where

r̃(R,R ′) =
m∏

i=1

[
|Ii |
|I ′i |
∧ |I

′
i |
|Ii |

] L−q−2

,

P̃(R,R ′) =
m∏

i=1

1

(1 + [`(Ii) ∨ `(I ′i )]−1|xIi − xI ′i
|)ni +M−ni q

.

Note that in the above inequality, L and M can be chosen arbitrarily large. Conse-
quently,

(3.4) sup
Ω

{ 1

[w(Ω)]
2
p−1

∑
R∈Rd

C
R⊆Ω

|R|2[w(R)]−1SR

}
.

sup
Ω

{ 1

[w(Ω)]
2
p−1

∑
R∈Rd

C
R⊆Ω

∑
R ′∈Rd

C

|R ′|2[w(R ′)]−1r(R,R ′)P(R,R ′)TR ′

}
.

Here and in what follows,
∑

R∈Rd
C

means
∑

j,k∈Z

∑
R∈R j,k

C
and similarly for

∑
R ′∈Rd

C
.

Now to finish the proof, it suffices to show that the last term in (3.4) is majorized
by

sup
Ω

{ 1

[w(Ω)]
2
p−1

∑
R ′∈Rd

C

R ′⊆Ω

|R ′|2w(R ′)−1TR ′

}
.

We point out that r(R,R ′) and P(R,R ′) characterize the geometrical properties
between two acceptable rectangles R and R ′. Namely, when the difference of the sizes
of R and R ′ grows bigger, r(R,R ′) becomes smaller; when the distance between R and
R ′ gets larger, P(R,R ′) becomes smaller. The following argument is quite geometric.
To be precise, we shall first decompose the set of dyadic acceptable rectangles {R ′}
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into annuli according to the distance of R and R ′. Next, in each annuli, precise esti-
mates are given by considering the difference of the sizes of R and R ′. Finally, add up
all the estimates in each annuli to finish the proof.

We now turn to details. For j, k ∈ Z and R = I1 × · · · × Im ∈ Rd
C , let

R j,k = (2 j1∨k1 I1)× · · · × (2 jm∨km Im).

Denote Ω j,k =
⋃

R⊆Ω 3R j,k. For any dyadic acceptable rectangle R ⊆ Ω and j, k ∈ Z+,
let

A0,0(R) = {R ′ ∈ Rd
C : 3R ′ ∩ 3R 6= ∅},

A j,0(R) = {R ′ ∈ Rd
C : 3R ′j,0 ∩ 3R 6= ∅, 3R ′j−1,0 ∩ 3R = ∅},

A0,k(R) = {R ′ ∈ Rd
C : 3R ′0,k ∩ 3R 6= ∅, 3R ′0,k−1 ∩ 3R = ∅},

A j,k(R) = {R ′ ∈ Rd
C : 3R ′j,k ∩ 3R 6= ∅, 3R ′j−1,k ∩ 3R = ∅, 3R ′j,k−1 ∩ 3R = ∅}.

Note that for any R ′ ∈ Rd
C and for any R ∈ Rd

C contained in Ω, there exist j, k ∈ N
such that R ′ ∈ A j,k(R). Therefore {R ′} ⊆ ∪ j,k∈NA j,k(R). Hence,

1

[w(Ω)]
2
p−1

∑
R∈Rd

C
R⊆Ω

∑
R ′∈Rd

C

|R ′|2w(R ′)−1r(R,R ′)P(R,R ′)TR ′

≤ 1

[w(Ω)]
2
p−1

∑
R∈Rd

C
R⊆Ω

∑
R ′∈A0,0(R)

|R ′|2w(R ′)−1r(R,R ′)P(R,R ′)TR ′

+
∑
j∈Z+

1

[w(Ω)]
2
p−1

∑
R∈Rd

C
R⊆Ω

∑
R ′∈A j,0(R)

|R ′|2w(R ′)−1r(R,R ′)P(R,R ′)TR ′

+
∑
k∈Z+

1

[w(Ω)]
2
p−1

∑
R∈Rd

C
R⊆Ω

∑
R ′∈A0,k(R)

|R ′|2w(R ′)−1r(R,R ′)P(R,R ′)TR ′

+
∑

j,k∈Z+

1

[w(Ω)]
2
p−1

∑
R∈Rd

C
R⊆Ω

∑
R ′∈A j,k(R)

|R ′|2w(R ′)−1r(R,R ′)P(R,R ′)TR ′

≡ I + II + III + IV.

We only estimate the terms I and IV , as terms II and III can be handled similarly.
To simplify notation, in the sequel, we always assume R,R ′ ∈ Rd

C .

Estimates for I Denote B0,0 = {R ′ ∈ Rd
C : 3R ′∩Ω0,0 6= ∅}. For any R ′ 6∈ B0,0, we

have 3R ′ ∩ Ω0,0 = ∅. Thus for every R ⊆ Ω, 3R ′ ∩ 3R = ∅, and thus R ′ 6∈ A0,0(R).
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This implies that
⋃

R⊆Ω A0,0 ⊆ B0,0. Hence

I ≤ 1

[w(Ω)]
2
p−1

∑
R ′∈B0,0(R)

∑
R:R⊆Ω

R ′∈A0,0(R)

|R ′|2w(R ′)−1r(R,R ′)P(R,R ′)TR ′ .

For each integer h ≥ 1, let F0,0
h = {R ′ ∈ B0,0, |3R ′ ∩ Ω0,0| ≥ 1/2h|3R ′|}. Denote

D
0,0
h = F

0,0
h \F

0,0
h−1 and Ω0,0

h =
⋃

R ′∈D0,0
h

R ′. Observe that B0,0 =
⋃

h≥1 D
0,0
h and that

P(R,R ′) ≤ 1 for any pair of dyadic acceptable rectangles (R,R ′) with R ′ ∈ B0,0 and
R ′ ∈ A0,0(R). Thus

(3.5) I ≤ 1

[w(Ω)]
2
p−1

∑
h≥1

∑
R ′⊆Ω0,0

h

∑
R:R⊆Ω

R ′∈A0,0(R)

|R ′|2w(R ′)−1r(R,R ′)TR ′ .

We now estimate ∑
R:R⊆Ω

R ′∈A0,0(R)

r(R,R ′)

for each h ∈ Z+ and R ′ ⊆ Ω0,0
h . Note that R ′ ∈ A0,0(R) implies 3R∩ 3R ′ 6= ∅. Using

an idea of Chang and Fefferman in [CF1], for such R, we consider the following three
cases:

Case 1: |I ′1| ≥ |I1|, |I ′2| ≥ |I2|, . . . , |I ′m| ≥ |Im|;
Case 2: |I ′i | ≥ |Ii | for i ∈ A and |I ′i | < |Ii | for i ∈ B,where A,B are nonempty subsets
of {1, . . . ,m} and B = {1, . . . ,m} \ A;
Case 3: |I ′1| < |I1|, |I ′2| < |I2|, . . . , |I ′m| < |Im|.

