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CHARACTERIZATIONS OF FINITE LATTICES THAT 
ARE BOUNDED-HOMOMQRPHIC IMAGES OR 

SUBLATTICES OF FREE LATTICES 

ALAN DAY 

1. I n t r o d u c t i o n . In [8], IVIcKenzie introduced the notion of a bounded 
homomorphism between lattices, and, using this concept, proved several deep 
results in lattice theory. Some of these results were intimately connected with 
the work of Jônsson and Kiefer in [6] where an a t t empt was made to charac
terize finite sublattices of free lattices. McKenzie 's characterization and others 
t ha t followed (see [7] and [5]) still have not answered the (now) celebrated 
Jônsson conjecture: 

A finite lattice is a sublattice of a free lattice if and only if it satisfies (SDW), 
(SDW) and (W). 

(The properties mentioned here are defined in the text.) 

Several of the known characterizations have been of the form <£>v, $ A
 a n d 

(W), where <£>A is the lattice-theoretical dual of the property $v. Moreover 
in these cases one had $v implies (SDv) (and therefore <£A implied (SD A ) ) . 
Considering the different formulations of the various $v 's , it was somehow 
surprising when all were found to be equivalent. 

T h e purpose of this paper is to supply another such $v and to inch slightly 
closer to Jonsson's conjecture by showing tha t being a finite sublatt ice of a 
free lattice is equivalent to <ï>v, (SDA) and (W). A structural representation 
is also given for these lattices. 

2. Pre l iminar ie s . Let L be the class of all finite lattices. We will be con
sidering several different properties of (finite) lattices and the corresponding 
classes they define. As a notational convenience, for any property (P) we let 
P be the class of finite lattices having (P) , i.e. for L £ L, L £ P if and only 
i f i t= (P ) . 

SD A = {L <c L : for all a, b, c Ç L(a A b — a A c implies a A b = 

a A (b V c))} 
SD V = {L G L : for all afb,c£ L(a V b = a V c implies 

ay b = a V (6 A c))} 
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70 ALAN DAY 

These classes correspond to the special distributive laws introduced in [6]. 

W = {L G L : for all a, b, c, d G L(a A b ^ c V d implies 

{a, fe, c, d] C\[a A b, c V d] ^ 0')}. 

A quadruple in L ( £ L) which does not satisfy the defining condition of (W) 
will be called a W-failure in L. 

F = { L £ L : L i s a sublattice of a free lattice). 

LB = {L G L : L is a lower bounded-homomorphic image of a free lattice). 
(A homomorphism a : L -+ M is called lower bounded if the inverse image of 
each member of M is either empty or has a least member. An upper-bounded 
homomorphism and the class UB is defined dually and B = LB C\ UB.) 

We also need to recall some definitions due to Jônsson which may be found 
at least in [7] (and [8] under an alias). 

Let L be a finite lattice. A non-trivial cover of a G L is a non-empty subset 
C Ç L such that a ^ V C and a $ c for all c G C. For any two subsets C and 
D of L, we say C is a lower refinement of Z) (written C « 2)) if every member 
of C is less than or equal to some member of D. A sequence of subsets of L, 
Sk(L) is defined inductively by: 

(i) x G So(L) if and only if x has no non-trivial covers; 
(ii) x G Sjc+iÇL) if and only if for any non-trivial cover C Ç L of x there 

exists a lower refinement £> Ç Sk(L) of C which is also a (non-trivial) cover 
of x; 

(iii)S(Z,) = U5»(L) . 

The dual definitions of dual covers (x ^ A C), upper refinements, the 
sequence Pk(L), and P ( £ ) are left to the reader. 

Finally we need a generalization, due to Sivak [10], of a construction given 
by the author in [4]. (See [5] for the ultimate such generalization). 

For a finite lattice, L, K C L is called a /ower pseudo-interval if 
Z£ = U! ,n [w, flj for some u, vu • • • , vn £ L with u ^ vt (all i) . An tipper 
pseudo-interval of L is defined dually. Moreover, a subset I Ç L is an interval 
if and only if it is both an upper and a lower pseudo-interval. 

