CAPITULATION IN UNRAMIFIED QUADRATIC EXTENSIONS OF REAL QUADRATIC NUMBER FIELDS

by E. BENJAMIN, F. SANBORN and C. SNYDER

(Received 8 March, 1993; revised 21 May, 1993)

1. Introduction. Let k be an algebraic number field and C_{k} its ideal class group (in the wider sense). Suppose K is a finite extension of k. Then we say that an ideal class of k capitulates in K if this class is in the kernel of the homomorphism

$$
j: C_{k} \rightarrow C_{K}
$$

induced by extension of ideals from k to K. (See Section 2 below). In [4], Iwasawa gives examples of real quadratic number fields, $k=\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3}}\right)$, with distinct primes $p_{i} \equiv 1$ $(\bmod 4)$, for which all the ideal classes of the 2-class group, $C_{k, 2}$ (the 2-Sylow subgroup of C_{k}), capitulate in an unramified quadratic extension of k. In these examples, $C_{k, 2}$ is abelian of type (2,2), i.e. isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, and so all four ideal classes capitulate.

In this note, we consider an arbitrary unramified quadratic extension, K / k, of a real quadratic number field, k, and determine the number of ideal classes of C_{k} which capitulate in C_{K}. As we shall see, the number of ideal classes that can capitulate is 2,4 , or 8. We give simple criteria involving the fundamental units of the three quadratic subfields of K which determine the number of ideal classes that capitulate. We then make use of the results of Cremona and Odoni [1,2] to show that there exist infinitely many extensions K / k such that $|\operatorname{ker} j|=2,4$, and 8 respectively. Examples are then provided.

For more information on the capitulation problem, see Miyake [7].
2. Main Results. Let k be a real quadratic number field of even class number with discriminant

$$
d_{k}=d=p_{1}^{*} \ldots p_{i}^{*}, \quad p_{j} \text { distinct primes. }
$$

Here p^{*} represents the fundamental discriminant divisible only by the prime p, i.e. $p^{*}=(-1)^{p-1 / 2} p$, if p is odd, and $2^{*} \in\{-4,8,-8\}$.

Since the class number of k is even, there exists at least one quadratic extension, K, of k unramified at all the primes (including the infinite ones, which means K is totally real). By genus theory, see e.g. [5], $K=k\left(\sqrt{d_{1}}\right)$ for some fundamental discriminant $d_{1} \mid d$ such that $d_{1}>1$ and $d_{1} \neq d$. Let $d_{2}=d / d_{1}$. Then $K=\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$ and thus K / \mathbb{Q} is a Galois extension, the Galois group of which is abelian of type (2,2). Consequently, K contains three real quadratic subfields: $k_{0}=k=\mathbb{Q}(\sqrt{d}), k_{1}=\mathbb{Q}\left(\sqrt{d_{1}}\right)$ and $k_{2}=\mathbb{Q}\left(\sqrt{d_{2}}\right)$. We have the following diagram.

Glasgow Math. J. 36 (1994) 385-392.

We denote by $\varepsilon_{0}=\varepsilon, \varepsilon_{1}$, and ε_{2} the fundamental units (>1) of $k_{0}=k, k_{1}$, and k_{2}, respectively. Also to simplify notation we let $N \kappa_{i}=N_{k_{i} / \mathbb{Q}}\left(\kappa_{i}\right)$ for any $\kappa_{i} \in k_{i}(i=0,1,2)$. Thus $N \kappa_{i}=\kappa_{i} \kappa_{i}^{\prime}$ where κ_{i}^{\prime} denotes the conjugate of κ_{i} over \mathbb{Q}.

Let $j: C_{k} \rightarrow C_{K}$ be the homomorphism induced by extension of ideals from the ring of integers, O_{k}, of k to O_{K}. (Hence if $[A]$ is the ideal class of C_{k} containing the ideal A, then $j([A])=\left[A O_{K}\right]$.) We shall be interested in determining |ker $j \mid$, the number of ideal classes of C_{k} that capitulate in C_{K}. It is well-known, cf. [3], that the exponent of the group ker j divides $[K: k]$ (which for us is 2). Hence $\operatorname{ker} j \subseteq C_{k .2}$, the 2-Sylow subgroup of C_{k}. Moreover it is also well-known, cf. [9], that when K / k is cyclic and unramified at the infinite primes,

$$
|\operatorname{ker} j|=[K: k]\left[E_{k}: N_{K / k}\left(E_{K}\right)\right] .
$$

