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EXACT FORMULAE FOR VARIANCES
OF FUNCTIONALS OF CONVEX HULLS

CHRISTIAN BUCHTA,∗ Salzburg University

Abstract

The vertices of the convex hull of a uniform sample from the interior of a convex polygon
are known to be concentrated close to the vertices of the polygon. Furthermore, the
remaining area of the polygon outside of the convex hull is concentrated close to the
vertices of the polygon. In order to see what happens in a corner of the polygon given
by two adjacent edges, we consider—in view of affine invariance—n points P1, . . . , Pn

distributed independently and uniformly in the interior of the triangle with vertices (0, 1),
(0, 0), and (1, 0). The number of vertices of the convex hull, which are close to the
origin (0, 0), is then given by the number Ñn of points among P1, . . . , Pn, which are
vertices of the convex hull of (0, 1), P1, . . . , Pn, and (1, 0). Correspondingly, D̃n is
defined as the remaining area of the triangle outside of this convex hull. We derive
exact (nonasymptotic) formulae for var Ñn and var D̃n. These formulae are in line with
asymptotic distribution results in Groeneboom (1988), Nagaev and Khamdamov (1991),
and Groeneboom (2012), as well as with recent results in Pardon (2011), (2012).
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1. Introduction

Let Nn denote the number of vertices of the convex hull of a uniform sample of n points
from the interior of a convex polygon with r (≥ 3) vertices. A classical result by Rényi and
Sulanke [23] states that ENn = 2

3 r log n + O(1) as n → ∞. For a quarter of a century, in
spite of many efforts, cf. e.g. [16, p. 547] and [17, p. 424], essentially no progress has been
achieved concerning the variance or the distribution of Nn. Then Groeneboom [14] succeeded
in proving that

Nn − (2/3)r log n√
(10/27)r log n

d−→ N (0, 1)

as n → ∞, where ‘
d−→’ denotes convergence in distribution and N (0, 1) is the standard normal

distribution. Furthermore, he obtained a corresponding result for the unit disk. Groeneboom’s
statement in the introduction of his paper that ‘the results throw light on the rather old problem
of the variance structure of the counting process, counting the number of vertices of (parts of)
the boundary of the convex hull’ is justified.

Rényi and Sulanke, in a second paper [24], also studied the area of the convex hull of a
uniform sample of n points from the interior of a square. In [4] their result was extended
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to a convex polygon with r (≥ 3) vertices. Here we write A(Pr) for the area of the convex
polygon and Dn for the remaining area of the polygon outside of the convex hull. In order to
emphasize the similarity of the formulae for the number of vertices of the convex hull on the
one hand and the—suitably expressed—area of the convex hull on the other hand, we define
the ‘rescaled remaining area’ by D̄n = n(A(Pr))

−1Dn. In this notation the result says that
ED̄n = 2

3 r log n + O(1) as n → ∞. Nagaev and Khamdamov [19] extended Groeneboom’s
result for the number of vertices of the convex hull to the joint distribution of the number of
vertices and the (rescaled remaining) area of the convex hull. They proved that

(
Nn − (2/3)r log n√

(10/27)r log n
,
D̄n − (2/3)r log n√

(28/27)r log n

)
d−→ N (0, �),

where N (0, �) is the two-dimensional normal distribution with expectation the zero vector
and covariance matrix � given by

� =
⎛
⎝ 1

√
5

14√
5

14 1

⎞
⎠ .

Independently, Cabo and Groeneboom [12] derived the corresponding limit theorem just for the
area. (See the discussion in [6]. In 2006, Groeneboom informed me in a private correspondence
that the constant under the root in the denominator in the limit theorem stated on page 43 of [12]
is the consequence of an incorrect application of the time reversal argument used on page 46
of [12]. The correct application of the argument yields the constant 28

27 , in accordance with the
result by Nagaev and Khamdamov.)

As for the similarity of the results for the number of vertices and for the area, Efron [13]
proved the identity V (C)−1

EDn = (n+1)−1
ENn+1 for a uniform sample of n points from the

interior of an arbitrary convex body C with volume V (C). In [6] this identity was extended from
expected values to variances and higher moments. The relation between the number of vertices
and the area exhibited by the result of Nagaev and Khamdamov [19] was recently reinvestigated
by Groeneboom [15]. This paper also comments on a further paper of Nagaev [18].