We first consider Case 1. In this case, we have

|R| ≤ |3R ′ ∩ 3R| ≤ |3R ′ ∩ Ω0,0| ≤ 21−h|3R ′| ≤ 21−h+2N |R ′|,

which implies that |R ′| = 2h−2N−1+θ|R| for some integer θ ≥ 0. For each fixed θ, the
number of such R’s must be less than C(θ + h)N 2θ+h. Consequently,

∑
R∈Case 1

r(R,R ′) ≤ C
∑
θ≥0

( 1

2θ+h

) L
(θ + h)N 2θ+h ≤ C2−hL ′ ,

where L ′ = L− (N + 1) > 0.
We next deal with Case 2. For A = {i1, . . . , il} and B = {il+1, . . . , im}, we denote

IA = Ii1 × · · · × Iil , IB = Iil+1 × · · · × Iim and similarly for I ′A and I ′B. Thus R = IA× IB

and R ′ = I ′A × I ′B. It is easy to see that

|IA|
|IA ′ |
|3R ′|
22N

≤ |IA|
|3I ′A|
|3R ′| ≤ |3R ∩ 3R ′| ≤ 21−h|3R ′|,
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which implies that |I ′A| = 2θ+h−2N−1|IA| for some integer θ ≥ 0. For each fixed θ, the
number of such IA’s must be less than C(θ + h)N · 2θ+h. Similarly, |IB| = 2λ|I ′B| for
some integer λ ≥ 0. For each fixed λ, 3IB ∩ 3I ′B 6= ∅ implies that the number of such
IB’s is less than 5N . It follows that∑

R∈Case 2

r(R,R ′) ≤ C
∑
θ≥0

∑
λ≥0

( 1

2θ+h+λ

) L
(θ + h)N 2θ+h ≤ C2−hL ′ .

We finally handle Case 3. In this case, we have

|R ′| ≤ |3R ∩ 3R ′| ≤ |3R ′ ∩ Ω0,0| ≤ 21−h|3R ′| ≤ 21−h+2N |R ′|,

which implies that h ≤ 2N + 1. Since in this case |R ′| ≤ |R|, we have |R ′| = 2θ|R| for
some integer θ ≥ 0. For each fixed θ, the number of such R’s must be less than 5N .
Therefore, ∑

R∈Case 3

r(R,R ′) ≤ C
∑
θ≥0

( 1

2θ

) L
2θ ≤ C.

Now we rewrite the right side of (3.5) as

1

[w(Ω)]
2
p−1

∑
h≥1

∑
R ′⊆Ω0,0

h

( ∑
R∈Case 1

+
∑

R∈Case 2

+
∑

R∈Case 3

)
r(R,R ′)

|R ′|2

w(R ′)
TR ′ ≡

I1 + I2 + I3.

Note that for x ∈ Ω0,0
h , there exists a dyadic acceptable rectangle R ⊆ Ω0,0

h such
that x ∈ R. Therefore, MC (χΩ0,0 )(x) ≥ |3R ′ ∩ Ω0,0|/|3R ′| ≥ 2−h. Applying the
Lq

w(RN ) boundedness of MC with q ∈ (qw,
pL

2−p ) and Lemma 2.1 yields

w(Ω0,0
h ) ≤ w

(
{x : MC (χΩ0,0 )(x) ≥ 2−h}

)
. 2qhw(Ω0,0) . 2qhw(Ω).

This, together with the estimates in Case 1 and Case 2, yields

I1 + I2 ≤ C
1

[w(Ω)]
2
p−1

∑
h≥1

∑
R ′⊆Ω0,0

h

2−hL ′ |R ′|2

w(R ′)
TR ′

≤ C
1

[w(Ω)]
2
p−1

∑
h≥1

2−hL ′[w(Ω0,0
h )]

2
p−1 1

[w(Ω0,0
h )]

2
p−1

∑
R ′⊆Ω0,0

h

|R ′|2

w(R ′)
TR ′

≤ C
1

[w(Ω)]
2
p−1

∑
h≥1

2−hL ′(2qh)
2
p−1[w(Ω)]

2
p−1 sup

Ω

1

[w(Ω)]
2
p−1

∑
R ′⊆Ω

|R ′|2

w(R ′)
TR ′

≤ C sup
Ω

1

[w(Ω)]
2
p−1

∑
R ′⊆Ω

|R ′|2

w(R ′)
TR ′ ,

https://doi.org/10.4153/CJM-2013-021-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-021-1


Weighted Carleson Measure Spaces 1395

where in the last inequality we have chosen L ′ large enough so that∑
h≥1

2−hL ′(2qh)
2
p−1 ≤ C.

For I3, note that in this case, h must be less than C = 2N + 1. Hence,

I3 ≤ C
1

[w(Ω)]
2
p−1

∑
1≤h≤C

∑
R ′⊆Ω0,0

h

|R ′|2

w(R ′)
TR ′

≤ C
1

[w(Ω)]
2
p−1

∑
1≤h≤C

[w(Ω0,0
h )]

2
p−1 1

[w(Ω0,0
h )]

2
p−1

∑
R ′⊆Ω0,0

h

|R ′|2

w(R ′)
TR ′

≤ C
1

[w(Ω)]
2
p−1

∑
1≤h≤C

(2qh)
2
p−1[w(Ω)]

2
p−1 sup

Ω

1

[w(Ω)]
2
p−1

∑
R ′⊆Ω

|R ′|2

w(R ′)
TR ′

≤ C sup
Ω

1

[w(Ω)]
2
p−1

∑
R ′⊆Ω

|R ′|2

w(R ′)
TR ′ .

Altogether, this yields

I ≤ C sup
Ω

1

[w(Ω)]
2
p−1

∑
R ′⊆Ω

|R ′|2

w(R ′)
TR ′ .

Estimates for IV For j, k ≥ 1, set

a j,k ≡
1

[w(Ω)]
2
p−1

∑
R⊆Ω

∑
R ′∈A j,k(R)

|R ′|2w(R ′)−1r(R,R ′)P(R,R ′)TR ′ ,

and

B j,k ≡ {R ′ : 3R ′j,k ∩ Ω0,0 6= ∅}.

Recall that

A j,k(R) = {R ′ ∈ Rd
C : 3R ′j,k∩ 3R 6= ∅, 3R ′j−1,k∩ 3R = ∅, and 3R ′j,k−1∩ 3R = ∅}.

For any R ′ /∈ B j,k, we have 3R ′j,k∩Ω0,0 = ∅. Thus for every R ⊂ Ω, 3R ′j,k∩ 3R = ∅,
which implies that R ′ 6∈ A j,k(R). Therefore

⋃
R⊆Ω A j,k(R) ⊆ B j,k. Hence,

a j,k ≤
1

[w(Ω)]
2
p−1

∑
R ′∈B j,k

∑
R:R⊆Ω

R ′∈A j,k(R)

|R ′|2w(R ′)−1r(R,R ′)P(R,R ′)TR ′ .
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Let

F
j,k
h = {R ′ ∈ B j,k : |3R ′j,k ∩ Ω0,0| ≥ 1/2h|3R ′j,k|}, h ≥ 0,

D
j,k
h = F

j,k
h \ F

j,k
h−1, h ≥ 1, D

j,k
0 = ∅, and

Ω
j,k
h =

⋃
R ′∈D j,k

h

R ′, h ≥ 1.

Note that B j,k =
⋃

h≥1 D
j,k
h . Thus,

(3.6) a j,k ≤
1

[w(Ω)]
2
p−1

∑
h≥1

∑
R ′∈D j,k

h

∑
R:R⊆Ω

R ′∈A j,k(R)

|R ′|2w(R ′)−1r(R,R ′)P(R,R ′)TR ′ .

Note that R ′ ∈ A j,k(R) implies that

|xIi − xI ′i
| > 2 ji∨ki `(I ′i ) ∨ `(Ii), for i = 1, . . . ,m.

