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Abstract. Inthisnote we classify the derived-tame tree algebras up to derived equivalence. A tree
algebra is a basic algebra 4 = kQ/I whose quiver Q is a tree. The algebra A is said to be
derived-tame when the repetitive category A of A is tame. We show that the tree algebra A4 is
derived-tame precisely when its Euler form y , is non-negative. Moreover, in this case, the derived
equivalence class of A4 is determined by the following discrete invariants: The number of vertices,
the corank and the Dynkin type of y,. Representatives of these derived equivalence classes
of algebras are given by the following algebras: the hereditary algebras of finite or tame type,
the tubular algebras and a certain class of poset algebras, the so-called semichain-algebras which
we introduce below.
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1. Introduction

Let A be a finite-dimensional algebra (associative, with 1) over an algebraically
closed field k. We denote by mod 4 the category of finite-dimensional, left A-modules
and by D’(A) the derived category of bounded complexes over mod A. If the algebra
A has finite global dimension, then D?(4) is triangle equivalent to the stable category
mod 1:1, where 4 denotes the repetitive category of A (see [16]). By Drozd’s
Tame-Wild dichotomy ([12]; see also [10] and [13]), precisely one of the following
two cases occurs: The first possibility is that the repetitive category A is tame, i.e.
for each dimension d € IN and each object X of A, almost all indecomposable
modules M: 4 — mod k with Y vy dimM(Y) =d and M(X) # 0 occur in a finite
number of one-parameter families. In the other case, the category A4 is wild, i.e.
the conjugacy classes of pairs of square matrices (whose classification is a
well-known unsolved problem) occur as isomorphism classes of certain A-modules.
Following [11], we say that A is derived-tame if the category A is tame. We are
concerned with the question which algebras 4 are derived-tame.

The category D”(A) is best understood when 4 is derived equivalent to a hereditary
algebra of finite or tame type or to a tubular algebra ([16, 17]). These algebras are
also characterized by the fact that the derived category D’(A) is cycle-finite ([2])
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or that the push-down functor mod A— modT (A)is dense ([5]), where T'(A4) denotes
the trivial extension of A4. In all these cases, the Euler form of A4 is non-negative.
Recall that the Euler form y, of A is the quadratic form which is associated to
the homological bilinear form (,) on the Grothendieck group of A4 given by
([X],[Y] = Z;’io(—l)idimkExtil(X, Y) for A-modules X and Y.

The knowledge of D”(A) is rather limited when the category D”(A4) is not
cycle-finite. Instances of derived-tame algebras whose derived category is not
cycle-finite can be found among gentle algebras ([1]; see also [18, 23, 24]), and
another class is provided by pg-critical algebras (NS). Motivated by his study of
selfinjective algebras, A. Skowronski raised around 1990 the question whether
the repetitive algebra of each simply connected algebra is tame if and only if the
Euler form is non-negative.

Clearly, this statement can hold only for classes of algebras 4 which are uniquely
determined by the (discrete) datum of their Euler form y,. One instance is the class
of tree algebras: Those basic algebras 4 = kQ/I whose quiver Q is a tree. In this
case, it has been conjectured explicitely in [11] that a tree algebra is derived-tame
precisely when its Euler form is non-negative, and the conjecture could be verified
in [7] for tree algebras containing a convex subalgebra which is derived equivalent
to some hereditary algebra of type E,, E,(p = 6,7, 8) or to a tubular algebra.

We obtain in this paper the complete answer:

THEOREM 1.1. 4 tree algebra is derived-tame precisely when its Euler form is
non-negative.

Moreover, we classify the derived-tame tree algebras up to derived equivalence.
Using the results of [7], it is sufficient to concentrate on those derived-tame tree
algebras which do not contain a convex subalgebra which is derived equivalent
to some hereditary algebra of type IE,,E,(p =6,7,8) or to a tubular algebra.
We show that these algebras are derived equivalent to a so-called semichain
S(n, m) :

For m < n € IN we define S(n, m) to be the poset algebra which has the following
quiver

df i dp,  dp

/.——». ses O —— > @

@ ——— @ oo O— >0

dy dy A1 dm
and satisfies, as a poset algebra, that all squares are commutative. For m = 0 or
m = 1, the algebras S(n, m) are representation-finite hereditary with Dynkin quiver
of type A, for m =0 and of type D,y for n >3 and m = 1. The algebra S(2,2)
is tame hereditary of type Asj, and the algebras S(n, 2) are derived equivalent to
tame hereditary algebras of type ID, ;. More generally, all the algebras S(n, m) with
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n > m > 1 have a non-negative Euler form of corank m — 1 and Dynkin type D,
(see [9] for the definition of the Dynkin type of a non-negative unit form).

The derived equivalence classes of derived-tame tree algebras are then described as
follows:

THEOREM 1.2. Let A be a connected derived-tame tree algebra. Then A is derived
equivalent to a hereditary algebra of type [, Ep or to a tubular alge bra or to precisely
one of the algebras S(n, m). In particular, the tree algebra A is up to derived equiv-
alence determined by the number of vertices, the corank and the Dynkin type of
its Euler form.

From the complete classification of derived tame tree algebras up to derived
equivalence, we get some consequences: In [8] it was conjectured for a strongly
simply connected algebra A that if the Euler form y, is non-negative of corank
> 3, then the Dynkin type of y, has to be [D,. We can confirm this conjecture
in the case of tree algebras, and give the complete picture in Table I. There we list
in the rows the possible coranks m of Euler forms y of tree algebras, and the columns
indicate the possible Dynkin types. The entries of the diagram show algebras whose
Euler form is non-negative and has the required properties. By the sign ‘-~ we indi-
cate that no tree algebra exists whose Euler form has the corresponding properties.

Moreover, we obtain the following corollary

COROLLARY 1.3. A4 derived-tame tree algebra contains a subcategory derived
equivalent to E¢ precisely when it contains a convex subcategory which is derived
equivalent to hereditary algebra of type E, E,,p=6,7,8 or to a tubular
algebra.

The tree algebras derived equivalent to [Eg are classified in [7], thus one can use this
handy list to determine whether a given derived-tame tree algebra has Dynkin type
D, or Ej.

