
B
A lexicon

When describing previously uncharted territories, discoverers and inventors are forced to adopt
and adapt previously known terms, concepts and techniques for the new phenomena, or invent
wholly new ones. This appendix collects a listing of perhaps less familiar but oft-used terms in our
field, then turns to the vector/tensor and even functional extension to the hopefully well-familiar
rules of multivariate calculus, and closes with a brief on Gödel’s incompleteness theorem.

B.1 The jargon
The jargon of theoretical and mathematical physics is very much in development and in some
cases not yet standardized. With the aim of using compact but precise terms to name very spe-
cific ideas, many scientists begin using an otherwise rarely used word and, at times, their choice
“catches on” and becomes standardized. At other times, different terms are used by competing
(or non-communicating) research groups for the same or closely related concepts, whereupon
one of the two “competing” terms may turn into a standard but only after a long period dur-
ing which both terms are used. As the fundamental physics of elementary particles is still
very much in development, consistency and expediency required me to make certain choices
in terminology, which I have, to the best of my knowledge, indicated together with possible
alternatives.

The subsequent lexicon offers brief explanations for some of the perhaps less familiar tech-
nical terms and expressions, most of which are fairly standard, but in a field other than particle
physics.

Abelian (commutative, symmetric) A binary operation � is abelian if a � b = b � a. By extension,
structures defined using an abelian binary operation are also called abelian. Operations that
are not abelian are called non-abelian (= non-commutative, = asymmetric), as are structures
defined using them.

Algebra A vector space A over a field k, equipped with a binary operation ∗, which satisfies the
distribution law over addition: a ∗ (b + c) = (a ∗ b) + (a ∗ c), for all elements a, b, c ⊂ A, and
for which it is true that α(a ∗ b) = (αa) ∗ b = a ∗ (αb), for each α ∈ k and a, b ∈ A. The
operation ∗ is typically a type of multiplication; it is often commutative, i.e., symmetric, but
in Lie algebras it is antisymmetric: a ∗ b = −b ∗ a.
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Amplitude In the context of field theory and so also in (high energy) elementary particle physics,
this is the matrix element Mi→ f := 〈 f |Hint|i〉 where |i〉 and | f 〉 are the initial and final states
and Hint is the (algebraic sum of all) interaction operator(s) that can bring about the process
|i〉 → | f 〉. The probability for this process is then proportional to |Mi→ f |2 [☞ display (3.85)
and Section 3.3.3 on p. 113].

Analytic function A function f (x) is analytic in a domain D if it has a (convergent) Taylor
expansion f (x) = ∑∞

n=0 an(x−x0)n for every x0, (x−x0) ∈ D .
Anomaly Structural changes in relations between observables caused by passing from classical to

quantum theory. If those relations represent the algebra of symmetry transformations and
anomalies obstruct the closure or change the structure of that algebra, then anomalies de-
stroy or change the symmetry that was built into the system originally – which points to an
inconsistency. Models with an anomaly in a gauge symmetry are simply inconsistent [☞ Sec-
tion 7.2.3], whereupon all gauge anomaly ought to cancel. [☛ geometric quantization;
canonical quantization] In turn, anomalies in global and approximate symmetries need not
cancel, but are characteristic quantities that cannot be altered by field redefinitions, and
so must remain conserved throughout the evolution of a system, including phase transi-
tions. This is a direct consequence of the underlying principle in Dirac quantization. [☛ Dirac
quantization]

Auxiliary field A field that has a non-differential equation of motion, which determines the field
point-by-point. If this equation of motion can be solved, the solution can be reinserted in
the Lagrangian density, which is classically equivalent to the original Lagrangian density but
involves fewer fields. The equivalence need not hold between the quantum models defined
from the two Lagrangian densities.

Baryon Since the acceptance of the quark model in 1973, a bound state of three quarks. Originally,
a particle that interacts by means of the strong nuclear force (at ∼10−23 s), can be detected
as an isolated particle, and has a mass that is not smaller than that of the proton, such as a
neutron.

Bijection A mapping f : X → Y that is both (1) an injection (i.e., “1–1”), so for every x ∈ X there
is precisely one y = f (x) ∈ Y, and (2) a surjection, so for every y ∈ Y there is an x ∈ X
so that f (x) = y. Bijection = surjective injection, i.e., injective surjection. [☛ injection,
surjection]

BFV-quantization A contemporary version (by Igor Batalin, Efim S. Fradkin and Grigori Vilkovisky)
of canonical quantization in the Hamiltonian formalism, which generalizes the evolution
of the canonical–Dirac–BRST quantization to the general case when the constraints do not
close the structure of an algebra [174, 39, 172, 36, 37, 345, 38, and references therein];
see also the texts [268, 555, 484, 496, 589, 590] and [509]. [☛ BRST quantization; Dirac
quantization; canonical quantization]

Bose condensation The state of a system where infinitely many particles (bosons) are in the same
quantum state. The Coulomb static potential may be understood as a Bose condensation of
infinitely many photons.

Boson By definition, a particle (as well as its mathematical representatives: wave-functions, cre-
ation and annihilation operators or fields) that obeys the Bose–Einstein statistics; Pauli’s
exclusion principle does not apply to bosons and bosons may condense [☛ Bose conden-
sate]. By the spin-statistics theorem (in Lorentz-covariant models), physical particles whose
mathematical representatives transform as tensor representations of the Lorentz group are
bosons. The possible values of bosonic wave-functions and fields are (ordinary) commuting
numbers (“c-numbers”).

BRST quantization A procedure (by Carlo M. Becchi, Alain Rouet and Raymond Stora, and sep-
arately by Igor V. Tyutin) of constructing a quantum theory from an originally classical
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field theory with a gauge symmetry, in which the gauge symmetry reduces to a BRST sym-
metry and counterterms are added to the Lagrangian density that are invariant with respect
to the BRST symmetry, although not with respect to the original (classical) gauge sym-
metry. As a gauge symmetry is realized in quantum theory by imposing constraints (that
the physical states are invariant under the action of the symmetry) and these constraints
close an algebra, BRST quantization is a canonical generalization of the Dirac quantiza-
tion with constraints of the first class in Dirac’s classification [445, 425, 345]; see also the
texts [555, 484, 496, 589, 590]. [☛ Dirac quantization; canonical quantization]

BRST symmetry A reduction of a gauge symmetry where the parameters in a gauge transformation
are replaced by ghost fields: functions of spacetime that have the opposite statistics from the
original parameters but transform identically as the original parameters under the action
of both the gauge and the Lorentz transformations. For example, Yang–Mills gauge theories
have ordinary (commutative) scalar functions as gauge parameters. In the corresponding
BRST symmetry, to the system is added a pair of canonically conjugate anticommutative scalar
fields that otherwise, in every other aspect, transform identically as the original parameters
of the given gauge transformation. Interactions of these ghost fields with other fields are
determined precisely so that they cancel the contributions of the unphysical components in
the gauge fields [44]; see also the texts [268, 555, 484, 496, 589, 590]. [☛ ghost fields;
nonphysical components]

Bundle [☞ vector bundle]
BV-quantization A contemporary version of canonical quantization (by Jean Zinn–Justin, then by

Igor Batalin and Grigori Vilkovisky) in the Lagrangian formalism, which generalizes the evo-
lution of the canonical–Dirac–BRST quantization to the general case when the constraints
do not close the structure of an algebra [41, 345]; see also the texts [555, 484]. [☛ BRST
quantization; Dirac quantization; canonical quantization]

Canonical quantization Also known as the second quantization; the adjective “canonical” stems
from using the canonical Hamiltonian formalism of classical physics and its quantum reinter-
pretation, where the relations between observables in a given model are preserved as well as
possible, and with a formal replacement of the Poisson brackets by commutators. Changes in
these relations, e.g., if the Poisson bracket {A,B} = C upon canonical quantization becomes
[A, B] = C + Δ, the additional term Δ is one of the measures of this anomaly. [☛ anomaly]

Cartesian product Also known as the direct product: for two sets X and Y, the Cartesian product is
the set of all ordered pairs:

X × Y :=
{
(x, y) : x ∈ X, y ∈ Y

}
. (B.1)

Cauchy sequence Given a metric space (a set of points xi with a well-defined distance function
d(xi, xj) between any two points), this is a sequence of points x1, x2, . . . , where

d(xi, xj) < ε, ∀i, j > N, (B.2)

for some predefined integer N and positive real number (tolerance) ε. That is, all points
sufficiently far up the sequence are closer than ε to each other.

Chirality The eigenvalue of the operator γ̂γγγ. A particle is said to have a well-defined chirality if its
wave-function is an eigenfunction of this operator. The operators 1

2 [1 ± γ̂γγγ], with the γ̂γγγ-matrix
defined in Appendix A.6.1, project to spin- 1

2 particles of chirality ± 1
2 . By construction, chi-

rality is Lorentz-invariant. However, as γ̂γγγ anticommutes with the Dirac operator γγγγμ∂μ and
commutes with the mass,

[ih̄γγγγμ∂μ − mc1] 1
2 [1 ± γ̂γγγ] �∝ 1

2 [1 ± γ̂γγγ] [ih̄γγγγμ∂μ − mc1], (B.3)

and the chirality of a massive particle is not a constant.
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CM system For a system of particles located at the positions �ri and having the masses mi, the
position and velocity of the center of mass are, by definition,

�rCM := ∑i mi�ri

∑i mi
, �vCM := ∑i mi�vi

∑i mi
. (B.4)

A coordinate system where �vCM = 0 is called the center of momentum frame, where�rCM need
not vanish; a coordinate system where additionally also�rCM = 0 is called the center of mass
system, or “CM-system” for short.

Codimension For a subspace X ⊂ Y, cod(X ⊂ Y) := dim(Y)−dim(X). If the subspace X is
defined by means of a system of algebraic equations, near every point x ∈ X, that system
must have cod(X ⊂ Y) independent equations.

Codomain For a mapping f : X → Y, the collection of elements Y wherein the map points, and
wherein the values of f and its image lie; f (x) = y ∈ Y for all x ∈ X.

Cokernel For a linear mapping f : X → Y of a vector space X into Y, the cokernel of f consists of
the equivalence classes cok( f ) := {[y " y + f (x)] : x ∈ X, y ∈ Y}.

Color In the context of elementary particles, the 3-dimensional SU(3)c charges of quarks, such
that baryons consist of three quarks with one of the three linearly independent colors (“red,”
“yellow,” “blue”) each, so that the baryon is “colorless,” or more precisely, SU(3)c-invariant.
Owing to the ubiquity of computer graphics, the so-called subtractive color system is ever
more familiar, but we adopt the familiar additive color system. Here, red and yellow produces
orange, and its mix with blue produces colorless, i.e., black. The opposite (anti-)colors of
primary colors are: anti-red = green, anti-yellow = purple, anti-blue = orange; the mixture
of any color and its anti-color produces colorless. Because of this regularity the name color is
convenient as a mnemonic crutch for adding SU(3)c vectors [☞ Appendix A.4].

Compact space A topological space [☛ topological space] X where every open neighborhood
(and so also the whole X) may be covered by a finite number of open neighborhoods
is called quasi-compact. A topological space where every two distinct points have some
non-intersecting neighborhoods,

∀x �= x′ ∈ X, ∃U, U′ ⊂ X : U ( x, U′ ( x′, U ∩ U′ = ∅ (B.5)

is called Hausdorff. A Hausdorff space that is also quasi-compact is compact. In practice in
theoretical physics, it is crucial that compact spaces have a well-defined size, so that compact
spaces may be chosen to be smaller (or larger) than a given size/length.

Compactification The procedure where a non-compact topological space X is added to a topolog-
ical space Y of strictly lesser dimension, so that Xc := (X ∪ Y) is compact. The simplest
example is S1 = R1 ∪ {point}, where a point “at infinity” was added to the open line (R1),
so as to obtain the circle (S1).

