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Abstract. In this notewe classify the derived-tame tree algebras up to derived equivalence. Atree
algebra is a basic algebra A ¼ kQ=I whose quiver Q is a tree. The algebra A is said to be
derived-tame when the repetitive category ÂA of A is tame.We show that the tree algebra A is
derived-tame precisely when its Euler form wA is non-negative.Moreover, in this case, the derived
equivalence class ofA is determined by the following discrete invariants:The number of vertices,
the corank and the Dynkin type of wA. Representatives of these derived equivalence classes
of algebras are given by the following algebras: the hereditary algebras of ¢nite or tame type,
the tubular algebras and a certain class of poset algebras, the so-called semichain-algebras which
we introduce below.
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1. Introduction

Let A be a ¢nite-dimensional algebra (associative, with 1) over an algebraically
closed ¢eld k. We denote bymodA the category of ¢nite-dimensional, leftA-modules
and by DbðAÞ the derived category of bounded complexes overmodA. If the algebra
A has ¢nite global dimension, thenDbðAÞ is triangle equivalent to the stable category
mod ÂA, where ÂA denotes the repetitive category of A (see [16]). By Drozd’s
Tame^Wild dichotomy ([12]; see also [10] and [13]), precisely one of the following
two cases occurs: The ¢rst possibility is that the repetitive category ÂA is tame, i.e.
for each dimension d 2N and each object X of ÂA; almost all indecomposable
modules M: ÂA! mod k with

P
Y2ÂA dim kMðY Þ ¼ d and MðX Þ 6¼ 0 occur in a ¢nite

number of one-parameter families. In the other case, the category ÂA is wild, i.e.
the conjugacy classes of pairs of square matrices (whose classi¢cation is a
well-known unsolved problem) occur as isomorphism classes of certain ÂA-modules.
Following [11], we say that A is derived-tame if the category ÂA is tame. We are
concerned with the question which algebras A are derived-tame.

The categoryDbðAÞ is best understood whenA is derived equivalent to a hereditary
algebra of ¢nite or tame type or to a tubular algebra ([16, 17]). These algebras are
also characterized by the fact that the derived category DbðAÞ is cycle-¢nite ([2])
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or that the push-down functormod ÂA! modT ðAÞ is dense ([5]), where T ðAÞ denotes
the trivial extension of A. In all these cases, the Euler form of A is non-negative.
Recall that the Euler form wA of A is the quadratic form which is associated to
the homological bilinear form h; i on the Grothendieck group of A given by
h½X 
; ½Y 
i ¼

P1
i¼0ð�1Þ

idim kExt
i
AðX ;Y Þ for A-modules X and Y .

The knowledge of DbðAÞ is rather limited when the category DbðAÞ is not
cycle-¢nite. Instances of derived-tame algebras whose derived category is not
cycle-¢nite can be found among gentle algebras ([1]; see also [18, 23, 24]), and
another class is provided by pg-critical algebras (NS). Motivated by his study of
sel¢njective algebras, A. Skowron¤ski raised around 1990 the question whether
the repetitive algebra of each simply connected algebra is tame if and only if the
Euler form is non-negative.

Clearly, this statement can hold only for classes of algebras A which are uniquely
determined by the (discrete) datum of their Euler form wA. One instance is the class
of tree algebras: Those basic algebras A ¼ kQ=I whose quiver Q is a tree. In this
case, it has been conjectured explicitely in [11] that a tree algebra is derived-tame
precisely when its Euler form is non-negative, and the conjecture could be veri¢ed
in [7] for tree algebras containing a convex subalgebra which is derived equivalent
to some hereditary algebra of type Ep;eEEpðp ¼ 6; 7; 8Þ or to a tubular algebra.

We obtain in this paper the complete answer:

THEOREM 1.1. A tree algebra is derived-tame precisely when its Euler form is
non-negative.

Moreover, we classify the derived-tame tree algebras up to derived equivalence.
Using the results of [7], it is suf¢cient to concentrate on those derived-tame tree
algebras which do not contain a convex subalgebra which is derived equivalent
to some hereditary algebra of type Ep;eEEpðp ¼ 6; 7; 8Þ or to a tubular algebra.
We show that these algebras are derived equivalent to a so-called semichain
Sðn;mÞ :

For mW n 2N we de¢ne Sðn;mÞ to be the poset algebra which has the following
quiver

and satis¢es, as a poset algebra, that all squares are commutative. For m ¼ 0 or
m ¼ 1; the algebras Sðn;mÞ are representation-¢nite hereditary with Dynkin quiver
of type An for m ¼ 0 and of type Dnþ1 for nX 3 and m ¼ 1. The algebra Sð2; 2Þ
is tame hereditary of type eAA3, and the algebras Sðn; 2Þ are derived equivalent to
tame hereditary algebras of type eDDnþ1. More generally, all the algebras Sðn;mÞ with
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n > mX 1 have a non-negative Euler form of corank m� 1 and Dynkin type Dnþ1

(see [9] for the de¢nition of the Dynkin type of a non-negative unit form).
The derived equivalence classes of derived-tame tree algebras are then described as

follows:

THEOREM 1.2. Let A be a connected derived-tame tree algebra. Then A is derived
equivalent to a hereditary algebra of typeEp;eEEp or to a tubular alge bra or to precisely
one of the algebras Sðn;mÞ. In particular, the tree algebra A is up to derived equiv-
alence determined by the number of vertices, the corank and the Dynkin type of
its Euler form.

From the complete classi¢cation of derived tame tree algebras up to derived
equivalence, we get some consequences: In [8] it was conjectured for a strongly
simply connected algebra A that if the Euler form wA is non-negative of corank
X 3, then the Dynkin type of wA has to be Dn. We can con¢rm this conjecture
in the case of tree algebras, and give the complete picture in Table I. There we list
in the rows the possible coranks m of Euler forms w of tree algebras, and the columns
indicate the possible Dynkin types. The entries of the diagram show algebras whose
Euler form is non-negative and has the required properties. By the sign ‘^’ we indi-
cate that no tree algebra exists whose Euler form has the corresponding properties.

Moreover, we obtain the following corollary

COROLLARY 1.3. A derived-tame tree algebra contains a subcategory derived
equivalent to E6 precisely when it contains a convex subcategory which is derived
equivalent to hereditary algebra of type Ep;eEEp; p ¼ 6; 7; 8 or to a tubular
algebra.

The tree algebras derived equivalent toE6 are classi¢ed in [7], thus one can use this
handy list to determine whether a given derived-tame tree algebra has Dynkin type
Dn or Ep.