This note is organized as follows. In Section 2 we recall several important
techniques, in particular the reflections at a sink or source of the algebra 4. We
further introduce the class of semi-tree algebras, this is the class of algebras where
it is possible to work out the proof of the Theorems inductively. We finally divide

Table 1.

Type A, Type D, Type I,
m=0 kA, kD, kI,
m=1 - kD, kE,
m=2 - S(n-1,3) tubular
m=3 - S(n-1, m+1) -

https://doi.org/10.1023/A:1012591326777 Published online by Cambridge University Press


https://doi.org/10.1023/A:1012591326777

304 THOMAS BRUSTLE

the proof of the main theorems in two parts, formulated in Proposition 2.4 and 2.5.
The remaining two sections are then devoted to the proofs of these two propositions.

When preparing this manuscript, we learned that Ch. Geiss obtained the same
results (Theorem 1 and 2) by using quite different methods [15].

2. APR-Tilts, Reflections and Blowing-Up
2.1. NOTATION

Let A = kQ/I be a tree algebra, i.e. Q is a finite quiver whose underlying graph is a
tree and 7 is an admissible ideal of the path algebra kQ. We will always suppose
that our algebras are connected. When talking of a vertex of 4 we mean a vertex
of the quiver Q. Since A4 is a tree algebra, there is a minimal set of paths generating
the ideal 7. We refer to these generating monomials p =a; — --- — a, in kQ
as relations of A and occasionally call the set {aj,...,a,} the support of the
relation p.

We also identify A with a k-category whose objects are the vertices of 4 and whose
morphism space A(x,y) from x to y is e,Ae,, where e, denotes the idempotent
element of A associated with the vertex x, see [14]. We say that B is a convex sub-
category of A if B=kQ'/I' where Q is a path-closed subquiver of Q and
I' =1 NkQ'. When viewing the algebra 4 as a category, we interpret the A-modules
as k-linear functors M: A — modk. Thus, we can speak of the derived category
Db(A) of a k-category A. Moreover, the k-category B is derived-equivalent to a
k-category C, if there is a triangle equivalence F: D?(B) — D’(C). We recall that
the triangle equivalence F induces an isomorphism of the corresponding Grothen-
dieck groups together with their homological bilinear forms, hence the Euler form
yg of B is non-negative if and only if y is, and, in this case, corank yp = corank
%c- Also the derived-tameness of a k-category is preserved under triangle equiv-
alences, see [11].

2.2. We recall from [7] the following result.

THEOREM 2.1. Let A be a tree algebra containing a convex subcategory which is
derived equivalent to some hereditary algebra of type E,, E,(p = 6,7, 8) or to a tubu-
lar algebra. Then A is derived-tame if and only if y, is non-negative. Moreover,
in this case, the algebra A itself is derived equivalent to some hereditary algebra
of type E,, Ep or to a tubular algebra.

To prove our main theorems, we therefore can restrict to those tree algebras A4 that
do not admi£ a subcategory which is derived equivalent to a hereditary algebra
of type E,, E,(p =6,7,8) or to a tubular algebra. We show in Proposition 2.4
and 2.5 below that, under these conditions, the algebra A is derived equivalent
to one of the algebras S(n, m) provided its Euler form is non-negative or A4 is
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derived-tame. This, together with Theorem 2.1, shows the first part of Theorem 1.2:
every derived-tame tree algebra is derived-equivalent to a hereditary algebra of type
E, E,(p =6,7,8) or to a tubular algebra or to one of the algebras S(n, m).

As we mentioned in the introduction, the tubular and the hereditary algebras of
finite or tame type are derived-tame and have non-negative Euler form. The same
holds for the semichain S(n, m), see [11]. Moreover, these algebras can be dis-
tinguished by the number of vertices, the corank and the Dynkin type of its Euler
form, and thus we obtain the second part of Theorem 1.2.

Propositions 2.4 and 2.5 also imply Theorem 1.1: Both assumptions on the tree
algebra A, being derived-tame or having a non-negative Euler form, lead (up to
derived equivalence) to the same class of algebras. More over, both properties
are stable under derived equivalences (see [11]), thus the class of derived tame tree
algebras coincides with the class of tree algebras whose Euler form is non-negative.
In fact, the derived equivalences in Propositions 2.4 and 2.5 are realized by ref-
lections and APR-tilts (which clearly preserve the derived-tameness), so we do
not even need the abstract result from [11] that derived-tameness is preserved under
derived equivalences.

2.3. APRTILTS, REFLECTIONS

Let A =kQ/I. For a vertex x of 4, we denote by P(x) the projective cover of the
simple A-module which is concentrated in x, and by /(x) the corresponding injective
hull. The Auslander-Reiten translations of mod A4 are denoted by 74 and 77, cf. [22]
or [6].

If x is a sink of 4, then the module 70 =t P(x) ® (®,4 P(»)) is called an
APR-tilting module, and the algebra B = End 7™ is an APR-tilt of A. Of course,
the algebras 4 and B are derived equivalent. It is easy to see that if no relation
of A has the sink x as its terminal point, then the algebra B is obtained from A4
by reversing each arrow y — x to an arrow y < x*, cf. [1]. The notion of an
APR-cotiliting module is defined dually for a source x of A.

We recall that the one-point extension A{M] of A by the A-module M contains A4 as
a convex subcategory and has one extra vertex x that becomes a source in A[M] by
A[M](x,y) = M(y) for y # x and A[M](x, x) = k. Conversely, given a source x in
A, we can write A = Ag[M] where 4y = A\x and M = radP(x), cf. [22]. Dually,
co-extensions [M]A are defined by adding sinks to the category A.

We recall from [19] the concept of reflections: Let x be a sink in Q. Then we write
A =[M]A, as a one-point co-extension and define the reflection of A at the sink
X to be the algebra STA4 = 4o[M]. Thus, the algebra Ay is a convex subcategory
of both 4 and S;,LA, and the sink x of A4 is replaced by a source x* in ST A4, with
Ay, x) =2 STA(x*, y) for all y € Ay. Dually, we consider the reflection S; A4 of 4
at a source x of 4.