As for the estimates for I, we consider three cases:

Case 1: |2 j1∨k1 I ′1| ≥ |I1|, . . . , |2 jm∨km I ′m| ≥ |Im|;
Case 2: |2 ji∨ki I ′i | ≥ |Ii | for i ∈ A, and |2 ji∨ki I ′i | < |Ii | for i ∈ B, where A,B are
nonempty subsets of {1, . . . ,m} and A ∪ B = {1, . . . ,m};
Case 3: |2 j1∨k1 I ′1| < |I1|, . . . , |2 jm∨km I ′m| < |Im|.

We rewrite (3.6) as

a j,k ≤
1

[w(Ω)]
2
p−1

∑
h≥1

∑
R ′∈D j,k

h

|R ′|2w(R ′)−1TR ′

×
( ∑

R∈Case 1

+
∑

R∈Case 2

+
∑

R∈Case 3

)
r(R,R ′)P(R,R ′)

≡ a j,k,1 + a j,k,2 + a j,k,3.

We first handle the term a j,k,2. For each h ≥ 1 and R ′ ∈ D
j,k
h , we estimate∑

R∈Case 2

r(R,R ′)P(R,R ′).

Let A = {i1, . . . , il} and B = {il+1, . . . , im}. Set

IA = Ii1 × · · · × Iil , IB = Iil+1 × · · · × Iim ,

and similarly for I ′A and I ′B. Thus R = IA× IB and R ′ = I ′A× I ′B. For each j, k ≥ 0, set

I ′A, j,k = 2 j1∨k1 I ′i1
× · · · × 2 jl∨kl I ′il

,

I ′B, j,k = 2 jl+1∨kl+1 I ′il+1
× · · · × 2 jm∨km I ′im

.
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Then R ′j,k = I ′A, j,k× I ′B, j,k. Let jA = ji1 ni1 + · · ·+ jil nil and jB = jil+1 nil+1 + · · ·+ jim nim

and similarly for kA, kB, ( j ∨ k)A and ( j ∨ k)B.
Note first that |IA × I ′B, j,k| ≤ |3R ′j,k ∩ 3R|. Thus

|IA|
|3I ′A, j,k|

|3R ′j,k| ≤ |3R ′j,k ∩ 3R| ≤ |3R ′j,k ∩ Ω0,0| ≤ 1

2h−1
|3R ′j,k|,

which yields
2h−1|IA| ≤ 3N |I ′A, j,k| ≤ 22N+( j∨k)A |I ′A|.

We now consider two subcases.

Subcase 2.1: |I ′A| ≥ |IA|. In this subcase, since 2h−1−( j∨k)A |IA| . |I ′A|, we have |I ′A| ∼
2h−1−( j∨k)A+n|IA| for some integer n ≥ 0. And for each fixed n, the number of such
IA’s must be less than . (n + h)N 2n+h.

Subcase 2.2: |I ′A| < |IA|. In this subcase, we have |I ′A| < |IA| ≤ |I ′A, j,k|. So 2n|I ′A| = |IA|
for some integer n satisfying 1 ≤ n ≤ ( j ∨ k)A. Moreover, for each n, the number
of such IA’s must be . 1. Moreover, we have 2h−12n|I ′A| = 2h−1|IA| ≤ 2( j∨k)A+2N |I ′A|,
which implies that h ≤ 2N + ( j ∨ k)A − n. Note also that

l∏
i=1

( |xIi − xI ′i
|

`(Ii)

) ni

=
l∏

i=1

( |xIi − xI ′i
|

`(I ′i )

`(I ′i )

`(Ii)

) ni

≥ 2( j∨k)A
|I ′A|
|IA|
≥ 2( j∨k)A−n.

In Case 2, |I ′B, j,k| ≤ |IB| implies that 2( j∨k)B+κ|I ′B| ∼ |IB| for some κ ≥ 0. And for
each fixed κ, the number of such IB’s must be . 1 since 3I ′B, j,k ∩ 3IB 6= ∅. These
considerations imply that for M > L,∑

Subcase 2.1

r(R,R ′)P(R,R ′)

≤
∑

Subcase 2.1

(
|IA|
|I ′A|

) L( |I ′B|
|IB|

) L l∏
i=1

(
1 +
|xIi − xI ′i

|
`(I ′i )

)−(1+M)

.
∑

n,κ≥0

(n + h)N 2n+h2−[h−1−( j∨k)A+n]L2−[( j∨k)B+κ]L2−(1+M)( j∨k)A

. 2−hL ′2−[( j∨k)A][M−L]2−[( j∨k)B]L,

and that for M > NM ′∑
Subcase 2.2

r(R,R ′)P(R,R ′)

≤
∑

Subcase 2.2

(
|I ′A|
|IA|

) L( |I ′B|
|IB|

) L l∏
i=1

(
1 +
|xIi − xI ′i

|
`(Ii)

)−ni M
′

.
( j∨k)A∑

n=1

∑
κ≥0

2−nL2−[( j∨k)B+κ]L2−M ′[( j∨k)A−n]
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.
( j∨k)A∑

n=1

2−nL2−M ′[( j∨k)A−n]2−( j∨k)BL

. 2−L( j∨k)A 2−L( j∨k)B .

To estimate a j,k,2, we write

a j,k,2 =
1

[w(Ω)]
2
p−1

∑
h≥1

∑
R ′∈D j,k

h

|R ′|2w(R ′)−1TR ′

×
( ∑

R∈Subcase 2.1

+
∑

R∈Subcase 2.2

)
r(R,R ′)P(R,R ′)

≡ a j,k,2.1 + a j,k,2.2.

Note that for x ∈ Ω
j,k
h there exists a dyadic acceptable rectangle R ⊆ Ω

j,k
h such that

x ∈ R, and therefore MC (χΩ0,0 )(x) ≥ |R ′j,k ∩ Ω0,0|/|R ′j,k| ≥ 2−h. Thus, applying the

Lq
w boundedness of MC with q ∈ (qw,

pL
2−p ) and Lemma 2.1,

w(Ω j,k
h ) ≤ w

(
{x : MC (χΩ0,0 )(x) ≥ 2−h}

)
. 2qhw(Ω0,0) . 2qhw(Ω).

Combining the above estimates yields

a j,k,2.1 .
1

[w(Ω)]
2
p−1

∑
h≥1

2−hL ′2−[( j∨k)A][M−L]2−[( j∨k)B]L[w(Ω j,k
h )]

2
p−1

× 1

[w(Ω j,k
h )]

2
p−1

∑
R ′⊆Ω

j,k
h

|R ′|2w(R ′)−1TR ′

.
1

[w(Ω)]
2
p−1

∑
h≥1

2−hL ′2−[( j∨k)A][M−L]2−[( j∨k)B]L[2qh]
2
p−1[w(Ω)]

2
p−1

× sup
Ω

1

[w(Ω)]
2
p−1

∑
R ′⊆Ω

|R ′|2w(R ′)−1TR ′

. 2−[( j∨k)A][M−L]2−[( j∨k)B]L sup
Ω

1

[w(Ω)]
2
p−1

∑
R ′⊆Ω

|R ′|2w(R ′)−1TR ′

and

a j,k,2.2 .
1

[w(Ω)]
2
p−1

2N+( j∨k)A∑
h=1

2−[( j∨k)A]L2−[( j∨k)B]L[w(Ω j,k
h )]

2
p−1

× 1

[w(Ω j,k
h )]

2
p−1

∑
R ′⊆Ω

j,k
h

|R ′|2w(R ′)−1TR ′
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.
1

[w(Ω)]
2
p−1

2−[( j∨k)A][L−N−q(2/p−1)]2−[( j∨k)B]L[w(Ω)]
2
p−1

× sup
Ω

1

[w(Ω)]
2
p−1

∑
R ′⊆Ω

|R ′|2w(R ′)−1TR ′

= 2−[( j∨k)A]L ′ ′2−[( j∨k)B]L sup
Ω

1

[w(Ω)]
2
p−1

∑
R ′⊆Ω

|R ′|2w(R ′)−1TR ′ .