Now let I b e a lower pseudo-interval of a (finite) lattice L. We define a 
new lattice L[K] = (L\K) \J (K X 2) obtained by doubling every element 
in K with the product order and * 'fitting" this inside L\K using the original 
(and first projection) order on L. Clearly this construction can also be done for 
intervals, upper pseudo-intervals and (cf. [5]) for arbitrary convex subsets 
of L. 

A class, K, of (finite) lattices is said to be closed under the splitting of intervals 
(lower or upper pseudo-intervals) if for every L G K and interval (respectively 
lower or upper pseudo-interval) K Ç L, L[K] G K. 

We need the following results. 
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(2.1) T H E O R E M (McKenzie [ 8 ] ) . F = B n W , 

(2.2) T H E O R E M ([10] and [4]). LB is closed under the splitting of lower pseudo-

intervals and B is closed under the splitting of intervals. 

3. Cycles and c o n g r u e n c e s . Since, in any finite lattice, every element is 
the join of the join-irreducibles less than or equal to it, if & ^ a holds in L then 
there is a join-irreducible u in J(L) with u ^ b and u ^ a. Moreover if u is a 
minimal such join-irreducible than u A a = u*, the largest element less than u. 
Dually, the same remarks can be made about meet irreducibles and we will 
call a join-irreducible or meet-irreducible related to a pair (a, b), b ^ a, in 
the above respective manner an associated join- (resp.meet-) irreducible. 

This "associat ion" is of greater interest when a is covered by b (a < b). 
Here, any associated join-irreducible u and meet-irreducible m satisfy the 
following equations: 

u V a = b, u A a = u*, m A b = a and m V b = m*, 

the least element of L greater than m. 
Being more particular still, there is a relation p Ç M(L) X J(L) defined by: 

mpu if and only if u V m = m* and u A m = u* 

An interesting observation is the following: 

(3.1) LEMMA. A finite lattice L satisfies (SDv) if and only if p is (the graph of) 
a function. 

Proof. Suppose L satisfies (SDV) and assume also tha t mpui and mpu2. We 
have then m V U\ = ni* = m V u2 and therefore nt* = m V {u\ A u2). But 
this forces for both i, u^ < u\ A u2 S ut. Therefore U\ — U\ A u2 = u2. 

Conversely, assume p is a function and take a, b\, b2 G L with a V &i = 
a V b2. If a V (&i /\ b2) < a \J bi then there is an associated meet-irreducible 
m g M(L) with a V (&i A b2) ^ m and a /\bt % m and also then b{ ^ m 
fori = 1,2. 

Now if for each i = 1, 2, ut is a. join-irreducible" associated with bt and m, 
we have mpu\ and mpu2. Since p is a function, 

u = Ui = u2 S bi A b2 ^ a V (bi A b2) ^ m, 

a contradiction. Therefore a V &* = a V (b\ A b2) and L satisfies (SD V ) . 

By transi t ivi ty, any congruence relation, 0, on a finite lattice is determined 
uniquely by the prime quotients it collapses and therefore also by the join-
irreducibles u for which u*6u. We wish characterizations of the sets of prime 
quotients and sets of join-irreducibles so obtained. T h e first characterization 
is an easy exercise. 

(3.2) LEMMA. For a finite lattice L, and Q(L) its set of prime quotients then 
Q ^ Q(L) is precisely the set of prime quotients collapsed by some congruence 
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relation on L if and only if for b/a G Q and d/c G Q(L) if either a ^ c < d S 

b V c or a A, d ^ c < d ^ b hold then d/c G Q. 

T h e next characterization requires a definition essentially due to Pudlâk 

and T u m a in [9]. 

(3.3) Definition. For a finite latt ice L and join-irreducibles u,v G J(L), 
uCv if and only if for some p G L the following hold: 

(CI) it ^ v V p and « | »# V ^ ; 
(C2) w $ ^ V x for all x < p. 

One perhaps should note t h a t uCv implies u ^ v and t h a t this together with 
the existence of some q G L satisfying (CI) will produce (C2) by taking a 
minima! such q. 