It is easy to see that the repetitive categories of 4 and S, A4 are isomorphic.
Moreover, ST A4 is tilting-cotilting equivalent to 4, see [25].
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2.4. BLOWING-UP

When proving Proposition 2.5, we proceed by induction on the number of zero-
relations. Now the algebra S(n, m) we are aiming at is not a tree algebra, so we
have to set up our induction within a slightly larger class of algebras which we pre-
pare to introduce now.

Let A = kQ/I be a basic algebra, and let v € Qy be a vertex of 4 and F a finite set.
Then we define the blowing-up ofA at the vertex v by F to be the algebra A= kQ/I
given by the following quiver Q and ideal I: The quiver Q is obtained from Q
by replacing the vertex v by the vertices v with f € F and each arrow o x — v
by arrows o/: x — v/, f € F and dually for each arrow f: v — y.

There is an obvious quiver eplmorphlsm 0 — O which extends umquely to an
epimorphism of k-algebras 7: kQ — kQ. We define the ideal 7 of kQ as the inverse
image of I under 7. So the algebra A is a subcategory of 4 (only convex if v is
a sink or source), and we have A(x,v) = A(x,v) and A(v,x) = AV, x) for all
x#vand f eF.

LEMMA 2.2. Let A be an algebra with a sink v. Let A be the blowing-up of A at the
vertex vby the set F = {1, ..., r}. Then the iterated reflection S:T . szzl at the sinks
Vi i € F coincides with the blowing-up of ST A at the vertex v* by the set F.

Proof. Asvisasinkin 4, we can write A = [M]A, as a one-point co-extension by
some Ag-module M with extension-vertex v. Then the algebra Ais just the r—fold
one-point co-extension by the same module M and extension vertices v
By definition, the algebra obtained by iterated reflections at the sinks V' is the r—fold
one-point extension by the module M, so S:T e Sj,;l =(...(4o[M])...[M]). On the
other hand, first reflecting in v turns 4 = [M]4, into S}A = Ao[M] with source

v*, and blowing-up in v* results in the same algebra (... (A4o[M]) .. .[M]) as before. []

LEMMA 2.3. Let A be an algebra with a sink v such that no relation of A has v as its
terminal point. Let A be the blowing-up of A at some vertex w by the set F. If w
is not a neighbour of v, then the iterated APR-tilts szzl at the sinks w' ., f € F yield
the same algebra as the blowing-up of B=End T") at the vertex v* by the set F.

This follows easily from the explicit construction of the algebra B as explained in
Section 2.3. Only the case when w is a neighbour of v has to be excluded, since
the blowing-up in w could then possibly produce a commutativity relation with ter-
minal vertex v.

2.5. THE ALGEBRA A[D]

We will deal in the following only with blowing-up by sets F' = {4, —} of cardinality
2. Moreover, if we blow up an algebra in several vertices, the resulting algebra
is independent on the order of the vertices chosen to be blown up. Thus, given
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an algebra 4 = kQ/I, we just specify a set D of vertices and denote by A[D] =
kQ[D]/I[D] the blowing up of A in the vertices d € D by the set {+, —}. We often
denote the vertices of A[D] by d*,d™ if d € D and by s if s € A\D. The algebra
A will be a tree algebra later, thus the ideal I will be generated by zero-relations.
Consequently, the ideal /[D] is generated by all paths w in kQ[D] with n(w) €
together with all commutativity relations BTat = B~ o~ whenever there are arrows
x5 dt 5 yandx 5 d- S yin A[D] with n(d*) = n(d~) and n(e") = n(e~) as well
as n(f") = n(f").

EXAMPLES. (1) If 4 = kQ is a chain
dy—>dy— > dy—> Sy — - > 8y

with D = {d, ..., d,}, then the algebra A[D] coincides with the semichain S(n, m)
introduced above.

(2) If A = kQ/I is given by the quiver Q = d) —> s LY d, with ideal I generated by
the relation fo = 0 and D = {d, d,}, then the algebra A[D] is given by the following
quiver with relations ot = o~ =p o =0~ =0:

df e~ " BT _,edf
\./ :
i e—a g ~ed;

2.6. SEMI-TREE ALGEBRAS

We now introduce the class of algebras we are finally dealing with.

DEFINITION. Let 4 = kQ/I be a tree algebra and D a set of vertices of 4. We say
that the algebra A[D] is a semi-tree algebra provided the following conditions
are satisfied:

(D1) Ateachvertex of D starts at most one arrow and at each vertex of D stops at most
one arrow.

(D2) The ideal I is generated by relations of length 2 or 3.

(D3) Ife=a =5 b5 cisone of the generators of the ideal /7, then the middle vertex b
does not belong to D. Moreover, all other generators of / that contain the arrow o
stop in the vertex b, and all generators different from ¢ that contain the arrow f
start in b.

(D4) The generators of I of length 3 have the forme =a — o Zb —/}> ¢ where ¢’ is an
end vertex of Q or dually ¢ = ¢’ % b5 ¢ — ¢ with end vertex & or they come
as a pair (¢=a— d>b5cdd=d>5b>d— ¢). In each case, the
vertices @', b and ¢’ do not be long to D, no other generator of the ideal 7 contains
one of the arrows « or f5, and in ¢’ and ¢’ do not start or stop any other arrows.
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(DS) Each convex hereditary subcategory H of 4 is of type A, D, or ﬁ)n. In case H is
of type D, or D,, the end vertices of H do not belong to D.

PROPOSITION 2.4. Let B be a tree algebra that does not contain a convex sub-
category which is derived equivalent to some hereditary algebra of type IE,, E, or
to a tubular algebra. If B is derived-tame or if the Euler form of B is non-negative,
then the algebra B is derived equivalent to a semi-tree algebra A[D].

The second part of the proof of our main theorems is worked out in the class of
semi-tree algebras:

PROPOSITION 2.5. Let A[D] be a semi-tree algebra that does not contain a convex
subcategory which is derived equivalent to some hereditary algebra of type E,, E,
or to a tubular algebra. If A[D] is derived-tame or if the Euler form of A[D] is
non-negative, then A[D] is derived equivalent to some semichain S(n, m).

