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Abstract

In this paper, a detailed description of the resolvent of the Laplace–Beltrami operator in n-dimensional
hyperbolic space is given. The resolvent is an integral operator with the kernel (Green’s function) being
a solution of a hypergeometric differential equation. Asymptotic analysis of the solution of this equation
is carried out.
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1. Introduction

Although geometric and algebraic ideas play an important role in the theory of linear
operators, the solution of a number of fundamental questions of this theory was
achieved only thanks to the application of various tools from the theory of analytic
functions. The basic channel for the use of the methods of the theory of functions
is the tradition of studying the spectral properties of a linear operator by studying its
resolvent as an analytic operator-valued function (see [1, 4, 6]).

If A : D(A) ⊂ H →H is a linear operator on the Hilbert (or Banach) spaceH , and
I the identity operator, then the resolvent of A is the operator

Rµ = (A − µI)−1.

This operator is considered for those values of the complex parameter µ such that Rµ

exists and is a bounded operator defined on the whole of the space H . Investigating
Rµ as an operator-valued function of the complex variable µ gives a powerful method
(the so-called resolvent method) in the analysis of the operator A. If A is a differential
operator, its resolvent Rµ is usually an integral operator the kernel of which is called
the Green’s function of the operator A − µI.
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In the present paper, we deal with the case where A is the Laplace–Beltrami operator
L (an elliptic partial differential operator of special form) in the half-space model of
n-dimensional hyperbolic space Hn. We give a thorough analysis of the resolvent of L
and describe explicitly the structure of the resolvent. The Green’s function appears as
a solution of a hypergeometric differential equation and the asymptotic behaviour of
the solution of this equation is exploited. The resolvent kernel of the (free) Laplace–
Beltrami operator can be used for constructing the resolvent kernel of the automorphic
Laplace–Beltrami operator on the fundamental domain of a discrete group of motions
in the hyperbolic space by means of an averaging over the discrete group [3, 5, 9, 10].

We choose the spectral parameter of the form µ = s(n − 1 − s) in constructing the
Green’s function of −L − µI so that the function w(z) = ys is a simplest particular
solution of the equation

−Lw = µw.

The minus sign in front of L is chosen, as usual, to obtain an operator with nonnegative
spectrum. Besides, such a choice of the spectral parameter converts the form of the
solution given in (3.4) to the more convenient form given in (3.5). Let

L1 = L +

(n − 1
2

)2
I

= y2
(
∂2

∂x2
1

+ · · · +
∂2

∂x2
n−1

)
+ yn ∂

∂y

( 1
yn−2

∂

∂y

)
+

(n − 1
2

)2
I.

If we put s = (n − 1)/2 + iλ or s = (n − 1)/2 − iλ, then

−L − s(n − 1 − s)I = −L −
(n − 1

2

)2
I − λ2I = −L1 − λ

2I

which involves the spectral parameter λ in a more usual form. Because of this
property, in the literature the shifted Laplace–Beltrami operator L1 is used more often
rather than the operator L. Since <s > (n − 1)/2 is equivalent to =λ < 0 in the case
s = (n − 1)/2 + iλ and to =λ > 0 in the case s = (n − 1)/2 − iλ, the Green’s function
r1(z, z′; λ) of −L1 − λ

2I is expressed in terms of the Green’s function r(z, z′; s) of
−L − s(n − 1 − s)I by the formula

r1(z, z′; λ) =


r
(
z, z′;

n − 1
2

+ iλ
)
=λ < 0,

r
(
z, z′;

n − 1
2
− iλ

)
=λ > 0,

=


ω
(
u(z, z′);

n − 1
2

+ iλ
)
=λ < 0,

ω
(
u(z, z′);

n − 1
2
− iλ

)
=λ > 0,

(1.1)

where ω(u; s) is defined by (3.5), (3.6) and u(z, z′) by (2.3).
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Note that for real values of λ the functions ω(u(z, z′); (n − 1)/2 ± iλ) are still defined
by (3.5) as for s = (n − 1)/2 ± iλ with real λ the integral in (3.5) converges. Therefore
for real λ we can define the limit kernels

r1(z, z′; λ±) = lim
ε→0+

ω
(
u(z, z′);

n − 1
2
± i(λ ± iε)

)
= ω

(
u(z, z′);

n − 1
2
∓ iλ

)
according to (1.1). However, it turns out that the integral operator with the kernel
r1(z, z′; λ+) or r1(z, z′; λ−) does not define a bounded operator on the Hilbert space
L2(Hn, dv). This is because of the fact that for real λ the number λ2 is a point of
continuous spectrum of the operator −L1 and therefore the resolvent (−L1 − λ

2I)−1

cannot exist to be a bounded operator.
If A : D(A) ⊂ H →H is a self-adjoint operator on the Hilbert space H , then

according to the spectral theorem [1] there is a unique family Eµ(−∞ < µ < ∞) of
spectral projections Eµ (resolution of the identity) for A such that

A f =

∫ ∞

−∞

µ dEµ f , f ∈ D(A).

Description of the spectral projection Eµ of a given self-adjoint operator A is called the
eigenfunction expansion (spectral expansion) problem due to the formula

f =

∫ ∞

−∞

dEµ f , f ∈ H ,

which defines an expansion of the element f in the form of a Stieltjes integral. By the
well-known Stone formula

Eµ2 − Eµ1 = lim
ε→0+

∫ µ2

µ1

(Rµ+iε − Rµ−iε) dµ,

the results of the present paper on the structure of resolvent of the Laplace–Beltrami
operator can be used for description of Eµ for this operator. This problem will be
considered by the author elsewhere.

This paper is organized as follows. In Section 2 a symmetric operator T ′ generated
in a Hilbert space of complex-valued measurable functions on Hn by the Laplace–
Beltrami operator L is introduced and investigated. In Section 3 the asymptotic
behaviour of a solution of the hypergeometric equation associated with the radial
part of L is examined. In Section 4 the Green’s function of −L − s(n − 1 − s)I is
constructed. Finally, in Section 5, it is shown that the closure T of the operator T ′ is
self-adjoint and the resolvent of the operator T is described explicitly.