This note is organized as follows. In Section 2 we recall several important
techniques, in particular the re£ections at a sink or source of the algebra A. We
further introduce the class of semi-tree algebras, this is the class of algebras where
it is possible to work out the proof of the Theorems inductively. We ¢nally divide

Table I.

Type An Type Dn Type Ep

m ¼ 0 kAn kDn kEp
m ¼ 1 ^ keDDn keEEp
m ¼ 2 ^ Sðn-1; 3Þ tubular
mX 3 ^ Sðn-1;m+1Þ ^
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the proof of the main theorems in two parts, formulated in Proposition 2.4 and 2.5.
The remaining two sections are then devoted to the proofs of these two propositions.

When preparing this manuscript, we learned that Ch. Geiss obtained the same
results (Theorem 1 and 2) by using quite different methods [15].

2. APR-Tilts, Re£ections and Blowing-Up

2.1. NOTATION

Let A ¼ kQ=I be a tree algebra, i.e. Q is a ¢nite quiver whose underlying graph is a
tree and I is an admissible ideal of the path algebra kQ: We will always suppose
that our algebras are connected. When talking of a vertex of A we mean a vertex
of the quiver Q: Since A is a tree algebra, there is a minimal set of paths generating
the ideal I . We refer to these generating monomials r ¼ a1! � � � ! at in kQ
as relations of A and occasionally call the set fa1; . . . ; atg the support of the
relation r.

We also identify Awith a k-category whose objects are the vertices of A and whose
morphism space Aðx; yÞ from x to y is eyAex; where ex denotes the idempotent
element of A associated with the vertex x; see [14]. We say that B is a convex sub-
category of A if B ¼ kQ0=I 0 where Q0 is a path-closed subquiver of Q and
I 0 ¼ I \ kQ0: When viewing the algebra A as a category, we interpret the A-modules
as k-linear functors M:A! mod k: Thus, we can speak of the derived category
DbðAÞ of a k-category A: Moreover, the k-category B is derived-equivalent to a
k-category C; if there is a triangle equivalence F :DbðBÞ ! DbðCÞ: We recall that
the triangle equivalence F induces an isomorphism of the corresponding Grothen-
dieck groups together with their homological bilinear forms, hence the Euler form
wB of B is non-negative if and only if wC is, and, in this case, corank wB ¼ corank
wC . Also the derived-tameness of a k-category is preserved under triangle equiv-
alences, see [11].

2.2. We recall from [7] the following result.

THEOREM 2.1. Let A be a tree algebra containing a convex subcategory which is
derived equivalent to some hereditary algebra of type Ep;eEEpðp ¼ 6; 7; 8Þ or to a tubu-
lar algebra. Then A is derived-tame if and only if wA is non-negative. Moreover,
in this case, the algebra A itself is derived equivalent to some hereditary algebra
of type Ep;eEEp or to a tubular algebra.

To prove our main theorems, we therefore can restrict to those tree algebras A that
do not admit a subcategory which is derived equivalent to a hereditary algebra
of type Ep;eEEpðp ¼ 6; 7; 8Þ or to a tubular algebra. We show in Proposition 2.4
and 2.5 below that, under these conditions, the algebra A is derived equivalent
to one of the algebras Sðn;mÞ provided its Euler form is non-negative or A is
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derived-tame. This, together with Theorem 2.1, shows the ¢rst part of Theorem 1.2:
every derived-tame tree algebra is derived-equivalent to a hereditary algebra of type
Ep;eEEpðp ¼ 6; 7; 8Þ or to a tubular algebra or to one of the algebras Sðn;mÞ.

As we mentioned in the introduction, the tubular and the hereditary algebras of
¢nite or tame type are derived-tame and have non-negative Euler form. The same
holds for the semichain Sðn;mÞ, see [11]. Moreover, these algebras can be dis-
tinguished by the number of vertices, the corank and the Dynkin type of its Euler
form, and thus we obtain the second part of Theorem 1.2.

Propositions 2.4 and 2.5 also imply Theorem 1.1: Both assumptions on the tree
algebra A, being derived-tame or having a non-negative Euler form, lead (up to
derived equivalence) to the same class of algebras. More over, both properties
are stable under derived equivalences (see [11]), thus the class of derived tame tree
algebras coincides with the class of tree algebras whose Euler form is non-negative.
In fact, the derived equivalences in Propositions 2.4 and 2.5 are realized by ref-
lections and APR-tilts (which clearly preserve the derived-tameness), so we do
not even need the abstract result from [11] that derived-tameness is preserved under
derived equivalences.

2.3. APR-TILTS, REFLECTIONS

Let A ¼ kQ=I . For a vertex x of A, we denote by PðxÞ the projective cover of the
simple A-module which is concentrated in x, and by IðxÞ the corresponding injective
hull. The Auslander-Reiten translations of modA are denoted by tA and t�A , cf. [22]
or [6].

If x is a sink of A, then the module T ðxÞ ¼ t�APðxÞ � ð�y 6¼xPðyÞÞ is called an
APR-tilting module, and the algebra B ¼ EndT ðxÞ is an APR-tilt of A. Of course,
the algebras A and B are derived equivalent. It is easy to see that if no relation
of A has the sink x as its terminal point, then the algebra B is obtained from A
by reversing each arrow y! x to an arrow y x�, cf. [1]. The notion of an
APR-cotiliting module is de¢ned dually for a source x of A.

We recall that the one-point extension A½M
 of A by the A-module M contains A as
a convex subcategory and has one extra vertex x that becomes a source in A½M
 by
A½M
ðx; yÞ ¼MðyÞ for y 6¼ x and A½M
ðx; xÞ ¼ k. Conversely, given a source x in
A, we can write A ¼ A0½M
 where A0 ¼ Anx and M ¼ radPðxÞ, cf. [22]. Dually,
co-extensions ½M
A are de¢ned by adding sinks to the category A.

We recall from [19] the concept of re£ections: Let x be a sink in Q. Then we write
A ¼ ½M
A0 as a one-point co-extension and de¢ne the re£ection of A at the sink
x to be the algebra Sþx A ¼ A0½M
. Thus, the algebra A0 is a convex subcategory
of both A and Sþx A; and the sink x of A is replaced by a source x� in Sþx A; with
Aðy; xÞ ffi Sþx Aðx

�; yÞ for all y 2 A0. Dually, we consider the re£ection S�x A of A
at a source x of A.