3. Proof of Proposition 2.5

We are given a tree algebra 4 = kQ/I with a set of vertices D of 4 such that the
conditions (D1) to (DS5) hold. In order to show that the semi-tree algebra A[D]
is derived-equivalent to a semichain S(n, m), we proceed by induction on the number
of relations of 4. We construct the derived equivalence using the operations con-
sidered in Lemmas 2.2 and 2.3 above. As these operations commute with the
blowing-up procedure, it is sufficient to show that the tree algebra 4 can be trans-
formed into the chain from Example (1) of Section 2.5; the blowing-up applied after-
wards then yields the desired semichain.

LEMMA 3.1. Let A = kQ/I be an algebra and D a set of vertices of A. Suppose that A
is the union of two convex sucategories Ay and S with Ay NS = {s} where S is her-

editary with quiver x| A B s Assume further that s ¢ D and no relation

of A starts in one of the vertices x;. Denote by A* = kQ*/I* the algebra whose quiver

Q" is obtained from Q by replacing the subcategory S by S*=x, <

bl X1 4 s and whose ideal I* is generated by the same relations as the ideal I of A.
Then A[D] is derived equivalent to A*[D].

A: @ ——— > @ oo O—» @ ——>
T o Tt—1 Tt s

Proof. If t = 1, we apply the APR-tilt in the source x; to turn the arrow x; 4 sinto

o
x1 <= s. This is possible since the neighbour s of x; does not belong to D. In case
t > 1, we use induction on t; We first apply iterated reflections at the sources
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X1, ..., Xx;—1 and obtain A4;: = Se - SqA. In Ay, the vertex x; is a source, and no

relatlon starts in x;. Thus we can reverse the arrow x, — s by an APR-tilt as in

the case t =1 and call the resulting algebra A4,. Next, reflecting in the sink x,

and in the iterated sinks x*_,,...,x7 of 4>, we get A3 = S+ Sk S+A2 The

algebra A; contains A( as a convex subcategory with 43\ 4 formsd by the dlSJOlnt
-2

union of a source x} together with a subquiver ' =x; — -+ = X, s that
satisfies the conditions of the lemma and has one vertex less than S.

A3: @ ——» csoe —— @ —— > [ J
T Ty s xy

Thus, by induction, we can turn S’ as described in the lemma and denote the resulting
al gebra by A4. Finally, we reflect the source x] back and obtain 4* = SaAs of the
desired form. O

Remark. In the proofs of this section, we just specify the reflections or APR-tilts to
be applied and describe the resulting algebras. Thus, when proving the lemma above,
we leave it to the reader to write the algebra A4 in the form 4 = Ay[M;]...[M,] and
check that, for instance, the algebra ST ... ST A4 = [M/]...[M>]4¢[M ] has the form
claimed above.

LEMMA 3.2. Let A =kQ be a hereditary algebra with quiver Q of the form
O0=1—2— ... > nand D a set of vertices of A. Then A[D] is derived equivalent
to S(n, m) with m = |D|.

Proof. Reflections act on the set of vertices of Q as cyclic permutations, thus we
may assume that the first z vertices of Q belong to D and the last r vertices do
not belong to D. When we know that some vertex of Q belongs to D or to
O\D, then we denote it by d; or by s;, respectively; otherwise, we use the letter x.

Q:dl_>"'dr_)st+1_)"'_)xn7r71_>dn7r_)sn7r+l_)"'_)Sn~

Now, if t = m, then t + r = n and we are done. Otherwise, we present in the following
a sequence of reflections and APR-tilts that moves the vertex d,_, to the first place.
Thus, we increase the number of vertices at the beginning that belong to D by one.
We repeat this movement until 1 = m
In the first step we shift the vertex d,_, to the beginning by setting
S*N Sy ., ---STA. Then we apply Lemma 3.1 to the subquiver S =d,_, —

Sp_ri1 — +-- — 8, in order to change the orientation of its arrows and denote
the resulting algebra by A,. It is hereditary with quiver

Ay < Sp_yy) < Sy —>dy —> - dy —> 501 > > Xy

Then we set A3 = S;HAQ and reverse by Lemma 3.1 the orientation of the subquiver
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Sp—ri1 < --- < 8, of Asz; the resulting algebra is denoted by A4. Putting As =
Sy .. S;Sy, ... St A, we get that As is hereditary with quiver

dy— - > d = S = > Xyl > Sy = > Sp_ppl —> Sy < dy_y.
We now just reverse the arrow s, < d,,_, of A5 by an APR-tilt and, with 44 being the
resulting algebra, set 47 = S;/HA@ This algebra is finally hereditary with quiver

dnfr_>d1_>"'_>dt_)st+1_>"'_)xn7r71_>Sn71_>"'_>sn7r+1_>sn7

thus we increased the number of vertices in D at the beginning by one. O

LEMMA 3.3. Let A = kQ be a hereditary algebra and D a set of ver tices of A such
that A[D] is a semi-tree algebra. Then A[D] is derived equivalent to S(n, m) with
m = |D|.

Proof. As A[D] is a hereditary semi-tree algebra, we get by condition (D5) that the
quiver of 4 is of type A, D, or D,. Up to derived equivalence, we can even suppose
that it is of type A,: Assume A4 has the quiver Q where

®Sn—-1

Q: ® cee ®Sn-2

®s,

Then, by (D1) and (D5), the vertices with index n — 2, n — 1 and n do not belong to
the set D. Moreover, up to an APR-tilt in s,, we can suppose that the arrows
Sp—2 — Sy—1 and s,_» — s, point in the same direction. But now we get the same algebra
A[D] if we replace the two vertices s, ang s, by one vertex d,_; that belongs to D.
The same argument applied to the case D, shows that we can restrict to quivers
of type A,.