(3.4) LEMMA. Let S be a set of join-irreducibles in a finite lattice L. Then the 
following are equivalent: 

(1) S = {u G J(L) : udu*} for some 0 G Con (L) 

(2) uCv and v £ S imply u G S. 

Proof. (2) follows easily from (1) since if vOv* and uCv we have 

u = u A (£ V z>)0& A (P V v*) with w A (p V v*) t^ u* < u. 

Conversely let 5 satisfy (2) and let Q be the set of all prime quotients of L 
which have associated join-irreducibles in 5 . W e will show one pa r t of (3.2) and 
leave the other for the reader. Assume then t h a t b/a G Q and d/c is another 
prime quot ient with a ^ c < d ^ b V c{= b V d).hetv G S satisfy z; V a — b 
and v A a = v*, and take u G J(L) with u V c = d and u A c = u*. Now 
c\/v = c\/a\/v = c\/b'^.u and c V w* = c ^ w. Therefore for any 
minimal member, p, oî {x £ L : x ^ c, v V x ^ u and u* V x ^ w} we have 
w • Q>. By (2) this gives d/c G Q, and the proof is complete. 

(3.5) COROLLARY. For all u, v G JÇL), con («*, w) £ con (z;*, A) if awd ow/^ 

if there exists a sequence u = UQ, . . . , un = v with utCui+ifor all i < n. 

Proof. T h e set of all u G J(L) for which such a sequence exists with un = u 
clearly satisfies (2). 

(3.6) Definition. A C-cycle in a finite latt ice L is a non-singleton set 
{w< : 0 S i < ^} ^ J(L) such t ha t for all i < w, UiCui+i (where i + 1 is 
computed modulo n). 

4. T h e c o n d i t i o n ( P v ) . This proper ty was considered by Pudlâk and T u m a 
in [9] and is precisely the condition needed on a finite latt ice to make their 
graph-theoretical proof of the Gratzer-Schmidt theorem produce a finite 
algebra with the given latt ice as its congruence latt ice. W e require some of their 
results and will present here latt ice-theoretic proofs. 
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Now for any finite lattice L, the function ^^ ->con L (u*, u) provides a 
natural surjection from J(L) onto J (Con ( / ) ) . 

(4.1) Definition. L satisfies (P v ) if and only if for any u, v Ç J(L), 
con^ (u#, u) = con^ (v#, v) implies u = v. 

This is perhaps the best definition for generalizations to non-finite lat t ices; 
however proofs in the finite case would require only the checking of the respec
tive cardinalities of J(L) and J (Con (L)). The following is an obvious corollary 
of (3.1). 

(4.2) LEMMA. P V C S D V 

(4 .3 )THEOREM [9]. The class P v is non-empty and closed under I I , S and P f l n . 

Proof. Clearly 2 belongs to P v and as lattices have factorable congruences 
(i.e. Con (L X M) ^ Con L X Con M), P v is closed under finite products . 

Now take B G P v wi th A ^ B. Fur thermore let a and b be join-irreducible 
in A wi th aQ = V {x Ç A : x < a} and b0 defined similarly, and suppose 
con^ (ao, a) = con^ (bo, b). Passing to B we obtain c o n 5 (a0, a) = conB (bQ,b). 

Now for any x < y in any finite lattice L, 

con L (x, y) = V {conJv (w*, w) : w £ J(L), u S y and w ^ x}. 

Moreover one may take an i r redundant set of such join-prime congruences 
(Con (L) is distr ibutive!) . Therefore there are sets Ja, Jb Ç J(B) such t h a t 
for x G {a, b} : 

(1) n G / s implies w rg x and w ^ x0; 
(2) con# (x0, #) = V {con5 (w*, w) : u £ / . } i rredundantly. 

Now c o n s (ao, a) = con/? (bo, b) and 5 Ç P v force Ja = / & and hence there 
ïs a w £ /(-£>) (actually in Ja — Jb) wi th w ^ a A b, w ^ aG and w ^ &0. We 
now have in A, a, b £ J (A), a A & | cz0 and a A b $ bo. Therefore a = b 
a n d S ( P v ) C p v . 

