CAPITULATION IN UNRAMIFIED QUADRATIC EXTENSIONS OF REAL QUADRATIC NUMBER FIELDS

by E. BENJAMIN, F. SANBORN and C. SNYDER

(Received 8 March, 1993; revised 21 May, 1993)

1. Introduction. Let k be an algebraic number field and C_k its ideal class group (in the wider sense). Suppose K is a finite extension of k. Then we say that an ideal class of k capitulates in K if this class is in the kernel of the homomorphism

 $j: C_k \to C_K$

induced by extension of ideals from k to K. (See Section 2 below). In [4], Iwasawa gives examples of real quadratic number fields, $k = \mathbb{Q}(\sqrt{p_1p_2p_3})$, with distinct primes $p_i \equiv 1 \pmod{4}$, for which all the ideal classes of the 2-class group, $C_{k,2}$ (the 2-Sylow subgroup of C_k), capitulate in an unramified quadratic extension of k. In these examples, $C_{k,2}$ is abelian of type (2,2), i.e. isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and so all four ideal classes capitulate.

In this note, we consider an arbitrary unramified quadratic extension, K/k, of a real quadratic number field, k, and determine the number of ideal classes of C_k which capitulate in C_K . As we shall see, the number of ideal classes that can capitulate is 2, 4, or 8. We give simple criteria involving the fundamental units of the three quadratic subfields of K which determine the number of ideal classes that capitulate. We then make use of the results of Cremona and Odoni [1, 2] to show that there exist infinitely many extensions K/k such that $|\ker j| = 2$, 4, and 8 respectively. Examples are then provided.

For more information on the capitulation problem, see Miyake [7].

2. Main Results. Let k be a real quadratic number field of even class number with discriminant

 $d_k = d = p_1^* \dots p_i^*, \quad p_i \text{ distinct primes.}$

Here p^* represents the fundamental discriminant divisible only by the prime p, i.e. $p^* = (-1)^{p-1/2}p$, if p is odd, and $2^* \in \{-4, 8, -8\}$.

Since the class number of k is even, there exists at least one quadratic extension, K, of k unramified at all the primes (including the infinite ones, which means K is totally real). By genus theory, see e.g. [5], $K = k(\sqrt{d_1})$ for some fundamental discriminant $d_1 | d$ such that $d_1 > 1$ and $d_1 \neq d$. Let $d_2 = d/d_1$. Then $K = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$ and thus K/\mathbb{Q} is a Galois extension, the Galois group of which is abelian of type (2, 2). Consequently, K contains three real quadratic subfields: $k_0 = k = \mathbb{Q}(\sqrt{d})$, $k_1 = \mathbb{Q}(\sqrt{d_1})$ and $k_2 = \mathbb{Q}(\sqrt{d_2})$. We have the following diagram.

Glasgow Math. J. 36 (1994) 385-392.

We denote by $\varepsilon_0 = \varepsilon$, ε_1 , and ε_2 the fundamental units (>1) of $k_0 = k$, k_1 , and k_2 , respectively. Also to simplify notation we let $N\kappa_i = N_{k_i/\mathbb{Q}}(\kappa_i)$ for any $\kappa_i \in k_i$ (i = 0, 1, 2). Thus $N\kappa_i = \kappa_i \kappa'_i$ where κ'_i denotes the conjugate of κ_i over \mathbb{Q} .

Let $j: C_k \to C_K$ be the homomorphism induced by extension of ideals from the ring of integers, O_k , of k to O_K . (Hence if [A] is the ideal class of C_k containing the ideal A, then $j([A]) = [AO_K]$.) We shall be interested in determining $|\ker j|$, the number of ideal classes of C_k that capitulate in C_K . It is well-known, cf. [3], that the exponent of the group ker j divides [K:k] (which for us is 2). Hence ker $j \subseteq C_{k,2}$, the 2-Sylow subgroup of C_k . Moreover it is also well-known, cf. [9], that when K/k is cyclic and unramified at the infinite primes,

$$|\ker j| = [K:k][E_k:N_{K/k}(E_K)].$$

Hence in our case $|\ker j| = 2[E_k: N_{K/k}(E_K)]$. Here E_k , E_K represent the group of units in O_k , O_K , respectively. Notice that $E_k^2 \subseteq N_{K/k}(E_K)$. But then since $E_k = \{\pm 1\} \times \langle \varepsilon \rangle$, we see that

$$[E_k: N_{K/k}(E_K)] \le [E_k: E_k^2] = 4.$$

Thus $[E_k: N_{K/k}(E_K)] = 1$, 2, or 4 and so $|\ker j| = 2$, 4, or 8. We now determine conditions under which each of these three possibilities can happen. To this end, we obtain more information about E_K .