It is easy to see that the repetitive categories of A and SxA are isomorphic.
Moreover, Sþx A is tilting-cotilting equivalent to A, see [25].
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2.4. BLOWING-UP

When proving Proposition 2.5, we proceed by induction on the number of zero-
relations. Now the algebra Sðn;mÞ we are aiming at is not a tree algebra, so we
have to set up our induction within a slightly larger class of algebras which we pre-
pare to introduce now.

Let A ¼ kQ=I be a basic algebra, and let v 2 Q0 be a vertex of A and F a ¢nite set.
Then we de¢ne the blowing-up of A at the vertex v by F to be the algebra ~AA ¼ k ~QQ=~II
given by the following quiver ~QQ and ideal ~II : The quiver ~QQ is obtained from Q
by replacing the vertex v by the vertices vf with f 2 F and each arrow a: x! v
by arrows af : x! vf ; f 2 F and dually for each arrow b: v! y.

There is an obvious quiver epimorphism ~QQ! Q which extends uniquely to an
epimorphism of k-algebras p: k ~QQ! kQ. We de¢ne the ideal ~II of k ~QQ as the inverse
image of I under p. So the algebra A is a subcategory of ~AA (only convex if v is
a sink or source), and we have Aðx; vÞ ffi ~AAðx; vf Þ and Aðv; xÞ ffi ~AAðvf ; xÞ for all
x 6¼ v and f 2 F .

LEMMA 2.2. Let A be an algebra with a sink v. Let ~AA be the blowing-up of A at the
vertex v by the set F ¼ f1; . . . ; rg. Then the iterated re£ection Sþv1 . . .S

þ
vr
~AA at the sinks

vi; i 2 F coincides with the blowing-up of Sþv A at the vertex v
� by the set F.

Proof. As v is a sink in A, we can write A ¼ ½M
A0 as a one-point co-extension by
some A0-module M with extension-vertex v. Then the algebra ~AA is just the r�fold
one-point co-extension by the same module M and extension vertices v1; . . . ; vr.
By de¢nition, the algebra obtained by iterated re£ections at the sinks vi is the r�fold
one-point extension by the moduleM, so Sþv1 . . .S

þ
vr
~AA ¼ ð. . . ðA0½M
Þ . . . ½M
Þ: On the

other hand, ¢rst re£ecting in v turns A ¼ ½M
A0 into Sþv A ¼ A0½M
 with source
v�, and blowing-up in v� results in the same algebra ð. . . ðA0½M
Þ . . . ½M
Þ as before.&

LEMMA 2.3. Let A be an algebra with a sink v such that no relation of A has v as its
terminal point. Let ~AA be the blowing-up of A at some vertex w by the set F . If w
is not a neighbour of v, then the iterated APR-tilts of ~AA at the sinks wf ; f 2 F yield
the same algebra as the blowing-up of B ¼ EndT ðvÞ at the vertex v� by the set F.

This follows easily from the explicit construction of the algebra B as explained in
Section 2.3. Only the case when w is a neighbour of v has to be excluded, since
the blowing-up in w could then possibly produce a commutativity relation with ter-
minal vertex v.

2.5. THE ALGEBRA A½D


We will deal in the following only with blowing-up by sets F ¼ fþ;�g of cardinality
2. Moreover, if we blow up an algebra in several vertices, the resulting algebra
is independent on the order of the vertices chosen to be blown up. Thus, given
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an algebra A ¼ kQ=I , we just specify a set D of vertices and denote by A½D
 ¼
kQ½D
=I ½D
 the blowing up of A in the vertices d 2 D by the set fþ;�g. We often
denote the vertices of A½D
 by dþ; d� if d 2 D and by s if s 2 AnD. The algebra
A will be a tree algebra later, thus the ideal I will be generated by zero-relations.
Consequently, the ideal I ½D
 is generated by all paths w in kQ½D
 with pðwÞ 2 I
together with all commutativity relations bþaþ ¼ b�a� whenever there are arrows
x!

aþ
dþ !

bþ
y and x!

a�
d� !

b�
y in A½D
 with pðdþÞ ¼ pðd�Þ and pðaþÞ ¼ pða�Þ as well

as pðbþÞ ¼ pðb�Þ.

EXAMPLES. (1) If A ¼ kQ is a chain

d1! d2! � � � ! dm! smþ1! � � � ! sn

with D ¼ fd1; . . . ; dmg, then the algebra A½D
 coincides with the semichain Sðn;mÞ
introduced above.

(2) If A ¼ kQ=I is given by the quiver Q ¼ d1!
a
s!

b
d2 with ideal I generated by

the relation ba ¼ 0 and D ¼ fd1; d2g, then the algebra A½D
 is given by the following
quiver with relations bþaþ ¼ bþa� ¼ b�aþ ¼ b�a� ¼ 0:

2.6. SEMI-TREE ALGEBRAS

We now introduce the class of algebras we are ¢nally dealing with.

DEFINITION. Let A ¼ kQ=I be a tree algebra and D a set of vertices of A. We say
that the algebra A½D
 is a semi-tree algebra provided the following conditions
are satis¢ed:

(D1) At each vertex ofD starts at most one arrow and at each vertex ofD stops at most
one arrow.

(D2) The ideal I is generated by relations of length 2 or 3.
(D3) If e ¼ a!

a
b!

b
c is one of the generators of the ideal I , then the middle vertex b

does not belong toD. Moreover, all other generators of I that contain the arrow a
stop in the vertex b, and all generators di¡erent from e that contain the arrow b
start in b.

(D4) The generators of I of length 3 have the form e ¼ a! a0 !
a
b!

b
c0where c0 is an

end vertex of Q or dually e0 ¼ a0 !
a
b!

b
c0 ! c with end vertex a0 or they come

as a pair ðe ¼ a! a0 !
a
b!

b
c0; e0 ¼ a0 !

a
b!

b
c0 ! cÞ. In each case, the

vertices a0; b and c0 do not be long toD, no other generator of the ideal I contains
one of the arrows a or b, and in a0 and c0 do not start or stop any other arrows.
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(D5) Each convex hereditary subcategoryH ofA is of typeAn,Dn or eDDn. In caseH is
of type Dn or eDDn, the end vertices of H do not belong to D.

PROPOSITION 2.4. Let B be a tree algebra that does not contain a convex sub-
category which is derived equivalent to some hereditary algebra of type Ep;eEEp or
to a tubular algebra. If B is derived-tame or if the Euler form of B is non-negative,
then the algebra B is derived equivalent to a semi-tree algebra A½D
.