Combining these estimates yields that for M > L > q( 2
p − 1)

∑
j,k≥1

a j,k,2 ≤
∑
j,k≥1

a j,k,2.1 +
∑
j,k≥1

a j,k,2.2 . sup
Ω

1

|Ω|
2
p−1

∑
R ′⊆Ω

|R ′|2w(R ′)−1TR ′ .

Using the same skills as above, we can also get∑
j,k≥1

a j,k,1 + a j,k,3 . sup
Ω

1

|Ω|
2
p−1

∑
R ′⊆Ω

|R ′|2w(R ′)−1TR ′ .

This gives the desired estimate for IV , and hence Theorem 1.6 follows.

4 Duality of H p
C ,w(RN) with CMOp

C ,w(RN)

The purpose of this section is to prove Theorem 1.7. To this end, we first introduce
weighted sequence spaces associated with different homogeneities.

Definition 4.1 Let 0 < p ≤ 1 and w ∈ AC
∞(RN ). The weighted sequence space

sp
w(RN ) is defined to be the collection of all sequences s = {sR} such that

‖s‖sp
w(RN ) ≡

∥∥∥∥{∑
j,k∈Z

∑
R∈R j,k

C

|sR|2|R|−1χR

} 1
2

∥∥∥∥
Lp

w(RN )

<∞.

The weighted sequence space cp
w(RN ) consists of all sequences s = {sR} such that

‖s‖cp
w(RN ) ≡ sup

Ω

{
1

[w(Ω)]
2
p−1

∑
j,k∈Z

∑
R∈R j,k

C
R⊆Ω

|sR|2
|R|

w(R)

} 1
2

<∞,

where Ω runs over all open sets in RN with w(Ω) <∞.

The duality theorem for the weighted sequence spaces is as follows.

Theorem 4.2 Let 0 < p ≤ 1 and w ∈ AC
∞(RN ). Then (sp

w(RN ))∗ = cp
w(RN ). More

precisely, for every t = {tR} ∈ cp
w(RN ), the mapping

s = {sR} −→ 〈s, t〉 ≡
∑

R

sRtR
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defines a continuous linear functional on sp
w(RN ) with operator norm ‖t‖(sp

w(RN ))∗ ≈
‖t‖cp

w(RN ), and conversely, for every ` ∈ (sp
w(RN ))∗, there exists a unique t ∈ cp

w(RN )
such that `({sR}) = 〈s, t〉.

Proof We first prove that cp
w(RN ) ⊆ (sp

w(RN ))∗. Suppose t = {tR} ∈ cp
w(RN ). For

s ∈ sp
w(RN ), set

G(s)(x) =

{∑
j,k∈Z

∑
R∈R j,k

C

|sR|2|R|−1χR(x)

} 1
2

.

For i ∈ Z, set

Ωi = {x ∈ RN : G(s)(x) > 2i},

Ω̃i = {x ∈ RN : MC (χΩi )(x) > 1/2},

Bi = {R ∈ Rd
C : |R ∩ Ωi | > 1/2|R|, |R ∩ Ωi+1| ≤ 1/2|R|}.

If x ∈ R ∈ Bi , then

MC (χΩi )(x) ≥ 1

|R|

∫
R
χΩi (y)dy =

|R ∩ Ωi |
|R|

>
1

2
,

which implies

(4.1)
⋃

R∈Bi

R ⊆ Ω̃i .

Moreover, for q ∈ (qw,∞), by the Lq
w(RN ) boundedness of MC ,

(4.2) w(Ω̃i) . w(Ωi),

and in view of Lemma 2.1, for each R ∈ Bi ,

(4.3)
w(R ∩ (Ωi \ Ωi+1))

w(R)
=

w(R \ Ωi+1)

w(R)
&

[
|R \ Ωi+1|
|R|

] q

≥ 1

2q
.

Suppose t = {tR} ∈ cp
w(RN ). Applying (4.1), (4.2), (4.3), and the Cauchy–

Schwarz inequality yields∣∣∣∣ ∑
j,k∈Z

∑
R∈R j,k

C

sRtR

∣∣∣∣
.

∣∣∣∣∑
i∈Z

∫
Ω̃i\Ωi+1

∑
R∈Bi

|tR|
|R| 1

2

w(R)
|sR||R|−

1
2χR(x)w(x)dx

∣∣∣∣
≤
∑
i∈Z

{∑
R⊆Ωi

|tR|2
|R|

w(R)

} 1
2
{∫

Ω̃i\Ωi+1

∑
R∈Bi

|sR|2|R|−1χR(x)w(x)dx

} 1
2
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. ‖t‖cp
w

∑
i∈Z

[w(Ω̃i)]( 2
p−1) 1

2

{∫
Ω̃i\Ωi+1

[G(s)(x)]2w(x)dx

} 1
2

≤ C‖t‖cp
w

∑
i∈Z

2i[w(Ωi)]
1
p . ‖t‖cp

w
‖G(s)‖Lp

w
= ‖t‖cp

w
‖s‖sp

w
,

proving the inclusion cp
w(RN ) ⊆ (sp

w(RN ))∗.
The converse can be proved similarly to that given in [FJ] in the one-parameter

setting. If ` ∈ (sp
w(RN ))∗, then it is clear that `(s) =

∑
R sRtR for some t = {tR}.

Now fix an open set Ω ⊆ RN with w(Ω) < ∞. Let µ be a measure of Rd
C such that

µ(R) = [w(Ω)]1−2/p|R|[w(R)]−1 if R ⊆ Ω, and otherwise µ(R) = 0. Set

‖{sR}‖`2(Ω,µ) =

{∑
j,k∈Z

∑
R∈R j,k

C
R⊆Ω

|sR|2[w(Ω)]1−2/p|R|[w(R)]−1

} 1
2

.

Thus {
1

[w(Ω)]
2
p−1

∑
j,k∈Z

∑
R∈R j,k

C
R⊆Ω

|tR|2
|R|

w(R)

} 1
2

= ‖t‖`2(Ω,µ) = sup
‖s‖`2(Ω,µ)≤1

∣∣∣∣ ∑
j,k∈Z

∑
R∈R j,k

C
R⊆Ω

sRtR[w(Ω)]1−2/p|R|[w(R)]−1

∣∣∣∣
≤ ‖`‖ sup

‖s‖`2(Ω,µ)≤1

∥∥∥ sR[w(Ω)]1−2/p|R|[w(R)]−1
∥∥∥

sp
w

,

where s = {sR}, sR = 0 if R is not contained in Ω. However, for such an s, by Hölder’s
inequality,∥∥∥ sR[w(Ω)]1−2/p|R|[w(R)]−1

∥∥∥
sp
w(RN )

=

{∫
Ω

[
∑
j,k∈Z

∑
R∈R j,k

C
R⊆Ω

|sR|2[w(Ω)]2−4/p|R|[w(R)]−2χR(x)]
p
2 w(x)dx

} 1
p

≤ [w(Ω)]
1
p−

1
2

{ ∫
Ω

∑
j,k∈Z

∑
R∈R j,k

C
R⊆Ω

|sR|2[w(Ω)]2−4/p|R|[w(R)]−2χR(x)w(x)dx

} 1
2

= ‖s‖`2(Ω,µ) ≤ 1.