Hence in our case $|\operatorname{ker} j|=2\left[E_{k}: N_{K / k}\left(E_{K}\right)\right]$. Here E_{k}, E_{K} represent the group of units in O_{k}, O_{K}, respectively. Notice that $E_{k}^{2} \subseteq N_{K / k}\left(E_{K}\right)$. But then since $E_{k}=\{ \pm 1\} \times\langle\varepsilon\rangle$, we see that

$$
\left[E_{k}: N_{K / k}\left(E_{K}\right)\right] \leq\left[E_{k}: E_{k}^{2}\right]=4 .
$$

Thus $\left[E_{k}: N_{K / k}\left(E_{K}\right)\right]=1,2$, or 4 and so $|\operatorname{ker} j|=2,4$, or 8 . We now determine conditions under which each of these three possibilities can happen. To this end, we obtain more information about E_{K}.

By Dirichlet's unit theorem, since $[K: \mathbb{Q}]=4$ and K is totally real, E_{K} possesses a system of three fundamental units, i.e. $E_{K}=\{ \pm 1\} \times\left\{\mu_{1}\right\} \times\left\{\mu_{2}\right\} \times\left\{\mu_{3}\right\}$ for some $\mu_{i} \in$ $E_{K}(i=1,2,3)$.

By Kubota [6, Satz 1], there exist the following eight possibilities for a system of fundamental units of E_{K} :
(i) $\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}$
(ii) $\sqrt{\varepsilon_{i}}, \varepsilon_{j}, \varepsilon_{k}$
(iii) $\sqrt{\varepsilon_{i}}, \sqrt{\varepsilon_{j}}, \varepsilon_{k}$
(iv) $\sqrt{\varepsilon_{i} \varepsilon_{j}}, \varepsilon_{j}, \varepsilon_{k}$
(v) $\sqrt{\varepsilon_{i} \varepsilon_{j}}, \sqrt{\varepsilon_{k}}, \varepsilon_{j}$
(vi) $\sqrt{\varepsilon_{i} \varepsilon_{j}}, \sqrt{\varepsilon_{j} \varepsilon_{k}}, \sqrt{\varepsilon_{k} \varepsilon_{i}}$
(vii) $\sqrt{\varepsilon_{i} \varepsilon_{j} \varepsilon_{k}}, \varepsilon_{j}, \varepsilon_{k}$
(viii) $\sqrt{\varepsilon_{i} \varepsilon_{j} \varepsilon_{k}}, \varepsilon_{j}, \varepsilon_{k}$ (with $N \varepsilon_{l}=-1(l=0,1,2)$)
where $\left\{\varepsilon_{i}, \varepsilon_{j}, \varepsilon_{k}\right\}=\left\{\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}\right\}$. Also in cases (ii)-(vii), any ε_{t} that appears under a radical is assumed to have norm equal to 1 .

Proposition 1. Suppose $N \varepsilon_{i}=-1$ for $i=0,1,2$. Then

$$
\left[E_{k}: N_{K / k}\left(E_{K}\right)\right]= \begin{cases}1 & \text { if } \sqrt{\varepsilon_{0} \varepsilon_{1} \varepsilon_{2}} \in K \\ 2 & \text { otherwise }\end{cases}
$$

Remark. Using [6, Zusatz 1], it is easy to determine whether $\sqrt{\varepsilon_{0} \varepsilon_{1} \varepsilon_{2}} \in K$. See the first example of Section 3.

Proof of the Proposition. Since $N_{K / k}\left(\varepsilon_{1}\right)=N_{k_{1} / Q}\left(\varepsilon_{1}\right)=N \varepsilon_{1}=-1$, we have $-1 \in$ $N_{K / k}\left(E_{K}\right)$. If $\sqrt{\varepsilon_{0} \varepsilon_{1} \varepsilon_{2}} \in K$, then $N_{K / k}\left(\sqrt{\varepsilon_{0} \varepsilon_{1} \varepsilon_{2}}\right)= \pm \varepsilon_{0} \quad$ (because $\left(N_{K / k} \sqrt{\varepsilon_{0} \varepsilon_{1} \varepsilon_{2}}\right)^{2}=$ $\left.N_{K / k}\left(\varepsilon_{0} \varepsilon_{1} \varepsilon_{2}\right)=\varepsilon_{0}^{2} N \varepsilon_{1} N \varepsilon_{2}=\varepsilon_{0}^{2}\right)$. Thus $\pm \varepsilon_{0} \in N_{K / k}\left(E_{K}\right)$ and so $\left[E_{k}: N_{K / k}\left(E_{K}\right)\right]=1$.