2. The operator T′

The n-dimensional hyperbolic space Hn can be realized as the upper half-space

Hn = {z = (x1, . . . , xn−1, y) : −∞ < x j <∞ (1 ≤ j ≤ n − 1), 0 < y <∞}
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in the Euclidean space Rn. Hn is a homogeneous space of the group

G = SO+(1, n) = {g ∈ GL(n + 1,R) : gt Jg = J, det g = 1, g00 > 0},

where GL(n + 1,R) is the group of all nonsingular real (n + 1) × (n + 1) matrices
g = [g jk]n

j,k=0, J is the (n + 1) × (n + 1) diagonal matrix whose first diagonal element
equals −1 and the remaining diagonal elements are all equal to 1; and the symbol
t stands for matrix transposition (see [2]). The group G = SO+(1, n) acts on Hn

as follows: if g ∈ G, g = [g jk]n
j,k=0 and z = (x1, . . . , xn−1, y), then the point gz = z′ =

(x′1, . . . , x
′
n−1, y

′) has coordinates

x′j =
(g j0 + g jn)|z|2 + 2

∑n−1
k=1 g jk xk + g j0 − g jn

cg|z|2 + 2
∑n−1

k=1(g0k − gnk)xk + dg
(1 ≤ j ≤ n − 1),

y′ =
2y

cg|z|2 + 2
∑n−1

k=1(g0k − gnk)xk + dg
,

where |z|2 = x2
1 + · · · + x2

n−1 + y2, cg = g00 + g0n − gn0 − gnn, dg = g00 + gnn − g0n − gn0.
The invariant (under the action of G) Riemannian metric ds2 and the invariant

volume element dv(z) associated with it have the form

ds2 =
dx2

1 + · · · + dx2
n−1 + dy2

y2 , dv(z) =
dx1 · · · dxn−1 dy

yn . (2.1)

Denote by L the invariant differential operator (Laplace–Beltrami operator)

L = y2
(
∂2

∂x2
1

+ · · · +
∂2

∂x2
n−1

)
+ yn ∂

∂y

( 1
yn−2

∂

∂y

)
. (2.2)

An invariant of a pair of points, u(z, z′), has the form

u(z, z′) =
|z − z′|2

yy′
=

(x1 − x′1)2 + · · · + (xn−1 − x′n−1)2 + (y − y′)2

yy′
(2.3)

so that u(gz, gz′) = u(z, z′) for all g ∈ G and z, z′ ∈ Hn. The geodesic distance ρ(z, z′)
on Hn, generated by the metric ds2, has the form

ρ(z, z′) = ln
|z − z′| + |z − z′|

|z − z′| − |z − z′|
, (2.4)

where we put z = (x1, . . . , xn−1,−y) for z = (x1, . . . , xn−1, y). It follows from (2.3) and
(2.4) that

u = 2 cosh ρ − 2 = 4 sinh2 ρ

2
. (2.5)

Let us note that in what follows throughout the paper z and z′ will stand for arbitrary
points in Hn.

We denote by L2(Hn, dv) the Hilbert space of all complex-valued measurable
functions f (z) defined on Hn such that∫

Hn
| f (z)|2 dv(z) <∞,
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with the inner product

( f1, f2) =

∫
Hn

f1(z) f2(z) dv(z),

where dv(z) is the volume element given in (2.1).
In the sequel we will denote the space L2(Hn, dv) briefly by H . Further, C∞(Hn)

will denote the space of infinitely differentiable functions on Hn and C∞0 (Hn) the space
of infinitely differentiable functions on Hn with compact (with respect to the geodesic
distance) support.

Let L be the Laplace–Beltrami operator given by (2.2). By D′ we denote the set of
all functions f ∈ C∞(Hn) with the following properties:

(i) f and L f belong toH ;
(ii) for some ε > (n − 1)/2, generally speaking, different for different functions, the

inequalities

| f (z)| ≤ C1
yε

(1 + |z|2)ε
, (2.6)∣∣∣∣∣ ∂ f

∂x j

∣∣∣∣∣ ≤ C2
(1 + |x j|)yε

(1 + |z|2)1+ε
,

∣∣∣∣∣∂ f
∂y

∣∣∣∣∣ ≤ C3
yε−1

(1 + |z|2)ε
(1 ≤ j ≤ n − 1), (2.7)

hold, where the constants C1,C2,C3 are, in general, different for different
functions.

Obviously, D′ is a linear subset in H and since C∞0 (Hn) ⊂ D′, we conclude that D′

is dense inH . Let us define onH the linear operator T ′ with the domain of definition
D′, putting

T ′ f = −L f for f ∈ D′.

We want to show that the operator T ′ is symmetric.

Theorem 2.1. For arbitrary functions f1, f2 ∈ D′, the integral

[ f1, f2] :=
∫

Hn

(
∂ f1
∂y

∂ f2
∂y

+

n−1∑
j=1

∂ f1
∂x j

∂ f2
∂x j

) dx dy
yn−2 , (2.8)

where dx = dx1 . . . dxn−1, converges absolutely and

(T ′ f1, f2) = [ f1, f2]. (2.9)

Proof. Let m be an arbitrary positive integer. Let us set

Km = {x = (x1, . . . , xn−1) : −m ≤ xk ≤ m (1 ≤ k ≤ n − 1)},
K( j)

m = {x( j) = (x1, . . . , x j−1, x j+1, . . . , xn−1):
−m ≤ xk ≤ m (1 ≤ k ≤ n − 1, k , j)},

dx = dx1 . . . dxn−1, dx( j) = dx1 . . . dx j−1 dx j+1 . . . dxn−1.
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Then integrating by parts, one has, for f1, f2 ∈ D′,

−

∫ m

0

∫
Km

(L f1) f2 dv(z)

= −

n−1∑
j=1

∫ m

0

∫
K( j)

m

{
∂ f1
∂x j

f2
∣∣∣x j=m
x j=−m

} dx( j) dy
yn−2 −

∫
Km

{ 1
yn−2

∂ f1
∂y

f2
∣∣∣y=m
y=0

}
dx

+

∫ m

0

∫
Km

(n−1∑
j=1

∂ f1
∂x j

∂ f2
∂x j

+
∂ f1
∂y

∂ f2
∂y

) dx dy
yn−2 . (2.10)

Next, using the estimates (2.6), (2.7) for f1 and f2 (with ε = ε1 and ε = ε2, respectively)
it is easy to check that∫ m

0

∫
K( j)

m

∂ f1
∂x j

f2
∣∣∣
x j=±m

dx( j) dy
yn−2 = O

( 1
mε1+ε2

)
(m→∞),∣∣∣∣∣ 1

yn−2

∂ f1
∂y

f2
∣∣∣∣∣ ≤ C

yε1+ε2−(n−1)

(1 + |z|2)ε1+ε2
→ 0 as y→ 0,∫

Km

1
yn−2

∂ f1
∂y

f2
∣∣∣
y=m dx = O

( 1
mε1+ε2

)
(m→∞).