By Lemma 3.2, it is sufficient to show that A[D] is derived equivalent to an algebra
A'[D'] where A" = kQ' is hereditary with a linear oriented quiver Q' of type A. If the
quiver Q = x; — x, — - -- — x; of 4 has no internal source or sink, then we are done.
Otherwise, we denote by s = x; the vertex with minimal index j > 1 such that x;
is a sink or a source. Suppose (up to duality) that s is a sink. By condition (D1),
the vertex s does not belong to D. Thus, by Lemma 3.1, we can turn the subquiver
X; —> -+ — xj_; — s of 0 into xj_; < --- <= x; < s and thus reduce the number
of sinks of Q. The statement follows by induction on the number of sinks or sources

of Q. ]

Lemma 3.3 proves Proposition 2.5 in case the algebra A is hereditary. Now we
start to deal with the case when the algebra 4 has some relations. The proof is
by induction on the number of relations of A, hence it is sufficient to show how
one can get rid of one relation. The ‘right’ choic e which relation should be eliminated
first is a bit delicate, and we need to introduce some notation to explain that.
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By the condition (D3) and (D4) in the definition of a semi-tree algebra, each
relation determines a trisection of the quiver of A4 as follows: Given two vertices
x, y of the tree O, we denote by >(x, y) the subtree of Q with root y pointing towards
x, i.e. the interval [y, x] together with all vertices z of Q whose distance from z to x is
smaller than the di stance from z to y. In the example below, for instance, the subtree
>(4, 3) with root 3 pointing towards 4 is supported by the vertices {3, 4, 5, 6, 7, 10, 11}.

Now let ¢ = a — b — ¢ be a relation of 4 of length 2 as considered in (D3). Then
we define a convex subcategory N of 4 by N =w(a,b), and dually we set
N} =(c, b). Moreover, we define N? = | J_>(x, b), where the union runs over al
1 neighbours x of b except a and c. Then, by construction, the union N_U
N®U N} covers the whole quiver Q and, by condition (D3), all relations of A dif-
ferent from ¢ have a support that is completely contained in one of the sets
N;,N° N}

We define a trisection with the same properties for relations of length 3. By con-
dition (D4), we either have one relation ¢ =a — @ — b — ¢ where ¢ is an end
vertex of Q or dually ¢ = d =b —j> ¢ — ¢ with end vertex «/, or there is a pair

(s:a—>a’l>b—ﬁ>c’, 8’:a/—“>b—ﬂ>c’—>c).
In each case, we associate to the datum ¢ or ¢ or (¢, ¢') a trisection of Q by convex
subcategories N, N . N, as follows: We define N, =(a,d'), N =»(c, ') and
N? =, »(x, b), where the union runs over all neighbours x of b except ¢’ and
¢’. Note: N/ may be empty in case ¢’ is an end vertex of Q, dually for N, . Then
again by condition (D4), all the other relations of 4 have a support that is completely
contained in one of the sets N, N°, N .

EXAMPLE. We illustrate the constructions above on the algebra 4 = kQ/I, given
by the quiver Q below and the relations ¢(1):1 —> 2 — 3 - 4, ¢2):3 > 4 —
5—6,¢3):4—>5—>6—T7and e4):8 -2 —9,¢(5):10 - 5 — 11. Then the sub-
category N, for instance, is empty, whereas Nf(l) is supported by {2, 8,9} and

NL) is supported by {3,4,5,6,7,10, 11}.

The following lemma describes which relations can be used in the inductive step.
LEMMA 3.4. One can choose a relation ¢ or a pair (¢, €') of relations in A in such a way

that at most one of the convex subcategories N, N, N} defined above contains some
relations.
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Proof. Let ¢(1) be some relation or (g(1), &(1)’) some pair. If at least two of the
categories N, N&l), N:('l) contain the support of some relation of 4, then we choose
one containing a relation &(2). Now, one of N Q) Nf(z), N .Iz) contains the relation &(1).
If the two others do not contain any relation, we are done. Otherwise, we proceed in
the same way. But, since we work with a finite tree Q, this procedure has to stop with

some relation ¢ = ¢(n) that has the required properties. O

EXAMPLE. If we start in the example above with the relation &(1), both sets Ngl)
and N;(“l) contain further relations. Choose one of them, say Nf(l) supporting the
relation &(4). Now NS(4) contains relations, but N, and NH+(4) don’t. Thus the relation
&(4) is a good candidate to start the induction.

We suppose from now on that A[D] is a semi-tree algebra satisfying the assumptions
from Proposition 2.5. We start with the inductive step of the proof of proposition 2.5.
Let e = a — b — ¢ be a relation of A of length 2 as considered in (D3) and suppose
that N, and N? contain no relation.

LEMMA 3.5. Up to derived equivalence, the convex subcategories N, and N? chosen
above have the form

N =x1—>-—>x,>a—>b

and
Ng:b—>y1—>~-—>ys.

Proof. Consider first the convex subcategory NO. It is hereditary, contains the
vertex b and by (D5) it is of type A,, D, or D,. Now, if NV contains a subquiver
of the form x — b — y; — y, (with arbitrary orientation of the arrows), then the full
subcategory of A[D] with vertex set {a, b, ¢, x, y1, y2} 1s derived equivalent to Eg,
in contradiction to the assumptions of Proposition 2.5. On the other hand, if the
vertex b has three direct neighbours {x, y, z} in Nf, then the full subcategory of
A[D] with vertex set {a, b, ¢, x, y, z} is not derived tame and has no non-negative
Euler form. Thus, the quiver of N? has the form

®Yn—1

° cee ./

b \
and by applying the same considerations as in Lemma 3.3 we can suppose that N? has
aquiver b — y; — -+ — yy of type Ay ;. If this quiver is linearly oriented, we are done

(change, if necessary, the orientation by Lemma 3.1). Otherwise, let j < s be the
maximal index such that the vertex y; is a source or sink. Then the subcategory

oy,
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yj — -+ — ysis linearly oriented, and the vertex y; does not belong to D by (D1). Thus
we can apply Lemma 3.1 and reduce the number of sinks or sources until we reach the
linear oriented case. For N the arguments are the same, except that the vertex a may
bein D. But then it is no source by (D1), and we apply the considerations above to the
source in N, with smallest distance to a. O
Thus we can suppose that 4 has the following form with a convex subcategory 4,
and relation e =a — b — ¢

@—» vo0 — - @— > @ —P- @ ——- @ s ———» @
Ty T a b N Ys

Then the algebra 4»:= S, S_ ... S A has the form
A" < X] <o X] <Yy <—b—>c—Ap.