Now if $\sqrt{\varepsilon_{0} \varepsilon_{1} \varepsilon_{2}} \notin K$, then $\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}$ must be a system of fundamental units of E_{K} and thus $N_{K / k}\left(E_{K}\right)=\{ \pm 1\} \times\left\{\varepsilon_{0}^{2}\right\}$ which is of index 2 in E_{k}. This establishes the proposition.

Proposition 2. Suppose $N \varepsilon_{i}=1$ for some $i=0,1$, 2. Furthermore suppose $N \varepsilon_{1}=-1$
or $N \varepsilon_{2}=-1$. (Without loss of generality assume $N \varepsilon_{2}=-1$). Then

$$
\left[E_{k}: N_{K / k}\left(E_{K}\right)\right]= \begin{cases}1 & \text { if } \sqrt{\varepsilon_{0}} \in K \text { or } \sqrt{\varepsilon_{0} \varepsilon_{1}} \in K \\ 2 & \text { otherwise }\end{cases}
$$

In particular, if $N \varepsilon_{0}=-1$, then $\left[E_{k}: N_{K / k}\left(E_{K}\right)\right]=2$.
Remark. We shall see that the condition $\sqrt{\varepsilon_{0}}, \sqrt{\varepsilon_{0} \varepsilon_{1}} \in K$ is easy to check by Kubota [6].

Proof of the Proposition. Suppose $\sqrt{\varepsilon_{0}} \in K$ or $\sqrt{\varepsilon_{0} \varepsilon_{1}} \in K$. Then $N_{K / k}\left(\sqrt{\varepsilon_{0} \varepsilon_{1}^{a}}\right)= \pm \varepsilon_{0}$ ($a=0$ or 1) (arguing as in the proof of Proposition 1). Moreover, $N_{K / k}\left(\varepsilon_{2}\right)=N \varepsilon_{2}=-1$. Hence $E_{k}=N_{K l k}\left(E_{K}\right)$ establishing part of the proposition.

Now suppose $\sqrt{\varepsilon_{0}} \notin K$ and $\sqrt{\varepsilon_{0} \varepsilon_{1}} \notin K$. Then by Kubota [6, Satz 1] (cf. above) a system of fundamental units of E_{K} consists of $\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}$ or perhaps $\varepsilon_{0}, \sqrt{\varepsilon_{1}}, \varepsilon_{2}$. (Note that any unit, ε_{i}, under a radical must have positive norm). In either case, $N_{K / k}\left(E_{K}\right)=\left\langle-1, \varepsilon_{0}^{2}\right\rangle$ which is of index 2 in E_{k}. This establishes the proposition.

In Proposition 3 below, we consider the case that $N \varepsilon_{1}=N \varepsilon_{2}=1$. As this case requires more effort we first single out a major concept.

Definition. Suppose μ is a unit of a real quadratic field such that $N \mu=1$. We define, as in [6], $\delta(\mu)$ as the square-free kernel of the rational integer $\mu+\mu^{\prime}+2$, i.e. if $\mu+\mu^{\prime}+2=m^{2} n$ for some integers m, n and n is square-free, then $\delta(\mu)=n$.

For convenience we isolate facts about δ found in [6].
Lemma. Let L be a noncyclic normal real quartic extension of \mathbb{Q} containing three real quadratic fields k_{1}, k_{2}, and k_{3}. Suppose $\eta_{i} \in E_{k_{i}}$ with $N \eta_{i}=1$ for $i=1,2,3$. Then
(1) $\delta\left(\eta_{i}\right) \mid d_{k_{i}}$;
(2) $\eta_{1} \eta_{2} \eta_{3} \in E_{L}^{2}$ (the squares in E_{L}) iff $\delta\left(\eta_{1}\right) \delta\left(\eta_{2}\right) \delta\left(\eta_{3}\right) \in L^{2}$.

Also if k is any real quadratic field such that $k=\mathbb{Q}(\sqrt{\Delta})$ with Δ square-free and such that $N(\varepsilon)=1$ for the fundamental unit ε, then
(3) $\delta(\varepsilon) \neq 1, \Delta$.