Therefore (2.10) takes the form

−

∫ m

0

∫
Km

(L f1) f2 dv(z) =

∫ m

0

∫
Km

(
∂ f1
∂y

∂ f2
∂y

+

n−1∑
j=1

∂ f1
∂x j

∂ f2
∂x j

)dx dy
yn−2 + O

( 1
mε1+ε2

)
.

(2.11)
Taking f1 = f2 = f in (2.11), we have∫ m

0

∫
Km

(∣∣∣∣∣∂ f
∂y

∣∣∣∣∣2 +

n−1∑
j=1

∣∣∣∣∣ ∂ f
∂x j

∣∣∣∣∣2) dx dy
yn−2 = −

∫ m

0

∫
Km

(L f ) f dv(z) + O
( 1
m2ε

)
. (2.12)

It follows that the left-hand side of (2.12) increases as m→∞ remaining bounded.
Therefore ∫

Hn

(∣∣∣∣∣∂ f
∂y

∣∣∣∣∣2 +

n−1∑
j=1

∣∣∣∣∣ ∂ f
∂x j

∣∣∣∣∣2) dx dy
yn−2 <∞.

Then applying the Cauchy–Schwarz inequality, we find that the integral in (2.8)
converges absolutely for f1, f2 ∈ D′. Consequently, passing to the limit in (2.11) as
m→∞, one has (2.9). �

Theorem 2.1 yields the following result.

Corollary 2.2. The operator T ′ is symmetric:

(T ′ f1, f2) = ( f1,T ′ f2), ∀ f1, f2 ∈ D(T ′).
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From the same theorem one has that

(T ′ f , f ) =

∫
Hn

(∣∣∣∣∣∂ f
∂y

∣∣∣∣∣2 +

n−1∑
j=1

∣∣∣∣∣ ∂ f
∂x j

∣∣∣∣∣2) dx dy
yn−2 ∀ f ∈ D(T ′). (2.13)

It follows from (2.13) that the operator T ′ is positive. Actually, the following
stronger statement holds.

Theorem 2.3. The inequality

T ′ ≥
(n − 1)2

4
I

holds, that is,

(T ′ f , f ) ≥
(n − 1)2

4
‖ f ‖2 ∀ f ∈ D(T ′). (2.14)

Proof. Since the function f ∈ D(T ′) tends to zero as y→ 0 by (2.6), we have, for all
z = (x, y) ∈ Hn,

f (x, y) =

∫ y

0

∂ f (x, t)
∂t

dt.

Therefore ∫ N

0

| f (x, y)|2

yn dy ≤
∫ N

0

1
yn

(∫ y

0

∣∣∣∣∣∂ f (x, t)
∂t

∣∣∣∣∣ dt
)2

dy, (2.15)

where N is an arbitrary positive number. Further (note that the inequality (2.14) is
obvious for n = 1 from (2.13) so that we may assume that n ≥ 2),∫ N

0

1
yn

(∫ y

0

∣∣∣∣∣∂ f (x, t)
∂t

∣∣∣∣∣ dt
)2

dy = −
1

(n − 1)yn−1

(∫ y

0

∣∣∣∣∣∂ f (x, t)
∂t

∣∣∣∣∣ dt
)2∣∣∣∣∣y=N

y=0

+
2

n − 1

∫ N

0

1
yn−1

(∫ y

0

∣∣∣∣∣∂ f (x, t)
∂t

∣∣∣∣∣ dt
)∣∣∣∣∣∂ f (x, y)

∂y

∣∣∣∣∣ dy.

Hence, taking into account that, by (2.7),

1
yn−1

(∫ y

0

∣∣∣∣∣∂ f (x, t)
∂t

∣∣∣∣∣ dt
)2
≤

C
yn−1

(∫ y

0

tε−1

(1 + |x|2 + t2)ε
dt

)2

≤
Cy2ε−(n−1)

ε2(1 + |x|2)2ε → 0

as y→ 0, and

−
1

(n − 1)yn−1

(∫ N

0

∣∣∣∣∣∂ f (x, t)
∂t

∣∣∣∣∣ dt
)2
≤ 0,
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one has that∫ N

0

1
yn

(∫ y

0

∣∣∣∣∣∂ f (x, t)
∂t

∣∣∣∣∣ dt
)2

dy

≤
2

n − 1

∫ N

0

1
yn−1

(∫ y

0

∣∣∣∣∣∂ f (x, t)
∂t

∣∣∣∣∣ dt
)∣∣∣∣∣∂ f (x, y)

∂y

∣∣∣∣∣ dy

≤
2

n − 1

{∫ N

0

1
yn

(∫ y

0

∣∣∣∣∣∂ f (x, t)
∂t

∣∣∣∣∣ dt
)2}1/2{∫ N

0

1
yn−2

∣∣∣∣∣∂ f (x, y)
∂y

∣∣∣∣∣2 dy
}1/2

,

where we have used
yn−1 = yn/2y(n−2)/2.

Comparing the initial and terminal terms of the latter inequalities, we find that∫ N

0

1
yn

(∫ y

0

∣∣∣∣∣∂ f (x, t)
∂t

∣∣∣∣∣ dt
)2

dy ≤
4

(n − 1)2

∫ N

0

1
yn−2

∣∣∣∣∣∂ f (x, y)
∂y

∣∣∣∣∣2 dy.

Integrating this inequality over x ∈ Rn−1 and then letting N → ∞, we arrive at the
inequality ∫

Hn

∣∣∣∣∣∂ f (x, y)
∂y

∣∣∣∣∣2 dx dy
yn−2 ≥

(n − 1)2

4
‖ f ‖2,

taking into account (2.15). Now inequality (2.14) follows from (2.13). �

3. Asymptotic analysis of a hypergeometric differential equation

If we apply the operator L to functions depending only on the invariant of a pair
of points u(z, z0), then we can get for it an expression in the form of an ordinary
differential operator with respect to the variable u. Namely, the following statement
holds which can be verified directly.