Concrete applications of this procedure within the present subject stem from the proposal
originally made by Gunnar Nordstrøm, in 1914, whereby the spatial dimension of the form
of an open and infinitely large line, R1, is replaced by a closed, compact and small circle,
S1. The proposal was rediscovered by Theodor F. E. Kałuża in 1919 (published in 1921)
and also Oscar Klein in 1921. The latter two publications being generally known, this is
typically called “Kałuża–Klein compactification.” Symmetries of the compactified space result
in Yang–Mills gauge symmetries in the non-compact spacetime. The special case when the
compact space is a Calabi–Yau manifold is called “Calabi–Yau compactification.” As Calabi–
Yau spaces of more than one complex dimension do not have continuous symmetries, Calabi–
Yau compactification does not give rise to any gauge symmetry, and in fact typically reduces
what gauge symmetry there was prior to compactification; see Section 11.3.1.
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Complex structure [☛ conjugation]
Commutative [☛ abelian]
Conjugation is a mapping of one (generalized) complex structure into its equivalent partner. Most

generally, a complex structure is specified by an operation Î , the two-fold repetition of which
results in a sign change: Î ◦ Î = −1. Therefore, −Î is always also a complex structure,
distinct from I but equivalent to it for all purposes, and all complex structures always occur
in such equivalent pairs.

Complex conjugation Every rule by which a pair of real numbers (x, y) is assigned a com-
plex number z has a conjugate rule. For example, relative to the definition z := (x + iy),
z∗ := (x − iy) is the complex conjugation of the complex number z. Operatively, complex
conjugation changes i → −i. The analogous situation holds also for matrices, functions,
operators, etc.

Hermitian conjugation of matrices is the combination of complex conjugation (of every
element) of the matrix with its transposition: (aij)† := a∗ji. [☛ Digression 10.2 on p. 360]

Dirac conjugation of a Dirac spinor Ψ is the Hermitian conjugation combined with right-
multiplication by the γγγγ0 matrix: Ψ := Ψ†γγγγ0. Correspondingly, the Dirac conjugate of
the operator R is R := (γγγγ0)−1R γγγγ0. For a Cartesian basis of γγγγ-matrices with the met-
ric tensor (3.19), it follows that (γγγγ0)−1 = γγγγ0 so R = γγγγ0R γγγγ0, which agrees with the
definition (5.132).

Contact interaction Interaction that requires that all participants in the interaction are localized in
the same spacetime point – akin to the collision of two marbles. All elementary processes in
the Standard Model are contact interactions. For example, the emission and the absorption of
a (virtual) photon by an electron requires that the “incoming” electron in a spacetime point
turn into the “outgoing” electron and that the photon in this interaction is emitted from or ab-
sorbed at that same point. The Yukawa interaction is analogous, except that a scalar particle
is emitted or absorbed instead of a photon. The Fermi interaction is also analogous, except
that here two fermions collide in a spacetime point from which then two other fermions
emerge, or one fermion decays into three fermions, all emitted from the same spacetime
point.

Contravariant vector A vector the components of which, Aμ(x), are transformed as

Aμ(x) =
(∂xμ

∂yν

)
Aν(y) (3.11c)

by the coordinate system transformation x → y.
Coset [☛ Appendix A.1.1.]
Cotangent bundle The vector bundle T ∗

X := E(X ; T∗
x (X );π) where T∗

x (X ) is the cotangent
space of the space X at the point x ∈ X . If xμ are local coordinates in the space X
at the given point, then T∗

x (X ) may be represented as the formal vector space of linear
combinations ωμdxμ.

Coulomb field, potential A stationary electric charge is surrounded by the constant Coulomb elec-
trostatic field, �E; q0�E is the force that acts upon the probing particle of charge q0. For the
same situation, �E = −�∇Φ, where Φ is the Coulomb potential; q0Φ is the potential energy
of the probing charge q0 in the field �E. It follows from Gauss’s law that the Coulomb field of
a point-like charge is �E ∝ 1/rd−1, where d is the dimension of the space and r the distance
between the source of the field and the place where the field is measured; also, Φ ∝ 1/rd−2.

Covariant derivative A measure of the amount of change in the “overall value” of a generalized
function F owing to a change of one of the arguments of F in the limiting case when
the change in the argument is infinitesimal and tends to zero. For a real scalar (invariant)
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function, the “overall value” is simply the “value” or intensity, and the covariant derivative
of such a function is the same as the partial derivative. However, for more general functions
F that take values in a multi-dimensional space, such as spacetime itself or some abstract
space, the covariant derivative also takes into account that the space of values of F may well
change over the space of arguments. This then additionally changes the “overall value” (both
the intensity and the “direction”) of F at an infinitesimally close neighboring value of the
argument. The covariant derivatives therefore have the general form D := ∂+ Γ, where Γ is
the gauge potential and encodes the variation in the space of values of F. [☛ gauge potential,
gauge field]

Covariant vector A vector the components of which, Bμ(x), are transformed as

Bμ(x) =
( ∂yν

∂xμ
)

Bν(y) (3.11d)

by the coordinate system transformation x → y.
Covering For a given (topologial) space X, the n-fold (finite) cover Y is a space for which there

exists an n–1 mapping π : Y → X such that for every point x ∈ U ⊂ X, where U is any open
neighborhood in X, there exist exactly n points and non-intersecting open neighborhoods
yi ∈ Vi ⊂ Y, such that π(yi) = x and π(Vi) = U. That is, π is a continuous surjection. The
points yi are called the π-inverse images of x, i.e., π−1(x) = {y1, y2, . . .}.

Curvature Given a space X over which the functions f (xμ) are defined locally, i.e., in sufficiently
small open neighborhoods, f (xμ) is unambiguously defined. Let Dμ be local derivatives that
(in sufficiently small open neighborhoods) correctly compute the difference dxμ(Dμ f ) =
f (xμ+dxμ) − f (xμ). Then, in general, the relations[

Dμ , Dν
]

= TμνρDρ + Rμν (B.6)

define the torsion Tμνρ and the curvature Rμν of the space X . These two (local) structures
specify the (local) geometry of the space X and a class of functions f (xμ) over this space.

In examples where X is spacetime and f (xμ) a complex wave-function representing a
lepton or a quark, the torsion vanishes, and Rμν is the Yang–Mills gauge field (denoted
Fμν [☞ Chapters 5 and 6]). The torsion vanishes also when f (xμ) represents a tensor over
spacetime X , in which case is Rμν the Riemann tensor [☞ Chapter 9]. In turn, when Dα, D.

α
are super-derivatives (10.68), so the commutator in the relation (B.6) is replaced by an an-
ticommutator, the curvature vanishes and the torsion does not [☞ relation (10.69), which
holds for the extended basis of super-spacetime derivatives {Dα, D.

α, ∂μ}]. Finally, in the the-
ory of Lie groups, the Lie group itself is a differentiable space where the derivatives are
closely related to the generators Q, and their commutator, akin to (A.70), defines the structure
constants of the Lie group as the torsion and where the curvature vanishes.

Dirac quantization The development of general canonical quantization for systems in which there
exist constraints, and the specification how to treat these constraints in quantum theory so
they remain satisfied throughout the evolution of the system in time; see Digression 11.7 on
p. 420, the texts [64, 445, 425], as well as Dirac’s book [134]. Dirac’s procedure proves the
fundamental equivalence between Heisenberg’s “matrix mechanics” and Schrödinger’s “wave
mechanics” and connects the ideas from both approaches. [☛ canonical quantization]

Direct product [☛ Cartesian product]
Domain For a map f : X → Y, this is X, the collection of elements that are being mapped by f ;

X := {x : f (x) is well defined}.
Einstein–Rosen bridge A wormhole that connects the inside of the event horizon of one of two

Schwarzschild black holes with the inside of the event horizon of another black hole of the
same type. [☛ wormhole]

https://doi.org/10.1017/9781009291507.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.018


B.1 The jargon 499

Energy–momentum (4-momentum) transfer In collisions A + B → A′ + · · · , where B is initially a
target at rest and A and A′ the incoming and outgoing probe,1 q := (pA−pA′) is the 4-
momentum that the probe transfers to the target. In elastic collisions, A + B → A′ + B′, we
have that q = (pB′−pB).

Equivalence A binary relation ∼ between elements of a set A is an equivalence if and only if it
is (1) reflexive (a ∼ a), (2) symmetric (if a ∼ b then b ∼ a), (3) transitive (if a ∼ b and
b ∼ c then a ∼ c). An equivalence class is a subset of A consisting of elements that are all
equivalent to each other; different equivalence classes are disjoint subsets of A, and their
union equals A.

Euler characteristic Denoted χE(X ), the Euler (or the Euler–Poincaré) characteristic is the topo-
logical invariant of the topological space X . If X is a real 2-dimensional surface that
has a triangulation (an approximation by a network of finitely many triangles), χE(X ) =
k0 − k1 + k2, where k0 is the number of vertices (corners), k1 the number of edges and k2 the
number of triangles. A generalization exists also to higher-dimensional spaces (using a gen-
eralization of triangles): χE(X ) = ∑dim X

i=0 (−1)iki, where k0, k1, k2 are defined as for surfaces,
k3 the number of (exclusively tetrahedral) 3-dimensional elements, etc.

Extremal black hole A nontrivial solution of the Einstein equations, such as the Reissner–Nord-
strøm solutions (9.61) where the two horizons coincide, 2rq = rS, and which is marginal
between the solutions where the singularity is screened by the event horizon and the
solutions where it is not, i.e., solutions with a naked singularity.

Fermion By definition, a particle (as well as its mathematical representatives: wave-functions,
creation and annihilation operators, or fields) that obeys Pauli’s exclusion principle (two
fermions cannot be in the same quantum state) and therefore also the Fermi–Dirac statis-
tics. Owing to the spin-statistics theorem (in Lorentz-covariant models), physical particles
whose mathematical representatives transform as spinorial representations of the Lorentz
group are fermions. Fermionic wave-functions and fields have values that are anticommuting
“numbers” (“a-numbers”).

Fibration The space obtained by generalizing the tensor product of two spaces, where one of
the factors in the product changes “along” the other factor. The type of that change (con-
tinuous, smooth, analytic, complex-analytic, . . . ) distinguishes the various fibrations. Even
the topology, i.e., homotopy of the variable factor may change, i.e., this factor may change
discontinuously. [☛ homotopy class, Figure 11.7 on p. 427]

Field (mathematics) A collection of elements, k, for which two operations, # and ∗, are defined so
that:

1. (k, #) is an abelian (commutative) group, with e ∈ k the neutral element;
2. (k	{e}, ∗) is an abelian (commutative) group;
3. the distribution rules a ∗ (b # c) = (a ∗ b) # (a ∗ c) and (a # b) ∗ c = (a ∗ c) # (b ∗ c) hold.

Field (physics) A function over spacetime. A scalar field is a function the values of which are
scalars, a vector field is a function the values of which are vectors, etc. By a “gauge field,”
however, one means the concrete fields such as the electric and magnetic fields, and their
generalizations to other gauge models. [☛ gauge field] Variations/perturbations in a field
are quantized in quantum physics. [☛ quantum]

Flavor The type of quark – distinguished by their masses and various charges, see the tabula-
tion (2.44a). These are eigenstate of the free (propagation) Hamiltonian, and flavor ranges
over up, down, strange, charm, beauty and top.