The second part of the proof of our main theorems is worked out in the class of
semi-tree algebras:

PROPOSITION 2.5. Let A½D
 be a semi-tree algebra that does not contain a convex
subcategory which is derived equivalent to some hereditary algebra of type Ep;eEEp
or to a tubular algebra. If A½D
 is derived-tame or if the Euler form of A½D
 is
non-negative, then A½D
 is derived equivalent to some semichain Sðn;mÞ:

3. Proof of Proposition 2.5

We are given a tree algebra A ¼ kQ=I with a set of vertices D of A such that the
conditions (D1) to (D5) hold. In order to show that the semi-tree algebra A½D

is derived-equivalent to a semichain Sðn;mÞ; we proceed by induction on the number
of relations of A. We construct the derived equivalence using the operations con-
sidered in Lemmas 2.2 and 2.3 above. As these operations commute with the
blowing-up procedure, it is suf¢cient to show that the tree algebra A can be trans-
formed into the chain from Example (1) of Section 2.5; the blowing-up applied after-
wards then yields the desired semichain.

LEMMA 3.1.Let A ¼ kQ=I be an algebra and D a set of vertices of A. Suppose that A
is the union of two convex sucategories A0 and S with A0 \ S ¼ fsg where S is her-
editary with quiver x1!

a1
� � � !

at�1
xt!

at
s. Assume further that s 62 D and no relation

of A starts in one of the vertices xj. Denote by A� ¼ kQ�=I� the algebra whose quiver

Q� is obtained from Q by replacing the subcategory S by S� ¼ xt 
a�t
� � �

 
a�2 x1  

a�1 s and whose ideal I� is generated by the same relations as the ideal I of A.
Then A½D
 is derived equivalent to A�½D
.

Proof. If t ¼ 1, we apply the APR-tilt in the source x1 to turn the arrow x1 !
a1 s into

x1  
a�1 s. This is possible since the neighbour s of x1 does not belong to D. In case

t > 1; we use induction on t: We ¢rst apply iterated re£ections at the sources
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x1; . . . ; xt�1 and obtain A1:¼ S�xt�1 . . .S
�
x1A. In A1; the vertex xt is a source, and no

relation starts in xt. Thus we can reverse the arrow xt ! s by an APR-tilt as in
the case t ¼ 1 and call the resulting algebra A2. Next, re£ecting in the sink xt
and in the iterated sinks x�t�1; . . . ; x

�
1 of A2, we get A3 ¼ Sþx�1 . . .S

þ
x�t�1
SþxtA2. The

algebra A3 contains A0 as a convex subcategory with A3nA0 formed by the disjoint
union of a source x�t together with a subquiver S0 ¼ x1!

a1
� � � !

at�2
xt�1 !

at�1
s that

satis¢es the conditions of the lemma and has one vertex less than S.

Thus, by induction, we can turn S0 as described in the lemma and denote the resulting
al gebra by A4. Finally, we re£ect the source x�t back and obtain A� ¼ S�x�t A4 of the
desired form. &

Remark. In the proofs of this section, we just specify the re£ections or APR-tilts to
be applied and describe the resulting algebras. Thus, when proving the lemma above,
we leave it to the reader to write the algebra A in the form A ¼ A0½M1
 . . . ½Mt
 and
check that, for instance, the algebra S�xt�1 . . .S

�
x1A ¼ ½Mt
 . . . ½M2
A0½M1
 has the form

claimed above.

LEMMA 3.2. Let A ¼ kQ be a hereditary algebra with quiver Q of the form
Q ¼ 1! 2! � � � ! n and D a set of vertices of A. Then A½D
 is derived equivalent
to Sðn;mÞ with m ¼ jDj.
Proof. Re£ections act on the set of vertices of Q as cyclic permutations, thus we

may assume that the ¢rst t vertices of Q belong to D and the last r vertices do
not belong to D. When we know that some vertex of Q belongs to D or to
QnD, then we denote it by di or by sj, respectively; otherwise, we use the letter x.

Q ¼ d1! � � � dt ! stþ1! � � � ! xn�r�1! dn�r ! sn�rþ1 ! � � � ! sn:

Now, if t ¼ m; then tþ r ¼ n and we are done. Otherwise, we present in the following
a sequence of re£ections and APR-tilts that moves the vertex dn�r to the ¢rst place.
Thus, we increase the number of vertices at the beginning that belong to D by one.
We repeat this movement until t ¼ m:

In the ¢rst step we shift the vertex dn�r to the beginning by setting
A1 ¼ Sþdn�rS

þ
sn�rþ1 . . .S

þ
snA. Then we apply Lemma 3.1 to the subquiver S ¼ dn�r !

sn�rþ1! � � � ! sn in order to change the orientation of its arrows and denote
the resulting algebra by A2. It is hereditary with quiver

dn�r  sn�rþ1  � � �  sn! d1! � � � dt ! stþ1! � � � ! xn�r�1:

Then we set A3 ¼ Sþdn�rA2 and reverse by Lemma 3.1 the orientation of the subquiver
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sn�rþ1 � � �  sn of A3; the resulting algebra is denoted by A4. Putting A5 ¼

Sþd1 . . .S
þ
dt
Sþstþ1 . . .S

þ
xn�r�1A4, we get that A5 is hereditary with quiver

d1! � � � ! dt ! stþ1! � � � ! xn�r�1! sn�1! � � � ! sn�rþ1! sn dn�r:

We now just reverse the arrow sn dn�r of A5 by an APR-tilt and, with A6 being the
resulting algebra, set A7 ¼ Sþdn�rA6. This algebra is ¢nally hereditary with quiver

dn�r ! d1 ! � � � ! dt ! stþ1! � � � ! xn�r�1! sn�1 ! � � � ! sn�rþ1! sn ;

thus we increased the number of vertices in D at the beginning by one. &

LEMMA 3.3. Let A ¼ kQ be a hereditary algebra and D a set of ver tices of A such
that A½D
 is a semi-tree algebra. Then A½D
 is derived equivalent to Sðn;mÞ with
m ¼ jDj.
Proof. As A½D
 is a hereditary semi-tree algebra, we get by condition (D5) that the

quiver of A is of typeAn,Dn or eDDn. Up to derived equivalence, we can even suppose
that it is of type An: Assume A has the quiver Q where

Then, by (D1) and (D5), the vertices with index n� 2; n� 1 and n do not belong to
the set D. Moreover, up to an APR-tilt in sn, we can suppose that the arrows
sn�2 � sn�1 and sn�2 � sn point in the same direction. But now we get the same algebra
A½D
 if we replace the two vertices sn�1 and sn by one vertex dn�1 that belongs to D:
The same argument applied to the case eDDn shows that we can restrict to quivers
of type An.