By Dirichlet's unit theorem, since $[K:\mathbb{Q}] = 4$ and K is totally real, E_K possesses a system of three fundamental units, i.e. $E_K = \{\pm 1\} \times \{\mu_1\} \times \{\mu_2\} \times \{\mu_3\}$ for some $\mu_i \in E_K$ (i = 1, 2, 3).

By Kubota [6, Satz 1], there exist the following eight possibilities for a system of fundamental units of E_{κ} :

amental units of \mathcal{L}_{κ} : (i) $\varepsilon_i, \varepsilon_j, \varepsilon_k$ (ii) $\sqrt{\varepsilon_i}, \varepsilon_j, \varepsilon_k$ (iii) $\sqrt{\varepsilon_i}, \sqrt{\varepsilon_j}, \varepsilon_k$ (iv) $\sqrt{\varepsilon_i}\varepsilon_j, \varepsilon_j, \varepsilon_k$ (v) $\sqrt{\varepsilon_i}\varepsilon_j, \sqrt{\varepsilon_k}, \varepsilon_j$ (vi) $\sqrt{\varepsilon_i}\varepsilon_j, \sqrt{\varepsilon_j}\varepsilon_k, \sqrt{\varepsilon_k}\varepsilon_i$ (vii) $\sqrt{\varepsilon_i}\varepsilon_j\varepsilon_k, \varepsilon_j, \varepsilon_k$

(viii) $\sqrt{\varepsilon_i \varepsilon_j \varepsilon_k}$, ε_j , ε_k (with $N \varepsilon_l = -1$ (l = 0, 1, 2))

where $\{\varepsilon_i, \varepsilon_j, \varepsilon_k\} = \{\varepsilon_0, \varepsilon_1, \varepsilon_2\}$. Also in cases (ii)–(vii), any ε_i that appears under a radical is assumed to have norm equal to 1.

PROPOSITION 1. Suppose $N\varepsilon_i = -1$ for i = 0, 1, 2. Then

$$[E_k: N_{K/k}(E_K)] = \begin{cases} 1 & \text{if } \sqrt{\varepsilon_0 \varepsilon_1 \varepsilon_2} \in K, \\ 2 & \text{otherwise.} \end{cases}$$

REMARK. Using [6, Zusatz 1], it is easy to determine whether $\sqrt{\varepsilon_0 \varepsilon_1 \varepsilon_2} \in K$. See the first example of Section 3.

Proof of the Proposition. Since $N_{K/k}(\varepsilon_1) = N_{k_1/Q}(\varepsilon_1) = N\varepsilon_1 = -1$, we have $-1 \in N_{K/k}(E_K)$. If $\sqrt{\varepsilon_0\varepsilon_1\varepsilon_2} \in K$, then $N_{K/k}(\sqrt{\varepsilon_0\varepsilon_1\varepsilon_2}) = \pm\varepsilon_0$ (because $(N_{K/k}\sqrt{\varepsilon_0\varepsilon_1\varepsilon_2})^2 = N_{K/k}(\varepsilon_0\varepsilon_1\varepsilon_2) = \varepsilon_0^2 N\varepsilon_1 N\varepsilon_2 = \varepsilon_0^2$). Thus $\pm\varepsilon_0 \in N_{K/k}(E_K)$ and so $[E_k:N_{K/k}(E_K)] = 1$.

Now if $\sqrt{\varepsilon_0 \varepsilon_1 \varepsilon_2} \notin K$, then ε_0 , ε_1 , ε_2 must be a system of fundamental units of E_K and thus $N_{K/k}(E_K) = \{\pm 1\} \times \{\varepsilon_0^2\}$ which is of index 2 in E_k . This establishes the proposition.

