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Abstract. We report on an ongoing investigation into a seismic calibration of solar models
designed for estimating the main-sequence age and a measure of the chemical abundances of
the Sun. Only modes of low degree are employed, so that with appropriate modification the
procedure could be applied to other stars. We have found that, as has been anticipated, a
separation of the contributions to the seismic frequencies arising from the relatively smooth,
glitch-free, background structure of the star and from glitches produced by helium ionization
and the abrupt gradient change at the base of the convection zone renders the procedure more
robust than earlier calibrations that fitted only raw frequencies to glitch-free asymptotics. As
in the past, we use asymptotic analysis to design seismic signatures that are, to the best of
our ability, contaminated as little as possible by those uncertain properties of the star that
are not directly associated with age and chemical composition. The calibration itself, however,
employs only numerically computed eigenfrequencies. It is based on a linear perturbation from
a reference model. Two reference models have been used, one somewhat younger, the other
somewhat older than the Sun. The two calibrations, which use BiSON data, are more-or-less
consistent, and yield a main-sequence age t� = 4.68 ± 0.02 Gy, coupled with a formal initial
heavy-element abundance Z = 0.0169 ± 0.0005. The error analysis has not yet been completed,
so the estimated precision must be taken with a pinch of salt.

Keywords. Sun: helioseismology, Sun: abundances, stars: abundances, stars: oscillations, stars:
fundamental parameters.

1. Introduction
The only way by which the age of the Sun can be estimated to a useful degree of

precision is by accepting the basic tenets of solar-evolution theory and measuring those
aspects of the structure of the Sun that are predicted by the theory to be indicators
of age. The structure measurements must be carried out seismologically, and evidently
one expects greatest reliability of the results when all the available helioseismic data are
employed. However, the most relevant modes are those of lowest degree, because it is
they that penetrate most deeply into the energy-generating core where the relic helium-
abundance variation records the integrated history of nuclear transmutation. Moreover,
it is also only they that can be measured in other stars. Therefore, there has been
some interest in calibrating theoretical stellar models using only low-degree modes. The
prospect was first discussed in detail by Christensen-Dalsgaard (1984, 88), Ulrich (1986)
and Gough (1987), although prior to that it had already been pointed out that the
helioseismic frequency data that were available at the time indicated that either the initial
helium abundance Y0 or the age t�, or both, are somewhat greater than the generally
accepted values (Gough 1983), an inference which is consistent with our present findings.
Subsequent, more careful, calibrations were carried out by Guenther (1989), Gough &
Novotny (1990), Guenther & Demarque (1997), Weiss & Schlattl (1998), Dziembowski
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et al. (1999), Gough (2001) and Bonanno, Schlattl & Paternò (2002). Not all of them
addressed the influence of uncertainties in Y0 on the determination of t�.

As a main-sequence star ages, helium is produced in the core, increasing the mean
molecular mass µ, preferentially at the centre, and thereby reducing the sound speed.
The resulting functional form of the sound speed c(r) depends not only on age t� but
also on the relative augmentation of µ(r), which itself depends on the initial absolute
value of µ, and hence on Y0 . Gough (2001) tried to separate these two effects using the
degree dependence of the small separation dn,l = 3(2l + 3)−1(νn,l − νn−1,l+2) of cyclic
frequencies νn,l , where n is order and l is degree. This is possible, in principle, because
modes of different degree and similar frequency sample the core differently. However, that
difference is subtle, and the sensitivity to the relatively fine distinction between the effects
of t� and Y0 on the functional form of c(r) in the core is low. Consequently the error in
the calibration produced by errors in the observed frequency data is uncomfortably high.

This lack of sensitivity can be overcome by using, in addition to core-sensitive seismic
signatures, the relatively small oscillatory component of the eigenfrequencies induced by
the sound-speed glitch associated with helium ionization (Gough 2002), whose amplitude
is close to being proportional to helium abundance Y (Houdek & Gough 2007a). The
neglect of that component in the previously employed asymptotic signature dn,l had
not only omitted an important diagnostic of Y but had also imprinted an oscillatory
contamination in the calibration as the limits (k1 , k2), where k = n + 1