By Lemma 3.2, it is suf¢cient to show that A½D
 is derived equivalent to an algebra
A0½D0
 where A0 ¼ kQ0 is hereditary with a linear oriented quiver Q0 of type A. If the
quiver Q ¼ x1 � x2 � � � � � xl of A has no internal source or sink, then we are done.
Otherwise, we denote by s ¼ xj the vertex with minimal index j > 1 such that xj
is a sink or a source. Suppose (up to duality) that s is a sink. By condition (D1),
the vertex s does not belong to D. Thus, by Lemma 3.1, we can turn the subquiver
x1 ! � � � ! xj�1! s of Q into xj�1  � � �  x1  s and thus reduce the number
of sinks of Q. The statement follows by induction on the number of sinks or sources
of Q. &

Lemma 3.3 proves Proposition 2.5 in case the algebra A is hereditary. Now we
start to deal with the case when the algebra A has some relations. The proof is
by induction on the number of relations of A, hence it is suf¢cient to show how
one can get rid of one relation. The ‘right’ choic e which relation should be eliminated
¢rst is a bit delicate, and we need to introduce some notation to explain that.
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By the condition (D3) and (D4) in the de¢nition of a semi-tree algebra, each
relation determines a trisection of the quiver of A as follows: Given two vertices
x; y of the tree Q, we denote by .ðx; yÞ the subtree of Q with root y pointing towards
x, i.e. the interval ½y; x
 together with all vertices z of Q whose distance from z to x is
smaller than the di stance from z to y. In the example below, for instance, the subtree
.ð4; 3Þwith root 3 pointing towards 4 is supported by the vertices f3; 4; 5; 6; 7; 10; 11g.

Now let e ¼ a! b! c be a relation of A of length 2 as considered in (D3). Then
we de¢ne a convex subcategory N�e of A by N�e ¼ .ða; bÞ, and dually we set
Nþe ¼ .ðc; bÞ. Moreover, we de¢ne N0

e ¼
S
x .ðx; bÞ, where the union runs over al

l neighbours x of b except a and c. Then, by construction, the union N�e [
N0

e [N
þ
e covers the whole quiver Q and, by condition (D3), all relations of A dif-

ferent from e have a support that is completely contained in one of the sets
N�e ;N

0
e ;N

þ
e .

We de¢ne a trisection with the same properties for relations of length 3. By con-
dition (D4), we either have one relation e ¼ a! a0 !

a
b!

b
c0 where c0 is an end

vertex of Q or dually e0 ¼ a0 !
a
b!

b
c0 ! c with end vertex a0, or there is a pair

ðe ¼ a! a0 !
a
b!

b
c0; e0 ¼ a0 !

a
b!

b
c0 ! cÞ:

In each case, we associate to the datum e or e0 or ðe; e0Þ a trisection of Q by convex
subcategories N�e ;N

0
lon;N

þ
e as follows: We de¢ne N�e ¼ .ða; a0Þ; Nþe ¼ .ðc; c0Þ and

N0
e ¼

S
x .ðx; bÞ, where the union runs over all neighbours x of b except a0 and

c0. Note: Nþe may be empty in case c0 is an end vertex of Q, dually for N�e . Then
again by condition (D4), all the other relations of A have a support that is completely
contained in one of the sets N�e ;N

0
e ;N

þ
e .

EXAMPLE. We illustrate the constructions above on the algebra A ¼ kQ=I , given
by the quiver Q below and the relations eð1Þ : 1! 2! 3! 4, eð2Þ: 3! 4!
5! 6, eð3Þ: 4! 5! 6! 7 and eð4Þ: 8! 2! 9, eð5Þ: 10! 5! 11. Then the sub-
category N�eð1Þ, for instance, is empty, whereas N0

eð1Þ is supported by f2; 8; 9g and
Nþeð1Þ is supported by f3; 4; 5; 6; 7; 10; 11g.

The following lemma describes which relations can be used in the inductive step.

LEMMA 3.4.One can choose a relation e or a pair ðe; e0Þ of relations in A in such a way
that at most one of the convex subcategories N�e ;N

0
e ;N

þ
e de¢ned above contains some

relations.
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Proof. Let eð1Þ be some relation or ðeð1Þ; eð1Þ0Þ some pair. If at least two of the
categoriesN�eð1Þ;N

0
eð1Þ;N

þ
eð1Þ contain the support of some relation of A, then we choose

one containing a relation eð2Þ. Now, one ofN�eð2Þ;N
0
eð2Þ;N

þ
eð2Þ contains the relation eð1Þ.

If the two others do not contain any relation, we are done. Otherwise, we proceed in
the same way. But, since we work with a ¢nite treeQ, this procedure has to stop with
some relation e ¼ eðnÞ that has the required properties. &

EXAMPLE. If we start in the example above with the relation eð1Þ, both sets N0
eð1Þ

and Nþeð1Þ contain further relations. Choose one of them, say N0
eð1Þ supporting the

relation eð4Þ. NowN0
eð4Þ contains relations, butN

�
eð4Þ andN

þ
eð4Þ don’t. Thus the relation

eð4Þ is a good candidate to start the induction.

We suppose from now on that A½D
 is a semi-tree algebra satisfying the assumptions
from Proposition 2.5. We start with the inductive step of the proof of proposition 2.5.
Let e ¼ a! b! c be a relation of A of length 2 as considered in (D3) and suppose
that N�e and N0

e contain no relation.

LEMMA 3.5.Up to derived equivalence, the convex subcategories N�e and N
0
e chosen

above have the form

N�e ¼ x1 ! � � � ! xt ! a! b

and

N0
e ¼ b! y1! � � � ! ys :

Proof. Consider ¢rst the convex subcategory N0
e . It is hereditary, contains the

vertex b and by (D5) it is of type An, Dn or eDDn. Now, if N0
e contains a subquiver

of the form x� b� y1 � y2 (with arbitrary orientation of the arrows), then the full
subcategory of A½D
 with vertex set fa; b; c; x; y1; y2g is derived equivalent to E6,
in contradiction to the assumptions of Proposition 2.5. On the other hand, if the
vertex b has three direct neighbours fx; y; zg in N0

e , then the full subcategory of
A½D
 with vertex set fa; b; c; x; y; zg is not derived tame and has no non-negative
Euler form. Thus, the quiver of N0

e has the form

and by applying the same considerations as in Lemma 3.3 we can suppose thatN0
e has

a quiver b� y1 � � � � � ys of typeAsþ1. If this quiver is linearly oriented, we are done
(change, if necessary, the orientation by Lemma 3.1). Otherwise, let j < s be the
maximal index such that the vertex yj is a source or sink. Then the subcategory
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yj � � � � � ys is linearly oriented, and the vertex yj does not belong toD by (D1). Thus
we can apply Lemma 3.1 and reduce the number of sinks or sources until we reach the
linear oriented case. ForN�e the arguments are the same, except that the vertex amay
be inD. But then it is no source by (D1), and we apply the considerations above to the
source in N�e with smallest distance to a. &

Thus we can suppose that A has the following form with a convex subcategory A0

and relation e ¼ a! b! c:

Then the algebra A2:¼ S�a S
�
xt . . .S

�
x1A has the form

a�  x�t  � � �  x�1  ys  � � �  y1 b! c� A0 :

It has one relation less than A and is again a semi-tree algebra, hence we can continue
by induction.