Proof. See Kubota [6], Hilfssätze 8, 11, and 9, respectively.
Proposition 3. Suppose $N \varepsilon_{1}=N \varepsilon_{2}=1$. Then

$$
\left[E_{k}: N_{K l k}\left(E_{K}\right)\right]= \begin{cases}2 & \text { if } \sqrt{\varepsilon_{0} \varepsilon_{1}^{a} \varepsilon_{2}^{b}} \in K \text { some } a, b \in\{0,1\} \\ 4 & \text { otherwise } .\end{cases}
$$

In particular, if $N \varepsilon_{0}=-1$, then $\left[E_{k}: N_{K / k}\left(E_{K}\right)\right]=4$.
Proof. We first claim that $\sqrt{\varepsilon_{1}}, \sqrt{\varepsilon_{2}}, \sqrt{\varepsilon_{1} \varepsilon_{2}} \notin K$. To this end let $k_{i}=\mathbb{Q}\left(\sqrt{\Delta_{i}}\right)$ ($i=0,1,2$) where $\Delta=\Delta_{0}, \Delta_{1}, \Delta_{2}$ are square-free rational integers. Also let $\delta_{i}=\delta\left(\varepsilon_{i}\right)$ for $i=1,2$ and $\delta_{0}=\delta\left(\varepsilon_{0}\right)$ if $N \varepsilon_{0}=1$. Notice that $K=\mathbb{Q}\left(\sqrt{\Delta_{1}}, \sqrt{\Delta_{2}}\right)$. We show that δ_{1}, δ_{2}, $\delta_{1} \delta_{2} \notin K^{2}$. We do this by considering three cases according as $\Delta \equiv 1,-1,2(\bmod 4)$, respectively. Also in each case $p_{i}(i=1, \ldots, s)$ denote distinct primes $\equiv 1(\bmod 4)$ and $q_{j}(j=1, \ldots, t)$ distinct primes $\equiv-1(\bmod 4)$.

Case 1. Suppose $\Delta \equiv 1(\bmod 4)$. Then $d=\Delta$.

Let $d=p_{1} \ldots p_{s} q_{1} \ldots q_{t}=\Delta$ with t even. ($s=0$ or $t=0$ is possible.)
Also let $d_{1}=p_{1} \ldots p_{s_{1}} q_{1} \ldots q_{t_{1}}=\Delta_{1}$ with t_{1} even. Then $d_{2}=d / d_{1}=\Delta_{2}$. By the lemma,

$$
\begin{array}{lll}
\delta_{1} \mid d_{1}=\Delta_{1} & \text { and } & \delta_{1} \neq 1, \Delta_{1} \\
\delta_{2} \mid d_{2}=\Delta_{2} & \text { and } & \delta_{2} \neq 1, \Delta_{2}
\end{array}
$$

Hence $\delta_{1}, \delta_{2}, \delta_{1} \delta_{2} \notin K^{2}$.
Case 2. Suppose $\Delta \equiv-1(\bmod 4)$. Then $d=4 \Delta$.
Let $\Delta=p_{1} \ldots p_{s} q_{1} \ldots q_{1}$ with t odd. Without loss of generality, let $\Delta_{1}=$ $p_{1} \ldots p_{s_{1}} q_{1} \ldots q_{t_{1}}$ with t_{1} odd and so $d_{1}=4 \Delta_{1}$. Then $d_{2}=d / d_{1}=\Delta / \Delta_{1}=\Delta_{2}$.

By the lemma, $\delta_{2} \mid d_{2}=\Delta_{2}$ and $\delta_{2} \neq 1, \Delta_{2}$; hence $\delta_{2} \notin K^{2}$. On the other hand, $\delta_{1} \mid d_{1}=4 \Delta_{1}$ and $\delta_{1} \neq 1, \Delta_{1}$. Thus since δ_{1} is square-free $\delta_{1}=2,2 \Delta_{1}, a_{1}$, or $2 a_{1}$ for some $a_{1} \mid \Delta_{1}, a_{1} \neq 1, \Delta$. If $\delta_{1}=a_{1}$ or $2 a_{1}$, then $\delta_{1}, \delta_{1} \delta_{2} \notin K^{2}$. If $\delta_{1}=2$ or $2 \Delta_{1}$, then the only way $\delta_{1} \in K^{2}$ can occur is if $\sqrt{2} \in K$. But then $k_{i}=\mathbb{Q}(\sqrt{2})$ for some $i=1,2$, which is contrary to the assumption that $N \varepsilon_{1}=N \varepsilon_{2}=1$. Thus $\delta_{1}, \delta_{2}, \delta_{1} \delta_{2} \notin K^{2}$.

Case 3: Suppose $\Delta \equiv 2(\bmod 4)$. Then $d=4 \Delta$.
Let $\Delta=2 p_{1} \ldots p_{s} q_{1} \ldots q_{r}$. Without loss of generality, let $\Delta_{1}=2 p_{1} \ldots p_{s_{1}} q_{1} \ldots q_{t_{1}}$ with $t_{1} \equiv t(\bmod 2)$ and so $d_{1}=4 \Delta_{1}$. Then $d_{2}=d / d_{1}=\Delta / \Delta_{1}=\Delta_{2}$.