PROPOSITION 2. Suppose $N\varepsilon_i = 1$ for some i = 0, 1, 2. Furthermore suppose $N\varepsilon_1 = -1$

REAL QUADRATIC NUMBER FIELDS

or $N\varepsilon_2 = -1$. (Without loss of generality assume $N\varepsilon_2 = -1$). Then

$$[E_k: N_{K/k}(E_K)] = \begin{cases} 1 & if \ \sqrt{\varepsilon_0} \in K \ or \ \sqrt{\varepsilon_0 \varepsilon_1} \in K, \\ 2 & otherwise. \end{cases}$$

In particular, if $N\varepsilon_0 = -1$, then $[E_k: N_{K/k}(E_K)] = 2$.

REMARK. We shall see that the condition $\sqrt{\varepsilon_0}$, $\sqrt{\varepsilon_0\varepsilon_1} \in K$ is easy to check by Kubota [6].

Proof of the Proposition. Suppose $\sqrt{\varepsilon_0} \in K$ or $\sqrt{\varepsilon_0 \varepsilon_1} \in K$. Then $N_{K/k}(\sqrt{\varepsilon_0 \varepsilon_1^a}) = \pm \varepsilon_0$ (a = 0 or 1) (arguing as in the proof of Proposition 1). Moreover, $N_{K/k}(\varepsilon_2) = N\varepsilon_2 = -1$. Hence $E_k = N_{K/k}(E_K)$ establishing part of the proposition.

Now suppose $\sqrt{\varepsilon_0} \notin K$ and $\sqrt{\varepsilon_0 \varepsilon_1} \notin K$. Then by Kubota [6, Satz 1] (cf. above) a system of fundamental units of E_K consists of ε_0 , ε_1 , ε_2 or perhaps ε_0 , $\sqrt{\varepsilon_1}$, ε_2 . (Note that any unit, ε_i , under a radical must have positive norm). In either case, $N_{K/k}(E_K) = \langle -1, \varepsilon_0^2 \rangle$ which is of index 2 in E_k . This establishes the proposition.

In Proposition 3 below, we consider the case that $N\varepsilon_1 = N\varepsilon_2 = 1$. As this case requires more effort we first single out a major concept.

DEFINITION. Suppose μ is a unit of a real quadratic field such that $N\mu = 1$. We define, as in [6], $\delta(\mu)$ as the square-free kernel of the rational integer $\mu + \mu' + 2$, i.e. if $\mu + \mu' + 2 = m^2 n$ for some integers *m*, *n* and *n* is square-free, then $\delta(\mu) = n$.

For convenience we isolate facts about δ found in [6].

LEMMA. Let L be a noncyclic normal real quartic extension of \mathbb{Q} containing three real quadratic fields k_1, k_2 , and k_3 . Suppose $\eta_i \in E_{k_i}$ with $N\eta_i = 1$ for i = 1, 2, 3. Then (1) $\delta(\eta_i) | d_{k_i}$;

(2) $\eta_1 \eta_2 \eta_3 \in E_L^2$ (the squares in E_L) iff $\delta(\eta_1) \delta(\eta_2) \delta(\eta_3) \in L^2$.

Also if k is any real quadratic field such that $k = \mathbb{Q}(\sqrt{\Delta})$ with Δ square-free and such that $N(\varepsilon) = 1$ for the fundamental unit ε , then

(3) $\delta(\varepsilon) \neq 1, \Delta$.

Proof. See Kubota [6], Hilfssätze 8, 11, and 9, respectively.

PROPOSITION 3. Suppose $N\varepsilon_1 = N\varepsilon_2 = 1$. Then

$$[E_k:N_{K/k}(E_K)] = \begin{cases} 2 & \text{if } \sqrt{\varepsilon_0 \varepsilon_1^a \varepsilon_2^b} \in K \text{ some } a, b \in \{0,1\} \\ 4 & \text{otherwise.} \end{cases}$$

In particular, if $N\varepsilon_0 = -1$, then $[E_k: N_{K/k}(E_K)] = 4$.