The limit theorems mentioned were achieved by approximating the process of vertices of the
convex hull by the process of extreme points of a Poisson point process. The most intricate part
is the computation of the variance of the random variable associated with the approximating
process of extreme points. Deriving the variance in an elementary way, we replace tremendous
calculations by simple conclusions.

Recently, Pardon [20], [21] proved, for the convex hull of a uniform sample of n points
from the interior of an arbitrary plane convex set of unit area, that the distribution of (Nn −
ENn)/

√
var Nn as well as the distribution of (Dn −EDn)/

√
var Dn tend to the standard normal

distribution and that

ENn � var Nn � nEDn � n2 var Dn

as n → ∞.
Further important results were recently obtained by Schreiber and Yukich [28], Bárány

and Reitzner [2], and Bárány and Steiger [3]. New surveys about the convex hull of random
points are due to Reitzner [22] and Schneider [26]. Many references are also contained in the
monograph by Schneider and Weil [27], as well as in [10] and [11].
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2. The variance of the number of vertices

Groeneboom’s limit theorem, for the number of vertices of the convex hull in the case of
a convex polygon with r vertices (see Corollary 2.5 of [14]), is a consequence of the limit
theorem in the particular case of the unit square (see Corollary 2.4 of [14]), which in turn is
a consequence of Theorem 2.4 of [14]. This fundamental theorem of Groeneboom’s paper
provides formulae for the expected value and for the variance of the number of extreme points
of the ‘left-lower’ boundary of the convex hull of a Poisson point process on R

2+, the positive
quadrant, with intensity Lebesgue measure. Now, instead of investigating the approximating
random variable associated with the Poisson point process, we deal directly with the number of
vertices of the ‘left-lower’ boundary of the convex hull of a uniform sample from the interior
of the unit square.

It is well known that the vertices of the convex hull of a uniform sample from the interior
of a convex polytope are ‘concentrated’ close to the vertices of the polytope; cf. in particular
[1], where the notion ‘concentration of vertices’ is also explained in detail. Hence, among the
vertices of the ‘left-lower’ boundary of the convex hull of a sample from the interior of the unit
square, only those which are close to the origin (0, 0) matter asymptotically. (We think of the
unit square with vertices (0, 0), (0, 1), (1, 0), and (1, 1).)

The vertices of the convex hull, which are close to the origin, can be captured in the following
way: take a line intersecting both the positive x-axis and the positive y-axis, and consider the
convex hull of the two intersection points and those of the points of the sample which lie on
the same side of the line as the origin. We are free to take the line through the points (0, 1)

and (1, 0). Furthermore, it does not matter whether a sample is taken straightaway from the
interior of the triangle with vertices (0, 1), (0, 0), and (1, 0), instead of considering only the
points among a sample from the interior of the square, which fall into the interior of the triangle.
(Again, cf. [1].)

Thus we are led to the following task: assume that n points P1, . . . , Pn are distributed
independently and uniformly in the interior of the triangle with vertices (0, 1), (0, 0), and
(1, 0). Consider the convex hull of (0, 1), P1, . . . , Pn, and (1, 0). Denote by Ñn the number
of those points among P1, . . . , Pn which are vertices of the convex hull. What is the variance
of this number?

The distribution of the random variable Ñn was determined explicitly in [7]. There the
probability p

(n)
k (k = 1, . . . , n) that Ñn = k was obtained in the form

p
(n)
k =

∑ i1 · · · ik(
i1+1

2

)(
i1+i2+1

2

) · · · (i1+···+ik+1
2

) ,

where the sum is taken over all i1, . . . , ik ∈ N such that i1 + · · · + ik = n. Theorem 1 states to
what extent the first and the second moment of Ñn increase if a further random point—chosen
independently and according to the same distribution—is added.

Theorem 1. The differences �EÑn := EÑn+1 −EÑn and �EÑ2
n := EÑ2

n+1 −EÑ2
n are given

by

(i) �EÑn = 2

3

1

n + 1
,

(ii) �EÑ2
n = 8

9

1

n + 1

n+1∑
k=1

1

k
+ 10

27

1

n + 1
+ 4

9

1

n + 2
.
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Immediate consequences are the formulae

EÑn = EÑ1 +
n−1∑
k=1

�EÑk = 2

3

n∑
k=1

1

k
+ 1

3

and

EÑ2
n = EÑ2

1 +
n−1∑
k=1

�EÑ2
k = 8

9

n∑
k=1

1

k

k∑
j=1

1

j
+ 22

27

n∑
k=1

1

k
− 25

27
+ 4

9

1

n + 1
.