It has one relation less than A4 and is again a semi-tree algebra, hence we can continue
by induction.

Now consider the case when ¢ = a — b — c is a relation of 4 of length 2 as con-
sidered in (D3) and N, and N; contain no relation. Then, after a suitable change
of the subcategories N, and N, as in Lemma 3.5, the algebra A has the form

A:
[ ] o Y - @ [ ] - - @ @ ———» 0o ————» @
T Tt a b c 0N Ys

with some convex subcategory 4o. Now set A>: =S S, 8,4 In the algebra 4,
the subcategory S = b — ¢ — y; — --- — Y, satisfies the conditions of Lemma 3.1,
thus we can change the orientation in S and denote the resulting algebra by As.
Then the algebra A4:= S;'T ... S}:8;5: A4 has the form

X]—> o X;—>ada—>c—>y—> >y, —>b—Ap.

It has one relation less than A4 and is again a semi-tree algebra, hence we can continue
by induction.
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The case of a relation of length 3 is slightly more complicated. We just deal here
with a pair (g, &) of relations of length 3 on the subquiver a > d — b — ¢ — ¢
of A4, keeping in mind that one of the vertices a or ¢ (and hence one of the relations
¢, ¢ ) may not exist. First consider the case when both convex subcategories N,
and N are hereditary. Then we may assume as in Lemma that 4 has the following
form with a convex subcategory Ay:

A=

@ — P see — O —— @ — O — —->o'——>o—>o——>---—>o
N IS . .
T Tt a "~ a b L-C e Y1 Ys

Now set Ay: = LS';FS;T1 .. .S;gSa*S;l ... 83 A. The algebra A, contains 4y as a convex
subcategory, and one component of A5\ Ay is of the form ¢ — b — ¢’. By condition
(D4), the vertices ¢’ and ¢’ do not belong to D and are not involved in any relation
of A,. Thus we can turn the arrow d'ob by an APR-tilt in & and obtain
a < b— (. But then we obtain the same blowing-up when we replace the two
arrows a < b — ¢ by one arrow b — b’ with b’ € D. Let us call this algebra
As;. Now set Ay = S; ---S}T,;S(;Ag, then A4 has a component of A4\A4y of the
form b—>b —c—y; —> ---— y,, which we can turn by Lemma 3.1 into
b <« y; <« - <y < ¢ <« b. The resulting algebra being A4s, we finally set
Ag: = S;C; . S;}S}A3. This algebra has the form

Ay—b <y« <y« c<b «—a<~x « - <xy,

which was what we wanted.

The last case we have to deal with is when there is a pair (¢, ¢') of relations of length
3 on the subquiver a — d’ — b — ¢ — ¢ of 4 and the convex subcategories N’ and
N are hereditary. Then we may assume as in Lemma 3.4 that 4 has the following
form with a convex subcategory Ay:

5
L

@ ——-ocse -—>0—>.—>. —-——».—»0—»-.. — -0
I Tt c c N Ys
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Now set Ay:=SSS} ---S;A. This algebra has the following form, where all
relations except ¢:a — d — b — ¢’ are contained in Ay:

!
ea \
N
.
.
\
.
\.
@ P ——P s o Lol - @ LY ._>.———>.I
* * *
[ n Yo T T b c

We turn the subalgebra ¢* — --- — b by Lemma 3.1 and call this algebra 43. Then
the algebra A44:= S} A4; has the following form, where all relations except
n:¢’ = d — b — ¢* are contained in Ay:

Ao
a
4 l
C ’
o —»od
)
i
: i
® - .0 e ® - @ s o o it o - @ - [ ]
* * *
Tt T Ys Y1 c b

We consider As:= S;ZS;T e SE«S; --- ST A,. There, one component S of As\Ay is
formed by the vertices {a, &, b, ¢'}. As we have done before, we turn the direction
of the arrow ¢ — ¢ and view the two arrows starting in ¢ as one arrow, thus
we replace S by S'=a— d — b with & € D and denote this algebra by Ag.
The algebra Se. ... S5.S, ... S, S A4 then finally has the desired form

Ay—a—d b - -y -y x> > x.

This finishes the last case in the proof of Proposition 2.5. O

4. Proof of Proposition 2.4

Let B be a tree algebra that does not contain a convex subcategory which is derived
equivalent to some hereditary algebra of type [E,, E, or to a tubular algebra. Suppose
further that B is derived-tame or the Euler form of B is non-negative. Then we have
to show that B is derived equivalent to a semi-tree algebra A[D].
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Note that if the Euler form of B is non-negative of corank 0 or 1, then B is
derived equivalent to a hereditary algebra of type A,, D, or D,, respectively
([4]). These algebras are described in [3, 20] and [26]. Comparing with these
lists, we see that not all these algebras are semi-tree algebras: There do occur
relations of length greater than 3. Thus our first aim is to eliminate these long
relations. Let therefore p:ay — a;...a,_1 — a, be some relation of B. We
say that p is of type (I) if

(RI) Both a¢ and a, are end vertices of B and
(R2) The projective B-module P(ay) has support {ag,...,a,_1} and the injective
B-module I(a,) has support {ai, ..., a,}.

Otherwise, we say that p is a relation of type (II).

LEMMA 4.1. Let R be an arbitrary tree algebra which has some relation of type (I).
Then there is a tree algebra S which is derived equivalent to R and has strictly less
relations.

Proof. Let p:ay — a1 ...a,—1 — a, be a relation of R of type (I). As ap and a,, are
end vertices, the reflections S, R and S} R in these vertices are defined. Since p
is of type (I), the algebras S, R and S R are tree algebras of the following form:
Reflecting in ap produces an arrow a,-1 — a; and a relation oi:x — a; —
Qjx1...ap—1 — a for every x in R with a relation oux— g —
Qjt1 - .. ap—1 — a,. Dually, reflecting in a, leads to an arrow a; — a; and to a relation
Tidyoay ... ay — aj—>y for every y in R with a relation 7t,:aq9—
ai...aj-1 — a; — y. If we denote by ¢ the number of relations ¢, and by # the
number of relations t,, then reflecting in @y changes the number of relations by
&—n—1 whereas reflecting in a, changes the corresponding number by
n — & — 1. Since at least one of these numbers is strictly smaller than 0, the lemma
holds. O

By iterated use of the lemma above we can suppose from now on (up to derived
equivalence) that B has no relations of type (I). For later reference, we collect
the conditions on B and say that B satisfies condition (E) if

(El) all relations of B are of type (II),

(E2) B is derived-tame or the Euler form of B is non-negative and

(E3) B does not contain a convex subalgebra which is derived equivalent to some
E,, E, or to a tubular algebra.