Proof. We first claim that $\sqrt{\varepsilon_1}$, $\sqrt{\varepsilon_2}$, $\sqrt{\varepsilon_1\varepsilon_2} \notin K$. To this end let $k_i = \mathbb{Q}(\sqrt{\Delta_i})$ (i = 0, 1, 2) where $\Delta = \Delta_0$, Δ_1 , Δ_2 are square-free rational integers. Also let $\delta_i = \delta(\varepsilon_i)$ for i = 1, 2 and $\delta_0 = \delta(\varepsilon_0)$ if $N\varepsilon_0 = 1$. Notice that $K = \mathbb{Q}(\sqrt{\Delta_1}, \sqrt{\Delta_2})$. We show that δ_1 , δ_2 , $\delta_1\delta_2 \notin K^2$. We do this by considering three cases according as $\Delta \equiv 1, -1, 2 \pmod{4}$, respectively. Also in each case p_i (i = 1, ..., s) denote distinct primes $\equiv 1 \pmod{4}$ and $q_i(j = 1, ..., t)$ distinct primes $\equiv -1 \pmod{4}$.

Case 1. Suppose $\Delta \equiv 1 \pmod{4}$. Then $d = \Delta$.

Let $d = p_1 \dots p_s q_1 \dots q_t = \Delta$ with t even. (s = 0 or t = 0 is possible.)

Also let $d_1 = p_1 \dots p_{s_1} q_1 \dots q_{t_1} = \Delta_1$ with t_1 even. Then $d_2 = d/d_1 = \Delta_2$. By the lemma,

 $\delta_1 \mid d_1 = \Delta_1$ and $\delta_1 \neq 1, \Delta_1,$ $\delta_2 \mid d_2 = \Delta_2$ and $\delta_2 \neq 1, \Delta_2.$

Hence δ_1 , δ_2 , $\delta_1 \delta_2 \notin K^2$.

Case 2. Suppose $\Delta \equiv -1 \pmod{4}$. Then $d = 4\Delta$.

Let $\Delta = p_1 \dots p_s q_1 \dots q_t$ with t odd. Without loss of generality, let $\Delta_1 = p_1 \dots p_{s_1} q_1 \dots q_t$ with t_1 odd and so $d_1 = 4\Delta_1$. Then $d_2 = d/d_1 = \Delta/\Delta_1 = \Delta_2$.

By the lemma, $\delta_2 | d_2 = \Delta_2$ and $\delta_2 \neq 1$, Δ_2 ; hence $\delta_2 \notin K^2$. On the other hand, $\delta_1 | d_1 = 4\Delta_1$ and $\delta_1 \neq 1$, Δ_1 . Thus since δ_1 is square-free $\delta_1 = 2$, $2\Delta_1$, a_1 , or $2a_1$ for some $a_1 | \Delta_1, a_1 \neq 1$, Δ . If $\delta_1 = a_1$ or $2a_1$, then $\delta_1, \delta_1 \delta_2 \notin K^2$. If $\delta_1 = 2$ or $2\Delta_1$, then the only way $\delta_1 \in K^2$ can occur is if $\sqrt{2} \in K$. But then $k_i = \mathbb{Q}(\sqrt{2})$ for some i = 1, 2, which is contrary to the assumption that $N\varepsilon_1 = N\varepsilon_2 = 1$. Thus $\delta_1, \delta_2, \delta_1 \delta_2 \notin K^2$.

Case 3: Suppose $\Delta \equiv 2 \pmod{4}$. Then $d = 4\Delta$.

Let $\Delta = 2p_1 \dots p_s q_1 \dots q_t$. Without loss of generality, let $\Delta_1 = 2p_1 \dots p_{s_1} q_1 \dots q_{t_1}$ with $t_1 \equiv t \pmod{2}$ and so $d_1 = 4\Delta_1$. Then $d_2 = d/d_1 = \Delta/\Delta_1 = \Delta_2$.

The argument of Case 2 now applies and we see once again that δ_1 , δ_2 , $\delta_1 \delta_2 \notin K^2$.

Thus by the lemma we see $\sqrt{\varepsilon_1}$, $\sqrt{\varepsilon_2}$, $\sqrt{\varepsilon_1\varepsilon_2} \notin K$.