Gauge fields In the most familiar example, electromagnetism, these are the electric and the mag-
netic fields, which jointly form Maxwell’s tensor Fμν [☞ relations (5.73)]. More generally,

1 A and A′ are one and the same particle, with changed kinematical parameters: energy, linear momentum and angular
momentum, including spin.
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Yang–Mills gauge fields are the components of the matrix-valued tensor Fμν [☞ defini-
tion (6.15)], and for gravity these are the components of the Riemann tensor (9.30). In
the most general case, gauge fields are defined, up to multiplicative constants, as the re-
sult of computing [Dμ, Dν], where Dμ are the correspondingly gauge-covariant derivatives,
so [Dμ, Dν] is a measure of the non-commutativity of the changes of the considered general-
ized (complex-, vector-, tensor-, spinor-, matrix-, Lie-algebra-, . . . valued) functions, i.e., the
curvature of the space of such generalized functions. [☛ covariant derivative]

Gauge potential In the most familiar example, electromagnetism, these are the scalar and the
vector potentials that jointly form the 4-vector Aμ [☞ relations (5.73)] and represent the
difference between the covariant and the partial derivative [☞ definition (5.13)]. More gen-
erally, Yang–Mills gauge potentials form a matrix-valued 4-vector Aμ [☞ definition (6.6a)],
and for gravity these are the Christoffel symbols (9.17). In the most general case, the gauge
potential is the difference between the gauge-covariant and the partial derivative: Γ = D − ∂.
[☛ covariant derivative, potential]

Geodesic completeness The property of a given coordinate system with the given metric tensor
that the limiting points of all geodesic lines (9.48) are within the range of those coordinates.
A typical nontrivial example is the surface of a torus, for which we choose the coordinates
(x, y), where x parametrizes the “little circle” so x " x + 2πR1, and y parametrizes the
“big circle” so y " y + 2πR2, with R2 � R1. The coordinate system (x, y) is thus geodesi-
cally complete. As a counter-example, consider the “northern” stereographic projection of a
sphere to the (x, y)-plane, so that the south pole corresponds to the coordinate origin and
the equator to the circle of unit radius centered at the coordinate origin. Then geodesic lines
on the sphere that contain the north pole correspond to geodesic lines in the plane that con-
tain the point at infinity – which is not within the range of the coordinates. Such geodesic
lines are thus incomplete or even disconnected, so that the coordinate system (x, y) with any
Euclidean metric is geodesically incomplete as a description of a sphere.

Geometric quantization The process of constructing a quantum theory from the original classical
theory, which uses the symplectic structure ω of the phase space Φ of the classical the-
ory [288, 173, 579, 56]. Observables in classical theory are simply real functions A,B, C, . . .
over Φ. Geometric quantization is based on the introduction of a ω-compatible polarization
π(Φ). In physics practice, π denotes the concrete choice of the half of the coordinates in
the phase space Φ, which are the canonical coordinates, qi, for which the ω-complementary
half of the coordinates over Φ play the role of canonically conjugate momenta, pi. With
that standard notation, the symplectic structure is simply given by the Poisson brackets
ω(A,B) := ∂A

∂qi
∂B
∂pi

− ∂A
∂pi

∂B
∂qi . That same polarization produces the quantum observables

A = π(A), B = π(B), etc. The difference

Δ := [π(A),π(B)]− π
(
ω(A,B)

)
(B.7)

is one of the measures of anomaly. [☛ anomaly]
Geometrization of physics The process by which physics is increasingly described in terms of geom-

etry. At its simplest, this is the dual interpretation of the geodesic equation either as a bending
of trajectories owing to spacetime curvature (9.48) or owing to the action of a gravitational
force (9.49). At a rather more comprehensive level, in string theory models compactified
on a space Y , many of the physical properties of the effective particle physics model are
derived as geometrical and topological characteristics of Y ; see discussion on p. 402 and in
Section 11.3.1.

Ghost field Of the four components of the gauge 4-vector potential Aμ, only two correspond to
degrees of freedom with a physical meaning. It turns out that it is possible to introduce two
(anticommuting scalar) “ghost fields,” the detailed kinematics and dynamics of which are
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chosen precisely so as to cancel the extraneous contributions of the two unphysical degrees
of freedom in the 4-vector Aμ [441, 425, 555, 484, 496, 589, 590]. The gauge symmetry is
thereby reduced to the nilpotent BRST symmetry.

Gluon The particle (quantum) that mediates the strong interaction. Gluons interact with each
other as well as with quarks and antiquarks, which they bind into hadrons. The interac-
tion between hadrons is then a residual interaction, just as the molecular forces between
electrically neutral atoms are modeled as dipole–dipole and higher order electromagnetic
interactions [☞ Section 6.1.1].

Gödel’s incompleteness theorem This theorem proves that no axiomatic system that is sufficiently
complex to contain arithmetics can be both complete and self-consistent. Gödel’s proof is
constructive, and shows that within all such self-consistent axiomatic systems it is explicitly
possible to construct a statement that can neither be proven nor disproven within the given
axiomatic system. Therefore, either that statement or its logical negation may always be
added to the axiomatic system as a new axiom, and this extensibility never stops [211, 376].
Although Gödel constructed a particular undecidable statement in his proof, and expressly
for the purpose of proving the theorem, it does follow that there exist infinitely many such
undecidable statements – and some of those, within physics as a formal axiomatic system,
are bound to be of interest. [☛ Appendix B.3]

Gram–Schmidt procedure In a vector space V, equipped with a finite scalar product, i.e., where
〈a|b〉 < ∞ for every a, b ∈ V, the Gram–Schmidt procedure produces an orthonormal basis:

1. Pick an element a ∈ V and define α1 := a/
√〈a|a〉 and set k = 1.

2. If there is some b ∈ V that is linearly independent from αi ∈ BV := {α1, . . . , αk},
(a) Define αk+1 := ∑k

i=1 ciαi + ck+1b.
(b) Determine {c1, . . . , ck+1} so that

i. 〈αk+1|αi〉 = 0, for all i = 1, . . . , k,
ii. and 〈αk+1|αk+1〉 = 1.

(c) Increase k by one (k �→ k+1), and return to step 2.
3. The basis for the vector space V is BV = {α1, . . . , αk} and dim(V) = k.

Group A collection of elements G equipped with a binary operation � that satisfies the four axioms
[☛ Appendix A.1.1]:
closure ∀a, b ∈ G, (a � b) ∈ G;
associativity ∀a, b, c ∈ G, (a � b) � c = a � (b � c);
neutral element ∃e ∈ G such that ∀a ∈ G, a � e = a = e � a;
inverse element ∀a ∈ G, ∃a−1 ∈ G such that a−1 � a = e = a � a−1.
That is, a group is an invertible monoid.

Groupoid [☛ magma]
Hadron A particle that interacts by means of the strong nuclear force (at ∼10−23 s) and can be

detected as an isolated particle; e.g., a proton or a pion.
Hausdorff space A topological space in which distinct points have disjoint neighborhoods. Most

variables typically considered in physics models span/form Hausdorff spaces. Examples of
non-Hausdorff spaces include bifurcating (Y-shaped) 1-dimensional lines such as the Feyn-
man diagrams (3.130)–(3.131) and the left-hand side of Figures 11.3 on p. 411 and 11.4 on
p. 412. [☛ topological space]

Helicity The eigenvalue of the operator p̂·�S/h̄, i.e., the projection of spin in the direction of motion
of the particle, in units of h̄. As massless particles move at the speed of light in vacuum, their
helicity is Lorentz-invariant and equals their chirality.

Hermitian conjugation [☛ Digression 10.2 on p. 360]
Homotopy class Geometric objects that can be continuously transformed one into another form a

homotopy class of such objects; different objects in the same homotopy class are homotopy
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equivalents of each other. Continuous interpolation between two homotopy equivalent ob-
jects is called the homotopy (between those two objects). Thus is the surface of a sphere a
homotopy equivalent of the surface of a cube and a tetrahedron for example, but not of a
torus or a pretzel.

Hypersurface The subspace X ⊂ Y is a hypersurface if the codimension cod(X ⊂ Y) = 1; near
every point x ∈ X, the subspace X ⊂ Y is specified by a single constraint.

Image For a mapping f : X → Y, the f -image of the space X is the collection of points in Y
obtained by mapping the points of X: im( f ) = f (X) = { f (x) = y ∈ Y : x ∈ X}.

Injection A “1–1” (one-to-one) mapping f : X ↪→ Y, such that for every a ∈ A there is precisely
one y = f (x) ∈ Y.

Isometry A symmetry of a space X that leaves the metric on X unchanged.
Isomorphism Bijective homomorphism, i.e., a bijection f : X → Y for which both f and f−1

preserve the algebraic structure of the objects X and Y, and so are homomorphisms. For
example, if X and Y are groups, the f -image of every group axiom in X results in the
corresponding group axiom in Y, and vice versa. We write X ∼= Y.

KamiokaNDE The Kamioka Nucleon Decay Experiment, run at the Kamioka Observatory, Institute
for Cosmic Ray Research, near the Kamioka section of the city of Hida, Japan. KamiokaNDE
was initially designed to detect proton decay, but was successfully used to detect solar and
atmospheric neutrinos, through upgrades known as KamiokaNDE-II, Super-KamiokaNDE,
Super-KamiokaNDE-II and -III.

Kernel Elements of a vector space X that a linear mapping f : X → Y maps to 0 ∈ Y form the
kernel of the linear mapping f , denoted ker( f ) := {x ∈ X, f (y) = 0 ∈ Y}. In other words,
ker( f ) consists of the elements of the vector space X annihilated by the mapping f .

Kronecker product The special case of the tensor product for matrices of arbitrary size, so including
also column-matrices and row-matrices. The result of the Kronecker product is the block-
matrix:

A =
[

a b c
d e f

]
, B =

[
α
β

]
, then A ⊗ B =

[
a
[ α
β

]
b
[ α
β

]
c
[ α
β

]
d
[ α
β

]
e
[ α
β

]
f
[ α
β

]
]

=

⎡⎣ aα bα cα
aβ bβ cβ
dα eα f α
dβ eβ f β

⎤⎦ . (B.8)

Note that B ⊗ A �= A ⊗ B:

B ⊗ A =

⎡⎢⎣ α

[
a b c
d e f

]
β

[
a b c
d e f

]
⎤⎥⎦ =

⎡⎣ αa αb αc
αd αe α f
βa βb βc
βd βe β f

⎤⎦ =

⎡⎣ aα bα cα
dα eα f α
aβ bβ cβ
dβ eβ f β

⎤⎦ �=
⎡⎣ aα bα cα

aβ bβ cβ
dα eα f α
dβ eβ f β

⎤⎦ = A ⊗ B. (B.9)

Kronecker symbol The index representation of the identity matrix

δi
j :=

{
1, if i = j,
0, if i �= j,

(B.10)

allows the generalizations after the pattern:

δ
i j

[k�] := 1
2

(
δi

kδ
j
� − δi

�δ
j
k

)
, δ

i j
(k�) := 1

2

(
δi

kδ
j
� + δi

�δ
j
k

)
, (B.11a)

δ
i j k

[�mn] := 1
3!

(
δi
�δ

j
mδ

k
n − δi

�δ
j
nδ

k
m + δi

nδ
j
�δ

k
m − δi

nδ
j
mδ

k
� + δi

mδ
j
nδ

k
� − δi

mδ
j
�δ

k
n
)
, (B.11b)

δ
i j k

(�mn) := 1
3!

(
δi
�δ

j
mδ

k
n + δi

�δ
j
nδ

k
m + δi

nδ
j
�δ

k
m + δi

nδ
j
mδ

k
� + δi

mδ
j
nδ

k
� + δi

mδ
j
�δ

k
n
)
, etc., (B.11c)

which are also called (anti-)symmetrized Kronecker symbols.
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Lepton A particle that does not interact by means of the strong nuclear force (at ∼10−23 s); e.g.,
the electron.

Levi-Civita symbol The index representation of the permutation symbol

εi1···in :=

⎧⎪⎨⎪⎩
+1, if the order i1, . . . , in is an even permutation of 1, 2, . . . , n,
−1, if the order i1, . . . , in is an odd permutation of 1, 2, . . . , n,

0, otherwise.
(B.12)

We also define εi1···in := εi1···in . (Some Authors prefer using a definition such that εi1···in :=
−εi1···in , for numerical convenience in some computations.) The key relation between the
Levi-Civita and the Kronecker symbols is

εi1···in ε j1···jn = δ i1···in
[j1···jn ], (B.13)

= 1
n!

(
δi1

j1
· · · δin−1

jn−1
δin

jn
− δi1

j1
· · · δin−1

jn
δin

jn−1
+ · · · (n! permutations, total)

)
.

Lie group [☛ Appendix A.1.1]
Luxon a particle that travels through vacuum at the speed of light in vacuum, c, and has no

mass. All mediators of gauge interactions that correspond to unbroken gauge symmetries are
luxons.

Magma (groupoid) A collection of elements M equipped with a closed binary operation �, i.e.,
∀a, b ∈ M, (a � b) ∈ M.