Lemma 3.1. Suppose that ω is a smooth function on the positive semi-axis and that z0

is a fixed point in Hn. Let us set f (z) = ω(u(z, z0)). Then L f = lω, where

lω = (u2 + 4u)ω′′(u) + (nu + 2n)ω′(u). (3.1)

Remark 3.2. Suppose that ψ is a smooth function on the positive semi-axis and that z0

is a fixed point in Hn. Let us set f (z) = ψ(ρ(z, z0)). Then L f = l1ψ, where

l1ψ = ψ′′(ρ) + (n − 1)
cosh ρ
sinh ρ

ψ′(ρ).

This statement can easily be derived from Lemma 3.1 on the basis of the connection
(2.5) between u and ρ.

Now we investigate the solution of the linear homogeneous differential equation

−lω = s(n − 1 − s)ω,
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that is,
−(u2 + 4u)ω′′(u) − (nu + 2n)ω′(u) = s(n − 1 − s)ω(u), (3.2)

where s is a complex variable.
As is known [7, Ch. 15], one solution of the hypergeometric equation

ζ(1 − ζ)
d2 f
dζ2 + [c − (a + b + 1)ζ]

d f
dζ
− ab f = 0, (3.3)

where a, b, and c are independent of ζ, is given by the Gauss hypergeometric function
(with Euler’s integral representation)

f1(ζ) = F(a, b, c, ζ) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tζ)−a dt,

where Γ(s) is the gamma function [7, Ch. 5]. Another solution of (3.3) is (see
[7, (15.10.15)])

f2(ζ) = (−ζ)−aF(a, a + 1 − c; a + 1 − b; ζ−1)

=
Γ(c)

Γ(b)Γ(c − b)
(−ζ)−a

∫ 1

0
ta−c(1 − t)c−b−1

(
1 −

t
ζ

)−a
dt

=
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
ta−c(1 − t)c−b−1(t − ζ)−a dt. (3.4)

If we set

ζ = −
u
4
, f (ζ) = f

(
−

u
4

)
= ω(u), a = s, b = n − 1 − s, c =

n
2
,

then (3.3) turns into (3.2). Therefore one solution of (3.2) is given, according to (3.4),
by the integral

ω(u; s) = cn(s)
∫ 1

0
[t(1 − t)]s−(n/2)

(
t +

u
4

)−s
dt, (3.5)

where the constant cn(s) we choose to be

cn(s) =
Γ(s)

2nπn/2Γ(s − n
2 + 1)

. (3.6)

Note that the integral in (3.5) converges absolutely for u > 0 and complex s = σ + iτ
with σ > (n − 2)/2. The constant cn(s) given in (3.6) can be represented in the form

cn(s) =
1

sbn+2(s + 1)2n−1σn
, σn =

2πn/2

Γ( n
2 )

(n = 1, 2, 3, . . .),

with

bn(s) =

∫ ∞

0

(
1 +

1
ξ

)−s
ξ−n/2dξ =

Γ(s − n
2 + 1)Γ( n

2 − 1)
Γ(s)

(n ≥ 3). (3.7)
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Note that σn is the surface area of the unit sphere in Rn. Note also that

b4(s + 1) =
1
s
, and therefore c2(s) =

1
4π
.

Let us set

ϕ(u; s) = ω(4u; s) = cn(s)
∫ 1

0
[t(1 − t)]s−(n/2)(t + u)−s dt, (3.8)

so that

ω(u; s) = ϕ
(u
4

; s
)
.

Now we derive from (3.8) with (3.6) the following important result.

Theorem 3.3. The function ϕ(u; s) is analytic in the region<s > (n − 2)/2, u > 0 with
respect to s, belongs to the class C∞ with respect to u, and

(i) −(u2 + u)ϕ′′(u) − (nu + n/2)ϕ′(u) = s(n − 1 − s)ϕ(u);
(ii) the estimates

ϕ(u; s) =



O(1 + |s|3/2) and is continuous in u (n = 1),

−
1

4π
ln u + O(|s|2) (n = 2),

1
8π

u−1/2 + O(|s|5/2) (n = 3),

1
16π

u−1 + O(|s(s − 2)| ln u + |s|3) (n = 4),

1
(n − 2)2n−2σn

u−(n−2)/2 + O(|s|(n+2)/2u−((n−2)/2)+1) (n ≥ 5),

(3.9)

ϕ′(u; s) =



−
1
2

u−1/2 + O(|s|3/2) (n = 1),

−
1

4π
u−1 + O(|s − 1| ln u + |s|2) (n = 2),

−
1

2n−1σn
u−n/2 + O(|s|(n+2)/2u−(n/2)+1) (n ≥ 3),

(3.10)

hold as u→ 0 uniformly with respect to s with<s ≥ (n − 2)/2 + δ0, where δ0 is
any fixed positive number, σn = 2πn/2/Γ(n/2);

(iii) the estimates

ϕ(u; s) = O(|s|(n−2)/2u−σ), ϕ′(u; s) = O(|s|n/2u−σ−1), (3.11)

hold as u→∞ uniformly with respect to s (<s ≥ (n − 2)/2 + δ0, δ0 > 0).

Proof. (i) The first statement of the theorem follows from (3.2) and the equality
ϕ(u) = ω(4u).
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(ii) To prove the second statement of the theorem, let us show that

Φs,n(u) :=
∫ 1

0
[t(1 − t)]s−(n/2)(t + u)−s dt

=



O(1 + |s|2) and is continuous in u (n = 1),
−ln u + O(|s|2) (n = 2),
b3(s)u−(1/2) + O(|s|2) (n = 3),
b4(s)u−1 + O(|s − 2| ln u + |s|2) (n = 4),
bn(s)u−(n−2)/2 + O(|s|2u−((n−2)/2)+1) (n ≥ 5),

(3.12)

as u→ 0 uniformly with respect to s with <s ≥ (n − 2)/2 + δ0, where δ0 is any fixed
positive number; bn(s)(n ≥ 3) is defined by (3.7).

