
Appendix B
Single particle in a non-local potential

The exchange (Fock) term in the single-particle Hartree–Fock equation is non-local in the
position coordinate 	r (see Fig. B.1, see also Fig. A1(4)). A short range non-locality can
be approximated by a momentum dependence which can be included in the Schrödinger
equation by defining a k-effective mass mk . This k-mass approximation was introduced
in Chapter 8. The effective interaction between nucleons due to phonon exchange has
a time dependence, which can be incorporated in an ω-effective mass mω (Chapter 9).
The purpose of this appendix is to discuss some of the properties of these effective
masses.

Let us start with the time-dependent Hartree–Fock equation

i�
∂ϕν(	r , t)
∂t

=
(
− �

2∇2

2m
+U (r )

)
ϕν(	r , t)+

∫
d3r ′Ux (	r , 	r ′)ϕν(	r ′, t), (B.1)

where Ux (	r , 	r ′) is the Fock term in the single-particle potential. Let us assume an infinite
system and U (r ) = V0 (constant) for simplicity. Consequently,

ϕν(	r , t) = ei(	kν ·	r−ωt)/
√

V , (B.2)

where V is the volume of the system.
Replacing this wavefunction in equation (B.1) leads to

�ωei(	kν ·	r−ωt) =
(

�
2k2
v

2m
+ V0

)
ei(	kν ·	r−ωt)

+
∫

d3r ′Ux (	r , 	r ′)ei(	kν ·	r ′−ωt).

Multiplying from the left by e−i(	kν ·	r−ωt) and making use of the fact that Ux (	r , 	r ′) does
not depend on the centre of mass coordinate 	R = (	r + 	r ′)/2 but only on the relative
coordinate � = 	r − 	r ′ and that the Jacobian ∂(	�, 	R)/∂(	r , 	r ′) = 1, one obtains

ε = �
2k2

2m
+ V0 +Ux (k). (B.3)
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Figure B.1. Coupling of a particle to a vibration (left). Exchange diagram associated with
the Fock potential (right).

Here ε = �ω is the single-particle energy and

Ux (k) =
∫

d3 R

V

∫
d3�e−i( 	kν .	r−ωt)Ux (	r , 	r ′)ei( 	kν .	r ′−ωt)

=
∫

d3�e−i 	kν .	�Ux (	r , 	r ′)

is the Fourier transform of the Fock (exchange) potential. Let us force an independent
single-particle dispersion relation by absorbing the non-local potential in an effective
k-mass

ε = �
2k2

2mk
+ Ṽ0, (B.4)

where Ṽ0 is a constant. From the relation (note that we are determining an inertia, i.e.
studying the reaction of the system to a change in its state of motion)

dε

dk
= �

2k

m
+ ∂Ux

∂k
≈ �

2k

mk
, (B.5)

which assumes that mk is approximately constant, we obtain

mk = m
(

1+ m

�2k

∂Ux

∂k

)−1
. (B.6)

The momentum dependence in equation (B.3) can be replaced by a dispersion relation
for the energy

ε = �
2k2

2m
+U (ε). (B.7)

From equation (B.4) one can write

�
2k2

2m
= mk

m

(
ε − Ṽ0

)
.
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Replacing this relation in equation (B.7) one obtains

U (ε) = ε − mk

m

(
ε − Ṽ0

)
= mk

m
Ṽ0 +

(
1− mk

m

)
ε. (B.8)

Inserting this relation in equation (B.7) and comparing with equation (B.3) one obtains

V0 = mk

m
Ṽ0.

Summing up

ε = �
2k2

2mk
+ m

mk
V0. (B.9)

In other words, equations (B.3) and (B.9) should provide an equivalent description of
the system under consideration. Note that mk may depend on r .