The argument of Case 2 now applies and we see once again that $\delta_{1}, \delta_{2}, \delta_{1} \delta_{2} \notin K^{2}$.
Thus by the lemma we see $\sqrt{\varepsilon_{1}}, \sqrt{\varepsilon_{2}}, \sqrt{\varepsilon_{1} \varepsilon_{2}} \notin K$.
Now by Kubota [6, Satz 1] and by our claim we have the following possibilities for a system of fundamental units in E_{K} :
(i) $\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}$
(ii) $\sqrt{\varepsilon_{0}}, \varepsilon_{1}, \varepsilon_{2}$
(iv) $\sqrt{\varepsilon_{0} \varepsilon_{1}}, \varepsilon_{i}, \varepsilon_{2}(i=0$ or 1$)$ or $\sqrt{\varepsilon_{0} \varepsilon_{2}}, \varepsilon_{1}, \varepsilon_{i}(i=0$ or 2$)$
(vii) $\sqrt{\varepsilon_{0} \varepsilon_{1} \varepsilon_{2}}, \varepsilon_{i}, \varepsilon_{j}(i$ or $j \in\{1,2\}$).

From this list it follows that if $\sqrt{\varepsilon_{0} \varepsilon_{1}^{a} \varepsilon_{2}^{b} \in K \text {, then }\left[E_{k}: N_{K / k}\left(E_{K}\right)\right]=2 \text {, whereas if not, then }}$ we are in case (i) in which case $\left[E_{K}: N_{K / k}\left(E_{K}\right)\right]=4$.

This establishes the proposition.
We summarize our results in the following theorem.
Theorem. Let K be an unramified quadratic extension of a real quadratic number field k. Then
(1) $|\operatorname{ker} j|=2 \Leftrightarrow$ (a) $N \varepsilon_{i}=-1$ for $i=0,1,2$ and $\sqrt{\varepsilon_{0} \varepsilon_{1} \varepsilon_{2}} \in K$ or (b) $\left(N \varepsilon_{1}=-1\right.$ or $\left.N \varepsilon_{2}=-1\right)$ and $N \varepsilon_{0}=1$ and $\left(\sqrt{\varepsilon_{0}}\right.$ or $\sqrt{\varepsilon_{0} \varepsilon_{1}}$ or $\left.\sqrt{\varepsilon_{0} \varepsilon_{2}} \in K\right)$.
(2) $|\operatorname{ker} j|=8 \Leftrightarrow$ (a) $N \varepsilon_{1}=N \varepsilon_{2}=1$ and $N \varepsilon_{0}=-1$ or (b) $N \varepsilon_{i}=1$ for $i=0,1,2$ and $\sqrt{\varepsilon_{0} \varepsilon_{1}^{a} \varepsilon_{2}^{b}} \notin K$ for all $a, b \in\{0,1\}$.
(3) $|\operatorname{ker} j|=4 \Leftrightarrow$ anything else occurs.

Proposition 4. There exist infinitely many real quadratic fields k for which there exists an unramified quadratic extension K in which $|\operatorname{ker} j|=2,4$, and 8 , respectively.

Proof. First consider $|\operatorname{ker} j|=2$. Let $k=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$ where $p_{i} \equiv 1(\bmod 4)$. Then by genus theory, $C_{k, 2}$ is cyclic and nontrivial. Since the ker j is a nontrivial elementary subgroup of $C_{k, 2}$, it follows that $|\operatorname{ker} j|=2$. Obviously there are infinitely many such fields k.

Next consider $|\operatorname{ker} j|=4$. Let $k=\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3}}\right)$, where $p_{i} \equiv 1(\bmod 4)$. Then by genus theory, $C_{k, 2}$ has 2 -rank equalling 2 and so $|\operatorname{ker} j|=2$ or 4 since $\operatorname{ker} j$ is nontrivial and
elementary. Hence by our theorem, if we can choose p_{1}, p_{2}, p_{3} such that $N \varepsilon_{0}=-1$ and $N \varepsilon_{1}=1$, then \mid ker $j \mid=4$. To this end choose $k=\mathbb{Q}(\sqrt{(5)(41) p}$ where $p \equiv 3(\bmod 205)$ and $p \equiv 1(\bmod 4)$. Then we claim if $K=k(\sqrt{p})$, then $|\operatorname{ker} j|=4$. For let $k_{1}=\mathbb{Q}(\sqrt{205})$. Then $N \varepsilon_{1}=1$. Moreover the graph $\gamma(5,41)$ is

since for $p \equiv 3(\bmod 205),\left(\frac{p}{5}\right)=\left(\frac{p}{41}\right)=-\left(\frac{41}{5}\right)=-1$. (See $[1]$ for the relevant definitions about graphs.) Thus, since $\gamma(5,41, p)$ is odd, Proposition 1.1 of [1] implies $N \varepsilon_{0}=-1$. There are obviously infinitely many such k.