Note that the integral from 1/2 to 1 is estimated easily:∣∣∣∣∣∫ 1

1/2
[t(1 − t)]s−(n/2)(t + u)−s dt

∣∣∣∣∣
≤

∫ 1

1/2

[t(1 − t)]σ−(n/2)

(t + u)σ
dt

≤ 2n/2
∫ 1

0
(1 − t)σ−(n/2) dt =

2n/2

σ − n−2
2

= O(1).

Let us estimate the integral

J =

∫ 1/2

0
(1 − t)s−(n/2) ts−(n/2)

(t + u)s dt.

To do this, consider the function

Ψ(r, u) =

∫ r

0

ts−(n/2)

(t + u)s dt.

Making the change of variables t = uξ, we get

Ψ(r, u) = u−(n−2/2)Ψ1

( r
u

)
, where Ψ1(r) =

∫ r

0

(
1 +

1
ξ

)−s
ξ−n/2dξ. (3.13)

It is not difficult to check that, for r ≤ 1,

Ψ1(r) =
rs−(n−2)/2

s − n−2
2

+ O
(
|s|rσ−((n−2)/2)+1), (3.14)

and, for r ≥ 1,

Ψ1(r) =


2
√

r + O(|s|) (n = 1),
ln r + O(|s|) (n = 2),

bn(s) +
2

n − 2
r−(n−2)/2 + O(|s|r−(n/2)) (n ≥ 3),

(3.15)

where bn(s) is defined by (3.7). The above estimates as well as those below are satisfied
uniformly with respect to s(<s ≥ (n − 2)/2 + δ0, δ0 > 0).
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We have

J =

∫ 1/2

0
(1 − t)s−(n/2) dΨ(t, u)

dt
dt

=

(
1 −

1
2

)s−(n/2)
Ψ

(1
2
, u

)
−

∫ 1/2

0

d(1 − t)s−(n/2)

dt
Ψ(t, u) dt

=

(
1 −

1
2

)s−(n/2)
Ψ

(1
2
, u

)
+ J1 + J2, (3.16)

where

J1 = −

∫ u

0

d(1 − t)s−(n/2)

dt
Ψ(t, u) dt, J2 = −

∫ 1/2

u

d(1 − t)s−(n/2)

dt
Ψ(t, u) dt.

Further, using (3.13)–(3.15), it can be shown that

Ψ
( 1

2 , u
)

=


√

2 + O(|s|
√

u) (n = 1),
−ln u + O(|s|) (n = 2),
bn(s)u−(n−2)/2 + O(|s|) (n ≥ 3),

J1 = O(|s|2u−((n−2)/2)+1),

J2 =



O(|s|2) (n = 1),

(ln u)
[(

1 − 1
2
)s−1
− (1 − u)s−1] + O(|s|2) (n = 2),

−b3(s)u−1/2[(1 − 1
2
)s−(3/2)

− (1 − u)s−(3/2)] + O(|s|2) (n = 3),

−b4(s)u−1[(1 − 1
2
)s−2
− (1 − u)s−2] + O(|s − 2| ln u + |s|2) (n = 4),

−bn(s)u−(n−2)/2[(1 − 1
2
)s−(n/2)

− (1 − u)s−(n/2)] + O
(
|s|2u−((n−2)/2)+1) (n ≥ 5).

Therefore one has from (3.16) that

J =



O(1 + |s|2) (n = 1),
−ln u + O(|s|2) (n = 2),
b3(s)u−(1/2) + O(|s|2) (n = 3),
b4(s)u−1 + O(|s − 2| ln u + |s|2) (n = 4),
bn(s)u−(n−2)/2 + O(|s|2u−((n−2)/2)+1) (n ≥ 5).

Notice that we have used the fact that due to
Γ(s + a)

Γ(s)
= sa

[
1 + O

(1
s

)]
, |arg s| ≤ π − δ,

we have from (3.7) that

bn(s) = O(|s|−(n−2)/2) (|s| → ∞).

Thus, the estimate (3.12) is established. Now the estimate (3.9) follows from (3.12)
if we note that

ϕ(u; s) = cn(s)Φs,n(u), cn(s) = O(|s|(n−2)/2) (n = 1, 2, 3, . . .),

c2(s) =
1

4π
, cn(s)bn(s) =

1
(n − 2)2n−2σn

(n ≥ 3).
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The estimate (3.10) for ϕ′(u; s) also follows from (3.12) because

ϕ′(u; s) = cn(s)
dΦs,n(u)

du
= −scn(s)Φs+1,n+2(u),

scn(s)bn+2(s + 1) =
1

2n−1σn
, cn(s) = O(|s|(n−2)/2) (n = 1, 2, 3, . . .).

(iii) The last statement of the theorem can be proved simply:

|ϕ(u; s)| ≤ |cn(s)|
∫ 1

0

[t(1 − t)]σ−(n/2)

(t + u)σ
dt

≤
|cn(s)|

uσ

∫ 1

0
[t(1 − t)]σ−(n/2) dt = O(|s|(n−2)/2u−σ).

The function ϕ′(u, s) is estimated similarly. �

4. The Green’s function of −L − s(n − 1 − s)I

In this section, we introduce an integral operator R̂(s) with the kernel

r(z, z′; s) = ω(u(z, z′); s) = ϕ
(u(z, z′)

4
; s

)
(4.1)

and investigate its necessary properties.

Theorem 4.1. Let f ∈ C∞0 (Hn) and<s = σ > (n − 1)/2. Let us set

R̂(s) f (z) =

∫
Hn

r(z, z′; s) f (z′) dv(z′). (4.2)

Then the function R̂(s) f (z) possesses the following properties:

(i) R̂(s) f (z) ∈ D′, where D′ is the domain of definition of the operator T ′ (see
Section 2).

(ii) The following equality holds:

[T ′ − s(n − 1 − s)I]R̂(s) f = f . (4.3)

The proof will be provided in the form of two lemmas.