This shows that ‖t‖cp
w(RN ) ≤ ‖`‖ and thus t ∈ cp

w(RN ). Hence the proof of Theo-
rem 4.2 is concluded.
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In order to use Theorem 4.2 to show Theorem 1.7, we define the lifting operator
L( f ) for f ∈ S ′/P(RN ) and the projection operator T(t) for a sequence t = {tR}
respectively by

L( f ) = {|R| 1
2ψ j,k ∗ f (xR)} = {sR}

and

T(t)(x) =
∑
j,k∈Z

∑
R∈R j,k

C

|R| 1
2ψ j,k(x − xR)tR,

where ψ j,k and xR are the same as in Definition 1.5.
To prove Theorem 1.7, we also need the following theorem.

Theorem 4.3 Let 0 < p ≤ 1 and w ∈ AC
∞(RN ). Then the lifting operator L is

bounded from H p
C ,w(RN ) to sp

w(RN ) and from CMOp
C ,w(RN ) to cp

w(RN ), the projection

operator T is bounded from sp
w(RN ) to H p

C ,w(RN ) and from cp
w(RN ) to CMOp

C ,w(RN ).

Moreover, T ◦ L is the identity on H p
C ,w(RN ) and CMOp

C ,w(RN ).

Proof The boundedness of L from H p
C ,w(RN ) to sp

w(RN ) and from CMOp
C ,w(RN ) to

cp
w(RN ) follows directly from Definition 4.1.

We next show that T is bounded from sp
w(RN ) to H p

C ,w(RN ). The proof is similar
to that of [Wu, Theorem 1.2]. Let t = {tR}. Applying the Calderón reproducing
formula in Lemma 2.3, the almost orthogonality estimates with M > N[(qw/p −
1) ∨ 0] and L = 10M, Lemma 2.6 with Mi = M, and the Lp/δ

w (`2/δ) boundedness of
MC in Theorem 1.3, we have for some N/(N + M) < δ < (1 ∧ p/qw),

‖T(t)‖H p
C ,w

=
∥∥∥{∑

j,k∈Z

∑
R∈R j,k

C

∣∣∣ ∑
j ′,k ′∈Z

∑
R ′∈R j ′ ,k ′

C

|R ′|ψ j,k ∗ ψ j ′,k ′(xR − xR ′)tR ′ |R ′|−
1
2

∣∣∣ 2
χR

} 1
2
∥∥∥

Lp
w

=

∥∥∥∥{ ∑
j,k∈Z

( ∑
j ′,k ′∈Z

2−5M‖j−j ′‖2−5M‖k−k ′‖
)

×
( ∑

j ′,k ′∈Z
2−5M‖j−j ′‖2−5M‖k−k ′‖(MC [(

∑
R ′∈R j ′ ,k ′

C

t2
R ′ |R ′|−1χR ′)

δ
2 ]
) 2

δ

)} 1
2

∥∥∥∥
Lp

w

.

∥∥∥∥{ ∑
j ′,k ′∈Z

{MC [
∑

R ′∈R j,k
C

t2
R ′ |R ′|−1χR ′]

δ/2} 2
δ

} 1
2

∥∥∥∥
Lp

w

.

∥∥∥∥{ ∑
j ′,k ′∈Z

∑
R ′∈R j,k

C

t2
R ′ |R ′|−1χR ′

} 1
2

∥∥∥∥
Lp

w

= ‖s‖sp
w
.

Finally, we prove that the operator T is bounded from cp
w(RN ) to CMOp

C ,w(RN ).
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Suppose t = {tR} ∈ cp
w(RN ). We have

∑
j,k∈Z

∑
R∈R j,k

C
R⊆Ω

|ψ j,k ∗ T(t)(xR)|2 |R|
2

w(R)
=

∑
j,k∈Z

∑
R∈R j,k

C
R⊆Ω

( ∑
j,k∈Z

∑
R∈R j,k

C

|ψ j,k ∗ ψ j ′,k ′(xR − xR ′)| · tR ′ · |R ′|
1
2

) 2 |R|2

w(R)
.

Using the same skills as in Theorem 1.6, we can obtain

‖T(t)‖CMOp
C ,w(RN ) . sup

Ω

{
1

[w(Ω)]
2
p−1

∑
R ′⊆Ω

|tR ′ |2
|R ′|2

w(R ′)

} 1
2

≈ ‖t‖cp
w(RN ).

The fact that T ◦ L is the identity on H p
C ,w(RN ) and CMOp

C ,w(RN ) follows directly
from the discrete Calderón reproducing formula in Lemma 2.3. This concludes the
proof of Theorem 4.3.

Now we are ready to give the proof of Theorem 1.7.

Proof of Theorem 1.7 We first prove the inclusion CMOp
C ,w(RN ) ⊆ (H p

C ,w(RN ))∗.

Let g ∈ CMOp
C ,w(RN ). For f ∈ S∞(RN ), define the mapping `g = 〈 f , g〉. By Lemma

2.3 and Theorems 4.2 and 4.3,

|`g( f )| = |〈 f , g〉| = |
∑
j,k∈Z

∑
R⊆R j,k

C

|R| 1
2ψ j,k ∗ f (xR)|R| 1

2ψ j,k ∗ g(xR)|

= |〈L( f ),L(g)〉| ≤ C‖L( f )‖sp
w(RN )‖L(g)‖cp

w(RN )

≤ C‖ f ‖H p
C ,w(RN )‖g‖CMOp

C ,w(RN ),

where we have chosen ψ(1)(−x) = ψ(1)(x) and ψ(2)(−x) = ψ(2)(x). Since S∞(RN ) is
dense in H p

C ,w(RN ) (see [Wu, Corollary 3.1]), this implies that the mapping `g( f ) =

〈 f , g〉 can be extended to a continuous linear functional on H p
C ,w(RN ) and ‖`g‖ ≤

C‖g‖CMOp
C ,w(RN ).

Conversely, let ` ∈ (H p
C ,w(RN ))∗ and `1 = ` ◦ T. By Theorem 4.3,

|`1(s)| = |`(T(s))| ≤ ‖`‖ · ‖T(s)‖H p
C ,w(RN ) ≤ C‖`‖ · ‖s‖sp

w(RN ), for s ∈ sp
w(RN ),

which implies that `1 ∈ (sp
w(RN ))∗. Then by Theorem 4.2, there exists t = {tR} ∈

cp
w(RN ) such that `1(s) =

∑
R sRtR for all s = {sR} ∈ sp

w(RN ) and ‖t‖cp
w(RN ) . ‖`1‖ .

‖`‖. Again by Theorem 4.2, ` = ` ◦ T ◦ L = `1 ◦ L. Hence,

`( f ) = `1(L( f )) = 〈L( f ), t〉 = 〈 f , g〉,
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where
g(x) =

∑
j,k∈Z

∑
R∈R j,k

C

|R| 1
2 tR ψ j,k(xR − x).

This implies that ` = `g and, by Theorem 4.2, ‖g‖CMOp
C ,w(RN ) ≤ C‖t‖cp

w(RN ) ≤ C‖`g‖.
The proof of Theorem 1.7 is concluded.

5 Boundedness of Compositions of Singular Integrals on CMOp
C ,w

In this section, we give the proof of Theorem 1.8. As mentioned in Section 1, to show
the boundedness of T1 ◦T2 on CMOp

C ,w, we first need to define T1 ◦T2 on CMOp
C ,w.