Manifold A space where every sufficiently small neighborhood of every point is isomorphic to the
flat space Rn, where n is the dimension of the manifold. A manifold is everywhere smooth
and the tangent space at every point is a copy of Rn.

Mass shell In the 4-dimensional space of 4-momentum, the “mass shell” for a particle of mass m
is the subspace defined by the relation E2 − �p2c2 = m2c4. For m2 > 0 (ordinary particles
and antiparticles), this is the two-component hyperboloid, where E = ±√

m2c4 + �p2c3 on
both “shells.” For m = 0 (photons, gluons and gravitons), this is the “light cone” the two
portions of which touch in the point (E/c,�p) = (0,�0). For m2 < 0 (tachyons), this is the
single-component hyperboloid.

Meson Since the acceptance of the quark model in 1973, a bound state of a quark and an anti-
quark. Originally, a particle that interacts by means of the strong nuclear force (at ∼10−23 s),
can be detected as an isolated particle, and has a mass that is between the electron mass and
the proton mass; e.g., π±,π0.

Minimal coupling The coupling between matter and interaction field that occurs by the interaction
field modifying the spacetime derivative of the matter field. The gauge principle introduces
only minimal coupling [☛ Chapters 5–7 and 9].

For example, let Ψ(x) represent the matter field and Aμ(x) the gauge potential of the
interaction field. They are minimally coupled through replacing ∂μΨ → (∂μ + igAμ)Ψ, where
g is a suitable (coupling) parameter; g = qΨ

h̄ c in electromagnetism, where qΨ is the electric
charge of the matter particle represented by Ψ(x).

Monoid A collection of elements M equipped with a binary operation � that satisfies the three
axioms [☛ Appendix A.1.1]:
closure ∀a, b ∈ M, (a � b) ∈ M;
associativity ∀a, b, c ∈ M, (a � b) � c = a � (b � c);
neutral element ∃e ∈ M such that ∀a ∈ M, a � e = a = e � a.
That is, a monoid is a semigroup with a neutral element.
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Multipole expansion The expansion of a function over 3-dimensional flat space, in which we use
spherical coordinates, over the complete system of spherical harmonics [☞ relations (4.2)–
(4.4)]:

F(r, θ, φ) = ∑
�,m

f m
� (r) Ym

� (θ, φ), (B.14)

where

f m
� (r) :=

∫ 2π

0
dφ

∫ π

0
sin θ dθ

(
Ym

� (θ, φ)
)∗ F(r, θ, φ), (B.15)

�∇2F(r, θ, φ) =
1
r

[ d2

dr2 r F(r, θ, φ)
]
− 1

r2

[
�L 2F(r, θ, φ)

]
, (B.16)

�L 2Ym
� (θ, φ) = �(�+1) Ym

� (θ, φ); �L 2 := −�∇2∣∣
r=1, � � 0. (B.17)

Notice that the coordinates θ, φ parametrize a 2-sphere, S2 = R3
∣∣
r=1. More generally, for

every compact Riemann space K , the Laplacian �∇2
K|r=1 has a non-positive spectrum (col-

lection of eigenvalues), and corresponding eigenfunctions, which generalize the spherical
harmonics.

Noether theorem To every continuous symmetry of a physical system in classical physics, there
corresponds an additive current density that satisfies the continuity equation, and produces
an additive conserved charge. In quantum theory, the conserved charges are eigenvalues of
generators of the corresponding symmetries, and these in turn are the momenta canonically
conjugate to the canonical variables the (eigen)values of which the symmetries change. For
example, the linear momentum �p is the eigenvalue of the operator of linear momentum �p,
and also the conserved “charge” of the corresponding translations in position �r, which is
generated by �p = h̄

i
�∇ and implemented by the unitary operator exp{i�a·�p/h̄} = exp{�a·�∇}.

Conserved “charges” of finite symmetries are multiplicative: a product of two parity eigen-
functions is also a parity eigenfunction, with the eigenvalue that is a product of eigenvalues
of the factors. Although Noether’s original theorem does not apply to finite symmetries, the
generalization is easy to derive. However, the operators that implement discrete symmetries
may be both linear (and so unitary), and anti-linear (and then anti-unitary), such as the
operator of charge conjugation: C(αA) = α∗C(A), for every operator A and constant α ∈ C.

Non-abelian [☛ abelian]
Non-commutative [☛ abelian]
Nonphysical components Within every Lorentz-covariant formalism, one uses only fields and op-

erators that form complete representations of the Lorentz group. Thus, for example, gauge
potentials in (3+1)-dimensional spacetime are always presented by 4-vectors, Aμ(x). How-
ever, only two components of this 4-vector are physically measurable, while two are not:
for example, for a freely propagating field in empty space, the temporal and the longitudi-
nal components are nonphysical. There exists no Lorentz-covariant method of isolating them
from the 4-tuple (A0, A1, A2, A3). For example, the Lorenz gauge, ημν∂μAν = 0 specifies
one differential relation between the 4-vector components A0(x), . . . , A3(x) in a Lorentz-
invariant way, which formally permits expressing one of the four components in terms of an
integral of the derivatives of the other three components. This effectively removes one degree
of freedom, but this relation is not local. However, for the removal of the other nonphysical
component, there does not even exist a Lorentz-invariant gauge condition – neither algebraic
nor differential. [☛ BRST quantization]

Normal subgroup A subgroup N ⊂ G is normal if

∀n ∈ N ⊂ G, ∀g ∈ G, gng−1 ∈ N. (B.18)
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Ockham’s principle Also known as Ockham’s razor, as well as the principle of parsimony, of economy
and of succinctness, whereby from among two competing possible explanations one must
choose the simpler. Although this principle is useful in research practice, one must recognize
that its application depends strongly on the cultural “background”: ideas and elements that
are well known within one culture (and are therefore regarded simpler) may well be alien
in another culture. Thus, there is a danger that the application of this principle is simply a
façade of a prejudice.

Pauli’s principle Two identical fermions cannot simultaneously be in the same quantum state, i.e.,
they cannot simultaneously occupy the same “place” in the Hilbert space.

Photon The particle (quantum) that mediates the electromagnetic interaction. Photons interact
directly with quarks, antiquarks, (electrically) charged leptons (e−, μ− and τ−) and also
with the charged weak gauge bosons W± [☞ Sections 2.3.4 and 5.2.2].

Physical components In practice, physical quantities are not infrequently represented by multi-
component mathematical objects such as vectors, tensors and spinors. Components that in
some way may be measured experimentally (such as the transversal polarizations of the
electromagnetic radiation, for example) are physical. [☛ nonphysical components]

Point-like The property of showing sign of neither internal structure nor spatial extension.
Potential Short for “gauge potential,” this term is used as a generalization of the electro-static

potential, where we have that if Φ(�r, t) is the potential, then:
1. g Φ(�r, t) is the potential energy of a particle with charge g when placed in the potential

Φ(�r, t) that interacts with this charge,
2. −�∇Φ(�r, t) is the (gauge) field corresponding to the potential,
3. −g �∇Φ(�r, t) is the force that the potential Φ(�r, t) exerts on a particle of charge g.

In the relativistic generalization, one speaks of the “4-vector potential,” (Φ,−c �A), for which
the fields are the components of the Fμν := (∂μAν−∂νAμ) tensor [☞ definitions (5.73)]; in
the non-abelian (non-commutative) generalization the fields are defined as the components
of the Fμν := [Dμ, Dν] tensor, where Dμ := ∂μ + iq

h̄ c Aμ [☞ definition (6.15)]. Finally, in
the general theory of relativity, Christoffel symbols and the connection 4-vector play the role
of the potential and the components of the Riemann tensor are the fields [☞ Sections 9.2.1
and 9.2.2]. [☛ gauge potential]

Quantum In quantum physics, all material entities (matter as well as interactions thereof) are sub-
ject to quantization of the Hamilton action, which cannot vary continuously, but as integral
multiples of the Planck constant, h̄. Note that the “background” (settled, static, infinitely
spread-out, classical, i.e., non-quantum) fields, such as the Coulomb field of a static charge
distribution, are but a convenient idealization, representable by averaging over an infinite
number of quanta. [☛ field (physics)]

Quotient space [☛ Appendix A.1.1]
Range (of a mapping) For a mapping f : X → Y, this can variously denote either the codomain or

the image of f ; this ambiguity and this term are avoided herein.
Rank (of a mapping) For a mapping f : X → Y, rank( f ) = dim

(
im( f )

)
= dim

(
f (X)

)
.

Rank (of a tensor density) [☛ definition on p. 511]
Ring A collection of elements, k, for which two operations, # and ∗, are defined so that:

1. (k, #) is an abelian (commutative) group, with e ∈ k the neutral element;
2. (k, ∗) is a monoid (like a group, but without invertibility);
3. the distribution rules: a ∗ (b # c) = (a ∗ b) # (a ∗ c) and (a # b) ∗ c = (a ∗ c) # (b ∗ c) hold.

Semidirect product Some groups have the structure G = H � N, where H ⊂ G is a subgroup,
and N ⊂ G is a normal subgroup [☛ normal subgroup]. This implies that the only common
element is N ∩ H = 1 ∈ G, and that every group element g ∈ G can be factorized as g =
h ◦ n = n′ ◦ h′, where n, n′ ∈ N and h, h′ ∈ H. The group G is said to be an N-extension of the
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group H; it is also true that H is isomorphic to the quotient group G/N [☞ definition (A.6)
for the quotient space, which here inherits the group structure].

A well-known example is the Poincaré group, Po(1, 3) = Spin(1, 3)�R1,3, which is the
extension of the Lorentz group Spin(1, 3) by translations R1,3 in spacetime, and where the
asymmetry of the symbol � reminds us that the elements of the subgroup Spin(1, 3) map
R1,3 → R1,3.

Semidirect sum Some algebras have the structure A = A1 :+ A2, where for every a, b ∈ A1 and
c, d ∈ A2 it is true that

a ∗ b ∈ A1, but c ∗ d, a ∗ c, c ∗ a ∈ A2, (B.19)

and where ∗ is a “multiplication” in the algebra A. Formally,

A1 ∗A1 ∈ A1, but A1 ∗A2, A2 ∗A1, A2 ∗A2 ∈ A2. (B.20)

The algebra A is said to be a A2-extension of the algebra A1. The asymmetry symbol “:+” here
reminds us that A1 maps A1 : A2

∗−→ A2, but it is not a standard notation in the literature,
where mostly the uninformative symmetrical symbols + and ⊕ are used, and it is left to the
Reader to figure out from the context the direction of the inherently asymmetrical relation,
i.e., whether A1 ∗A2 ∈ A2 or A2 ∗A1 ∈ A1.

Semigroup A collection of elements S equipped with a binary operation � that satisfies the two
axioms [☛ Appendix A.1.1]:
closure ∀a, b ∈ S, (a � b) ∈ S;
associativity ∀a, b, c ∈ S, (a � b) � c = a � (b � c).
That is, a semigroup is an associative magma.

Signature In every real n-dimensional vector space V (over the scalar field k) in which the scalar
product g(v1, v2) ∈ k is defined for every v1, v2 ∈ V, one may find a basis in which g( , ) is
a diagonal matrix. For real vector fields (where k= R) the number of positive, negative and
vanishing diagonal elements in the diagonalized g( , ) is called the signature. The metric ten-
sor (3.19), (ημν) = diag(1,−1,−1,−1), in (3+1)-dimensional spacetime has the signature
(1, 3). A group of linear transformations is also said to have signature (1, 3) if those transfor-
mations preserve the scalar product (3.17) defined by the metric tensor of signature (1, 3);
such transformations form the group O(1, 3); SO(1, 3) is the subgroup of transformations the
determinant of which equals +1.

Span A maximal collection of linearly independent elements êi, i = 1, 2, 3 . . . , is said to span the
vector space V := {vi êi, vi ∈ k} over a given field of scalars k.