Lemma 4.2. Let f ∈ C∞0 (Hn) and <s = σ > (n − 1)/2. Then the function hs(z) =

R̂(s) f (z) is bounded on Hn, belongs to the space L2(Hn, dv) ∩ C∞(Hn), and satisfies
the following inequalities:

|hs(z)| ≤ C0(1 + |s|(n+2)/2), (4.4)

|hs(z)| ≤ C1
yσ

(1 + |z|2)σ
, (4.5)∣∣∣∣∣∂hs(z)

∂x j

∣∣∣∣∣ ≤ C2
(1 + |x j|)yσ

(1 + |z|2)1+σ
(1 ≤ j ≤ n − 1), (4.6)∣∣∣∣∣∂hs(z)

∂y

∣∣∣∣∣ ≤ C3
yσ−1

(1 + |z|2)σ
, (4.7)
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where C0 does not depend both on s and on z whereas C1, C2,C3 do not depend only
on z (these constants are, generally speaking, different for different functions f ).

Proof. Let supp f ⊂ Q b Hn, where Q is a bounded domain which lies strictly inside
Hn. We have

hs(z) =

∫
Hn

r(z, z′; s) f (z′) dv(z′) =

∫
Q

r(z, z′; s) f (z′) dv(z′). (4.8)

Hence
|hs(z)| ≤ C f

∫
Q
|r(z, z′; s)| dv(z′), C f = max

z∈Hn
| f (z)|. (4.9)

First we show that hs(z) is bounded and the estimate (4.4) is fulfilled. To this end
we take a small number ε0 > 0 and a large number R0 > 0 such that the support Q of
the function f lies strictly inside the parallelepiped

Π = {z = (x1, . . . , xn−1, y) : ε0 ≤ y ≤ R0,−R0 ≤ x j ≤ R0(1 ≤ j ≤ n − 1)}.

Let us estimate the function hs on Π and on Hn\Π separately.
As follows from Theorem 3.3, for z ∈ Π, z′ ∈ Q, the function r(z, z′; s) defined by

(4.1) admits the estimation

r(z, z′; s) =


O
(
1 + |s|3/2

)
(n = 1),

O
(
|s|2 ln u

)
(n = 2),

O
(
|s|(n+2)/2u−(n−2)/2) (n ≥ 3),

uniformly on s(<s > (n − 1)/2), and for z ∈ Hn\Π, z′ ∈ Q, the estimate

r(z, z′; s) = O(|s|(n−2)/24σu−σ) (4.10)

also uniformly on s(<s > (n − 1)/2).
Therefore, for z ∈ Π (we assume that n ≥ 3; for n = 1, 2 the reasoning is similar),∫
Q
|r(z, z′; s)| dv(z′) ≤ C|s|(n+2)/2

∫
Q

[u(z, z′)]−(n−2)/2 dv(z′)

= C|s|(n+2)/2
∫

Q

(yy′)(n−2)/2

|z − z′|n−2

dx′ dy′

(y′)n ≤ C|s|(n+2)/2 Rn−2
0

εn
0

∫
Q

dx′ dy′

|z − z′|n−2 ≤ C1|s|(n+2)/2,

because the last integral converges and is bounded for z ∈ Π.
Consider z ∈ Hn\Π. Since for z ∈ Hn\Π and z′ ∈ Q we may assume that u(z, z′) is

large enough, it can be assumed that u/4 > 1 + u/8. Therefore, for z ∈ Hn\Π we have,
by (4.10),

|r(z, z′; s)| ≤ C|s|(n−2)/2
(
1 +

u
8

)−σ
,∫

Q
|r(z, z′; s)| dv(z′) ≤ C|s|(n−2)/2

∫
Q

(
1 +

u(z, z′)
8

)−σ
dv(z′) ≤ Cv(Q)|s|(n−2)/2,

because the integrand is less than or equal to 1.
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Thus, the boundedness of the function h(z, s) with respect to z ∈ Hn and the estimate
(4.4) are established. Now we show that h(z, s) ∈ L2(Hn, dv). Since, as has already
been proved, the function h(z, s) is bounded, it is sufficient to show that∫

Hn\Π

|hs(z)|2 dv(z) <∞, (4.11)

where Π is the above defined parallelepiped. From (4.8) we have, applying the
Cauchy–Schwarz inequality,

|hs(z)|2 ≤ ‖ f ‖2
∫

Q
|r(z, z′; s)|2 dv(z′).

Therefore ∫
Hn\Π

|hs(z)|2 dv(z) ≤ ‖ f ‖2
∫

Q

{∫
Hn\Π

|r(z, z′; s)|2 dv(z)
}

dv(z′). (4.12)

Next, taking into account (4.10), one has∫
Hn\Π

|r(z, z′; s)|2 dv(z) ≤ C|s|n−242σ
∫

Hn\Π

dv(z)
[1 + u(z, z′)]2σ

= C|s|n−242σ
∫

Hn\Π

(yy′)2σ

[yy′ + |x − x′|2 + (y − y′)2]2σ

dx dy
yn .

Obviously, there is a constant α not depending on z ∈ Hn\Π and z′ ∈ Q such that

(y′)2σ

[yy′ + |x − x′|2 + (y − y′)2]2σ ≤ α
1

(|x|2 + y2)2σ (z ∈ Hn\Π, z′ ∈ Q).

Therefore from the last inequality we obtain∫
Hn\Π

|r(z, z′; s)|2 dv(z) ≤ C1

∫
Hn

y2σ−n dx dy
(1 + |x|2 + y2)2σ ,

where the constant C1 depends on s. Further,∫
Hn

y2σ−n dx dy
(1 + |x|2 + y2)2σ =

∫
Rn−1

dx
∫ 1

0

y2σ−n dy
(1 + |x|2 + y2)2σ

+

∫
Rn−1

dx
∫ ∞

1

y2σ−n dy
(1 + |x|2 + y2)2σ =: J1 + J2.

Let us estimate the integrals J1 and J2. For σ > (n − 1)/2,

J1 ≤

∫
Rn−1

dx
(1 + |x|2)2σ

∫ 1

0
y2σ−n dy <∞.

In the integral J2 we make first the change of variables x = rν, ν ∈ Rn−1, |ν| = 1,
0 ≤ r <∞, and then r = ty, to get

J2 = σn−1

∫ ∞

0

tn−2

(1 + t2)2σ dt
∫ ∞

1

dy
y2σ+1 <∞, (4.13)
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where σn−1 is the area of the unit sphere in Rn−1. Note that in the case n = 1 the
integration on x is absent and the integral J2 becomes

J2 =

∫ ∞

1

dy
y2σ+1 <∞.