Now consider the case when e ¼ a! b! c is a relation of A of length 2 as con-
sidered in (D3) and N�e and Nþe contain no relation. Then, after a suitable change
of the subcategories N�e and Nþe as in Lemma 3.5, the algebra A has the form

with some convex subcategory A0. Now set A2:¼ S�a S
�
xt � � �S

�
x1A. In the algebra A2,

the subcategory S ¼ b! c! y1! � � � ! ys satis¢es the conditions of Lemma 3.1,
thus we can change the orientation in S and denote the resulting algebra by A3.
Then the algebra A4:¼ Sþx�1 . . .S

þ
x�t
Sþa�A has the form

x1! � � � xt! a! c! y1! � � � ! ys ! b� A0 :

It has one relation less than A and is again a semi-tree algebra, hence we can continue
by induction.
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The case of a relation of length 3 is slightly more complicated. We just deal here
with a pair ðe; e0Þ of relations of length 3 on the subquiver a! a0 ! b! c0 ! c
of A, keeping in mind that one of the vertices a or c (and hence one of the relations
e; e0 ) may not exist. First consider the case when both convex subcategories N�e
and Nþe are hereditary. Then we may assume as in Lemma that A has the following
form with a convex subcategory A0:

Now set A2:¼ Sþc S
þ
y1 . . .S

þ
ysS
�
a S
�
xt . . .S

�
x1A. The algebra A2 contains A0 as a convex

subcategory, and one component of A2nA0 is of the form a0 ! b! c0. By condition
(D4), the vertices a0 and c0 do not belong to D and are not involved in any relation
of A2. Thus we can turn the arrow a0ob by an APR-tilt in a0 and obtain
a0  b! c0. But then we obtain the same blowing-up when we replace the two
arrows a0  b! c0 by one arrow b! b0 with b0 2 D. Let us call this algebra
A3. Now set A4:¼ S�y�s � � �S

�
y�1
S�c�A3, then A4 has a component of A4nA0 of the

form b! b0 ! c! y1! � � � ! ys, which we can turn by Lemma 3.1 into
b ys  � � �  y1  c b0. The resulting algebra being A5, we ¢nally set
A6:¼ Sþx�1 . . .S

þ
x�t
Sþa�A3. This algebra has the form

A0 � b ys  � � �  y1 c b0  a xt � � �  x1 ;

which was what we wanted.
The last case we have to deal with is when there is a pair ðe; e0Þ of relations of length

3 on the subquiver a! a0 ! b! c0 ! c of A and the convex subcategories N0
e and

Nþe are hereditary. Then we may assume as in Lemma 3.4 that A has the following
form with a convex subcategory A0:
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Now set A2:¼ Sþc S
þ
y1 � � �S

þ
ysA. This algebra has the following form, where all

relations except e: a! a0 ! b! c0 are contained in A0:

We turn the subalgebra c� ! � � � ! b by Lemma 3.1 and call this algebra A3. Then
the algebra A4:¼ Sþc0A3 has the following form, where all relations except
Z: c0 ! a0 ! b! c� are contained in A0:

We consider A5:¼ Sþc�S
þ
y�1
� � �Sþy�s S

þ
x1 � � �S

þ
xtA4. There, one component S of A5nA0 is

formed by the vertices fa; a0; b; c0g. As we have done before, we turn the direction
of the arrow c0 ! a0 and view the two arrows starting in a0 as one arrow, thus
we replace S by S0 ¼ a! a0 ! b0 with b0 2 D and denote this algebra by A6.
The algebra S�x�t . . .S

�
x�1
S�ys . . .S

�
y1S
�
c A then ¢nally has the desired form

A0 � a! a0 ! b0 ! c� ! y�1 ! � � � y
�
s ! x1 ! � � � ! xt :

This ¢nishes the last case in the proof of Proposition 2.5. &

4. Proof of Proposition 2.4

Let B be a tree algebra that does not contain a convex subcategory which is derived
equivalent to some hereditary algebra of typeEp;eEEp or to a tubular algebra. Suppose
further that B is derived-tame or the Euler form of B is non-negative. Then we have
to show that B is derived equivalent to a semi-tree algebra A½D
.
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Note that if the Euler form of B is non-negative of corank 0 or 1, then B is
derived equivalent to a hereditary algebra of type An;Dn or eDDn, respectively
([4]). These algebras are described in [3, 20] and [26]. Comparing with these
lists, we see that not all these algebras are semi-tree algebras: There do occur
relations of length greater than 3. Thus our ¢rst aim is to eliminate these long
relations. Let therefore r: a0! a1 . . . an�1 ! an be some relation of B. We
say that r is of type (I) if

(R1) Both a0 and an are end vertices of B and
(R2) The projective B-module Pða0Þ has support fa0; . . . ; an�1g and the injective

B-module IðanÞ has support fa1; . . . ; ang.

Otherwise, we say that r is a relation of type (II).

LEMMA 4.1. Let R be an arbitrary tree algebra which has some relation of type (I).
Then there is a tree algebra S which is derived equivalent to R and has strictly less
relations.
Proof. Let r: a0! a1 . . . an�1! an be a relation of R of type (I). As a0 and an are

end vertices, the re£ections S�aoR and SþanR in these vertices are de¢ned. Since r
is of type (I), the algebras S�aoR and SþanR are tree algebras of the following form:
Re£ecting in a0 produces an arrow an�1 ! a�0 and a relation s�x: x! ai !
aiþ1 . . . an�1! a�0 for every x in R with a relation sx: x! ai !
aiþ1 . . . an�1! an. Dually, re£ecting in an leads to an arrow a�n ! a1 and to a relation
t�y: a

�
noa1 . . . aj�1! aj ! y for every y in R with a relation ty: a0!

a1 . . . aj�1! aj ! y. If we denote by x the number of relations sx and by Z the
number of relations ty, then re£ecting in a0 changes the number of relations by
x� Z� 1 whereas re£ecting in an changes the corresponding number by
Z� x� 1. Since at least one of these numbers is strictly smaller than 0, the lemma
holds. &

By iterated use of the lemma above we can suppose from now on (up to derived
equivalence) that B has no relations of type (I). For later reference, we collect
the conditions on B and say that B satis¢es condition (E) if

(E1) all relations of B are of type (II),
(E2) B is derived-tame or the Euler form of B is non-negative and
(E3) B does not contain a convex subalgebra which is derived equivalent to some

Ep;eEEp or to a tubular algebra.