Spin Intrinsic (albeit perhaps fictitious) angular momentum of an object (particle or physical sys-
tem) X, meaning that under rotations of the coordinate system the orientation of the object
X transforms as a representation of the rotation group with the given “angular momentum.”
For example, a photon has spin 1h̄, meaning that its orientation (i.e., polarization) trans-
forms as a spin-1h̄ (vector) representation of the rotation group, the electron as a spin- 1

2 h̄
(spinor) representation of the rotation group, and the graviton as a spin-2h̄ (rank-2 tensor)
representation. The spin of composite systems is the vector sum of all angular momenta of
its constituents,2 but the spin of an elementary particle is not the result of any rotation:
elementary particles are point-like.

Stückelberg–Feynman interpretation The antiparticle is identified with the particle moving back-
wards in time. This interpretation follows from the fact that if Ψ(x) is the wave-function of
the particle, then its Hermitian conjugate (and, for spin- 1

2 particles, also the right multiple

2 The spin of the hydrogen atom as a bound state of an electron and a proton is the vector sum of the orbital angular
momentum of the electron in its orbit around the proton, as well as the electron’s and the proton’s spin.
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by γγγγ0) produces the wave-function of the antiparticle. Expanding into a Fourier series we
have that Ψ(x) = ∑ω eiωtψω(�r), so the Hermitian conjugation is formally identical with the
reversal of time.

Surjection A mapping f : X � Y, such that for every y ∈ Y there is an x ∈ X such that f (x) = y.
Symmetry breaking vs. violation A particular process is said to violate a symmetry X if either (1) the

X-image of the process does not occur as frequently, i.e., with the same probability, as the
original process, or (2) the conserved quantity corresponding to symmetry X is not constant
(conserved) during the considered process.

In turn, the symmetry X is broken in a physical system if either (1) the symmetry does
not preserve some of the conditions (such as a boundary condition) required of the concrete
physical system, or (2) X does not commute with the full Hamiltonian of the system.

Tachyon A particle that propagates through vacuum faster than light, and has an imaginary mass;
the appearance of tachyons indicates that the vacuum is not stable [☞ Digression 7.1 on
p. 261].

Tangent bundle A vector bundle TX := E(X ; TX ;π) where Tx(X ) ∼= TX is the tangent space
of the space X at the point x ∈ X . If xμ are local coordinates in the space X at the given
point, then Tx(X ) may be represented as the vector space of linear combinations vμ ∂

∂xμ .
Tardion a particle that propagates through vacuum slower than light, and has a real mass; all

known matter (and anti-matter) is tardionic, whereupon this term is rarely used.
Tensor product The most general bilinear product of two algebraic structures of the same type,

such as vector spaces, algebras, etc. Let X and Y be two vector spaces over the same field, k.
The elements of the tensor product X ⊗Y are k-linear combinations of elements of the direct
product of the sets of elements X and Y, where additionally one requires that the pairs of
elements satisfy the relations

R :=
{

e(x+x′, y) ∼ e(x, y) + e(x′, y), e(x, y+y′) ∼ e(x, y) + e(x, y′),
c e(x, y) ∼ e(cx, y) ∼ e(x, cy).

(B.21)

Then formally,

X ⊗ Y =
{

∑
i

ci e(xi, yi) : ci ∈ k, (xi, yi) ∈ X × Y
}/

R, (B.22)

which is again a vector space. Similarly, the tensor product of two algebras is again an
algebra. In other words, the tensor product inherits the algebraic structure of its factors.
Alternatively, Definition B.6 on p. 514 also holds – given using the components with respect
to any chosen basis.

Topological space A set of elements (“points”) X with the topology τ, which consists of a
collection of subsets of the set X such that they satisfy the axioms:

1. The empty set and the whole set X belong to τ.
2. The union of an arbitrary number of sets in τ is also in τ.
3. The intersection of an arbitrary finite number of sets in τ is also in τ.

For this system of axioms, the sets in τ are called open subsets of the set X ; every point x ∈ X
is contained in at least one such open subset, which is then called the open neighborhood of
the point x. There also exists a complementary definition of topology, using closed subsets of
the set X ; the empty set and the set X itself here too belong to τ. [☛ also Hausdorff space]

Torsion [☛ curvature]
Vector bundle Let X be the “base” space, equipped with a copy of a vector space Vx at every point

x ∈ X of the base space, so that the vector spaces Vx transform homogeneously one into
another when the basis point x moves through the base space. The union

⋃
x∈X Vx is then

called the vector bundle over the base space X .
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There is also a reverse definition: the total space E(X ; V;π) of a vector bundle with a
given vector space V over the base space X is such that π is the “vertical” projection with
the property that π(E) = X , and π−1(x) = Vx ∼= V for each x ∈ X .

Vector space A collection of elements (vectors) of which every linear combination with coefficients
from a field k is also an element of this collection is called a vector space V over the field k.

Warp, weft and woof are the mutually transversal strands of yarn in a simply woven fabric: warp
stretches lengthwise from beginning to end, and the strand that is woven left to right and
back, weaving through the strands of warp, is variably called weft or woof .

Figure B.1 The triple weave: leaving out any one of the strands dissolves the fabric.

In the theoretical fundamental physics as described herein, the three conceptual strands are
provided by (1) the Democritean idea of a smallest portion of matter that shows no further,
internal constituents, (2) the gauge principle of local symmetry, which provides a coherent
description of all known fundamental interactions, and (3) the idea that all of Nature is to be
understood within a unified, comprehensive and logically consistent framework. The (M- and
F-theory extended) superstring theoretical system is a framework that conceptually unifies all
matter, all of its interactions, as well as the spacetime in which they exist. [☛ Section 1.3.3;
Chapters 5–7 and 9]

Wormholes The region in spacetime shaped as a “tunnel,” Rr ×Kd−r for 1 � r < d, where d
denotes the total dimension of spacetime, and which either connects two otherwise distant
regions of one spacetime, or two otherwise separate spacetimes; Kd−r is some compact space
(e.g., the 2-sphere, S2) and represents the “cross-section” of the “tunnel.” In known exam-
ples, the size of the “cross-section” is typically very small, of the order of �P ∼ 10−35 m and
most often has a nonzero size only for a very short time, tP ∼ 10−43 s. The matter required
to keep the wormhole open for a material body or even light to pass through must have “ex-
otic” properties (negative energy density and/or pressure). [☛ Section 9.3.4, Einstein–Rosen
bridge]

Yang–Mills interaction, symmetry, theory A gauge interaction, model, symmetry and/or theory is
said to be of Yang–Mills type when the gauge 4-vector potential, Aμ ∝ (Dμ − ∂μ), is the
fundamental physical degree of freedom that describes such an interaction. This is the
case with electromagnetic, strong and weak nuclear interactions [☞ Chapters 5 and 6],
but not with gravity: there, the Christoffel symbol, Γ ∝ (Dμ − ∂μ), may be expressed as
an algebraic combination of the inverse metric tensor and the derivatives of the metric
tensor [☞ Chapter 9].

Yukawa field, potential (screened Coulomb field, potential) The Yukawa potential in d-dimensional
space is ΦY = e−r/r0 /rd−2 and the Yukawa field is −�∇ΦY; the negative sign is chosen so that
the r0 → ∞ limiting case of the Yukawa field coincides with the traditional definition of the
electrostatic field. Here, r0 is the range of the Yukawa potential and the field.

Yukawa interaction (Yukawa coupling) The coupling between matter field Ψ(x) and the Yukawa
potential Φ(x) produced by the Lagrangian density term hΨΨΦΨ, where hΨ is the Yukawa
coupling parameter [☛ contact interaction].

ZJBV-quantization [☛ BV-quantization]
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B.2 Tensor calculus basics
We start with 4-tuples of coordinates such as x = (x0, x1, x2, x3), two functions of such coordinates,
f and g, and the well-known derivative rules in multi-variate calculus:

product rule
∂

∂xμ
(

f (x) g(x)
)

=
(∂ f (x)
∂xμ

)
g(x) + f (x)

(∂g(x)
∂xμ

)
, (B.23)

chain rule
∂

∂xμ
(

yν
(
z(x)

))
=

(∂yν

∂zρ
)( ∂zρ

∂xμ
)

. (B.24)

Taking x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) and z = (z0, z1, z2, z3) to provide general coordinate
systems, these 4-tuples need not span vector spaces in general: In general coordinate systems, lin-
ear combinations cμxμ with numerical (dimensionless) constants cμ need make no sense at all. At
the very least, the constants cμ could be equipped with appropriate physical units. For example, in
the familiar spherical coordinate system (r, θ, φ), a linear combination such as (π2 r −√

3θ) makes
no sense since the two summands have wholly different physical units. In turn, denoting by L some
suitable and constant length, the linear combination ( π2L r −√

3θ) does make sense in general, al-
though it does not seem to provide any physically reasonable quantity. Even so, and owing to the
generally curvilinear nature of general coordinates and their diverse behavior (e.g., θ " θ± 2π
while r � 0), linear combinations (even if adjusted for physical units) of general coordinates do
not, in general, represent a point in the space parametrized by these coordinates.

However, owing to the infinitesimal nature of the differentials dxμ and the operators ∂
∂xμ ,

the 4-tuples (dx0, dx1, dx2, dx3) and ( ∂
∂x0 , ∂

∂x1 , ∂
∂x2 , ∂

∂x3 ) do span two vector spaces – again with the
proviso that the constants in the respective linear combinations may have to be equipped with
adequate physical units. The application of the chain rule to these clearly distinguishes them and
permits the definition of two distinct types of 4-vectors:

contravariant vector (3.11c) dxμ = dyν
(∂xμ

∂yν

)
↔ Aμ(x)= Aν(y)

(∂xμ

∂yν

)
; (B.25)

covariant vector (3.11d)
∂

∂xμ
=

( ∂yν

∂xμ
) ∂

∂yν
↔ Bμ(x) =

( ∂yν

∂xμ
)

Bν(y), (B.26)

simply by observing that they transform with the opposite partial derivatives, as was already done
in Digression 3.2 on p. 88.

B.2.1 Basis elements
We then proceed as follows: Given any coordinate system x := (x0, x1, x2, x3) equipped with a
metric tensor, gμν(x), we specify:

1. The line element ds provides the invariant norm of the coordinate differentials:

ds :=
√

dx · dx, dx · dx := gμν(x) dxμdxν. (B.27)

2. The invariant Kronecker symbol

δ
μ
ν :=

∂xμ

∂xν
=

{ 1 if μ = ν,
0 if μ �= ν, (B.28)

is simply the statement that the coordinates xμ are mutually independent.
3. The invariant Levi-Civita symbol is defined implicitly by expanding the Jacobian of a

coordinate transformation x → y:∣∣∣∂x
∂y

∣∣∣ =: εμνρσ
∂x0

∂yμ
∂x1

∂yν
∂x2

∂yρ
∂x3

∂yσ
=: εμνρσ

∂xμ

∂y0
∂xν

∂y1
∂xρ

∂y2
∂xσ

∂y3 , (B.29)
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that is,

εμνρσ = εμνρσ :=

{ +1 if μ, ν, ρ, σ = even permutation of 0, 1, 2, 3;
−1 if μ, ν, ρ, σ = odd permutation of 0, 1, 2, 3;

0 otherwise.
(B.30)

4. It follows that
εαβγδε

μνρσ = 4! δ μνρσ[αβγδ], (B.31)

where
δ
μν

[αβ] := 1
2

(
δ
μ
α δ
ν
β − δ

μ
βδ
ν
α

)
, δ

μνρ

[αβγ] := 1
3

(
δ
μν

[αβ]δ
ρ
γ + δ

μν

[βγ]δ
ρ
α + δ

μν

[γα]δ
ρ
β

)
,

and so δ
μνρσ

[αβγδ] := 1
4

(
δ
μνρ

[αβγ]δ
σ
δ − δ

μνρ

[δαβ]δ
σ
γ + δ

μνρ

[γδα]δ
σ
β − δ

μνρ

[βγδ]δ
σ
α

)
.