Now since any epimorphism $ : A —» >B between finite algebras can be 
factored into a composition of epimorphisms 4>i • A f —> >. / lH . i wi th Ker $< 
an a tom in Con (A t) we need only consider A £ P v and epimorphism 
<j> : A ~» B with AA covered by Ker $ in Con (A). Since 4̂ is a finite lattice $ 
is bounded and an easy argument shows tha t the lower bound V-monomor-
phism a : B >-> A given by b >—> A 0~1M takes /(£>) into J (A). Moreover, 
since Ker <j> collapses a t least one pair (/i*, u) for u £ / (^4) (exactly one since 
-4 6 P v ) we obtain 

| / ( 5 ) | < \J(A)\. 

But since Ker <f> is an atom in a finite distr ibutive lattice Con {A) and since 
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Con (B) ^ [Ker 0, A j C o n ( A ) we obtain 

\J(Con(A))\ = | 7 (Con(5 ) ) | + 1. 

This forces 1/(5)1 = |J(Con (P)) | since A G P v . 

(4.4) LEMMA. P V is closed under the splitting of lower pseudo-intervals. 

Proof. Let K be a lower pseudo-interval of L G P v and suppose 
K = Ui ,w [ ,̂ flj. Then it is easily seen that x £ J(L[K]) if and only if one of 
the following hold: 

(1) x 6 L\K and x 6 J(L); 
(2) x = (5,0) and s G J(L); 
(3) x = (w, 1). 
Since the kernel of the natural epimorphism K : L[K] -» L is an atom in 

Con (L[K]) we can conclude as in (4.3) that 

\ J (Con (L[K])\ = 1 + | / (Con(L) ) | . 

Since L Ç P v , the result follows. 

5. The characterization theorems. The main results will be derived from 
the following theorem. For the creditations for some parts of this theorem, the 
reader should consult the historical notes in § 7. 

(5.1) THEOREM. For a finite lattice, L, the following are equivalent: 

(1) L e P y 
(2) There is a sequence of lattices L0 = 1, Pi, . . . , Ln+i = L together with a 

sequence of lower pseudo-intervals K0, . . . , Kn with Kt Ç Lu i ^ n such that 
for all i ^ n, Li+l ^ P7-[i£J. 

(3) L G LB. 
(4) S(L) = L. 
(5) L has no C-cycle. 

Proof. (1) implies (2): Let 6 be an atom in Con (L). By (P v ) , we have a 
unique u £ J(L) with 0 = con (u*, u). We need only show that L can be ob
tained from L/6 by finding a suitable lower pseudo-interval in L/6. This is 
easily done by examining the congruence classes of 6. 

Let {mi, . . . , nin) be the set of meet-irreducibles associated with u. 

Claim 1. P#r x (E [w*, w j , (A V x) /\ mt = x. 
If x < (u V x) A W{, then we can find a. v £ J(L) such that 

v ^ {u V x) /\ mi and A ^ x. Now w*0w implies xd(u V x) A w f which 
implies in turn ^#0 .̂ By (Pv) this forces u = v S w{, a contradiction. 

Similarly one obtains 

Claim 2. Per x 6 [w, m f l , w V (x A Wj) = x. ' 
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Claim 3. xdy if and only if x — y or for some i G {1, . . . , n) there exists 
z G [w#, mt] with {x, y] = {z, u V z). 

We need only check the claim for pairs in 0 of the form x < y. But in this 
case, u must be the associated join-irreducible. Therefore the associated meet-
irreducible must be some ra* and {x, y) = {x, u V x}. 

(1) implies (2) now follows by c o n s i d e r i n g ^ to be the image of {J\'n [u*,m^\. 
(2) implies (3): This is (2.2). 
(3) implies (4): See Jônsson and Nation [7] where the proof is given for the 

finitely generated case. 
(4) implies (5): Suppose L has a C-cycle U\Cu2C . . . CunCu\ and wi thout 

loss of generality let U\ have the least 5-rank. (That is: u\ G Sk(L) for some k 
and for all i G {2, . . . , n}, u{-A Sl(L) for all I < k). 