Now by Kubota [6, Satz 1] and by our claim we have the following possibilities for a system of fundamental units in E_{κ} :

(i) $\varepsilon_0, \varepsilon_1, \varepsilon_2$ (ii) $\sqrt{\varepsilon_0, \varepsilon_1, \varepsilon_2}$

(iv) $\sqrt{\varepsilon_0 \varepsilon_1}$, ε_i , ε_2 (*i* = 0 or 1) or $\sqrt{\varepsilon_0 \varepsilon_2}$, ε_1 , ε_i (*i* = 0 or 2)

(vii) $\sqrt{\varepsilon_0 \varepsilon_1 \varepsilon_2}$, ε_i , ε_j (*i* or $j \in \{1, 2\}$).

From this list it follows that if $\sqrt{\varepsilon_0 \varepsilon_1^a \varepsilon_2^b} \in K$, then $[E_k: N_{K/k}(E_K)] = 2$, whereas if not, then we are in case (i) in which case $[E_K: N_{K/k}(E_K)] = 4$.

This establishes the proposition.

We summarize our results in the following theorem.

THEOREM. Let K be an unramified quadratic extension of a real quadratic number field k. Then

(1) $|\ker j| = 2 \Leftrightarrow (a) \ N\varepsilon_i = -1 \ for \ i = 0, 1, 2 \ and \ \sqrt{\varepsilon_0 \varepsilon_1 \varepsilon_2} \in K \ or \ (b) \ (N\varepsilon_1 = -1 \ or \ N\varepsilon_2 = -1) \ and \ N\varepsilon_0 = 1 \ and \ (\sqrt{\varepsilon_0} \ or \ \sqrt{\varepsilon_0 \varepsilon_1} \ or \ \sqrt{\varepsilon_0 \varepsilon_2} \in K).$

(2) $|\ker j| = 8 \Leftrightarrow (a) \ N\varepsilon_1 = N\varepsilon_2 = 1 \ and \ N\varepsilon_0 = -1 \ or \ (b) \ N\varepsilon_i = 1 \ for \ i = 0, \ 1, \ 2 \ and \ \sqrt{\varepsilon_0 \varepsilon_1^a \varepsilon_2^b} \notin K \ for \ all \ a, \ b \in \{0, 1\}.$

(3) $|\ker j| = 4 \Leftrightarrow anything \ else \ occurs.$

PROPOSITION 4. There exist infinitely many real quadratic fields k for which there exists an unramified quadratic extension K in which $|\ker j| = 2, 4, and 8$, respectively.

Proof. First consider $|\ker j| = 2$. Let $k = \mathbb{Q}(\sqrt{p_1 p_2})$ where $p_i \equiv 1 \pmod{4}$. Then by genus theory, $C_{k,2}$ is cyclic and nontrivial. Since the ker j is a nontrivial elementary subgroup of $C_{k,2}$, it follows that $|\ker j| = 2$. Obviously there are infinitely many such fields k.

Next consider $|\ker j| = 4$. Let $k = \mathbb{Q}(\sqrt{p_1 p_2 p_3})$, where $p_i \equiv 1 \pmod{4}$. Then by genus theory, $C_{k,2}$ has 2-rank equalling 2 and so $|\ker j| = 2$ or 4 since ker j is nontrivial and

388

elementary. Hence by our theorem, if we can choose p_1, p_2, p_3 such that $N\varepsilon_0 = -1$ and $N\varepsilon_1 = 1$, then $|\ker j| = 4$. To this end choose $k = \mathbb{Q}(\sqrt{(5)(41)}p)$ where $p \equiv 3 \pmod{205}$ and $p \equiv 1 \pmod{4}$. Then we claim if $K = k(\sqrt{p})$, then $|\ker j| = 4$. For let $k_1 = \mathbb{Q}(\sqrt{205})$. Then $N\varepsilon_1 = 1$. Moreover the graph $\gamma(5, 41)$ is

since for $p \equiv 3 \pmod{205}$, $\left(\frac{p}{5}\right) = \left(\frac{p}{41}\right) = -\left(\frac{41}{5}\right) = -1$. (See [1] for the relevant definitions

about graphs.) Thus, since $\gamma(5, 41, p)$ is odd, Proposition 1.1 of [1] implies $N\varepsilon_0 = -1$. There are obviously infinitely many such k.