To this end, we need the following weak density result.

Lemma 5.1 Let 0 < p ≤ 1 and w ∈ AC
∞(RN ). Then L2(RN )∩CMOp

C ,w(RN ) is dense

in CMOp
C ,w(RN ) in the weak topology 〈H p

C ,w(RN ),CMOp
C ,w(RN )〉. More precisely, for

any f ∈ CMOp
C ,w(RN ), there exists a sequence

{ fn} ⊆ L2(RN ) ∩ CMOp
C ,w(RN )

such that ‖ fn‖CMOp
C ,w(RN ) ≤ C‖ f ‖CMOp

C ,w(RN ) and for any g ∈ H p
C ,w(RN ),

〈 fn, g〉 → 〈 f , g〉, as n→∞,

where the constant C is independent of n and f .

Proof Suppose f ∈ CMOp
C ,w(RN ). Set

fn(x) =
∑
| j|≤n
|k|≤n

∑
R⊆Bn

2 j1∨k1+···+ jm∨kmψ j,k ∗ f (xR)ψ j,k(x − xR),

where ψ j,k is the same as in Lemma 2.3 and Bn = {x : |x1| ≤ n, . . . , |xm| ≤ n}.
It is easy to see that fn ∈ L2(RN ). Applying the same proof as Theorem 1.6 implies

that ‖ fn‖CMOp
C ,w(RN ) ≤ C‖ f ‖CMOp

C ,w(RN ) and thus fn ∈ L2(RN ) ∩ CMOp
C ,w(RN ). For

any g ∈ S∞(RN ), by the discrete Calderón reproducing formula in Lemma 2.3,

〈 f − fn, g〉 =
〈 ∑
| j|>n or |k|>n

or R Bn

2 j1∨k1+···+ jm∨kmψ j,k ∗ f (xR)ψ j,k( · − xR), g
〉

=
〈

f ,
∑

| j|>n or |k|>n
or R Bn

2 j1∨k1+···+ jm∨kmψ j,k ∗ g(xR)ψ j,k( · − xR)
〉
.

By a result in [Wu], the function∑
| j|>n or |k|>n

or R Bn

2 j1∨k1+···+ jm∨kmψ j,k ∗ g(xR)ψ j,k(x − xR)
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belongs to H p
C ,w(RN ) and its H p

C ,w(RN ) norm tends to 0 as n goes to∞. Therefore,
Theorem 1.7 yields that 〈 f − fn, g〉 tends to zero as n gets to∞. This concludes the
proof of Lemma 5.1 after a standard density argument (since S∞(RN ) is dense in
H p

C ,w(RN )).

Now let us show how the composition T1 ◦ T2 acts on CMOp
C ,w(RN ) func-

tions. Given f ∈ CMOp
C ,w(RN ), by Lemma 5.1, there is a sequence { fn} ⊆

L2(RN ) ∩ CMOp
C ,w(RN ) such that ‖ fn‖CMOp

C ,w(RN ) ≤ C‖ f ‖CMOp
C ,w(RN ), and for any

g ∈ L2(RN ) ∩ H p
C ,w(RN ), 〈 fn, g〉 → 〈 f , g〉 as n → ∞. Thus, for f ∈ CMOp

C ,w(RN ),
we define

(5.1) 〈T1 ◦ T2( f ), g〉 = lim
n→∞
〈T1 ◦ T2( fn), g〉, for any g ∈ L2(RN ) ∩H p

C ,w(RN ).

To see that the limit exists, write 〈(T1 ◦ T2)( fl − fn), g〉 = 〈 fl − fn, (T1 ◦ T2)∗(g)〉
since both fl − fn and g belong to L2(RN ), and T1 ◦ T2 is bounded on L2(RN ). By a
result in [Wu], (T1 ◦ T2)∗ is bounded on H p

C ,w(RN ), thus (T1 ◦ T2)∗(g) ∈ L2(RN ) ∩
H p

C ,w(RN ). Therefore, by Lemma 5.1, 〈 fl − fn, (T1 ◦ T2)∗(g)〉 tends to zero as l, n→
∞. It is also easy to verify that the definition of T1 ◦ T2( f ) is independent of the
choice of the sequence fn satisfying the conditions in Lemma 5.1.

To finish the proof of Theorem 1.8, we only need to show the boundedness of
T1◦T2 on L2(RN )∩CMOp

C ,w(RN ). For this purpose, we establish a discrete Calderón-

type identity on L2(RN ).
Let φ(1) be a Schwartz function supported in the unit ball in RN with∫

RN

φ(1)(x)xα1 dx = 0, for 0 ≤ |α1| ≤ M0,

where M0 is a large positive integer which will be determined later, and∑
j∈Z

φ̂(1)(2 j ◦1 ξ) = 1, for all ξ ∈ RN\{0}

with φ(2) satisfying similar conditions with ◦1 replaced by ◦2. For j, k ∈ Z, let
φ(1)

j (x) = 2− jN1φ(1)(2− j ◦1 x), φ(2)
k (x) = 2−kN2φ(2)(2−k ◦2 x), and φ j,k(x) =

φ(1)
j ∗ φ

(2)
k (x).

Lemma 5.2 Suppose 0 < p ≤ 1 and w ∈ AC
∞(RN ). Let φ j,k be defined as above with

M0 ≥ 10(N[qw/(1 ∧ p) − 1] + 1). Then for any f ∈ L2(RN ) ∩ CMOp
C ,w(RN ), there

exists h ∈ L2(RN ) ∩ CMOp
C ,w(RN ) such that for a sufficiently large K ∈ N,

f (x) =
∑
j,k∈Z

∑
R∈R j−K,k−K

C

|R|φ j,k(x − xR)φ j,k ∗ h(xR),

where xR denotes the minimal corner of R and the series converges in L2(RN ). Moreover,

‖ f ‖L2(RN ) ∼ ‖h‖L2(RN ).(5.2)
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and

‖ f ‖CMOp
C ,w(RN ) ∼ ‖h‖CMOp

C ,w(RN ).(5.3)

Proof Applying Coifman’s decomposition of the identity operator, we have

f (x) =
∑
j,k∈Z

∑
R∈R j−K,k−K

C

|R|φ j,k ∗ f (xR)φ j,k(x − xR) + SK ( f )(x)

≡ TK ( f )(x) + SK ( f )(x),

where

SK ( f )(x)

=
∑
j,k∈Z

∑
R∈R j−K,k−K

C

∫
R
φ j,k(x − x ′)(φ j,k ∗ f )(x ′)− φ j,k(x − xR)(φ j,k ∗ f )(xR)dx ′

=
∑
j,k∈Z

∑
R∈R j−K,k−K

C

∫
R

[
φ j,k(x − x ′)− φ j,k(x − xR)

]
(φ j,k ∗ f )(x ′)dx ′

+
∑
j,k∈Z

∑
R∈R j−K,k−K

C

∫
R
φ j,k(x − x ′)

[
(φ j,k ∗ f )(x ′)− (φ j,k ∗ f )(xR)

]
dx ′

≡ S1
K ( f )(x) + S2

K ( f )(x).