Now U\Cu2 implies there exists an x G L with U\ ^ x V ^2, ^i ^ x V «2* 
and for all y < x U\ ^ 3; V ^2. This implies immediately t ha t k 7^ 0 and if 
fe = / + 1 then there exists M C Z^(L) such tha t wi g V M and M « {u2, x\. 
Now the above stated inequalities force u2 G M QDi(L), a contradict ion on 
the minimali ty of k = I + 1. 

(5) implies (1): If con (u*, u) = Con (v*, v) holds in L then there exists 
C-chains u — WQCWIC . . . wn-\Cv and v = SQCSIC . . . smCu. But then one 
would have a proper C-cycle and hence u = v. 

(5.2) COROLLARY. The only simple lattice in P v is 2. 

(5.3) T H E O R E M . B = P v H SD A . 

Proo/. By (5.1) and (4.2), B = P v H P A ç P y C\ S D A . Conversely in the 
proof of (5.1) ; (1) —> (2), if L G S D A then there is a unique meet-irreducible m 
associated with the given join-irreducible u. This implies t ha t L ~ A[I] for 
some interval I Q A and the proof is complete via (2.2) and induction on the 
cardinality of L. 

(5.4) COROLLARY. For a finite lattice L, L G B if and only if there exists a 
sequence of lattices L0 = 1, Li , . . . AH-I = L together with a sequence of intervals 
Ii S Lh 0 ^ i ^ n such that for all i ^ n, Li+i ^ £*[/<]. 

(5.5) COROLLARY. F = P v C\ S D A C\ W. 

6. B - r e f l e c t i ons . Since B is closed under finite subdirect products , we can 
measure how far a (finite) lattice is from being in B in the following way. For 
A G L, let 0B = A [0 G Con (A) : A/0 G B} and define RB(A) = A/dB 

with pA : A -» RB(A) the canonical epimorphism. Clearly RB(A) is the 
largest homomorphic image of A in B and we have for any cf> : A —» B with 
5 Ç B there exists a unique $ : RB{A) —> 5 with <j> = ^ o p i . In this section 
we want to give a description of the B-reflection, RB(A), and of Ker pA for 
lattices of particular interest, namely those in S D A C\ S D V C\ W. 
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To ease notation for the rest of this section, let p : L —» B be the B-reflection 
of L 6 L. 

(6.1) LEMMA. If L ç W, /Aew 5 G W. 

Proof. If B £ W, let (a, i, c, d) be a quadruple in 5 witnessing a W-failure 
in B and take / = [a A b, c V rf]. Now since (a, 6, c, d) is a JT-failure the 
canonical K : B\I]-» B is such that no proper sublattice of B[I] has B as its 
image under K. But since L Ç W, there exists a lifting p : L —> B[I] such that 
K o p = p (c.f. Davey and Sands [1]). Therefore p is an epimorphism and 
B[I] Ç B supplies a contradiction to the fact that B is the B-reflection of L. 

(6.2) LEMMA. If L G W, /Aew 5(L) is a sublattice of L and the map 
a : L —>S(L) given by x i—» V {s Ç •S'(L) : 5 ^ #} is a lattice homomorphism. 

Proof. The fact that S(L) is a sublattice in the presence of (W) is an old 
(then-) unpublished result of Jônsson circa 1960= Also the proof that a is a 
homomorphism is essentially in [7, 3.3]. We will here provide a proof of the 
second part. 

Since a(x) ^ x for all x £ L and S(L) is a. sublattice it follows that a pre
serves meets. In order to show a preserves joins it is enough to show that for 
all .v Ç S(L), s ^ x V y implies s ^ a(x) V a{y). 

Clearly for s Ç S0(L) this property holds as SQ(L) is the set of join-prime 
elements of L. Now for s Ç Sk+i(L), s S x V y implies there exists a lower 
refinement C « {x, 3;} with C C Sk(L) and 5 ^ V C. Now C « {x, 3>j implies 
C — CXKJ Cy where c Ç Cz if and only if c ^ z (z G {x, y}). Therefore 

s S. V C = V CT V V Cy £ a(x) V a(y). 