Finally consider $|\ker j| = 8$. Let $k = \mathbb{Q}(\sqrt{p_1 p_2 p_3 p_4})$, $p_i \equiv 1 \pmod{4}$. If we are able to choose $K = \mathbb{Q}(\sqrt{p_1 p_2}, \sqrt{p_3 p_4})$ with $k_1 = \mathbb{Q}(\sqrt{p_1 p_2})$ and $k_2 = \mathbb{Q}(\sqrt{p_3 p_4})$ such that $N\varepsilon_0 = -1$ and $N\varepsilon_1 = N\varepsilon_2 = 1$, then our theorem implies that $|\ker j| = 8$. We begin by letting $p_1 = 13$, $p_2 = 17$, $p_3 = 5$, $p_4 = p$ such that $p \equiv 2 \pmod{13 \times 17}$ and $p \equiv 1 \pmod{5}$. Then the graph $\gamma(13, 17, 5, p)$ is

since $\left(\frac{13}{17}\right) = \left(\frac{p}{5}\right) = \left(\frac{p}{17}\right) = -\left(\frac{p}{13}\right) = -\left(\frac{13}{5}\right) = 1$. Notice that this graph is odd and thus $N\varepsilon_0 = -1$. Moreover, $N\varepsilon_1 = 1$. We now need to put additional restrictions on p to insure that $N\varepsilon_2 = 1$. To this end, write $p = \pi\bar{\pi}$ in $\mathbb{Z}[i]$ with π , $\bar{\pi}$ prime and π primary, i.e. $\pi = 1 \pmod{(1+i)^3}$. Choose such a prime π in $\mathbb{Z}[i]$ such that

$$\pi \equiv 1 \pmod{(1+i)^3}, \ \pi \equiv i \pmod{1+2i}, \ \pi \equiv i \pmod{1-2i}, \pi \equiv 1+i \pmod{13}, \ \pi \equiv 1+i \pmod{17}.$$

The last two congruences imply $p \equiv 2 \pmod{13 \times 17}$ whereas the first three show that the biquadratic residues

$$\left(\frac{\pi}{1+2i}\right)_4 = \left(\frac{\pi}{1-2i}\right)_4 = i.$$

By (2.2) of [8], this implies that $N\varepsilon_2 = 1$. Moreover since the righthand sides of the above congruences determine a ray class modulo the ideal (1 + i)(2210) in $\mathbb{Z}[i]$, we conclude by class field theory that there are infinitely many primes π of residue class degree one over \mathbb{Q} satisfying the congruences. Hence there are infinitely many p such that $p \equiv 2 \pmod{13 \times 17}$, $p \equiv 1 \pmod{5}$ and such that $N\varepsilon_2 = 1$.

This proves the proposition.

3. Examples. In this section we present examples of K/k in which 2, 8, and 4 ideal classes capitulate, respectively. We follow the format of our theorem. 1. $|\ker j| = 2$. (a) Let $k = \mathbb{Q}(\sqrt{d})$ where d = 65 = (5)(13). Let $K = k(\sqrt{5}) = \mathbb{Q}(\sqrt{5}, \sqrt{13})$. Let $k_i = \mathbb{Q}(\sqrt{d_i})$ (i = 1, 2) with $d_1 = 5$ and $d_2 = 13$. Then

$$\varepsilon = \varepsilon_0 = 8 + \sqrt{65}, \qquad N\varepsilon_0 = -1,$$

$$\varepsilon_1 = \frac{1 + \sqrt{5}}{2}, \qquad N\varepsilon_1 = -1,$$

$$\varepsilon_2 = \frac{3 + \sqrt{13}}{2}, \qquad N\varepsilon_2 = -1.$$

Set

$$c_{0} = Tr_{K/\mathbb{Q}}(\varepsilon_{0}\varepsilon_{1}\varepsilon_{2} + \varepsilon_{0} + \varepsilon_{1} - \varepsilon_{2}) = 117,$$

$$c_{1} = Tr_{K/\mathbb{Q}}(\varepsilon_{0}\varepsilon_{1}\varepsilon_{2} + \varepsilon_{0} - \varepsilon_{1} + \varepsilon_{2}) = 125,$$

$$c_{2} = Tr_{K/\mathbb{Q}}(\varepsilon_{0}\varepsilon_{1}\varepsilon_{2} - \varepsilon_{0} + \varepsilon_{1} + \varepsilon_{2}) = 65,$$

$$c_{3} = Tr_{K/\mathbb{Q}}(\varepsilon_{0}\varepsilon_{1}\varepsilon_{2} - \varepsilon_{0} - \varepsilon_{1} - \varepsilon_{2}) = 49.$$