(B.32)

5. Owing to the reciprocal transformation rules (3.11c)–(3.11d), the contractions

A(x)·B(x) = Aμ(x) Bμ(x), A(x)·∂ = Aμ(x)∂μ, dx·B(x) = dxμ Bμ(x), (3.12a′)

and d := dx·∂ := dxμ
∂

∂xμ
(B.33)

are all invariant under general coordinate transformations xμ �→ yμ(x), as specified in Def-
inition 9.1 on p. 319. Thus, the dxμ may be used as basis vectors for covariant components
Bμ(x), and the ∂μ may be used as basis vectors for contravariant components Aμ(x). This is
the typical choice in the mathematics literature as it connects tensor algebra and differential
geometry; see Comment B.1 on p. 512.

6. Let e(x) denote an event – a point in spacetime specified, with the coordinates x, and let
the displacement to an infinitesimally near event be de = ∂e

∂xμ dxμ, expressed in the xμ

coordinates. Then, we define:

covariant basis element eμ(x) :=
∂e
∂xμ

, (B.34)

contravariant basis element eμ(x) := gμνeν(x). (B.35)

The scalar product of these basis elements is defined so that

eμ(x)·eν(x) = gμν(x), eμ(x)·eν(x) = gμν(x) and eμ(x)·eν(x) = δνμ. (B.36)

7. Given the contravariant components of a 4-vector, Aμ(x), the 4-vector is invariantly specified
as A(x) = Aμ(x) eμ(x). Given the covariant components of a 4-vector, Bμ(x), the 4-vector is
invariantly specified as B(x) = Bμ(x) eμ(x).

Here, “invariant,” “covariant” and “contravariant” all refer to transformation properties with
respect to the general coordinate transformations specified in Definition 9.1 on p. 319.

Given the definition of contravariant vectors (B.25), it is straightforward to compute the
transformation rule for the differential “volume” element:

d4x = dx0dx1dx2dx3 = 1
4! εμνρσ dxμdxνdxρdxσ (B.37a)

= 1
4! εμνρσ

(∂xμ

∂yα
dyα

)( ∂xν

∂yβ
dyβ

)( ∂xρ

∂yγ
dyγ

)(∂xσ

∂yδ
dyδ

)
= 1

4! εμνρσ
∂xμ

∂yα
∂xν

∂yβ
∂xρ

∂yγ
∂xσ

∂yδ
dyαdyβdyγdyδ

= 1
4! εμνρσ

∂xμ

∂yα
∂xν

∂yβ
∂xρ

∂yγ
∂xσ

∂yδ
δ
αβγδ

[εϕλκ] dyεdyϕdyλdyκ
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=
[

1
4! εμνρσ

∂xμ

∂yα
∂xν

∂yβ
∂xρ

∂yγ
∂xσ

∂yδ
εαβγδ

]
1
4! εεϕλκ dyεdyϕdyλdyκ

= det
[∂x
∂y

]
d4y, (B.37b)

where the key relation (B.31) between the Levi-Civita and the Kronecker symbols was used. We
have also used the general expressions for the determinants of n× n matrices representing rank-2
tensor densities:

type (1, 1) det[M] := 1
4! εμ1···μn Mμ1

ν1 · · · Mμn
νn ε

ν1···νn , (B.38a)

type (0, 2) det[N] := 1
4! ε

μ1···μn Nμ1 ν1 · · · Nμn νn ε
ν1···νn , (B.38b)

type (2, 0) det[P] := 1
4! εμ1···μn Pμ1 ν1 · · · Pμn νn εν1···νn . (B.38c)

Given the definitions of the “ingredients”:

1. a contravariant vector (3.11c),
2. a covariant vector (3.11d),
3. a scalar density (9.8),

we adapt Weyl’s Construction A.1 and generate representations of the group of general coordinate
transformations, by taking tensor products of the “ingredients” and symmetrizing like factors in all
possible ways. More precisely,

Definition B.1 Tensor densities may be formally constructed from a scalar density U, a
contravariant vector V = Vμeμ and a covariant vector W = Wμeμ:

U(y) =
(

det
[ ∂y
∂x

])
U(x), Vμ(y) =

∂yμ

∂xν
Vν(x), Wμ(y) =

∂xν

∂yμ
Wν(x). (B.39)

One constructs first the vector space of ordered products,

T(p, q; w) := Uw · V ⊗ · · · ⊗ V︸ ︷︷ ︸
p

⊗W ⊗ · · · ⊗ W︸ ︷︷ ︸
q

, (B.40)

on which the permutation group Sp × Sq acts, where Sp permutes the V-factors and Sq per-
mutes the W-factors. The vector space T(p, q; w) may then be decomposed, in a unique
fashion, into a direct sum of irreducible representations of the permutation group (in-
dex symmetrization). Finally, each summand in the so-obtained direct sum may be further
decomposed by contracting with invariant tensors δμν , εμνρσ and εμνρσ.

Focusing on the structure of the transformation properties, i.e., how a quantity transforms with
respect to general coordinate transformations, rather than how it may have been constructed,
produces the complementary general definition:

Definition B.2 (tensor density) A quantity that is in some coordinate system (with coordi-
nates xμ) specified by its components {T

μ1···μp
ν1···νq (x)} and the components of which in some

other coordinate system (with coordinates yμ) may be computed using the relations

T
ρ1···ρp
σ1···σq (y) =

(
det

[ ∂y
∂x

])w ∂yρ1

∂xμ1
· · · ∂yρp

∂xμp

∂xν1

∂yσ1
· · · ∂xνq

∂yσq
T
μ1···μp
ν1···νq (x) (B.41)

is called a tensor density of weight w, type (p, q) and rank p+q. Weight-0 tensor densi-
ties are called tensors; rank-1 tensors are called vectors , and rank-0 tensors are scalars ,
i.e., invariants . The symbol

[ ∂y
∂x

]
denotes the matrix of partial derivatives that appear in

equation (B.26).
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This special meaning of the word “density” – which in this special use always follows the adjective
“tensor,” “vector” or “scalar” – must not be confused with the familiar notion as in “per unit of
volume.” Thus, for example, “Lagrangian density” literally means “Lagrangian per unit of volume.”
On the other hand, in the sense of Definition B.2 and in the typical practice in theoretical and
mathematical physics, Lagrangian densities are – as well as the Lagrangians and Hamiltonians and
Hamiltonian densities – scalars, i.e., weight-0 scalar densities [☞ Conclusion 9.5 on p. 328].

Comment B.1 Specifying all components in any one concrete basis does specify the tensor
density abstractly, since the relations (B.41) provide the transformation rules from one ba-
sis into any other one. In the mathematical literature one typically uses the natural basis
{dxμ, ∂

∂xμ }, whereby a tensor density is specified invariantly as

T(x) : dxν1 ⊗ · · · ⊗ dxνp T
μ1···μp
ν1···νq (x)

∂

∂xμ1
⊗ · · · ⊗ ∂

∂xμq
. (B.42a)

Using the relations (B.25)–(B.26) and (B.41), it is then easy to show that

T(y) =
(

det
[ ∂y
∂x

])w
T(x). (B.42b)

In this book, I follow the physicists’ practice of specifying and manipulating components
(with respect to any one particular basis) as the representatives of the whole tensor density;
see Digression 3.3 on p. 88, as well as the discussion in Wald’s textbook [548].

B.2.2 Tensor algebra
Scalar functions (weight-0 scalar densities) over spacetime are, in the physics nomenclature, typi-
cally called scalar fields. These scalar fields (in the physics sense) form – at every spacetime point
separately – a field in the mathematical sense. That is, addition and multiplication of scalar fields –
taken at any particular spacetime point – follows the usual rules of addition and multiplication
of “ordinary” (real and complex) numbers. It is, however, important to note that this is not the
case when adding/multiplying scalar fields where the summands/factors are taken at different
spacetime points: f (x) g(y) is not a function of either just x or just y, but of both. Thus, scalar
functions (over the whole spacetime) do not form the usual algebraic structure of a field. However,
restricting the binary operations to the cases when both summands/factors are taken at the same
spacetime point produces an algebraic structure that minimally deviates from the standard defini-
tion of the (mathematical) field, i.e., extends this definition.3 The corresponding generalizations
of functions (and all the tensor densities as well) over general, curved spaces are called sections of
various bundles [☞ [563, 210, 379, 176], to begin with].

Similarly, tensor densities T
μ1···μp
ν1···νq (x) may be multiplied by scalar densities f (x) by simply

multiplying each component. Also, it should be clear that the tensor densities of the same type and
weight may be added, which permits defining point-by-point linear combinations such as

f (x) T
μ1···μp
ν1···νq (x) + h(x) U

μ1···μp
ν1···νq (x), (B.43)

as long as the sum of weights of f and T equals the sum of weights of h and U, and this generates
a structure that minimally generalizes the structure of a vector space:

3 The deviation pertains precisely to the general case, when the arguments of the two factors in a product are not the
same. For those cases, one may simply declare that multiplication is not defined – which is already a departure from the
standard definition of a field, or one may define such a product via some formal expansion into a series in powers of
the difference (x−y) – when such a power series is well defined, etc.
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Definition B.3 Tensor densities of the same type form a generalization of the vector space as
their linear combination is defined by specifying

f (x) T
μ1···μp
ν1···νq (x) + h(x) U

μ1···μp
ν1···νq (x), (B.44)

where the coefficients are scalar densities of complementary weights:

w
[

f (x) T
μ1···μp
ν1···νq (x)

]
= w

[
h(x) U

μ1···μp
ν1···νq (x)

]
. (B.45)

The linearity of the definition guarantees that the result (B.44) is again a tensor density of
the same rank, type and weight.

The structure of a vector space is recovered by restricting to constant coefficients and tensor
densities of the same weight.

The following two operations are also important:

Definition B.4 (Contraction) For any type-(p, q) tensor density, where p �= 0 �= q, one
constructs the contraction

δ
νi
μj : T

μ1···μp
ν1···νq (x) �→ T

μ1···μ̂j ···μp

ν1···ν̂i ···νq
(x) =

(
δ
νi
μj T

μ1···μj ···μp
ν1···νi ···νq (x)

)
, (B.46)

where μ̂i denotes that the index μi is omitted from the sequence. The result of contracting
is a type-(p−1, q−1) tensor density of the same weight as the original tensor density.

Definition B.5 For any two indices of the same type, one defines

T(μν)···
··· := 1

2

(
Tμν······ + Tνμ······

)
, and T[μν]···

··· := 1
2

(
Tμν······ − Tνμ······

)
, (B.47)

the so-called symmetric and antisymmetric part of the original tensor density. The linearity
of the definition guarantees that both parts retain the rank, type and weight of the original
tensor density.

With tensor densities of a rank higher than two, the combinatorial possibilities and wealth of
various (anti)symmetrization patterns grow very quickly; some simple examples are given in re-
lations (A.66) and (A.76). Technically more precisely, the various forms of (anti)symmetrization
provide various representations of the permutation group that acts by permuting the indices of the
same type (here, subscript vs. superscripts).

Comment B.2 Every tensor density with at least two indices of the same type may always
be decomposed:

Tμν······ ≡ 2· 1
2 Tμν······ + 1

2 Tνμ······ − 1
2 Tνμ······ = T(μν)···

··· + T[μν]···
··· , (B.48)

where T(μν)···
··· and T[μν]···

··· transform the same as the original tensor density, Tμν······ . More
generally, every tensor density may be decomposed into a sum of tensor densities, each
of which is an irreducible representation of the permutation group that acts by permuting
indices of the same type.

The operations provided by the definitions B.3, B.4 and B.5 generate a structure that is usually
called simply “linear algebra.”
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Finally, define also the multiplication of tensor densities:

Definition B.6 For any two tensor densities T
μ1···μp
ν1···νq (x) and U

ρ1···ρp′
σ1···σq′ (x), respectively of type

(p, q) and (p′q′) and weights w and w′, the tensor product may be specified by the relation

(T ⊗ U)
μ1···μp+p′
ν1···νq+q′ (x) := T

μ1···μp
ν1···νq (x) U

μp+1···μp+p′
νq+1···νq+q′ (x) (B.49)

the result of which is a type-(p+p′, q+q′) and weight-(w + w′) tensor density.