2 l, of the adopted
mode range was varied (Gough 2001). It therefore behoves us to decontaminate the core
signature from glitch contributions produced in the outer layers of the star (from both
helium ionization and the abrupt variation at the base of the convection zone, and also
from hydrogen ionization and the superadiabatic convective boundary layer immediately
beneath the photosphere). To this end a helioseismic glitch signature has been developed
by Houdek & Gough (2007a), from which frequency contributions δνn,l can be computed
and subtracted from the raw frequencies νn,l to produce effective glitch-free frequencies
νsn,l to which a glitch-free asymptotic formula (2.10) can be fitted. The solar calibration
is then accomplished by interpolating the theoretical seismic signatures computed on a
grid of solar models to the observations, using a standard grid to compute derivatives
with respect to t� and Y0 , and a carefully computed reference solar model designed to
be close to the Sun. The result of the first preliminary calibration by this method, using
BiSON data, has been reported by Houdek & Gough (2007b). Here we enlarge on our
discussion of the analysis, and we augment our results with a calibration based on a
second reference solar model.

2. The seismic diagnostic and calibration method
Any abrupt variation in the stratification of a star (relative to the scale of the inverse

radial wavenumber of a seismic mode of oscillation), which here we call an acoustic
glitch, induces an oscillatory component in the spacing of the cyclic eigenfrequencies of
seismic modes. Our interest is principally in the glitch caused by the depression in the
first adiabatic exponent γ1 = (∂ln p/∂ln ρ)s (where p, ρ and s are pressure, density and
specific entropy) caused by helium ionization, which imparts a glitch in the sound speed
c(r). The deviation

δνi := νi − νsi , (2.1)
where i := (n, l), of the eigenfrequency νi from the corresponding frequency νsi of a
similar smoothly stratified star is the indicator of Y that we use in conjunction with the
indicators of core structure to determine the main-sequence age.

Approximate expressions for the frequency contributions δνi arising from acoustic
glitches in solar-type stars were recently presented by Houdek & Gough (2007a). Here
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Figure 1. Top left: The symbols (with error bars obtained under the assumption that the raw
frequency errors are independent) represent second differences, ∆2ν, of low-degree solar fre-
quencies from BiSON. Top right: The symbols are second differences ∆2ν of adiabatic pulsation
eigenfrequencies of solar Model S of Christensen-Dalsgaard et al. (1996). The solid curves in
both panels are the diagnostics (2.2) – (2.8), whose eleven parameters have been adjusted to fit
the data optimally. Bottom: The symbols denote contributions δν to the frequencies produced
by the acoustic glitches of the Sun (left panel) and Model S (right panel).

we improve them by adopting the appropriate Airy functions Ai(−x) that are used as
comparison functions in the JWKB approximations to the oscillation eigenfunctions, as
did Houdek & Gough (2007b). The complete expression for δνi is then given by

δνi = δγ νi + δcνi , (2.2)

where
δγ ν = −

√
2πAII∆−1

II

[
ν + 1

2 (m + 1)ν0
]

×
[
µ̃β̃

∫ T

0
κ−1

I e−(τ−η̃ τ I I )2 /2µ̃2 ∆2
I I |x|1/2 |Ai(−x)|2 dτ

+
∫ T

0
κ−1

II e−(τ−τ I I )2 /2∆2
I I |x|1/2 |Ai(−x)|2 dτ

]
(2.3)

arises from the variation in γ1 induced by helium ionization, and

δcν � Acν
3
0 ν−2 (

1 + 1/16π2τ 2
0 ν2)−1/2

×
{

cos[2ψc + tan−1(4πτ0ν)]−(16π2 τ̃ 2
c ν2 +1)1/2

}
(2.4)

arises from the acoustic glitch at the base of the convection zone resulting from a near
discontinuity (a true discontinuity in theoretical models using local mixing-length theory
with a non-zero mixing length at the lower boundary of the convection zone) in the second
derivative of density. Here, m = 3.5 is a constant, being a representative polytropic index
in the expression for the approximate effective phase ψ appearing in the argument of the
Airy function, and β̃, η̃ and µ̃ are constants of order unity which account for the relation
between the acoustic glitches caused by the first and second stages of ionization of helium
(Houdek & Gough 2007a); τ is acoustic depth beneath the seismic surface of the star, and
T � 1/2ν0 is the total acoustic radius of the star; ∆II and τII are respectively the acoustic
width of the glitch and its acoustic depth beneath the seismic surface. The argument of
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the Airy function is x = sgn(ψ)|3ψ/2|2/3 , where

ψ(τ) = κωτ̃ − (m + 1) cos−1 [(m + 1)/ωτ̃ ] if τ̃ > τt , (2.5)

and
ψ(τ) = |κ|ωτ̃ − (m + 1) ln[(m + 1)/ωτ̃ + |κ|] if τ̃ � τt , (2.6)

in which τ̃ = τ + ω−1εII , with ω = 2πν, and τt is the location of the upper turning point
of the mode; also κ(τ) = [1 − (m + 1)2/ω2 τ̃ 2 ]1/2 , and κI = κ(η̃τII) and κII = κ(τII). In
addition

ψc = κcωτ̃c − (m + 1) cos−1 [(m + 1)/τ̃cω] + π/4, (2.7)
where κc = κ(τc) and τ̃c = τc + ω−1εc .