B.1 Single particle in a non-local, ω-dependent potential

The processes depicted in Fig. B.1 give rise to a non-local (k-dependent) and time-
dependent (ω-dependent) potential. In what follows we shall discuss some of its conse-
quences making use of a one-dimensional system. Equation (B.1) becomes

i�
∂ϕν(x, t)

∂t
= − �

2

2m
∇2ϕν(x, t)+

∫
dx ′ dt ′U (x ′ − x, t ′ − t)ϕν(x

′, t ′) . (B.10)

Making use of wavefunctions like the one given in equation (B.2), but in one dimension,
one obtains

ε = �
2k2

2m
+

∫
dx ′ dt ′ ei(k(x ′−x)−ω(t ′−t))U (x ′ − x, t ′ − t),

leading to

�ω = ε = �
2k2

2m
+ V0 +U (k, ω), (B.11)

where U (k, ω) is the Fourier transform of U (x ′ − x, t ′ − t). Again, we impose the single-
particle dispersion relation introducing an effective mass m∗, i.e.

�ω = �
2k2

2m∗
+ Ṽ 0. (B.12)

Taking the derivative of equation (B.11) with respect to k one obtains

dε

dk

(
1− ∂U

∂ε

)
= �

2k

m

(
1+ m

�2k

∂U

∂k

)
. (B.13)

We now make the approximation

dε

dk
= �

2k

m∗
. (B.14)
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One can interpret the left-hand side of this equation as the rate of change in energy
when the momentum changes or, equivalently, when the number of nodes per unit length
changes. Since the latter can be used to label the single-particle states, the energy spacing
between levels, i.e. the density of levels, changes as m∗ changes. Note that this statement
also applies to equation (B.5). Note also that mw may depend on r .

Inserting the relation (B.14) in equation (B.13) one obtains

m∗

m
= mω

m

mk

m
, (B.15)

where

mω

m
=

(
1− ∂U

∂(�ω)

)
(B.16)

and

mk

m
=

(
1+ m

�2k

∂U

∂k

)−1
. (B.17)

Assuming a dispersion relation of the form (B.7) for the energy we get

U (ε) = m∗

m
Ṽ 0 +

(
1− m∗

m

)
ε. (B.18)

From the comparison of equations (B.7) and (B.8) with equation (B.11) one obtains

Ṽ 0 = m

m∗
V 0.

Summing up

ε = �k2

2m∗
+ m

m∗
V0. (B.19)

To bridge the gap between infinite nuclear matter and the case of potential wells of
finite range let us consider a particle of mass m in a one-dimensional harmonic potential
(see Mahaux (1985)). The Hamiltonian describing its motion,

H = p2

2m
+ C

2
x2, (B.20)

leads to discrete energy levels with a constant spacing

�ω0 = �

√
C

m
. (B.21)

It follows from this expression that the density of states is proportional to the square
root of m. We notice, however, that this result is derived by assuming that the potential
remains unchanged if the bare mass is replaced by an effective mass. If this is the case,
the ground-state wavefunction

�0 ∼ exp

(
− x2

2b2

)
(B.22)
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with

b =
√

�2

mC
(B.23)

for a particle of mass m∗ > m will shrink in space compared with the one of mass m and
consequently the mean square radius of the system

〈r2〉 = �

m∗ω0

(
N + 3

2

)
= b2

(
N + 3

2

)
(B.24)

will decrease. This is of course not correct, and one has to impose the condition b2 =
constant. This condition implies that the energy difference between levels is inversely
proportional to the mass (or effective mass) of the system, in keeping with the fact that

�ω0 = �
2

m∗b2
, (B.25)

see equations (B.5) and (B.14), as well as the discussion following equation (9.9).
Because the inverse of the level distance at the Fermi energy is proportional to the

density of levels ρ(εF) (see Eq. (2.1)), ρ(εF) ∼ m∗. Within this context, one can interpret
the left-hand side of Eq. (B.14) as the rate of change in energy when the momentum
changes or, equivalently, when the number of nodes per unit length changes. Since the
latter can be used to label the single-particle states, the energy spacing between levels
decreases for increasing values of m∗. Thus, the density of single-particle levels at the
Fermi energy is proportional to the effective mass. (To be noted that while ρ(εF) =
3A/2εF (εF = �

2k2
F/2m∗) is the total density of single-particle levels (i.e. spin-up and

-down and both protons and neutrons), ρ(εF)/4 is the level density associated with a
single spin orientation and with one type of nucleon (either protons or neutrons).)
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