The resulting surprisingly simple formula

var Ñn = 10

27

n∑
k=1

1

k
+ 4

9

n∑
k=1

1

k2 − 28

27
+ 4

9

1

n + 1

shows that var Ñn ∼ 10
27 log n as n → ∞. The formulae constitute an elementary counterpart

to the fundamental Theorem 2.4 of [14]. (Also see [12, p. 37].) The same approach can be
used to obtain higher moments of Ñn; however, the technical details are more involved and are
therefore elaborated in a separate paper [9].

Proof of Theorem 1. The starting point for our considerations is the formula for the
probability p

(n)
k that Ñn = k, k = 1, . . . , n. If n is replaced in the formula by n + 1, the index

ik = n + 1 − i1 − · · · − ik−1 attains the integers from 1 to (n + 1) − (k − 1). Correspondingly,
the sum of the remaining indices j := i1 +· · ·+ ik−1 is at least k − 1 and at most n. Therefore,
p

(n+1)
k can alternatively be written in the form

p
(n+1)
k =

n∑
j=k−1

(n + 1 − j)(
n+2

2

) ∑ i1 · · · ik−1(
i1+1

2

) · · · (i1+···+ik−1+1
2

) ,

where the second sum is taken over all i1, . . . , ik−1 ∈ N such that i1 + · · · + ik−1 = j . Thus,

p
(n+1)
k = 1(

n+2
2

) n∑
j=k−1

(n + 1 − j)p
(j)
k−1,

with p
(0)
0 = 1 and p

(j)
0 = 0 for j ∈ N.

The arising recurrence relation is easily translated into a recurrence relation for expected
values. Interchanging the order of summation, we obtain

EÑn+1 =
n+1∑
k=1

kp
(n+1)
k

= 1 + 1(
n+2

2

) n∑
j=1

(n + 1 − j)

j∑
k=1

kp
(j)
k

= 1 + 1(
n+2

2

) n∑
j=1

(n + 1 − j)EÑj .
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Immediate consequences are the identity

(
n + 2

2

)
EÑn+1 −

(
n + 1

2

)
EÑn = n + 1 +

n∑
j=1

EÑj

as well as the further identity((
n + 2

2

)
EÑn+1 −

(
n + 1

2

)
EÑn

)
−

((
n + 1

2

)
EÑn −

(
n

2

)
EÑn−1

)
= 1 + EÑn.

It is essential to note that the last identity can equivalently be written in the form(
n + 2

2

)
(EÑn+1 − EÑn) −

(
n

2

)
(EÑn − EÑn−1) = 1,

such that

�EÑn = (n − 1)n

(n + 1)(n + 2)
�EÑn−1 + 2

(n + 1)(n + 2)
.

Consequently,

�EÑn = 1

n(n + 1)2(n + 2)

(
12�EÑ1 + 2

n∑
j=2

j (j + 1)

)
.

Since EÑ1 = 1, EÑ2 = 4
3 , and

∑n
j=2 j (j + 1) = 1

3n(n + 1)(n + 2) − 2, we obtain the
claimed formula for �EÑn.

The value of �EÑ2
n can be derived analogously without notable additional difficulties. First

we obtain

EÑ2
n+1 =

n+1∑
k=1

k2p
(n+1)
k

= 1 + 1(
n+2

2

) n∑
j=1

(n + 1 − j)

j∑
k=1

(k2 + 2k)p
(j)
k

= 1 + 1(
n+2

2

) n∑
j=1

(n + 1 − j)(EÑ2
j + 2EÑj ).

Then conclusions corresponding to those above yield(
n + 2

2

)
(EÑ2

n+1 − EÑ2
n ) −

(
n

2

)
(EÑ2

n − EÑ2
n−1) = 1 + 2EÑn

= 1 + 2

(
EÑ1 +

n−1∑
k=1

�EÑk

)

= 4

3

n∑
k=1

1

k
+ 5

3
,
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such that

�EÑ2
n = (n − 1)n

(n + 1)(n + 2)
�EÑ2

n−1 + 2

(n + 1)(n + 2)

(
4

3

n∑
k=1

1

k
+ 5

3

)

and, furthermore,

�EÑ2
n = 1

n(n + 1)2(n + 2)

(
12�EÑ2

1 + 2
n∑

j=2

j (j + 1)

(
4

3

j∑
k=1

1

k
+ 5

3

))
.