Since $\sqrt{c_j} \in K$ for j = 0, ..., 3, we have $\sqrt{\varepsilon_0 \varepsilon_1 \varepsilon_2} \in K$ by [6, Zusatz 1]. (b) Let $k = \mathbb{Q}(\sqrt{d})$ where d = 105 = (5)(3)(7). Let $K = k(\sqrt{5}) = \mathbb{Q}(\sqrt{5}, \sqrt{21})$. Let

(b) Let $k = \mathbb{Q}(\sqrt{d})$ where d = 105 = (5)(3)(7). Let $K = k(\sqrt{5}) = \mathbb{Q}(\sqrt{5}, \sqrt{21})$. Let $k_i = \mathbb{Q}(\sqrt{d_i})$ (i = 1, 2) with $d_1 = 5$ and $d_2 = 21$. Then

$$\varepsilon = \varepsilon_0 = 41 + 4\sqrt{105}, \qquad N\varepsilon_0 = 1,$$

$$\varepsilon_1 = \frac{1 + \sqrt{5}}{2}, \qquad N\varepsilon_1 = -1,$$

$$\varepsilon_2 = \frac{5 + \sqrt{21}}{2}, \qquad N\varepsilon_2 = 1.$$

Moreover $\varepsilon + \varepsilon' + 2 = 84 = (2^2)(21)$. Thus $\delta(\varepsilon) = 21 \in K^2$.

REMARK. In these two examples, $C_{k,2}$ is cyclic and thus since ker j is elementary, we see independently that $|\ker j| = 2$. 2. $|\ker j| = 8$.

(a) Let $k = \mathbb{Q}(\sqrt{d})$ with d = 77285 = (5)(13)(29)(41). Let $K = k(\sqrt{205}) = \mathbb{Q}(\sqrt{(5)(41)})$, $\sqrt{(13)(29)}$. Let $k_i = \mathbb{Q}(\sqrt{d_i})(i = 1, 2)$ with $d_1 = 205 = (5)(41)$ and $d_2 = 377 = (13)(29)$. Then

$$\varepsilon = \varepsilon_0 = 278 + \sqrt{77285}, \qquad N\varepsilon_0 = -1,$$

$$\varepsilon_1 = \frac{43 + 3\sqrt{205}}{2}, \qquad N\varepsilon_1 = 1,$$

$$\varepsilon_2 = 233 + 12\sqrt{377}, \qquad N\varepsilon_2 = 1.$$

(b) Let $k = \mathbb{Q}(\sqrt{d})$, with d = 23205 = (3)(7)(5)(13)(17). Let $K = k(\sqrt{105}) = \mathbb{Q}(\sqrt{(3)(7)(5)}, \sqrt{(13)(17)})$. Let $k_i = \mathbb{Q}(\sqrt{d_i})$ (i = 1, 2), with $d_1 = 105 = (3)(7)(5)$ and

 $d_2 = 221 = (13)(17)$. Then

$$\varepsilon = \varepsilon_0 = \frac{457 + 3\sqrt{23205}}{2}, \qquad N\varepsilon_0 = 1,$$

$$\varepsilon_1 = 41 + 4\sqrt{105}, \qquad N\varepsilon_1 = 1,$$

$$\varepsilon_2 = \frac{15 + \sqrt{221}}{2}, \qquad N\varepsilon_2 = 1.$$

Moreover

$$\varepsilon + \varepsilon' + 2 = 459 = (3^2)(3)(17)$$
, implying $\delta_0 = \delta(\varepsilon) = (3)(17)$,
 $\varepsilon_1 + \varepsilon'_1 + 2 = 84 = (2^2)(3)(7)$, implying $\delta_1 = \delta(\varepsilon_1) = (3)(7)$,
 $\varepsilon_2 + \varepsilon'_2 + 2 = 17$, implying $\delta_2 = \delta(\varepsilon_2) = 17$.

Notice that δ_0 , $\delta_0\delta_1$, $\delta_0\delta_2$, $\delta_0\delta_1\delta_2 \notin K^2$. 3. $|\ker i| = 4$.