B.2.3 Tensor calculus
The rate of change of a vector such as A(x) = Aμ(x) eμ(x) over spacetime is then

∂A
∂xμ

=
∂

∂xμ
(

Aν(x) eν(x)
)

=
∂Aν

∂xμ
eν(x) + Aν(x)

∂eν
∂xμ

. (B.50)

Since eν form a complete set, the partial derivative in the second term must be expressible as a
linear combination in the same basis:

∂eν
∂xμ

=: Γρμν(x) eρ(x), (B.51)

where Γρμν(x) are, for each pair (μ, ν) and at each point x in spacetime, simply the 4-tuple of
coefficient functions in the linear combination of basis vectors eρ(x). Combining results (B.50)
and (B.51), we have

∂A
∂xμ

=
[∂Aρ

∂xμ
+ Aν Γρμν

]
eρ(x). (B.52)

It is straightforward that

∂

∂xμ
(

eν·eρ = δ
ρ
ν

)
= 0 ⇒ ∂eρ

∂xμ
= −Γρμν(x) eν(x), (B.53)

whereby
∂B
∂xμ

=
∂Bν
∂xμ

eν(x) + Bν(x)
∂eν

∂xμ
=

[∂Bν
∂xμ

− Bρ Γρμν
]
eν(x). (B.54)

The quantities in the square brackets in equations (B.52) and (B.54) are then defined as the
covariant derivatives of the components

DμAρ :=
[
∂μAρ + ΓρμνAν

]
and DμBν :=

[
∂μBν − ΓρμνBρ

]
. (B.55)

The formula (9.17) is then the straightforward iteration of these two definitions, as dictated by
Weyl’s Construction A.1 on p. 478, adapted here to provide Definition B.1 on p. 511.

The definition of Γρμν(x) in equation (B.51) and the relations (B.36) then imply several im-
portant properties of Γρμν(x). First,

Γρμν eρ =
∂ eν
∂xμ

=
∂2 e
∂xμ∂xν

=
∂2 e
∂xν∂xμ

= Γρνμ eρ ⇒ Γρμν = Γρνμ. (B.56)

Next, compute

∂gμν
∂xρ

=
∂

∂xρ
(eμ·eν) = Γσμρeσ·eν + eμ·Γσνρeσ = Γσμρgσν + gμσΓσνρ. (B.57)

Reusing this equality with permuted indices μ, ν, ρ, we obtain

∂gμσ
∂xν

+
∂gνσ
∂xμ

− ∂gμν
∂xσ

= 2gσρΓρμν, (B.58)
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which implies the standard formula [508, 62, 367, 548, 66, 96]

Γρμν = 1
2 gρσ

[∂gμσ
∂xν

+
∂gνσ
∂xμ

− ∂gμν
∂xσ

]
. (B.59)

It is then straightforward to show that

Dμgνρ = 0 = Dμgνρ. (B.60)

We close with a useful result and a comment. The Jacobi identity for derivatives of the
determinant g := det[g..] is

∂g
∂xμ

= g gνρ
∂gνρ
∂xμ

⇒ gνρ
∂gνρ
∂xμ

=
1
g
∂g
∂xμ

=
1

(−g)
∂(−g)
∂xμ

=
∂ ln(−g)
∂xμ

, (B.61)

where the sign-change was necessary as spacetime metrics have an odd number of negative
eigenvalues and so a negative determinant. Now contract the expression (B.59):

Γμμν = 1
2 gμσ

[∂gμσ
∂xν

+
∂gνσ
∂xμ

− ∂gμν
∂xσ

]
= 1

2 gμσ
∂gμσ
∂xν

, (B.62)

since gμσ ∂gνσ
∂xμ

μ:σ= gσμ ∂gνμ
∂xσ = gμσ ∂gμν

∂xσ and the last two terms cancel. Using then the identity (B.61)
yields

Γμμν = 1
2
∂ ln(g)
∂xμ

=
∂ ln

(√
g
)

∂xμ
=

1√
g
∂
√

g
∂xμ

. (B.63)

Therefore,

D·A = eμ· ∂A
∂xμ

= (DμAν) eμ·eν = (DμAμ) =
∂Aμ

∂xμ
+ ΓμμνAν,

=
∂Aν

∂xν
+

( 1√
g
∂
√

g
∂xν

)
Aν =

1√
g
∂(√gAν)
∂xν

=
1√
g
∂(√g gνρAρ)

∂xν
(B.64)

provides the definition of the spacetime gradient of a 4-vector, alternatively given for a vector spec-
ified in terms of contravariant and covariant components. The spacetime gradient of a type-(p, q)
tensor density of weight w is then obtained by iterating this result. For example, the spacetime
divergence of a type-(2, 0) tensor is

(D·T)ν =
∂Tμν

∂xμ
+ ΓμμσTσν + ΓνμσTμσ =

1√
g
∂
(√

gTσν
)

∂xσ
+ ΓνμσTμσ. (B.65)

The general result is(
D̃λ T(y)

)ρ1···ρp
σ1···σq

=
(

det
[ ∂y
∂x

∣∣∣)w ∂yρ1

∂xμ1
· · · ∂yρp

∂xμp

∂xν1

∂yσ1
· · · ∂xνq

∂yσq

∂xκ

∂yλ
(
Dκ T(x)

)μ1···μp
ν1···νq

. (B.66)

That is, the covariant derivative of a type-(p, q) tensor density of weight w is a type-(p, q+1) tensor
density of weight w.

Finally, we note that for every μ the vector eμ(x) is defined infinitesimally near the point x.
Using the 4-vector of partial derivatives ∂

∂xν , we may define

eμν(x) : eμ = eμν(x)
∂

∂xν
, (B.67)
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exhibiting that the basis elements eμ(x) span a linear vector space. This locally (infinitesimally)
defined (tangent) spacetime must then be isomorphic to R1,3, and we are free to choose Cartesian
coordinates in it, say ξm, for which gmn(ξ) = −ηmn, so that eμ(x) = eμm(x) ∂

∂ξm . In turn, comparing
the straightforward computation

eμ :=
∂e
∂xμ

=
∂ξm

∂xμ
∂e
∂ξm , (B.68)

with the definition of eμν(x) given in (B.67), we see that eμm(x) = ∂ξm

∂xμ , when the local tangent-
space derivatives ∂

∂ξm are used as covariant basis elements, instead of the curvilinear ∂e
∂xμ .

The so-defined 4× 4 matrix of coefficients eμm(x) is variously called a tetrad, a Fierbein (Ger-
man: fier = four, Bein = leg), a “moving frame,” or a “soldering form” [508, 62, 367, 548, 66, 96],
as it relates curvilinear derivatives to the local, tangent-space, ∂

∂xμ = eμm(x) ∂
∂ξm , at every point in

spacetime. Straightforwardly,

eμm(x) (−ηmn) eνn(x) = gμν(x), (B.69)

and eμm(x) may be regarded as a square-root of the metric tensor. By abuse of language, one
says that μ, ν, . . . are “curved indices,” meaning that they indicate curvilinear coordinates; in turn,
m, n, . . . are dubbed “flat indices,” meaning that they indicate Cartesian coordinates in the flat
tangent spacetime ∼= R1,3, which is defined locally (infinitesimally) at every point x of otherwise
arbitrarily curved but smooth spacetime.

Clearly, at any point where the local system of partial derivatives ∂ξm

∂xμ is ill-defined, this con-
struction in the specified coordinates breaks down, detecting a candidate (putative) singularity;
see the discussion in Section 9.3.1, starting on p. 334.

B.2.4 Functionals and functional derivatives
Without delving into technical details and a rigorous definition of functionals and functional
derivatives, we provide here a heuristic introduction and a few results that prove useful in
computations such as done in Digression 5.9 on p. 191 or Section 11.2.4.

Consider first a 4-vector x = (x0, x1, x2, x3). The value of the symbol “kμ” clearly depends on
the choice of the index, which indicates one of the four components. Note that there are only a
finite number of choices for μ, and thus a finite number of components of kμ. This is conceptually
similar to the notion of a function f (x), the value of which depends on the choice of the argument
x – except that x varies continuously over a range of values. For each of the permissible choices
of the argument x, f (x) returns a value and so the space of possible values may well also form a
continuously infinite set.

We frequently consider summation over the indices – which we will write explicitly in this
section, such as,

(x · η)ν :=
3

∑
μ=0

xμημν = x0η0ν + x1η1ν + x2η2ν + x3η3ν. (B.70)

In the 4-vector quantity so defined, the index ν appears on both sides of the equation and remains
free: it may be freely chosen and changed at will. By contrast, the index μ has been summed over,
does not even appear in the right-most, expanded version of the sum, and is not free to substitute
arbitrarily chosen values (from within 0, 1, 2, 3); it is a dummy summation variable. Conceptually,
this is identical to the fact that in the integral

F[ f ; y] :=
∫ b

a
dx f (x) H(x, y), (B.71)

https://doi.org/10.1017/9781009291507.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.018


B.2 Tensor calculus basics 517

the argument y remains free and available for substitution with any of its allowed values, while
the variable x has been “used up” to compute the integral. Just as the sum (B.70) depends on the
4-vector x and its 4 components (x0, x1, x2, x3), so does the integral (B.71) depend on the choice
of the function f (x) and its values. Just as (x · η)ν no longer depends on the “used-up” index μ,
neither does the integral F[ f ; y] depend on the “used-up” variable x.

Both of these expressions depend on the summation (integration) limits, they also depend on
the additional rank-2 tensor (2-argument function) quantities, ημν (H(x, y)), but we focus here the
dependence on the 4-vector xμ vs. the function f (x). In particular, we easily compute the derivative
by xα of the first of these quantities:

∂

∂xα
(x · η)ν =

∂

∂xα
3

∑
μ=0

xμημν =
3

∑
μ=0

∂

∂xα
xμημν =

3

∑
μ=0

(∂xμ

∂xα
ημν + xμ

∂ημν

∂xα︸ ︷︷ ︸
assume =0

)

=
3

∑
μ=0

(∂xμ

∂xα
= δ

μ
α

)
ημν = ηαν. (B.72)

In the indicated assumption, we state that the rank-2 tensor ημν is defined independently of the
4-vector xμ. In perfect analogy with (B.72), we compute the functional (also called variational)
derivative of the integral (B.71):

δ

δ f (z)
F[ f ; y] =

δ

δ f (z)

∫ b

a
dx f (x) H(x, y) =

∫ b

a
dx

δ

δ f (z)
f (x) H(x, y)

=
∫ b

a
dx

(
δ f (x)
δ f (z)

H(x, y) + f (x)
δH(x, y)
δ f (z)︸ ︷︷ ︸

assume =0

)

=
∫ b

a
dx

(
δ f (x)
δ f (z)

= δ(x−z)
)

H(x, y) = H(z, y). (B.73)

In the indicated assumption, we state that the 2-argument function H(x, y) is defined indepen-
dently of the function f (x). Still more generally, consider a nonlinear functional of the function
f (x):

F [ f ] :=
∫ b

a
dx F

(
f (x)

)
, (B.74)

where F is an arbitrary functional expression involving f (x), such as ( f (x))2√
log( f (x)+1)

. Requiring the

basic chain rule to apply, we obtain

δ

δ f (z)
F [ f ] :=

∫ b

a
dx

δ

δ f (z)
F

(
f (x)

)
=

∫ b

a
dx δ(x − z)

[∂F (ξ)
∂ξ

]
ξ→ f (x)

, (B.75)

where the symbol f is used in the partial derivative within the square brackets as a formal argument
of the function F and the derivative is calculated in the standard way. Once the derivative is
computed, ξ → f (x) is substituted back in the resulting (derivative) functional expression. Note
that the Dirac δ-function, δ(x − z), quenches the integration to an evaluation at x → z.