Since EÑ2
1 = 1, EÑ2

2 = 2, and

n∑
j=2

j (j + 1)

j∑
k=1

1

k
=

n∑
k=1

1

k

n∑
j=k

j (j + 1) − 2

= n(n + 1)(n + 2)

3

n∑
k=1

1

k
− (n − 1)n(2n + 5)

18
− 2,

the claimed formula for �EÑ2
n also follows.

3. The variance of the area

Corresponding to the vertices of the convex hull, the area of the convex polygon, which
is not covered by the convex hull, is also concentrated close to the vertices of the polygon.
Consequently, it is sufficient to consider the difference D̃n of the area A(T ) of the triangle with
vertices (0, 1), (0, 0), and (1, 0), and the area of the convex hull of (0, 1), P1, . . . , Pn, and
(1, 0). An identity relating the kth moment of Dn to the first moment of Nn+1, the first two
moments of Nn+2, . . . , and the first k moments of Nn+k was obtained in [6]. Going through
the proof of this identity, we see that it can be adapted in order to express the expected value
and the variance of D̃n by the first moment of Ñn+1 and the first two moments of Ñn+2.

Theorem 2. The expected value and the variance of D̃n are given by

(i)
ED̃n

A(T )
= EÑn+1

n + 1
,

(ii)
var D̃n

A(T )2 = E

(
1 − Ñn+2

n + 1

)(
1 − Ñn+2

n + 2

)
−

(
E

(
1 − Ñn+1

n + 1

))2

.

In view of the exact formulae for EÑn+1, EÑn+2, and EÑ2
n+2 arising from Theorem 1, we

obtain, as immediate consequences of Theorem 2, the exact formulae

ED̃n

A(T )
= 1

n + 1

(
2

3

n+1∑
k=1

1

k
+ 1

3

)
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and

var D̃n

A(T )2 = 1

(n + 1)(n + 2)

(
28

27

n+1∑
k=1

1

k
+ 4

9

n+1∑
k=1

1

k2 − 55

27
− 4

9

1

n + 1

(n+1∑
k=1

1

k

)2

− 4

9

(
1

n + 1
− 2

n + 2

) n+1∑
k=1

1

k
− 1

9

1

n + 1

+ 40

27

1

n + 2
+ 4

9

1

n + 3
+ 8

9

1

(n + 2)2

)
.

This shows that A(T )−2 var D̃n ∼ 28
27n−2 log n as n → ∞.

Proof of Theorem 2. Denote by Ãn the area of the convex hull of (0, 1), P1, . . . , Pn, and
(1, 0), where P1, . . . , Pn are n points distributed independently and uniformly in the interior
of the triangle with vertices (0, 1), (0, 0), and (1, 0). The arguments in the proof of Theorem 1
of [6] yield

EÃn

A(T )
= 1 − EÑn+1

n + 1

and
EÃ2

n

A(T )2 = E

(
1 − Ñn+2

n + 1

)(
1 − Ñn+2

n + 2

)
.

Since Ãn + D̃n = A(T )(= 1
2 ), clearly ED̃n = A(T ) − EÃn, and the variance of D̃n is just the

variance of Ãn.

4. Concluding remarks

The formula for var Ñn arising from Theorem 1 was first obtained in 2003 and published
without proof in the announcement [5]. Over the intervening years the original proof has been
simplified considerably. Tools, which were needed in earlier versions of the proof, could be
avoided step by step.

From the exact distribution of Ñn, the exact distribution of Nn can be derived, where Nn is
the number of vertices of the convex hull of a uniform sample from the interior of a convex
polygon with r (≥ 3) vertices. How to proceed in general is sketched in [7], and the arising
distributions in the cases that the polygon is a square or a triangle are stated without proof in the
announcement [8]. If the distribution—and, hence, the moments—of Nn are known, then the
moments—and, in particular, the variance—of Dn, the remaining area of the polygon outside
of the convex hull, are also available according to [6]. The details are beyond the scope of the
present paper. Here we only state an arising formula for illustration. Assume that the polygon
is a triangle of unit area. As above, put D̄n := nDn. Then

var D̄n = n2

(n + 1)(n + 2)

((
28

9
+ 8

n + 1

) n∑
k=1

1

k
− 4

3

n∑
k=1

1

k2 − 4

− 4

n + 1

( n∑
k=1

1

k

)2

− 8

9

1

n + 1
+ 8

3

1

(n + 1)2

)
.

Obviously, var D̄n = 28
9 log n + O(1) as n → ∞ and, thus, var D̄n = 28

27 r log n + O(1)

corresponding to r = 3 vertices of the triangle.
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