(i) Let $k = \mathbb{Q}(\sqrt{d})$, with d = 77285 = (5)(13)(29)(41) (as in 2.a). Let $K = k(\sqrt{1885}) = \mathbb{Q}(\sqrt{(5)(13)(29)}, \sqrt{41})$. Let $k_i = \mathbb{Q}(\sqrt{d_i})$ (i = 1, 2), with $d_1 = 1885 = (5)(13)(29)$ and $d_2 = 41$. Then

$$\varepsilon = \varepsilon_0 = 278 + \sqrt{77285}, \qquad N\varepsilon_0 = -1,$$

 $\varepsilon_1 = 521 + 12\sqrt{1885}, \qquad N\varepsilon_1 = 1,$
 $\varepsilon_2 = 32 + 5\sqrt{41}, \qquad N\varepsilon_2 = -1.$

By Proposition 2, $|\ker j| = 4$.

(ii) Let $k = \mathbb{Q}(\sqrt{d})$, with d = 4641 = (3)(7)(13)(17). Let $K = k(\sqrt{21}) = \mathbb{Q}(\sqrt{(3)(7)})$, $\sqrt{(13)(17)}$. Let $k_i = \mathbb{Q}(\sqrt{d_i})$ (i = 1, 2), with $d_1 = 21$ and $d_2 = 221 = (13)(17)$. Then

$$\varepsilon = \varepsilon_0 = 545 + 8\sqrt{4641}, \qquad N\varepsilon_0 = 1,$$

$$\varepsilon_1 = \frac{5 + \sqrt{21}}{2}, \qquad N\varepsilon_1 = 1,$$

$$\varepsilon_2 = \frac{15 + \sqrt{221}}{2}, \qquad N\varepsilon_2 = 1.$$

Moreover $\varepsilon + \varepsilon' + 2 = 1092 = (2^2)(3)(7)(13)$, implying $\delta_0 = \delta(\varepsilon) = (3)(7)(13)$,

$$\varepsilon_1 + \varepsilon'_1 + 2 = 7$$
, implying $\delta_1 = \delta(\varepsilon_1) = 7$,

$$\varepsilon_2 + \varepsilon'_2 + 2 = 17$$
, implying $\delta_2 = \delta(\varepsilon_2) = 17$.

Since $\delta_0 \delta_2 \in K^2$, Proposition 3 shows $|\ker j| = 4$.

ACKNOWLEDGEMENTS. The authors would like to thank Professor R. W. K. Odoni for suggesting the results in Proposition 4.

REFERENCES

1. J. E. Cremona, and R. W. K. Odoni. Some density results for negative Pell equations; an application of graph theory, J. London Math. Soc. (2) 39 (1989), 16-28.

2. J. E. Cremona and R. W. K. Odoni. A generalization of a result of Iwasawa on the capitulation problem, *Math. Proc.* Cambridge *Phil. Soc.* **107** (1990), 1–3.

3. Ph. Furtwängler, Über die Klassenzahl abelscher Zahlkörper, J. reine angew. Math. 134 (1908), 91-94.

4. K. Iwasawa, A note on the capitulation problem for number fields, *Proc. Japan Acad. Ser.* A. Math. Sci. 65 (1989), 59-61.

5. G. Janusz, Algebraic Number Fields, (Academic Press, New York, London, 1973).

6. T. Kubota, Über den bizyklischen biquadratischen Zahlkörpern, Nagoya Math. J. 10 (1956), 65-85.

7. K. Miyake, Algebraic investigations of Hilbert's Theorem 94, the principal ideal theorem, and the capitulation problem, *Expo. Math.* 7 (1989), 289-346.

8. R. W. K. Odoni, A note on a recent paper of Iwasawa on the capitulation problem, Proc. Japan Acad. Ser. A. Math. Sci. 65 (1989), 180-182.

9. M. Rosen, Two theorems on Galois cohomology, Proc. Amer. Math. Soc. 17 (1966), 1183-1185.

E. Benjamin Department of Mathematics Unity College Unity, Maine 04988 USA F. Sanborn and C. Snyder Department of Mathematics University of Maine Orono, Maine 04469-5752 USA