Finally consider $|\operatorname{ker} j|=8$. Let $k=\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3} p_{4}}\right), p_{i} \equiv 1(\bmod 4)$. If we are able to choose $K=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{p_{3} p_{4}}\right)$ with $k_{1}=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$ and $k_{2}=\mathbb{Q}\left(\sqrt{p_{3} p_{4}}\right)$ such that $N \varepsilon_{0}=$ -1 and $N \varepsilon_{1}=N \varepsilon_{2}=1$, then our theorem implies that \mid ker $j \mid=8$. We begin by letting $p_{1}=13, p_{2}=17, p_{3}=5, p_{4}=p$ such that $p \equiv 2(\bmod 13 \times 17)$ and $p \equiv 1(\bmod 5)$. Then the graph $\gamma(13,17,5, p)$ is

since $\left(\frac{13}{17}\right)=\left(\frac{p}{5}\right)=\left(\frac{p}{17}\right)=-\left(\frac{p}{13}\right)=-\left(\frac{13}{5}\right)=1$. Notice that this graph is odd and thus $N \varepsilon_{0}=-1$. Moreover, $N \varepsilon_{1}=1$. We now need to put additional restrictions on p to insure that $N \varepsilon_{2}=1$. To this end, write $p=\pi \bar{\pi}$ in $\mathbb{Z}[i]$ with $\pi, \bar{\pi}$ prime and π primary, i.e. $\pi \equiv 1\left(\bmod (1+i)^{3}\right)$. Choose such a prime π in $\mathbb{Z}[i]$ such that

$$
\begin{gathered}
\pi \equiv 1\left(\bmod (1+i)^{3}\right), \pi \equiv i(\bmod 1+2 i), \pi \equiv i(\bmod 1-2 i), \\
\pi \equiv 1+i(\bmod 13), \pi \equiv 1+i(\bmod 17)
\end{gathered}
$$

The last two congruences imply $p \equiv 2(\bmod 13 \times 17)$ whereas the first three show that the biquadratic residues

$$
\left(\frac{\pi}{1+2 i}\right)_{4}=\left(\frac{\pi}{1-2 i}\right)_{4}=i .
$$

By (2.2) of [8], this implies that $N \varepsilon_{2}=1$. Moreover since the righthand sides of the above congruences determine a ray class modulo the ideal $(1+i)(2210)$ in $\mathbb{Z}[i]$, we conclude by class field theory that there are infinitely many primes π of residue class degree one over \mathbb{Q} satisfying the congruences. Hence there are infinitely many p such that $p \equiv 2$ $(\bmod 13 \times 17), p \equiv 1(\bmod 5)$ and such that $N \varepsilon_{2}=1$.

This proves the proposition.
3. Examples. In this section we present examples of K / k in which 2,8 , and 4 ideal classes capitulate, respectively. We follow the format of our theorem.

1. $|\operatorname{ker} j|=2$.
(a) Let $k=\mathbb{Q}(\sqrt{d})$ where $d=65=(5)(13)$. Let $K=k(\sqrt{5})=\mathbb{Q}(\sqrt{5}, \sqrt{13})$. Let $k_{i}=\mathbb{Q}\left(\sqrt{d_{i}}\right)(i=1,2)$ with $d_{1}=5$ and $d_{2}=13$. Then

$$
\begin{array}{ll}
\varepsilon=\varepsilon_{0}=8+\sqrt{65}, & N \varepsilon_{0}=-1 \\
\varepsilon_{1}=\frac{1+\sqrt{5}}{2}, & N \varepsilon_{1}=-1 \\
\varepsilon_{2}=\frac{3+\sqrt{13}}{2}, & N \varepsilon_{2}=-1
\end{array}
$$