There is, however, an aspect of functional derivatives that does not have a direct analogue
in the 4-vector calculus framework of (B.72), and it has to do with cases where the definition
of the functional such as (B.71) depends not only on the function, but also on its derivatives.
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This is actually a fairly typical case as most Lagrangians are functional expressions involving not
only fields, but also their time derivatives. The time-integral of any Lagrangian is then Hamilton’s
action, and it is a functional of the fields involved. For example,

S[φ; C] =
∫ T

0
dt L(φ, φ′, φ′′, . . . ). (B.76)

δ

δφ(τ)
S[φ; C] =

∫ T

0
dt

δ

δφ(τ)
L(φ, φ′, φ′′, . . . )

=
∫ T

0
dt

{
δφ(t)
δφ(τ)

[∂L
∂φ

]
+
δφ′(t)
δφ(τ)

[ ∂L
∂φ′

]
+
δφ′′(t)
δφ(τ)

[ ∂L
∂φ′′

]
+ · · ·

}
, (B.77)

where all the expressions in the square brackets treat φ, φ′, φ′′, . . . as independent variables to
perform the indicated partial derivatives, then re-submit φ → φ(t), φ′ → φ′(t), etc. Next, we use

without proof that δφ′(t)
δφ(τ) =

( d
dt
δφ(t)
δφ(τ)

)
:

=
∫ T

0
dt

{
δφ(t)
δφ(τ)

[∂L
∂φ

]
+

( d
dt
δφ(t)
δφ(τ)

)[ ∂L
∂φ′

]
+

( d2

dt2
δφ(t)
δφ(τ)

)[ ∂L
∂φ′′

]
+ · · ·

}
=

∫ T

0
dt

{
δ(t−τ)

[∂L
∂φ

]
+

( d
dt
δ(t−τ)

)[ ∂L
∂φ′

]
+

( d2

dt2 δ(t−τ)
)[ ∂L
∂φ′′

]
+ · · ·

}
.

Next, we integrate by parts; the second term once, the third term twice and so on:

=
∫ T

0
dt δ(t−τ)

{[ ∂L
∂φ

]
−

( d
dt

[ ∂L
∂φ′

])
+

( d2

dt2

[ ∂L
∂φ′′

])
+ · · ·

}
+ B.T., (B.78)

where “B.T.” denotes boundary terms stemming from the integrations by part. Finally,

δ

δφ(τ)
S[φ; C] =

∞

∑
k=0

(−1)k dk

dτk
∂ L(φ(τ), φ′(τ), φ′′(τ), . . . )

∂ φ(k)(τ)
+ B.T. (B.79)

A further generalization of this to n-tuples of fields, and to dependence on more than one variable
is straightforward:

δ

δφa(x)
S[φ.; C] =

∞

∑
k=0

(−1)k∂k ∂ L(φ.(x), ∂1φ.(x), ∂2φ.(x), . . . )
∂(∂kφ(k)

a (x))
+ B.T., (B.80a)

∂k := ∂μ∂ν · · · ∂ρ︸ ︷︷ ︸
k factors

, and a = 1, 2, . . . , n, (B.80b)

and where a summation is implied between each spacetime partial derivative occurring within the
two copies of ∂k – one acting on the partial derivative of the Lagrangian density and the other in the
specification of the derivative field with respect to which the partial derivative of the Lagrangian is
computed:

=
∂L

∂φa(x)
− ∂μ

∂L
∂(∂μφa(x))

− ∂μ∂ν
∂L

∂(∂μ∂νφa(x))
+ · · · + B.T. (B.80c)
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B.2.5 Exercises for Section B.2

✎ B.2.1 Using the results (9.4) and (3.11c), prove that the line element (B.27) is invariant
under general coordinate transformations.

✎ B.2.2 Using the standard rules of calculus (B.23)–(B.24), prove that (B.28) is invariant
under general coordinate transformations.

✎ B.2.3 Using the standard rules of calculus (B.23)–(B.24), prove that the Levi-Civita
symbol (B.29)–(B.30) is invariant under general coordinate transformations.

✎ B.2.4 Prove the relationship (B.31).

B.3 A telegraphic introduction to Gödelian incompleteness
This sketchy and perforce incomplete account of Kurt Gödel’s incompleteness theorem and its
corollary, as well as their implications for all sufficiently complex theoretical systems, is meant
to alleviate the fact that most physics students are not familiar with it. For a more complete and
precise introduction, see Refs. [211, 376].

With excellent prospects of hilariously oversimplifying the historical background and signifi-
cance of Gödel’s theorem, let me just mention as a backdrop the incredible Principia Mathematica
by A. N. Whitehead and B. Russell: This three-tome opus [571, 568, 569, ∼ 2,000 pages in total],
justifying even a 500-page abridged version of Vol. 1 [570], collects the best efforts to cast the
complete and rigorous foundation of all mathematics in Peano’s formal symbolic logic and Frege’s
set theory. The first edition of the Principia Mathematica was published in 1910, and was then
improved for the second edition in 1927.

The ultimate hope was that all of mathematics could be shown to be deducible from an ef-
fectively generable collection of axioms,4 and by means of perfectly rigorous logic. Whitehead and
Russell’s opus not only set formidable standards for the rigor of proof (hereafter to be pursued in
mathematics), but provided an indelible influence on a century of development in (mathematical)
logic and set theory, and metamathematics – the mathematics of how mathematics is to be practiced
and understood.

In 1931, Kurt Gödel published an announcement of his incompleteness theorem, its corollary
(often referred to as the second incompleteness theorem) and an elaborate sketch of proof, defer-
ring the complete proof (to the level of rigor as set by the Principia Mathematica). His results were,
however, accepted at once and Gödel never did get around to publishing the completely detailed
proof [211, 376].

Gödel’s incompleteness theorem and its corollary pertain to axiomatic systems that are suffi-
ciently complex to contain the axiomatic system of standard arithmetic. Recall that an axiomatic
system is a logical system that has, roughly:

1. a fixed list of symbols,
2. a fixed list of “syntactic/grammatical” rules specifying which strings of symbols represent

“well-formed” (meaningful) expressions and statements,
3. a fixed list of adopted logical rules of manipulating and combining statements, and
4. a fixed list of “axioms” (postulates) – statements that are adopted as the “primary statements

(truths)” of the given system.

4 A collection of objects is effectively generable if there exists an algorithm that will enumerate all the objects in the
collection without ever enumerating anything else.
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Every such axiomatic system then has statements that are spelled out with its symbols (1) and
which are well-formed (2); those that can be derived using the rules (3) from the axioms (4) are
called “theorems.”

Within this framework, it was the hope of the research culminating with Whitehead and Rus-
sell’s Principia Mathematica that a suitable system of axioms could be found for all of mathematics,
such that every well-formed mathematical statement could either be proven (by deriving it from
the axioms) or disproven (by deriving its logical negation instead).

Gödel’s incompleteness theorem states that no axiomatic system that is sufficiently complex
to contain arithmetics can both be complete and not be self-contradictory. That is, to avoid being
self-contradictory, every such axiomatic system must contain statements that can be neither proven
nor disproven within the axiomatic system as given. Gödel also drew an immediate corollary (oft-
cited as his second incompleteness theorem owing to its importance), which states that no such
axiomatic system can prove/demonstrate its own consistency [211].

Even more remarkably, Gödel’s proof is constructive! Within any such axiomatic system,
Gödel’s proof explicitly shows how to construct a very specific statement, which can neither be
proven nor disproven within the given axiomatic system. Although Gödel constructed this partic-
ular undecidable statement in his proof, and expressly for the purpose of proving the theorem,
it does follow that there exist infinitely many such undecidable statements – and some of those,
within physics as a formal axiomatic system, are bound to be of interest. Such undecidable state-
ments are then often called Gödelian, although strictly speaking this name should be reserved for
the specific statement constructed in Gödel’s proof for the given axiomatic system.

Conclusion B.1 To any axiomatic system (sufficiently complex so as to contain arithmetic),
either a Gödelian undecidable statement or its logical negation may be added as a new
axiom – and this extension may be repeated recursively forever [211, 376].

It is worth noticing that the Popperian notion of falsifiability (at least in an admittedy naive
understanding [☞ Digression 1.1 on p. 9]) presupposes all statements that one may spell out within
some theory (or theoretical system) necessarily to be either falsified or confirmed – so that there
must exist provable/derivable statements within that theory, which then Nature (experiment) could
falsify. In turn, a theory may well be undecided about any particular and otherwise perfectly self-
consistent statement being tested. Nature then may choose one of the options, so effectively decide
the statement – and extend the theory.

Example B.1 Within the standard theoretical system of Newtonian classical mechanics,
Bertrand’s theorem [☞ textbooks of classical mechanics such as [213]] guarantees that
stable circular orbits in (3 + 1)-dimensional spacetime are ensured only by two central
potentials:

1. the Kepler/Newton potential, −κ
r ,

2. the radial harmonic potential, 1
2 kr2.

However, there is nothing within this theoretical system that could decide which one
is the one that keeps the planets in stable and nearly circular orbits around the Sun. It
is the correlation between the orbital linear velocities of the planets and their distance
from the Sun – observed in Nature to be v ∝ r−1/2[ ✎derive]– that clearly picks the
Kepler/Newton potential over the v ∝ r3/2 [ ✎derive] of the harmonic potential.
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Example B.2 Within the standard theoretical system of Newtonian classical mechanics,
there exists no reason to impose Bohr’s ad hoc quantization of the angular momentum
for the electron orbiting the proton and so forming a hydrogen atom. However, neither
does there exist a reason against such a quantization: strictly speaking, the assumed con-
tinuous variability of the magnitude of angular momentum in various physical systems
is merely an implicit assumption, bolstered by no noticed exemption in the macro-
scopic world; see, however, the discussion in Section 8.3.1 and Footnote 11 on p. 310
in particular.

Therefore, from within the formal theoretical system of classical mechanics,
whether or not the angular momentum of an electron orbiting a proton is to be quan-
tized and in what units is in fact an undecidable statement in Gödel’s sense. Nature quite
clearly resolves the issue: Experiments show that the angular momentum of any physical
system can only change in integral multiples of h̄, and so must be either an integral or
a half-integral multiple of this unit. The quantum extension of classical mechanics is in
this sense precisely a Gödelian extension of the axiomatic theoretical system of classical
physics to the axiomatic theoretical system of quantum physics.

Example B.3 As discussed in Section 9.1.1 and Digression 8.1 on p. 295, attempting to
fuse Newtonian mechanics and Maxwell’s electrodynamics requires one to either mod-
ify electrodynamics so as to become Galilean-symmetric, or mechanics so as to become
Lorentz-symmetric. Since the Galilean group is the c → ∞ limit of the Lorentz group,
the former of these options is achievable only if we take the c → ∞ limit of the Maxwell
equations. Both resulting systems are consistent, so that a choice between them is not
decidable from within the theory alone. It is indeed Nature’s “choice” that light does
propagate at a finite speed, which then implies the latter option for the electrodynamics
of moving electric charges.

While one may wish for such a “resolution by Nature,” as described in the Examples B.1,
B.2 and B.3 above, there is in fact no guarantee that all “theoretical” dichotomies in our at-
tempts to describe Nature will be similarly resolvable by observation. Indeed, the discovery of
the ever-increasing list of ever more various dualities [☞ Section 11.4, to begin with] seems
to indicate that this “plurality” of description is an innate characteristic of our understanding
Nature.

Finally, the prospect of perpetual Gödelian extensions – in as much as it seems applicable to
physics – seems to agree with some of the historical lessons, seen with the benefit of hindsight.
Within the theoretical system of classical vector fields, the model described by the Maxwell equa-
tions is “well-formed,” but undecidable. There is nothing in classical field theory formalism that
could prove or disprove the Maxwell equations from any system of axioms, which does not in fact
include either the electrodynamics laws that those differential equations represent or the gauge
principle as introduced in Chapter 5.

In this sense then, the gauge principle (or the electrodynamics laws represented by the
Maxwell equations) is a Gödelian undecidable statement within the theoretical system of classi-
cal fields. By including the gauge principle, we obtain the particular theoretical system of classical
fields that is called electrodynamics, in which the vector fields �E, �B, �A and the scalar field Φ acquire
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a specific meaning and application. The theoretical system at hand has at once both become more
specific and acquired a richer structure (less arbitrariness).

Gödel’s incompleteness theorem then implies that the axiomatic system of theoretical physics
definitely can be extended indefinitely, and in infinitely many ways. Which of those extensions will
turn out to be useful towards the intended purpose of theoretical physics, of course, remains an
open question – and may well remain so indefinitely☞ .
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