Beforehand, we show that some particular algebras cannot occur under condition
(E2) and (E3):

LEMMA 4.2. Let E be the algebra with quiver x a0! a1 . . . an�1 ! an and
relation a0! � � � ! an or the algebra with quiver x! a0! a1 . . . an�1 ! an and
relation a0! � � � ! an and possibly one relation x! � � � ! ai for some
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1W iW n� 1. Then E is derived equivalent to Enþ2 in case 4W nW 6, to eEE8 in case
n ¼ 7 and to a wild hereditary algebra in case nX 8.
Proof. Consider the re£ection SþanE of E in the sink an. In case there is an arrow

x a0 or there is no relation x! � � � ! ai, the algebra SþanE is of the form
Enþ2 in case 4W nW 6, or eEE8 in case n ¼ 7 and it is wild in case nX 8. If there
is a relation x! � � � ! ai, then it is easy to see that the algebra S�x S

þ
anE is tilted

of the type stated above. &

To prove Proposition 2.4, it is suf¢cient to show the following claim: Let B be a tree
algebra satisfying conditions (E1) to (E3). Then B is of the form A½D
 for some tree
algebra A with some set of vertices D satisfying (D1) to (D5).

Suppose it is possible to write the algebra B as a blowing-up A½D
. Since B is a tree
algebra, no internal vertex of A belongs to the set D, hence condition (D1) holds
automatically. The same is true for condition (D5): If H is some convex hereditary
subcategory of B, then H is of type An, Dn or eDDn due to condition (E3). So we
concentrate in the following on the relations which can occur in B.

LEMMA 4.3. Let B be a tree algebra satisfying condition (E). Then all relations of B
have length 2 or 3.
Proof. Let r: a0 ! a1 . . . an�1! an be a relation of B and suppose nX 4. If a0 is no

end vertex and connected with some x, then the convex subalgebra of B with support
fx; a0; a1; . . . ; ang is by Lemma 4.2 derived equivalent to someEp or to eEE8 or to a wild
hereditary algebra, in contradiction to conditions (E2) or (E3). Now suppose that
both a0 and an are end vertices. Since r is of type (II) by condition (E1), there
is (up to duality) an arrow ai ! y with y 6¼ aiþ1 for some i 2 f2; . . . ; n� 1g such that
the path a0! � � � ! y does not vanish in B. Now consider the convex subalgebra
E of B with support a0; . . . ; an; y. Re£ecting in y leads to an algebra Sþy E that
has the form considered in Lemma 4.2, in contradiction to (E2) or (E3). Therefore,
the only possible values for n are 2 and 3. &

We now start to investigate the possible combinations of relations.

LEMMA 4.4.Let B be a tree algebra satisfying condition (E). Let r and s be relations
of B and suppose that r has length 3. If r and s share precisely one arrow a of B, then a
is the start arrow of r and the end arrow of s or vice versa.
Proof. Suppose ¢rst that s has length 2. Then we have, up to duality, to

exclude the cases when s ¼ a0 !
a
a1! a2 and r ¼ a0 !

a
a1 ! b1! b2 or

r ¼ b1! a0!
a
a1! b2. In both cases, the assumption that r is of type (II)

yields the existence of an additional vertex y connected with one of the vertices
of r. Using the list [7] of tree algebras which are derived equivalent to E6,
it is easy to see that in each case the convex subalgebra of B formed by the
vertices fa0; a1; a2; b1; b2; yg is derived equivalent to E6, in contradiction to con-
dition (E3).
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Now suppose that s and r both have length 3. Up to duality, we have to exclude
the following cases: Either a is the ¢rst arrow of s ¼ a0 !

a
a1! a2oa3 and

r ¼ a0!
a
a1! b1! b2 or r ¼ b1! a0!

a
a1! b2, or else a is the middle arrow

of s, hence s ¼ a0! a1 a!a2!a3 and r ¼ b1! a1!
a
a2 ! b2. In each case, we ¢nd

the convex subalgebra of B formed by the vertices fa0; a1; a2; a3; b1; b2g in the list
[7] of tree algebras which are derived equivalent to E6, in contradiction to condition
(E3). &

LEMMA 4.5. Let B be a tree algebra satisfying condition (E). Suppose that
r: a1! b1 ! b2! b3 is a relation of length 3. Then, up to duality, either b3 is an
end vertex of B or there is a relation s: b1! b2! b3 ! c1 and no relation
t: a0! a1! b1 ! b2.
Proof. If r contains an end vertex, we may assume up to duality that this is the

vertex b3. Otherwise, if a1 is connected with an additional vertex a0 and b3 with
some vertex c1, then we consider the convex subalgebra of B formed by the vertices
fa0; a1; b1; b2; b3; c1g. From the list [7] it follows easily that there must be precisely
one relation of length 3 sharing two arrows with r, up to duality this is the relation
s from the lemma. &

In Figure 1 we show all con¢gurations of relations that may occur in B. Here, the
ringed vertices, denoted by �, are supposed to have no other neighbours than those
shown in the ¢gure, whereas the starred vertices, denoted by ?, are possibly con-
nected with vertices of B that are not shown in Figure 1. The ¢rst three con¢gurations
describe all possibilities of the blowing-up of a relation e ¼ a! b! c in A to a tree
algebra A½D
. The remaining con¢gurations then descri be all possible relations of
length 3 in a semi-tree algebra of the form A½D
.

Thus, if this are all possible relations in the algebra B, then B is clearly of the form
A½D
where A is a tree whose internal vertices coincide with the internal vertices of B,
and whose end vertices belong to D if there is in B a corresponding pair of end
vertices ða1; a2Þ or ðc1; c2Þ of Figure 1. Thus, the Proposition 4.6 below shows that
B is of the form A½D
 where A and D satisfy conditions (D1) to (D5).