Now we claim that for l = 1, 2,

‖Rl
K ( f )‖L2(RN ) ≤ C2−K‖ f ‖L2(RN )(5.4)

and

‖Rl
K ( f )‖CMOp

C ,w(RN ) ≤ C2−K‖ f ‖CMOp
C ,w(RN ),(5.5)

where C is a constant independent of f and K.
Assume the claim for the moment, then, by choosing sufficiently large K, T−1

K =∑∞
n=0(SK )n is bounded on both L2(RN ) and CMOp

C ,w(RN ). For any f ∈ L2(RN ) ∩
CMOp

C ,w(RN ), set h = T−1
K ( f ), then the estimates in (5.4) and (5.5) imply (5.2) and

(5.3), respectively. Moreover,

f (x) =TK (T−1
K ( f ))(x) =

∑
j,k∈Z

∑
R∈R j−K,k−K

C

|R|φ j,k(x − xR)(φ j,k ∗ h)(xR),

where the series converges in L2(RN ).
Thus, to finish the proof of Theorem 5.2, it suffices to verify the claim. We only

prove (5.5), since (5.4) has been established in [Wu]. Since the proofs for S1
K and

S2
K are similar, we only give the proof for S1

K . Roughly speaking, the proof is similar
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to Theorem 1.6. To see this, let f ∈ L2(RN ) ∩ CMOp
C ,w(RN ). Applying Calderón’s

discrete reproducing formula in Lemma 2.3 yields

ψ j ′,k ′ ∗ S1
K ( f )(x)

=
∑
j,k∈Z

∑
R∈R j−K,k−K

C

∫
R
ψ j ′,k ′ ∗ [φ j,k(· − x ′)− φ j,k(· − xR)](x)(φ j,k ∗ f )(x ′)dx ′

=
∑
j,k∈Z

∑
R∈R j−K,k−K

C

∫
R
ψ j ′,k ′ ∗ [φ j,k(· − x ′)− φ j,k(· − xR)](x)

×
( ∑

j ′, ′,k ′, ′∈Z

∑
R ′ ′∈R j−K,k−K

C

|R ′ ′| · ψ j ′ ′,k ′ ′ ∗ f (xR ′ ′)φ j,k ∗ ψ j ′ ′,k ′ ′(x ′ − xR ′ ′)

)
dx ′,

(5.6)

where xR ′ ′ = (xI ′ ′1
, . . . , xI ′ ′m

) is the minimal corner of R ′ ′.

Set φ̃ j,k(u) = φ j,k(u − x ′) − φ j,k(u − xR). Applying Lemma 2.4 (particularly
Remark 2.5) with M = N[qw/(1∧ p)−1] + 1 and L = 10M, we obtain that for some
constant C (depending only on M, ψ and φ, but independent of K),

|ψ j ′,k ′ ∗ φ̃ j,k(x)| ≤ C2−K 2−10M‖j−j ′‖2−10M‖k−k ′‖
m∏

i=1

2( ji∨ j ′i ∨ki∨k ′i )M

(2 ji∨ j ′i ∨ki∨k ′i + |xi − x ′i |)ni +M

≤ C2−K 2−3M‖j−j ′‖2−3M‖k−k ′‖
m∏

i=1

2( j ′i ∨k ′i )M

(2 j ′i ∨k ′i + |xi − x ′i |)ni +M
,

where the last inequality follows from 2 ji∨ j ′i ∨ki∨k ′i ≤ 2‖j−j ′‖2‖k−k ′‖2 j ′i ∨k ′i . Similarly,

|φ j,k ∗ ψ j ′ ′,k ′ ′(x ′ − x ′ ′R )| ≤

C2−K 2−3M‖j−j ′ ′‖2−3M‖k−k ′ ′‖
m∏

i=1

2( j ′ ′i ∨k ′ ′i )M

(2 j ′ ′i ∨k ′ ′i + |x ′i − xI ′ ′i
|)ni +M

.

Inserting these estimates into the last term in (5.6) yields

|ψ j ′,k ′ ∗ S1
K ( f )(x)|

.
∑

j ′, ′,k ′, ′∈Z

∑
R ′ ′∈R j−K,k−K

C

|R ′ ′||ψ j ′ ′,k ′ ′ ∗ f (xR ′ ′)|

×
∑
j,k∈Z

∑
R∈R j−K,k−K

C

∫
R

2−K
m∏

i=1
2−‖j−j ′‖3M2−‖k−k ′‖3M 2( j ′i ∨k ′i )M

(2 j ′i ∨k ′i + |xi − x ′i |)ni +M

× 2−‖j−j ′ ′‖3M2−‖k−k ′ ′‖3M
m∏

i=1

2( j ′ ′i ∨k ′ ′i )M

(2 j ′ ′i ∨k ′ ′i + |x ′i − xI ′ ′i
|)ni +M

dx ′
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. 2−K
∑

j ′, ′,k ′, ′∈Z

∑
R ′ ′∈R j−K,k−K

C

2−‖j ′−j ′ ′‖3M2−‖k ′−k ′ ′‖3M |R ′ ′|

×
{

m∏
i=1

2( j ′k∨ j ′ ′k ∨k ′i ∨k ′ ′i )M

(2 j ′i ∨ j ′ ′i ∨k ′i ∨k ′ ′i + |xi − xI ′ ′i
|)ni +M

}
|ψ j ′ ′,k ′ ′ ∗ f (xR ′ ′)|.

Taking x = xR ′ , adding up all the terms, and multiplying by |R ′|2/w(R ′) over j ′, k ′ ∈
Z, R ′ ∈ R

j ′−K,k ′−K
C ,R ′ ⊆ Ω ′ and applying Lemma 2.2, we obtain

sup
Ω ′

{ 1

[w(Ω ′)]
2
p−1

∑
j ′,k ′∈Z

∑
R ′∈R j ′−K,k ′−K

C

R⊆Ω ′

|R ′|2w(R ′)−1|ψ j ′,k ′ ∗ S1
K ( f )(x)|2

}
.

2−K sup
Ω ′

{ 1

[w(Ω ′)]
2
p−1

∑
j ′,k ′∈Z

∑
R ′∈R j ′−K,k ′−K

C ,

R ′⊆Ω ′

∑
j ′, ′,k ′, ′∈Z

∑
R ′ ′∈R j ′ ′−K,k ′ ′−K

C

|R ′ ′|2

w(R ′ ′)
r(R ′,R ′ ′)P(R ′,R ′ ′)TR ′ ′

}
,

where
r(R ′,R ′ ′) = 2−L(‖j ′−j ′ ′‖+‖k ′−k ′ ′‖)

and

P(R ′,R ′ ′) =
m∏

i=1

2( j ′k∨ j ′ ′k ∨k ′i ∨k ′ ′i )M

(2 j ′i ∨ j ′ ′i ∨k ′i ∨k ′ ′i + |x ′i − xI ′ ′i
|)ni +M

.

Repeating the same proof as in Theorem 1.6, we can get (5.5). Thus the claim is
concluded, and Theorem 5.2 follows.

We point out that in the discrete Calderón reproducing formula of Lemma 2.3 the
series converges in L2, S∞, and S ′/P, while in the above Calderón-type identity, the
series only converges in L2. However, the φ j,k in Lemma 5.2 have compact supports,
but ψ j,k in Lemma 2.3 do not. The fact that the φ j,k have compact supports enables
us to derive the key estimates of the kernels (see Lemma 5.4).

Repeating the same argument as in Lemma 5.2, we have the following corollary.

Corollary 5.3 Let 0 < p ≤ 1 and w ∈ AC
∞(RN ). Suppose that φ j,k satisfy the

same conditions as in Lemma 5.2. Then for a large integer K as in Lemma 5.2 and
f ∈ L2(RN ) ∩ CMOp

C ,w(RN ),

‖ f ‖CMOp
C ,w(RN ) ≈ sup

Ω

{ 1

[w(Ω)]
2
p−1

∑
j,k∈Z

∑
R∈R j−K,k−K

C
R⊆Ω

|φ j,k ∗ h(xR)|2|R|2[w(R)]−1
} 1

2
,

where xR denotes the minimal corner of R and the implicit constants are independent
of f .
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The following lemma provides key estimates for the kernels.