The seven coefficients ηα = (AII , ∆II, τII , εII , Ac , τc , εc), α = 1, . . . , 7, are found by
fitting the second difference

∆2iν ≡ νn−1,l − 2νn,l + νn+1,l � ∆2i(δγ ν + δcν) +
3∑

k=0

akν−k
i ≡ gi(νj ; ηα ) (2.8)

to the corresponding observations by minimizing

Eg = (∆2iν − gi)C−1
∆ ij (∆2j ν − gj ) (2.9)

using the value of ν0 obtained by fitting to (2.10), where C−1
∆ ij is the (i, j) element of

the inverse of the covariance matrix C∆ of the observational errors in ∆2iν, computed,
perforce, under the assumption that the errors in the frequency data νi are indepen-
dent. The last term in equation (2.8) approximates smooth contributions arising, in part,
from wave refraction in the stellar core, from hydrogen ionization and from the supera-
diabaticity of the upper boundary layer of the convection zone, introducing four more
fitting coefficients ak = ηα , k = 0, . . . , 3, α = 8, . . . , 11. The covariance matrix Cηαγ of
the errors in ηα were established by Monte Carlo simulation.

The outcome of the fitting to the BiSON data (Basu et al. 2007) and to the adiabati-
cally computed eigenfrequencies of solar Model S (Christensen-Dalsgaard et al. 1996) is
displayed in Figure 1: the upper panels display the second differences, together with the
fitted formula (2.8), the lower panels display the corresponding contributions δνi to the
frequencies of oscillation from the acoustic glitches. All the frequencies displayed in the
figure have been used in equation (2.9) for fitting (2.8).

To the resulting glitch-free frequencies νsi , derived from equation (2.1), of both the
solar observations and the eigenfrequencies of the reference solar model, is fitted the
asymptotic expression

νsi ∼(n+1
2 l+ε̂)ν0−

AL2−B

νsi
ν2

0−
CL4−DL2 +E

ν3
si

ν4
0−

FL6−GL4 +HL2−I

ν5
si

ν6
0 ≡ s(νsi ; ξβ ) ,

(2.10)
by minimizing (νsi − si)C−1

sij (νj − sj ), where L2 = l(l + 1) and Cs is the covariance
matrix of the observational errors in νsi , from which we obtain both the coefficients
ξβ = (ν0 , ε̂, A,B,C,D,E, F,G,H, I), β = 1, . . . , 11, and the covariance matrix Cξβδ of
the errors. Following Gough (2001), we carry out this fitting in the frequency range given
by k1 � k � k2 , where k = n + 1

2 l and 0 � l � 3, and we vary k1 and k2 . Each of the
parameters ξβ represents an integral of a function of the equilibrium stratification. The
integrals A,C and F are of particular importance to our analysis, because C and F are
dominated by conditions in the core, and, although the contributions to A from the core
and the rest of the star are roughly equal in magnitude (and potentially have opposite
signs), the latter is relatively insensitive to t� and Y0 . The integrands in the remaining
integrals are either more evenly distributed throughout the Sun or are concentrated near
the surface.
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Table 1. Partial derivatives Hαj obtained from two sets of calibrated evolutionary models for
the Sun. Values with respect to age t� are in units of Gy−1 .