Beforehand, we show that some particular algebras cannot occur under condition

(E2) and (E3):

LEMMA 4.2. Let E be the algebra with quiver x < ay — a;...a,_; — a, and
relation ay — --- — a, or the algebra with quiver x — ay — aj . ..a,_1 — a, and
relation ay — --- — a, and possibly one relation x— ---— a; for some
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1 <i<n—1 Then E is derived equivalent to K, , in case 4 <n <6, to INEg in case
n =17 and to a wild hereditary algebra in case n = 8.

Proof. Consider the reflection Sj”E of E in the sink a,. In case there is an arrow
X < ap or there is no relaiion X — .-+ — a;, the algebra SL‘;E is of the form
E, > in case 4 <n <6, or Eg in case n =7 and it is wild in case n > 8. If there
is a relation x — --- — @;, then it is easy to see that the algebra S;S;:E is tilted
of the type stated above. O

To prove Proposition 2.4, it is sufficient to show the following claim: Let Bbe a tree
algebra satisfying conditions (El) to (E3). Then B is of the form A[D] for some tree
algebra A with some set of vertices D satisfying (D1) to (D5).

Suppose it is possible to write the algebra B as a blowing-up A[D]. Since Bis a tree
algebra, no internal vertex of A belongs to the set D, hence condition (D1) holds
automatically. The same is true for condition (D5): If H is some convex hereditary
subcategory of B, then H is of type A,, D, or D, due to condition (E3). So we
concentrate in the following on the relations which can occur in B.

LEMMA 4.3. Let Bbe a tree algebra satisfying condition (E). Then all relations of B
have length 2 or 3.

Proof. Let p:ag — a; ...a,_1 — a, be arelation of B and suppose n > 4. If ¢ is no
end vertex and connected with some x, then the convex subalgebra of B with support
{x,a0, a1, ...,a,}is by Lemma 4.2 derived equivalent to some E, or to Eg or toa wild
hereditary algebra, in contradiction to conditions (E2) or (E3). Now suppose that
both a9 and a, are end vertices. Since p is of type (II) by condition (E1), there
is (up to duality) an arrow a; — y with y # @;,| for some i € {2, ..., n — 1} such that
the path ¢y — --- — y does not vanish in B. Now consider the convex subalgebra
E of B with support ay, ..., a,,y. Reflecting in y leads to an algebra S;“E that
has the form considered in Lemma 4.2, in contradiction to (E2) or (E3). Therefore,
the only possible values for n are 2 and 3. O

We now start to investigate the possible combinations of relations.

LEMMA 4.4. Let Bbe a tree algebra satisfying condition (E). Let p and o be relations
of B and suppose that p has length 3. If p and o share precisely one arrow o of B, then o,
is the start arrow of p and the end arrow of o or vice versa.

Proof. Suppose first that ¢ has length 2. Then we have, up to duality, to
exclude the cases when ¢ =a 5 ay— a; and p=aqy = a; — by — by or
p=by — % 4, — by. In both cases, the assumption that p is of type (II)
yields the existence of an additional vertex y connected with one of the vertices
of p. Using the list [7] of tree algebras which are derived equivalent to Eg,
it is easy to see that in each case the convex subalgebra of B formed by the
vertices {ao, a1, az, by, by, y} is derived equivalent to ¢, in contradiction to con-
dition (E3).
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Now suppose that ¢ and p both have length 3. Up to duality, we have to exclude
the following cases: Either o is the first arrow of ¢ =aqy = a; — apoaz and
p=a = ay—> by —byor p=>by — a 5 a; — by, or else o is the middle arrow
of g, hence 0 = ay — a; *»@~a and p = b — q; el a, — by. In each case, we find
the convex subalgebra of B formed by the vertices {ay, ai, a2, as, by, by} in the list
[7] of tree algebras which are derived equivalent to [Eg, in contradiction to condition

(E3). O

LEMMA 4.5. Let B be a tree algebra satisfying condition (E). Suppose that
p:ay — by — by — b3 is a relation of length 3. Then, up to duality, either bs is an
end vertex of B or there is a relation o:by — by — by — ¢ and no relation
Tiag — a; — by — by

Proof. If p contains an end vertex, we may assume up to duality that this is the
vertex b;. Otherwise, if a; is connected with an additional vertex ay and b3 with
some vertex ci, then we consider the convex subalgebra of B formed by the vertices
{ag, a1, by, by, b3, c1}. From the list [7] it follows easily that there must be precisely
one relation of length 3 sharing two arrows with p, up to duality this is the relation
o from the lemma. [

In Figure 1 we show all configurations of relations that may occur in B. Here, the
ringed vertices, denoted by o, are supposed to have no other neighbours than those
shown in the figure, whereas the starred vertices, denoted by %, are possibly con-
nected with vertices of B that are not shown in Figure 1. The first three configurations
describe all possibilities of the blowing-up of a relation e = a — b — cin A to a tree
algebra A[D]. The remaining configurations then descri be all possible relations of
length 3 in a semi-tree algebra of the form A[D].

Thus, if this are all possible relations in the algebra B, then B is clearly of the form
A[D] where A is a tree whose internal vertices coincide with the internal vertices of B,
and whose end vertices belong to D if there is in B a corresponding pair of end
vertices (a1, ay) or (c1, ¢) of Figure 1. Thus, the Proposition 4.6 below shows that
B is of the form A[D] where 4 and D satisfy conditions (D1) to (D5).

PROPOSITION 4.6. Let B be a tree algebra satisfying condition (E), and let p be a
relation of B. Then p is given by one of the diagrams sho wn in Figure 1 (or their
duals). Moreover, if o is another relation of B that contains some of the arrows shown
in this diagram, then o is either one of the relations shown in the diagram, or it stops or
starts in the vertex b in case p has length 2, and it stops in the vertex by or starts in the
vertex by in case p has length 3.