PROPOSITION 4.6. Let B be a tree algebra satisfying condition (E), and let r be a
relation of B. Then r is given by one of the diagrams sho wn in Figure 1 (or their
duals). Moreover, if s is another relation of B that contains some of the arrows shown
in this diagram, then s is either one of the relations shown in the diagram, or it stops or
starts in the vertex b in case r has length 2, and it stops in the vertex b1 or starts in the
vertex b3 in case r has length 3.
Proof. Let r be a relation of B. By Lemma we know that r has length 2 or 3.

Suppos e ¢rst that r ¼ a1!
a1 b!

b1 c1 has length 2. Then we know by Lemma 4.4
that each relation of B that contains one of the arrows of r and does not start
or stop in the vertex b is of the form s ¼ a1!

a1 b!
b2 c2 with c2 6¼ c1 or

t ¼ a2 !
a2 b!

b1 c1 with a2 6¼ a1.
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Case 1: If there are no such relations s and t, then r is given by the ¢rst diagram
shown in Figure 1, and the assertions of the proposition hold.

Case 2:Now we suppose that there is one relation t, but no relation s and show that
we arrive at the second diagram from Figure 1: As before, by Lemma 4.4 each
relation of length 3 that contains one of the arrows a1; a2 or b1 either stops or starts
in b. Since we assume that we have no relation of the form s and on ly one relation
of the form t, there is only one possibility how a relation can contain one of the
arrows a1; a2 or b1, but not stop or start in b: This is a relation s0 ¼
a2!

a2 b!
b3 c3 such that the product b3a1 does not vanish in B. In this case, we make

Figure 1. The possible relations of B.
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use of the fact that the relation t is of type (II), which yields the existence of an
additional vertex y. Using the list [7], it is then easy to see that in each case the
convex subalgebra of B formed by the vertices fa1; a2; b; c1; c3; yg is derived equiv-
alent to E6, in contradiction to condition (E3). Hence, we are in the situation of
the second diagram from Figure 1, and the proposition holds if we can also show
that both a1 and a2 are end vertices. Suppose therefore that a1 is connected with
an additional arrow y1. Then we use the fact that the relation t is of type (II), hence
ther e must exist an additional vertex y2. Using the list [7], it is then easy to see
that in each case the convex subalgebra of B formed by the vertices
fa1; a2; b; c; y1; y2g is derived equivalent to E6, in contradiction to condition (E3).

Case 3: If both s and t occur, we obtain the third diagram in Figure 1: By the con-
siderations from the previous case it follows that there must be a relation
r0: a2!

a2 b!
b2 c2, and it only remains to show that a1; a2; c1 and c2 are end vertices

of B. Suppose there is an additional vertex y connected to a1, and consider the convex
subalgebra C of B formed by fa1; a2; b; c1; c2; yg. Obviously, the algebra Sþc2S

þ
c1C is

tilted of a wild hereditary algebra, in contradiction to (E2).
The last thing we have to show when r has length 2 is that there cannot occur more

than one relation of type u (or dually, of type s). So suppose there are relations
t ¼ a2 !

a2 b!
b
c1 and t0 ¼ a3 !

a3
b!

b
c1. Then we deduce a contradiction from

the fact that r; t and t0 are of type (II): In case c1 is no end vertex, hence connected
with some y, consider the convex subalgebra C of B formed by fa1; a2; a3;
b; c1; yg. Then the algebra S�a1S

�
a2S
�
a3C is tilted of a wil d hereditary algebra, in con-

tradiction to condition (E2). If one of the following cases occurs: either a1 is no
end vertex, or there is an arrow g: y! b such that the product bg does not vanish,
or there is an arrow g: b! y such that the products ga1; ga2 and ga3 do not vanish,
then we de¢ne a convex subalgebra C in the same way as above and see that
Sþc1C is tilted of a wild hereditary algebra. If there are ¢nally se veral arrows
gi: b! yi such that for each of the vertices aj some path to yi does not vanish
in B, then we ¢nd a convex subalgebra of B which is derived equivalent to E6.

This ¢nishes the discussion when r has length 2, and we now turn to the case of a
relation r: a1! b1! b2! b3. We know from Lemma 4.4 and Lemma 4.5 that,
up to duality, each relation of B that shares common arrows with r and th at does
not stop in b1 must be a length 3 relation sharing two arrows with r. Moreover,
if there is a relation sharing the last two arrows with r, then there is no relation
sharing the ¢rst two arrows with r. Thus, we only have to consider the following
additional relations:

r0: a2! b1 ! b2! b3; s: b1! b2! b3 ! c1 and

s0: b1! b2 ! b3! c2:

As in the ¢rst half of the proof, we distinguish now several cases according to the
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existence of these relations and show that we arrive at the corresponding diagram
from Figure 1.

Case 4: If none of the relations r0; s and s0 occurs, then we obtain diagram 4 from
Figure 1, the vertex b3 is an end vertex by our choices and all the conditions of
the proposition concerning additional relations hold by Lemma 4.4 and 4.5. Thus
it only remains to show that b1 has only the two direct neighbours a1 and b2 in
B: Either a1 has a neighbour a0, then an additional neighbour y of b1 would lead
to a convex subalgebra fa0; a1; b1; b2; b3; yg which is derived equivalent to E6.
Otherwise, if a1 is an end vertex, we can exchange b1 and b2 up to duality. Hence,
the case to be considered is when both b1 and b2 have an additional neighbour,
say y1 and y2 in B. Then the convex subalgebra fa1; b1; b2; b3; y1; y2g is derived
equivalent to E6.

Case 5: If r0 occurs, but s and s0 not, then we are in the situation of diagram 5. Again,
by our choice of orientation, b3 is an end vertex and there are no other relations
possible involving one of the given arrows. If b1 or a1 would have an additional
neighbour y in B, we denote by C the convex subalgebra of B formed by
fa1; a2; b1; b2; b3; yg. Then the re£ection Sþb3B is tilted of a wild hereditary algebra.

Case 6: If s occurs, but r0 and s0 not, then we are in the situation of diagram 6. As in
case 4, everything works for the relations, and the vertex b1 has no additional neigh-
bour y in B, since otherwise the convex subalgebra formed by fa1; b1; b2; b3; c1; yg is
derived equivalent to E6.

Case 7: If s and r0 occur, but s0 not, we are in the situation of diagram 7, and Case 8:
If s,s0 and r0 occur, we are in the situation of diagram 8. Both these cases behave
analogous to case 5.

We ¢nally have to show that there are not three relations sharing their two end
arrows. So suppose we have the relations r, r0 and a third one r00: a3!
b1! b2! b3. If C denotes the convex subalgebra C of B formed by fa1; a2; a3;
b1; b2; b3g, then the re£ection Sþb3B is a wild hereditary algebra. &
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