(∂A/∂t�)Z (∂A/∂Z)t� (∂C/∂t�)Z (∂C/∂Z)t� [∂(−δγ1/γ1 )/∂t�]Z [∂(−δγ1/γ1 )/∂Z ]t�

−0.0469 −0.584 0.677 36.8 −0.00656 0.442

We have carried out age calibrations using combinations of the parameters

ζα = (A,C,−δγ1/γ1), α = 1, 2, 3 , (2.11)

where −δγ1/γ1 = AII/
√

2πν0∆II is a measure of the maximum depression in γ1 in the
second helium ionization zone. Presuming, as is normal, that the reference model is
parametrically close to the Sun, we consider the reference value ζr

α to be approximated
by a two-term Taylor expansion of ζα about the value ζ�α of the Sun:

ζr
α = ζ�α −

(
∂ζα

∂t�

)
Z

∆ t� −
(

∂ζα

∂Z

)
t�

∆Z + εζα , (2.12)

where ∆ t� and ∆Z are the deviations of age t� and initial heavy-element abundance
Z from the reference model, and εζα are the formal errors in the calibration parameters
whose covariance matrix Cζαβ can be derived from Cξβδ and Cηαγ . A (parametrically
local) maximum-likelihood fit then leads to the following set of linear equations:

HαjC
−1
ζαβ HβkΘ0k = HαjC

−1
ζαβ ∆0β , (2.13)

in which Θk = (∆t�,∆Z) + εΘk = Θ0k + εΘk , k = 1, 2, is the solution vector subject
to (correlated) errors εΘk , ∆β = ζ�β − ζr

β + εζβ = ∆0β + εζβ , and the partial derivatives
Hαj = [(∂ζα/∂t�)Z , (∂ζα/∂Z)t� ], j = 1, 2.

A similar set of equations is obtained for the formal errors εΘk :

HαjC
−1
ζαβ Hβk εΘk = HαjC

−1
ζαβ εζβ , (2.14)

from which the error covariance matrix CΘkq = εΘk εΘq can be computed from Cζαβ .
The partial derivatives Hαj were obtained from the two sets of five calibrated evolu-

tionary models for the Sun that were used in a similar calibration by Houdek & Gough
(2007b), computed with the evolutionary programme by Christensen-Dalsgaard (1982),
and adopting the Livermoore equation of state and the OPAL92 opacities. One set of
models has a constant value for the heavy-element abundance Z = 0.02 but varying age;
the other has constant age but varying Z. Note that, for prescribed relative abundances
of heavy elements, the condition that the luminosity and radius of the Sun agree with
observation defines a functional relation between Y0 , Z and t�. The values of the partial
derivatives Hαj are listed in Table 1.

3. Results
To illustrate the effect of taking δνi into account, we compare in Figure 2 a first as-

sessment of A(k1 , k2) using the glitch-free frequencies νsi (left panel) with that obtained
from the raw frequencies νi (right panel). Recall that A represents a functional of the
equilibrium structure of the star, and should not vary with k1 and k2 . The range of values
for A is the lower for νsi , as we had anticipated. We believe that the upturn of A for
low values of k1 in the left panel of the figure is a result of the failure of the asymptotic
formula (2.2)–(2.4) when νi is low. The dipping of A at high values of k1 and low values
of k2 occurs because the frequency range is too small for a reliable determination of the
fitting coefficients ξβ . We therefore adopt intermediate values for k1 and high values for
k2 , for which A is insensitive to the selected frequency range.
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Figure 2. Asymptotic fitting coefficient A (see equation 2.10) as functions of k1 and k2
(k = n + 1

2 l). Results are shown for fitting (2.10) to the glitch-free frequencies νsi (left panel)
and to the raw frequencies νi (right panel).

Age calibrations using different combinations of the parameters ζα and two different
reference models are summarized in Table 2. The younger reference model is ‘Model S’
(Christensen-Dalsgaard et al. 1996) which has age t� = 4.6Gy; the second is ‘Model T’,
which has age t� = 4.7Gy. The same physics was adopted in the evolutionary calculations
of both models. We notice in Table 2 that the calibration for the combination (A,C), i.e.
without δγ1/γ1 , is less stable to a change in the reference model than are the calibrations
with combinations in which δγ1/γ1 is included, and therefore is less reliable, as we have
explained in the introduction. If we ignore in Table 2 the results for (A,C) and combine
the others, we obtain

t� = 4.68 ± 0.02Gy , Z = 0.0169 ± 0.0005 .

Including the calibrations with (A,C) does not change the outcome. Error contours
corresponding to the calibration from Model S in the first row of Table 2 are plotted in
Figure 3. Corresponding contours for Model T are the same, except that their centres are
displaced to (4.677 Gy, 0.0170). One can adduce from our description of the analysis in
Section 2 that our current treatment of the errors is not completely unbiassed; however,
the potential bias is of the order of only |δνi/νi |, which is small.