Dually we obtain: 

(6.3) LEMMA. For L £ W, then P(L) is a sublattice of L and the 
map (3 : L —> P(L) given by x 1—» A {£> G ^ ( ^ ) : x S p} is a lattice homomor
phism . 

Another easy consequence of these definitions is the following, also known 
to Jônsson. 

(6.4) LEMMA. Let A and B be finite lattices and <j> : A -» B be an epimor
phism with lower and upper bounds a : B >-» A and /3 : B >-> /I respectively. Then 
for every k < co, 

a[S*(£)] Ç 5*(^) and /3[P*(£)1 C P * ^ ) . 

(6.5) THEOREM. If p : L -*> B is the B-reflection of L and 

L e'sDA nsDv n w, 

(1) j£ ~ S(L) .c^ P(L) tinder the restriction of p; 
(2) The congruence classes of Ker p are of the form [a(x), ft(x)}, x Ç L where 

a and /3 are as in (5.3) awd (5.4). 
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Proof. Let a : B> —> L and d : B> -^ L be the respective lower and upper 
bounds for p. Since B G B, B = S(B) = P(B), we have by (6.4) 
tha t a[B] QS(L) and 8\B] QP(L). Therefore each congruence class of p 
contains at least one member of S(L) (its smallest) and a t least one member 
of P(L) (its largest) . Also p\S(L) and p\P(L) are surjective. 

Now S D A H S D V is closed under S and furthermore S(S(L)) = S(L); 
therefore by (5.3), S(L) £ B (and in fact S(L) G F ) . Since p : L -> >B is 
the ^-reflection, there exists â : iJ —»5(L) such tha t a o p = a. Since a\S(L) 
is the identity, we have p\S(L) is injective. 

Dually p\P(L) is injective and therefore p\S(L) and p\P(L) are isomorphisms 
onto B. 

I t is clear then tha t the equivalence classes of p are of the form [a(x), j8(x)], 
x Ç L. 

(6.6) COROLLARY, / W L Ç S D A H S D V H W, L G F if and only 

ifS(L) =P(L). 

Since clearly a(l) = 1 and 0(0) = 0, knowing what B is provides us with 
some skeletal s t ructure for L. For example, if L G S D A Pi S D V C\ W and its 
B-reflection is 2 X 2 then we know tha t L looks roughly like figure (i) and an 
easy analysis will show tha t necessarily L — SÇL) = P(L) = 2 X 2 G F . 
T h e author is not able a t this time to use the B-reflection in general to answer 
the conjecture F = S D A H S D V H W. 

0 
FIGURE (i). 
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7. Historical comments and acknowledgements. For the general 
history of Jônsson's conjecture and other references we refer the reader to [7]. 

The main results of this paper (5.3), (5.4) and § 6) were found in the fall 
of 1975 and announced in [4]. They stemmed directly from discussions with 
Prof. Pavel Goralcïk at the Czechoslovakian Summer School (1975) and the 
author wishes to thank the organizers of that conference for the opportunities 
that were made available to him there. 

A pre-publication manuscript of these results was circulated in early 1976 
and since that time the connections between (Pv) and the other known results 
were established. This has necessitated a rather drastic revision of the original 
manuscript. A proof of (5.3) will appear in [7] which, though it does not give 
(5.4), supplies the non-structural equivalences of (5.1) under the extra assump
tion that L Ç SDA C\ SDV. Sivak's notion in [10] of a small congruence is 
precisely the splitting of a lower pseudo-interval. Moreover he also had the 
equivalence of (5.1 : 1) and (5.1 : 2) and that these implied (5.1 : 3). The 
equivalence of (5.1 : 1) and (5.1 : 5) is due to Pudlâk and Tuma. We refer 
the reader to [7] for the history of the other implications and equivalences. 

Some of the lattice theoretical proofs in § 4 and § 5 of the results of Pudlâk 
and Tuma were obtained in consultation with Professors Ralph Freese, J. B. 
Nation and Ivan Rival. To them and especially to Professor Bjarni Jônsson 
the author expresses much thanks. Finally many thanks to the C. M. C. 
Summer School on Lattice Theory (1977) where these results were presented 
in their present form and to Professors Herb Gaskill and Craig Piatt for 
their comments. 
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