Therefore in (4.13) we may assume that n ≥ 2 (so that the function tn−2 has no
singularity at zero). Now inequality (4.11) follows from (4.12).

Let us show that hs ∈ C∞(Hn). To do this, note that there exists a smooth mapping
Hn 3 z 7→ gz ∈ G such that gzen = z, where en = (0, . . . , 0, 1). Indeed, as such a gz one
can take

gz =



|z|2 + 1
2y

x1 · · · xn−1
y2 − |x|2 − 1

2y
x1

y
1 · · · 0 −

x1

y
...

...
. . .

...
...

xn−1

y
0 · · · 1 −

xn−1

y
|z|2 − 1

2y
x1 · · · xn−1

y2 − |x|2 + 1
2y


, z = (x, y).

Evidently, the entries of the matrix gz are infinitely differentiable functions of the
variables (x1, . . . , xn−1, y) ∈ Hn. Next, we have

hs(z) =

∫
Hn

r(z, z′; s) f (z′) dv(z′) =

∫
Hn

r(gzen, z′; s) f (z′) dv(z′)

=

∫
Hn

r(en, g−1
z z′; s) f (z′) dv(z′) =

∫
Hn

r(en, z′; s) f (gzz′) dv(z′),

where we have used the invariance of the volume element dv. Since the function f
is smooth and has a compact support, it follows from the last formula that h(z, s) is a
smooth function of the variables (x1, . . . , xn−1, y) on Hn.

It remains to prove the estimates (4.5)–(4.7). As we have already proved, hs(z) is
bounded and smooth on Hn for fixed s. Hence hs(z) and its partial derivatives are
bounded on compact subregions of Hn. Therefore it is sufficient to prove the estimates
for z such that ρ(z,Q)→∞, where ρ(z,Q) denotes the geodesic distance of the point z
from the set Q.

If z′ ∈ Q and ρ(z,Q)→∞, then u(z, z′) = 2 cosh ρ(z, z′) − 2→∞. Since for u→∞
and fixed s(<s > (n − 1)/2) we have ω(u; s) = O(u−σ) by (4.1) and (3.11), it follows
from (4.9) that

|hs(z)| ≤ C
∫

Q

dv(z′)
[1 + u(z, z′)]σ

,

where C is a constant depending on s. Next,

1 + u(z, z′) =
yy′ + |x − x′|2 + (y − y′)2

yy′
≥ a

1 + |x|2 + y2

y
, (4.14)
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where the positive constant a does not depend on z and z′ ∈ Q. Therefore

|hs(z)| ≤
C
aσ

v(Q)
( y
1 + |x|2 + y2

)σ
,

that is, the estimate (4.5) holds.
To derive the estimates (4.6) and (4.7), we differentiate equality (4.8). Taking into

account (4.1), we get

∂hs(z)
∂x j

=
1
4

∫
Q
ϕ′

(u(z, z′)
4

; s
)
∂u(z, z′)
∂x j

dv(z′), (4.15)

∂hs(z)
∂y

=
1
4

∫
Q
ϕ′

(u(z, z′)
4

; s
)
∂u(z, z′)
∂y

dv(z′). (4.16)

Next, for z′ ∈ Q and ρ(z,Q)→∞,∣∣∣∣∣∂u(z, z′)
∂x j

∣∣∣∣∣ = 2
∣∣∣∣∣ x j − x′j

yy′

∣∣∣∣∣ ≤ a1
1 + |x j|

y
,∣∣∣∣∣∂u(z, z′)

∂y

∣∣∣∣∣ =

∣∣∣∣∣y2 − y′
2
− |x − x′|2

y2y′

∣∣∣∣∣ ≤ a2
1 + |x|2 + y2

y2 ,

and by Theorem 3.3 and (4.14),∣∣∣∣∣ϕ′(u(z, z′)
4

; s
)∣∣∣∣∣ ≤ C

[1 + u(z, z′)]σ+1 ≤
C

aσ+1

( y
1 + |x|2 + y2

)σ+1
.

Therefore the estimates (4.6) and (4.7) follow from (4.15) and (4.16). �

Lemma 4.3. If f ∈ C∞0 (Hn) and<s > (n − 1)/2, then

[−L − s(n − 1 − s)I]R̂(s) f = f . (4.17)

Proof. By Lemma 4.2 the function

hs(z) = R̂(s) f (z) =

∫
Hn

r(z, z′; s) f (z′) dv(z′)

belongs to C∞(Hn). Next, note that if χ(t) is an arbitrary smooth function on the semi-
axis 0 < t <∞, then

Lzχ(u(z, z′)) = Lz′χ(u(z, z′)). (4.18)

Indeed, by Lemma 3.1,

Lzχ(u(z, z′)) = (u2 + 4u)χ′′(u) + (nu + 2n)χ′(u).

Since u(z, z′) = u(z′, z), the same expression is obtained for Lz′χ(u(z, z′)). Therefore
(4.18) holds.

Now let f ∈ C∞0 (Hn) and assume that supp f ⊂ Q b Hn. Taking into account (4.1),
using property (4.18) and integrating by parts, one has that

Lz

∫
Hn

r(z, z′; s) f (z′) dv(z′) =

∫
Hn

r(z, z′; s)(Lz′ f (z′)) dv(z′).
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Therefore to prove (4.17) it is enough to establish that∫
Hn

r(z, z′; s){[−Lz′ − s(n − 1 − s)I] f (z′)} dv(z′) = f (z). (4.19)

We shall prove (4.19) by using the methods of potential theory (cf. [5, Ch. 8]).
Let Uε be the exterior of the small n-dimensional Euclidean ball of radius ε centred
at the point z so that ∂Uε = S ε is an (n − 1)-sphere. According to integration by parts
formulae, ∫

Uε

r(z, z′; s){[−Lz′ − s(n − 1 − s)I] f (z′)} dv(z′)

−

∫
Uε

{[−Lz′ − s(n − 1 − s)I]r(z, z′; s)} f (z′) dv(z′)

= −

∫
S ε

1
(y′)n−2

[
∂r(z, z′; s)

∂l
f (z′) − r(z, z′; s)

∂ f (z′)
∂l

]
dS ε,

where l is the exterior normal to the surface S ε and dS ε is the (Euclidean) surface
element on S ε.