The age we have found is greater than currently accepted values. The values of Z are
somewhat smaller than those of Models S and T (0.01963), but we hasten to point out
that they should not be regarded strictly as statements about the initial heavy-element
abundance, but rather as measures of the opacity in the radiative interior. Asplund et al.
(2004) have argued that the photospheric abundances of C, N and O had previously
been overestimated, suggesting that the actual total heavy-element abundance is even
lower than had previously been believed. However, that cannot imply that the opacity
in the solar interior is necessarily comparably lower because it has been implicitly cal-
ibrated here (by accepting the tenets of solar-evolution theory, and the OPAL opacity
calculations upon which the models are based), and indeed the opacity has already been
determined seismologically from a broader spectrum of modes than has been adopted here
(Gough 2004). The matter raised by Asplund et al. therefore challenges either the opacity
calculations, the nuclear reaction rates, or the basic physics of stellar evolution, not he-
lioseismology as some spectators have surmised. As we know already from seismological
structure inversions, the solar models are not accurate by helioseismological standards.
Therefore the properties inferred from these calibrations could be more contaminated by
systematic error than by errors in the observed frequencies.
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Table 2. Age calibrations with different combinations of ζα and for the two reference models:
Model S with an age t� = 4.6 Gy and Model T with an age t� = 4.7 Gy. The first two columns
show the results adopting Model S as the reference model, the third and fourth columns display
the results for Model T.

ζα t� (Gy) Z t� (Gy) Z C
1/2
Θ11 −(−CΘ12 )1/2 C

1/2
Θ22

A, C,−δγ1/γ1 4.679 0.0169 4.677 0.0170 0.017 −0.0023 0.0005
A, C 4.658 0.0177 4.673 0.0171 0.023 −0.0037 0.0007
A,−δγ1/γ1 4.673 0.0165 4.676 0.0169 0.017 −0.0019 0.0007
C,−δγ1/γ1 4.700 0.0169 4.680 0.0170 0.028 −0.0029 0.0005

Figure 3. Error ellipses for the calibration
using all three parameters ζα and Models S as
the reference model: solutions (t�, Z) satisfy-
ing the frequency data within 1, 2 and 3 stan-
dard errors in those data reside in the inner,
intermediate and outer ellipses, respectively.
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Discussion

Christensen-Dalsgaard: A comment: with SONG we expect to be able to carry out
a similar analysis of distant stars, on which we of course know much less a priori.

Houdek: This seismic diagnostic has been developed with the aim to be able to use it
also for distant stars. The accuracy of the observed frequency data required for such a
diagnostic analysis is one part in 104 or better.

S. Vauclair: Two small comments which are actually more relevant for stars that are
slightly more massive than the Sun; First, I would like to point out that in case of
helium settling below the convective zone the effect of the helium gradient in the second
differences may become more important than the convective border, and than the effect
of helium ionization. Second, the so-called asymptotic theory, which is very useful, may
become quite wrong in some cases, at the end of the main sequence or the beginning
of the sub-giant branch. The small frequency separation, which is always positive in the
asymptotic theory, can become negative.

Gough & Houdek: You are certainly correct in implying that the amplitude of the
oscillatory contribution to the second differences arising from helium settling beneath the
convection zone can be greater in stars more massive than the Sun, which have shallower
convection zones, although whether or not it is more important than the ionization
signature depends upon the issue in question. The cumulative amount of settling increases
with time, and therefore is a potential indicator of age. But the sound-speed profile that
it produces depends on uncertain fluid-dynamical issues associated with the tachocline,
the recession of the convection zone, and possible overshooting, so we would be wary of
attempting to use its seismic signature in an age calibration. In the current state of our
understanding we would instead prefer to separate it from the ionization signature and
then ignore it, as we have for the Sun; that course is possible provided that the helium
ionization zone is acoustically far from the base of the convection zone. We would use it
separately to investigate tachocline structure, however, as indeed we are in the process
of doing for the Sun.

One cannot deny that conditions in some stars might be such as to render it impossible
to develop an adequate asymptotic theory of low-degree acoustic modes, although we do
not share your apparently implied pessimism. It is perhaps worth pointing out that there
have been instances when an asymptotic formula developed in one set of circumstances
has been misused by applying it without modification in another, in which the conditions
for the validity of the theory are not satisfied; if that is what you mean by “so-called
asymptotic theory” we must surely agree. We must point out, however, that it is not true
that even the simple asymptotic glitch-free formula (2.10) precludes a negative so-called
small frequency separation.
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