Lemma 5.4 Let φ(1)
j , φ

(1)
j ′ , φ(2)

k , φ(2)
k ′ satisfy the same conditions as in Lemma 5.2 with

M0 ≥ 10M. Then

|φ(1)
j ∗K1 ∗ φ(1)

j ′ (x)| ≤ C2−10M‖j−j ′‖
m∏

i=1

2( ji∨ j ′i )Mi
1

(2 ji∨ j ′i + |xi |)ni +Mi
1

(5.7)

and

|φ(2)
k ∗K2 ∗ φ(2)

k ′ (x)| ≤ C2−10M‖k−k ′‖
m∏

i=1

2(ki∨k ′i )Mi
2

(2ki∨k ′i + |xi |)ni +Mi
2

,(5.8)

where Mi
k = Mni/Nk for i = 1, . . . ,m and k = 1, 2.

Proof We borrow an idea from [FS1]. We only show (5.7), as (5.8) can be proved
similarly. By the classical almost orthogonality estimate,

φ(1)
j ∗ φ

(1)
j ′ (u) = C2−10M‖j−j ′‖ϕ j∨ j ′(u),

where ϕ j∨ j ′(u) = 2−( j∨ j ′)N1ϕ(2− j∨ j ′ ◦1 u) and ϕ is a Schwartz function in RN

supported in {|u|1 ≤ 2} with the same moment conditions as φ(1). If we can show

(5.9) |K1 ∗ ϕ(x)| . 1

(1 + |x|1)N1+M
,

then a dilation argument would yield

|φ(1)
j ∗K1 ∗ φ(1)

j ′ (x)| . 2−10M‖j−j ′‖2−( j∨ j ′)N1
1

(1 + 2− j∨ j ′ |x|1)N1+M

≤ 2−10M‖j−j ′‖2−( j∨ j ′)N1
m∏

i=1

1

(1 + 2− ji∨ j ′i |xi |)ni +Mi
1

= 2−10M‖j−j ′‖
m∏

i=1

2( ji∨ j ′i )Mi
1

(2 ji∨ j ′i + |xi |)ni +Mi
1

,

which gives (5.7). Thus, to finish the proof it suffices to verify (5.9).
We consider two cases. If |x|1 ≥ 4, then applying the cancellation condition of ϕ

and smoothness condition of K1 (via the stratified Taylor inequality in [FS2, (1.44)]),

|K1 ∗ ϕ(x)| =
∣∣∣∣∫ [K1(x − u)− PM(x)]ϕ(u)du

∣∣∣∣ . ∫ |u|M1
|x|N1+M

1

|ϕ(u)|du

.
1

(1 + |x|1)N1+M
,

where PM denote the (M − 1)-th order Taylor’s polynomial of K1 at x.
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If |x|1 ≤ 4, then write

|K1 ∗ ϕ(x)| =
∣∣∣∣∫
|u|1≤6

K1(u)[ϕ(x − u)− ϕ(x)]du

∣∣∣∣ + |ϕ(x)| ·
∣∣∣∣∫
|u|1≤6

K1(u)du

∣∣∣∣ .
The estimate for the first term can be derived by the use of the size condition of
K1 and the smoothness condition of ϕ. The second term can be handled by using
the cancellation condition of K1. This concludes the proof of (5.9), and Lemma 5.4
follows.

Remark 5.5 Let M̃ = min
i=1,...,m

k=1,2

{Mi
k}. Then by Lemma 5.4,

|φ(1)
j ∗K1 ∗ φ(1)

j ′ (x)| ≤ C2−10M̃‖j−j ′‖
m∏

i=1

2( ji∨ j ′i )M̃

(2 ji∨ j ′i + |xi |)ni +M̃

and

|φ(2)
k ∗K2 ∗ φ(2)

k ′ (x)| ≤ C2−10M̃‖k−k ′‖
m∏

i=1

2(ki∨k ′i )M̃

(2ki∨k ′i + |xi |)ni +M̃
.

Moreover, the above inequalities indeed hold for arbitrary M̃ > 0, since M0 can be
chosen arbitrarily large.

We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8 We first show that for f ∈ L2(RN ) ∩ CMOp
C ,w(RN ),

‖T1 ◦ T2( f )‖CMOp
C ,w(RN ) ≤ C‖ f ‖CMOp

C ,w(RN ),

where the constant C is independent of f . In view of Corollary 5.3, this would follow
if we show that for any open set Ω,

(5.10)
{ 1

[w(Ω)]
2
p−1

∑
j,k∈Z

∑
R∈R j−K,k−K

C
R⊆Ω

|φ j,k ∗ (T1 ◦ T2)( f )(xR)|2 |R|
2

w(R)

} 1
2

. ‖ f ‖CMOp
C ,w(RN ),

where φ j,k and K are the same as in Theorem 5.2, and the constant C is independent
of f .
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By the discrete Calderón-type identity given in Theorem 5.2, we write

∑
j,k∈Z

∑
R∈R j−K,k−K

C
R⊆Ω

|φ j,k ∗ (T1 ◦ T2)( f )(xR)|2|R|2[w(R)]−1

=
∑
j,k∈Z

∑
R∈R j−K,k−K

C
R⊆Ω

∣∣∣ ∑
j ′,k ′∈Z

∑
R ′∈R j ′−K,k ′−K

C

tR ′ |R ′|
1
2

× φ j,k ∗ (K1 ∗K2) ∗ (φ j ′,k ′)(xR − xR ′)
∣∣∣ 2
|R|2[w(R)]−1,

where tR ′ = φ j ′,k ′ ∗ h(xR ′)|R ′|
1
2 and ‖h‖CMOp

C ,w(RN ) ≈ ‖ f ‖CMOp
C ,w(RN ). Noticing

that by Lemma 5.4 (particularly Remark 5.5), φ j,k ∗ (K1 ∗ K2) ∗ φ j ′,k ′ satisfy the
same almost orthogonality estimates as ψ j,k ∗ ϕ j ′,k ′ in Lemma 2.4. Repeating the
same argument as in the proof of Theorem 1.6, we conclude that for f ∈ L2(RN ) ∩
CMOp

C ,w(RN ),

{
1

[w(Ω)]
2
p−1

∑
j,k∈Z

∑
R∈R j−K,k−K

C
R⊆Ω

|φ j,k ∗ (T1 ◦ T2)( f )(xR)|2|R|2[w(R)]−1

} 1
2

≤ C‖h‖CMOp
C ,w(RN ) ≤ C‖ f ‖CMOp

C ,w(RN ),

which is just (5.10).
For f ∈ CMOp

C ,w(RN ), let { fn} ⊆ L2(RN ) ∩ CMOp
C ,w(RN ) be the sequence as in

(5.1). By the definition of T1 ◦ T2( f ) and the boundedness of T1 ◦ T2 on L2(RN ) ∩
CMOp

C ,w(RN ),

‖T1 ◦ T2( f )‖CMOp
C ,w(RN ) ≤ lim inf

n→∞
‖T1 ◦ T2( fn)‖CMOp

C ,w(RN )

≤ C lim inf
n→∞

‖ fn‖CMOp
C ,w(RN ) ≤ C‖ f ‖CMOp

C ,w(RN ).

This concludes the proof of Theorem 1.8.
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