Set

$$
\begin{aligned}
& c_{0}=\operatorname{Tr}_{K / Q}\left(\varepsilon_{0} \varepsilon_{1} \varepsilon_{2}+\varepsilon_{0}+\varepsilon_{1}-\varepsilon_{2}\right)=117, \\
& c_{1}=\operatorname{Tr}_{K / Q}\left(\varepsilon_{0} \varepsilon_{1} \varepsilon_{2}+\varepsilon_{0}-\varepsilon_{1}+\varepsilon_{2}\right)=125, \\
& c_{2}=\operatorname{Tr}_{K / Q}\left(\varepsilon_{0} \varepsilon_{1} \varepsilon_{2}-\varepsilon_{0}+\varepsilon_{1}+\varepsilon_{2}\right)=65, \\
& c_{3}=\operatorname{Tr}_{K / Q}\left(\varepsilon_{0} \varepsilon_{1} \varepsilon_{2}-\varepsilon_{0}-\varepsilon_{1}-\varepsilon_{2}\right)=49 .
\end{aligned}
$$

Since $\sqrt{c_{j}} \in K$ for $j=0, \ldots, 3$, we have $\sqrt{\varepsilon_{0} \varepsilon_{1} \varepsilon_{2}} \in K$ by [6, Zusatz 1$]$.
(b) Let $k=\mathbb{Q}(\sqrt{d})$ where $d=105=(5)(3)(7)$. Let $K=k(\sqrt{5})=\mathbb{Q}(\sqrt{5}, \sqrt{21})$. Let $k_{i}=\mathbb{Q}\left(\sqrt{d_{i}}\right)(i=1,2)$ with $d_{1}=5$ and $d_{2}=21$. Then

$$
\begin{array}{ll}
\varepsilon=\varepsilon_{0}=41+4 \sqrt{105}, & N \varepsilon_{0}=1, \\
\varepsilon_{1}=\frac{1+\sqrt{5}}{2}, & N \varepsilon_{1}=-1, \\
\varepsilon_{2}=\frac{5+\sqrt{21}}{2}, & N \varepsilon_{2}=1 .
\end{array}
$$

Moreover $\varepsilon+\varepsilon^{\prime}+2=84=\left(2^{2}\right)(21)$. Thus $\delta(\varepsilon)=21 \in K^{2}$.
Remark. In these two examples, $C_{k, 2}$ is cyclic and thus since ker j is elementary, we see independently that $|\operatorname{ker} j|=2$.
2. \mid ker $j \mid=8$.
(a) Let $k=\mathbb{Q}(\sqrt{d})$ with $d=77285=(5)(13)(29)(41)$. Let $K=k(\sqrt{205})=\mathbb{Q}(\sqrt{(5)(41)}$, $\sqrt{(13)(29))}$. Let $k_{i}=\mathbb{Q}\left(\sqrt{d_{i}}\right)(i=1,2)$ with $d_{1}=205=(5)(41)$ and $d_{2}=377=(13)(29)$. Then

$$
\begin{array}{ll}
\varepsilon=\varepsilon_{0}=278+\sqrt{77285}, & N \varepsilon_{0}=-1 \\
\varepsilon_{1}=\frac{43+3 \sqrt{205}}{2}, & N \varepsilon_{1}=1 \\
\varepsilon_{2}=233+12 \sqrt{377}, & N \varepsilon_{2}=1 .
\end{array}
$$

(b) Let $k=\mathbb{Q}(\sqrt{d})$, with $\quad d=23205=(3)(7)(5)(13)(17)$. Let $\quad K=k(\sqrt{105})=$ $\mathbb{Q}\left(\sqrt{(3)(7)(5)}, \sqrt{(13)(17))}\right.$. Let $k_{i}=\mathbb{Q}\left(\sqrt{\left(d_{i}\right)} \quad(i=1,2)\right.$, with $d_{1}=105=(3)(7)(5)$ and
$d_{2}=221=(13)(17)$. Then

$$
\begin{array}{ll}
\varepsilon=\varepsilon_{0}=\frac{457+3 \sqrt{23205}}{2}, & N \varepsilon_{0}=1 \\
\varepsilon_{1}=41+4 \sqrt{105}, & N \varepsilon_{1}=1 \\
\varepsilon_{2}=\frac{15+\sqrt{221}}{2}, & N \varepsilon_{2}=1
\end{array}
$$

Moreover

$$
\begin{aligned}
\varepsilon+\varepsilon^{\prime}+2 & =459=\left(3^{2}\right)(3)(17), \text { implying } \delta_{0}=\delta(\varepsilon)=(3)(17) \\
\varepsilon_{1}+\varepsilon_{1}^{\prime}+2 & =84=\left(2^{2}\right)(3)(7), \text { implying } \delta_{1}=\delta\left(\varepsilon_{1}\right)=(3)(7) \\
\varepsilon_{2}+\varepsilon_{2}^{\prime}+2 & =17, \text { implying } \delta_{2}=\delta\left(\varepsilon_{2}\right)=17
\end{aligned}
$$