Since [−Lz′ − s(n − 1 − s)I]r(z, z′; s) = 0 outside the diagonal, the last equation takes
the form ∫

Uε

r(z, z′; s){[−Lz′ − s(n − 1 − s)I] f (z′)} dv(z′)

= −

∫
S ε

1
(y′)n−2

[
∂r(z, z′; s)

∂l
f (z′) − r(z, z′; s)

∂ f (z′)
∂l

]
dS ε. (4.20)

Let us show that

lim
ε→0

∫
S ε

1
(y′)n−2 r(z, z′; s)

∂ f (z′)
∂l

dS ε = 0, (4.21)

−lim
ε→0

∫
S ε

1
(y′)n−2

∂r(z, z′; s)
∂l

f (z′) dS ε = f (z). (4.22)

To this end we put z′ = z + tν, where 0 ≤ t <∞, ν = (ν1, . . . , νn) ∈ Rn, |ν| = 1. We have
dS t = tn−1 dS 1, where dS 1 is the area element of the unit (n − 1)-sphere, and

u(z, z′)|z′=z+tν =
|z − z′|2

yy′

∣∣∣∣∣
z′=z+tν

=
t2

y(y + tνn)
=

t2

y2 [1 + O(t)] (t→ 0). (4.23)

Further, we will assume that n ≥ 3 (in the case n = 2 the reasoning is similar; the
case n = 1 is elementary and should be considered separately on the basis of the same
reasoning). By Theorem 3.3 and equality (4.1), we have (for fixed s)

r(z, z′; s) = O
(
u−(n−2)/2) as u→ 0,
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and according to (4.23),

u(z, z′)|z′=z+εν = O(ε2).

Therefore∣∣∣∣∣∫
S ε

1
(y′)n−2 r(z, z′; s)

∂ f (z′)
∂l

dS ε

∣∣∣∣∣ ≤ Cεn−1ε−(n−2) = Cε→ 0 as ε→ 0,

that is, (4.21) holds.
Next,

∂r(z, z′; s)
∂l

=
∂r(z, z′; s)

∂t
=

1
4
ϕ′

(u
4

; s
)
∂u
∂t
,

∂u
∂t

=
∂

∂t

{ t2

y(y + tνn)

}
=

2ty + t2νn

y(y + tνn)2 ,

and by Theorem 3.3,

ϕ′
(u
4

; s
)

= −
2
σn

u−n/2 + O
(
u−(n/2)+1) as u→ 0.

Therefore, taking into account (4.23),

∂r(z, z′; s)
∂l

∣∣∣∣∣
z′=z+εν

= −
yn−2

σnεn−1 + O
( 1
εn−2

)
as ε→ 0.

Now (4.22) becomes obvious. Finally, passing to the limit in (4.20) as ε→ 0, we get
(4.19). The lemma is proved. �

Now note that the statement of Theorem 4.1 follows from Lemmas 4.2 and 4.3. Let
us also remark that (4.17) and (4.2) show that r(z, z′; s) defined by (4.1) is the Green’s
function for −L − s(n − 1 − s)I.

As is well known (see, for example, [8, Ch. 13]), the Green’s function G(x, x′;µ) of
−∆ − µI, where

∆ =
∂2

∂x2
1

+ · · · +
∂2

∂x2
n

is the Laplace operator, has a logarithmic singularity at x = x′ of the type ln |x − x′|−1

for n = 2 and a singularity of the type |x − x′|−(n−2) for n ≥ 3. Since for z close to z′

the behaviour of u−1 is like the behaviour of |z − z′|−2 by (2.3), it follows from formula
(3.9) of Theorem 3.3 and (4.1) that for the Laplace–Beltrami operator L on Hn the
Green’s function r(z, z′; s) of −L − s(n − 1 − s)I has the same type of singularity as
the Green’s function of the Laplace operator on Rn. This circumstance is consistent
with the fact that the hyperbolic space Hn, being a Riemannian manifold, must behave
locally like Euclidean space Rn.
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5. The operator T and its resolvent

Denote by T the closure of the operator T ′ in the Hilbert spaceH .

Theorem 5.1. The operator T is self-adjoint.

Proof. It follows from Theorem 4.1 that C∞0 (Hn) is contained in the range of the
operator T ′ − s(n − 1 − s)I(<s > (n − 1)/2). Since C∞0 (Hn) is dense in H , it follows
that the range of the operator T ′ − s(n − 1 − s)I(<s > (n − 1)/2) is dense in H .
Therefore the closure T ′ = T of the symmetric operator T ′ is a self-adjoint operator
(see [1]). �

It follows from (2.14) that

T ≥
(n − 1)2

4
I, i.e. (T f , f ) ≥

(n − 1)2

4
‖ f ‖2 ∀ f ∈ D(T ). (5.1)

Next, since the operator T is self-adjoint and inequality (5.1) is true, we get that the
resolvent R(s) := [T − s(n − 1 − s)I]−1 exists for<s = σ > (n − 1)/2 and is a bounded
operator defined on the whole of spaceH .

Theorem 5.2. If f ∈ C∞0 (Hn) and<s > (n − 1)/2, then

R(s) f (z) =

∫
Hn

r(z, z′; s) f (z′) dv(z′),

where r(z, z′; s) = ω(u(z, z′); s) in which ω(u; s) is defined by (3.5) and (3.6).

Proof. By the definition of R(s) we have [T − s(n − 1 − s)I]R(s) f = f , ∀ f ∈ H . On
the other hand, since T ′ ⊂ T, it follows from (4.3) that

[T − s(n − 1 − s)I]R̂(s) f = f , ∀ f ∈ C∞0 (Hn).

Subtracting the last two equations, we get [T − s(n − 1 − s)I][R(s) f − R̂(s) f ] = 0, that
is, λ = s(n − 1 − s) is an eigenvalue and R(s) f − R̂(s) f a corresponding eigenvector
of the operator T . But for <s > (n − 1)/2 the number λ = s(n − 1 − s) lies outside
the interval [((n − 1)2/4),∞) in the λ-plane and hence cannot be an eigenvalue for the
operator T by (5.1). Therefore R(s) f − R̂(s) f = 0 and the proof is complete. �
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