Proof. Let p be a relation of B. By Lemma we know that p has length 2 or 3.
Suppos e first that p = g Ap ﬁ ¢1 has length 2. Then we know by Lemma 4.4
that each relation of B that contains one of the arrows of p and does not start
or stop in the vertex b is of the form o =aq Ap3 ¢y with ¢ #¢; or
r:ang—;q with a; # ay.
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Figure 1. The possible relations of B.

Case 1: If there are no such relations ¢ and 7, then p is given by the first diagram
shown in Figure 1, and the assertions of the proposition hold.

Case 2: Now we suppose that there is one relation 7, but no relation ¢ and show that
we arrive at the second diagram from Figure 1: As before, by Lemma 4.4 each
relation of length 3 that contains one of the arrows a;y, o or ff; either stops or starts
in b. Since we assume that we have no relation of the form ¢ and on ly one relation
of the form 7, there is only one possibility how a relation can contain one of the
arrows op,0 or f;, but not stop or start in b: This is a relation ¢ =
a» 3 b S ¢3 such that the product f;0; does not vanish in B. In this case, we make
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use of the fact that the relation 7 is of type (II), which yields the existence of an
additional vertex y. Using the list [7], it is then easy to see that in each case the
convex subalgebra of B formed by the vertices {a;, az, b, 1, c3, y} is derived equiv-
alent to [, in contradiction to condition (E3). Hence, we are in the situation of
the second diagram from Figure 1, and the proposition holds if we can also show
that both a; and a, are end vertices. Suppose therefore that @, is connected with
an additional arrow y;. Then we use the fact that the relation t is of type (II), hence
ther e must exist an additional vertex y,. Using the list [7], it is then easy to see
that in each case the convex subalgebra of B formed by the vertices
{ar, az, b, ¢, y1, y2} 1s derived equivalent to g, in contradiction to condition (E3).

Case 3: If both ¢ and 7 occur, we obtain the third diagram in Figure 1: By the con-
siderations from the previous case it follows that there must be a relation
pay 2p3 ¢, and it only remains to show that aj, as, ¢; and ¢, are end vertices
of B. Suppose there is an additional vertex y connected to a;, and consider the convex
subalgebra C of B formed by {ay, ay, b, ¢1, ¢3, y}. Obviously, the algebra S;ZS;C is
tilted of a wild hereditary algebra, in contradiction to (E2).

The last thing we have to show when p has length 2 is that there cannot occur more
than one relation of type u (or dually, of type ¢). So suppose there are relations
T=a BpL ¢ and 7 =a3 BpL ci. Then we deduce a contradiction from
the fact that p, t and 7’ are of type (II): In case ¢; is no end vertex, hence connected
with some y, consider the convex subalgebra C of B formed by {aj, as,as,
b, c1, y}. Then the algebra S, S S, C is tilted of a wil d hereditary algebra, in con-
tradiction to condition (E2). If one of the following cases occurs: either a; is no
end vertex, or there is an arrow y: y — b such that the product y does not vanish,
or there is an arrow y: b — y such that the products yoy, ya; and yo3 do not vanish,
then we define a convex subalgebra C in the same way as above and see that
S C is tilted of a wild hereditary algebra. If there are finally se veral arrows
y;:b — y; such that for each of the vertices a; some path to y; does not vanish
in B, then we find a convex subalgebra of B which is derived equivalent to .

This finishes the discussion when p has length 2, and we now turn to the case of a
relation p:a; — by — by — b3. We know from Lemma 4.4 and Lemma 4.5 that,
up to duality, each relation of B that shares common arrows with p and th at does
not stop in by must be a length 3 relation sharing two arrows with p. Moreover,
if there is a relation sharing the last two arrows with p, then there is no relation
sharing the first two arrows with p. Thus, we only have to consider the following
additional relations:

piar — by — by — b, o:by - by > b3 > ¢; and

by — by — by — 0.

As in the first half of the proof, we distinguish now several cases according to the
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existence of these relations and show that we arrive at the corresponding diagram
from Figure 1.

Case 4: 1f none of the relations p’, ¢ and ¢’ occurs, then we obtain diagram 4 from
Figure 1, the vertex b3 is an end vertex by our choices and all the conditions of
the proposition concerning additional relations hold by Lemma 4.4 and 4.5. Thus
it only remains to show that b; has only the two direct neighbours a; and b, in
B: Either a; has a neighbour «y, then an additional neighbour y of b; would lead
to a convex subalgebra {ag, ai, by, by, b3, ¥} which is derived equivalent to [Eg.
Otherwise, if a; is an end vertex, we can exchange b; and b, up to duality. Hence,
the case to be considered is when both by and b, have an additional neighbour,
say y; and y, in B. Then the convex subalgebra {aj, by, by, b3, y1, y2} is derived
equivalent to Es.

Case 5: If p' occurs, but ¢ and ¢’ not, then we are in the situation of diagram 5. Again,
by our choice of orientation, b3 is an end vertex and there are no other relations
possible involving one of the given arrows. If b; or a@; would have an additional
neighbour y in B, we denote by C the convex subalgebra of B formed by
{ai1, az, b1, by, b3, y}. Then the reflection Sst is tilted of a wild hereditary algebra.

Case 6: If g occurs, but p’ and ¢’ not, then we are in the situation of diagram 6. As in
case 4, everything works for the relations, and the vertex »; has no additional neigh-
bour y in B, since otherwise the convex subalgebra formed by {ay, b1, by, b3, c1, y} is
derived equivalent to Eg.

Case 7: 1f ¢ and p’ occur, but ¢’ not, we are in the situation of diagram 7, and Case 8:
If 6,6’ and p’ occur, we are in the situation of diagram 8. Both these cases behave
analogous to case 5.

We finally have to show that there are not three relations sharing their two end
arrows. So suppose we have the relations p, p’ and a third one p”:a; —
by — by — b3. If C denotes the convex subalgebra C of B formed by {a;, as, a3,
b1, by, b3}, then the reflection S;;B is a wild hereditary algebra. O
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