Notice that $\delta_{0}, \delta_{0} \delta_{1}, \delta_{0} \delta_{2}, \delta_{0} \delta_{1} \delta_{2} \notin K^{2}$.
3. \mid ker $j \mid=4$.
(i) Let $k=\mathbb{Q}(\sqrt{\mathrm{d}})$, with $d=77285=(5)(13)(29)(41)$ (as in 2.a). Let $K=k(\sqrt{1885})=$ $\mathbb{Q}(\sqrt{(5)(13)(29)}, \sqrt{41})$. Let $k_{i}=\mathbb{Q}\left(\sqrt{d_{i}}\right)(i=1,2)$, with $d_{1}=1885=(5)(13)(29)$ and $d_{2}=$ 41. Then

$$
\begin{array}{ll}
\varepsilon=\varepsilon_{0}=278+\sqrt{77285}, & \\
N \varepsilon_{0}=-1 \\
\varepsilon_{1}=521+12 \sqrt{1885}, & \\
& N \varepsilon_{1}=1, \\
\varepsilon_{2}=32+5 \sqrt{41}, & \\
N \varepsilon_{2}=-1 .
\end{array}
$$

By Proposition 2, $|\operatorname{ker} j|=4$.
(ii) Let $k=\mathbb{Q}(\sqrt{d})$, with $d=4641=(3)(7)(13)(17)$. Let $K=k(\sqrt{21})=\mathbb{Q}(\sqrt{(3)(7)}$, $\sqrt{(13)(17)})$. Let $k_{i}=\mathbb{Q}\left(\sqrt{d_{i}}\right)(i=1,2)$, with $d_{1}=21$ and $d_{2}=221=(13)(17)$. Then

$$
\begin{array}{ll}
\varepsilon=\varepsilon_{0}=545+8 \sqrt{4641}, & N \varepsilon_{0}=1, \\
\varepsilon_{1}=\frac{5+\sqrt{21}}{2}, & N \varepsilon_{1}=1, \\
\varepsilon_{2}=\frac{15+\sqrt{221}}{2}, & N \varepsilon_{2}=1 .
\end{array}
$$

Moreover $\varepsilon+\varepsilon^{\prime}+2=1092=\left(2^{2}\right)(3)(7)(13)$, implying $\delta_{0}=\delta(\varepsilon)=(3)(7)(13)$,

$$
\begin{aligned}
& \varepsilon_{1}+\varepsilon_{1}^{\prime}+2=7, \text { implying } \delta_{1}=\delta\left(\varepsilon_{1}\right)=7, \\
& \varepsilon_{2}+\varepsilon_{2}^{\prime}+2=17, \text { implying } \delta_{2}=\delta\left(\varepsilon_{2}\right)=17 .
\end{aligned}
$$

Since $\delta_{0} \delta_{2} \in K^{2}$, Proposition 3 shows $|\operatorname{ker} j|=4$.
Acknowledgements. The authors would like to thank Professor R. W. K. Odoni for suggesting the results in Proposition 4.

REFERENCES

1. J. E. Cremona, and R. W. K. Odoni. Some density results for negative Pell equations; an application of graph theory, J. London Math. Soc. (2) 39 (1989), 16-28.
2. J. E. Cremona and R. W. K. Odoni. A generalization of a result of Iwasawa on the capitulation problem, Math. Proc. Cambridge Phil. Soc. 107 (1990), 1-3.
3. Ph. Furtwängler, Über die Klassenzahl abelscher Zahlkörper, J. reine angew. Math. 134 (1908), 91-94.
4. K. Iwasawa, A note on the capitulation problem for number fields, Proc. Japan Acad. Ser. A. Math. Sci. 65 (1989), 59-61.
5. G. Janusz, Algebraic Number Fields, (Academic Press, New York, London, 1973).
6. T. Kubota, Über den bizyklischen biquadratischen Zahlkörpern, Nagoya Math. J. 10 (1956), 65-85.
7. K. Miyake, Algebraic investigations of Hilbert's Theorem 94, the principal ideal theorem, and the capitulation problem, Expo. Math. 7 (1989), 289-346.
8. R. W. K. Odoni, A note on a recent paper of Iwasawa on the capitulation problem, Proc. Japan Acad. Ser. A. Math. Sci. 65 (1989), 180-182.
9. M. Rosen, Two theorems on Galois cohomology, Proc. Amer. Math. Soc. 17 (1966), 1183-1185.

E. Benjamin
F. Sanborn and C. Snyder
Department of Mathematics
Department of Mathematics
Unity College
Unity, Maine 04988
USA
University of Maine
Orono, Maine 04469-5752
USA

