
Proceedings of the Royal Society of Edinburgh, page 1 of 28

DOI:10.1017/prm.2024.45

Bifurcation of the travelling wave solutions in a
perturbed (1 + 1)-dimensional dispersive long
wave equation via a geometric approach

Hang Zheng
Department of Mathematics and Computer, Wuyi University, Wuyishan
354300, China (zhenghang513@zjnu.edu.cn, zhenghwyxy@163.com)

Yonghui Xia*

School of Mathematics and Big Data Foshan University, Foshan 528000,
China (xiadoc@163.com, yhxia@zjnu.cn)

(Received 10 August 2023; accepted 1 October 2023)

Choosing κ (horizontal ordinate of the saddle point associated to the homoclinic
orbit) as bifurcation parameter, bifurcations of the travelling wave solutions is
studied in a perturbed (1 + 1)-dimensional dispersive long wave equation. The
solitary wave solution exists at a suitable wave speed c for the bifurcation parameter

κ ∈
(
0, 1 −

√
3

3

)
∪

(
1 +

√
3

3
, 2

)
, while the kink and anti-kink wave solutions exist at

a unique wave speed c∗ =
√

15/3 for κ = 0 or κ = 2. The methods are based on the
geometric singular perturbation (GSP, for short) approach, Melnikov method and
invariant manifolds theory. Interestingly, not only the explicit analytical expression
of the complicated homoclinic Melnikov integral is directly obtained for the
perturbed long wave equation, but also the explicit analytical expression of the limit
wave speed is directly given. Numerical simulations are utilized to verify our
mathematical results.
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1. Introduction

1.1. Model formulation

The water wave equations (e.g., KdV equation, BBM equation and CH or
rotation-CH equation) have attracted a lot of scholars’ attentions. These nonlin-
ear wave equations have been extensively used to describe dynamical behaviour of
nonlinear waves in shallow water. Since the interaction of nonlinear and disper-
sion factors, long wave in shallow water would admit many special characteristics.
One of the important property of long waves, is that, they retain their shapes and
forms after mutual interactions and collisions. In 1996, Wu and Zhang [37] derived
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an equation describing nonlinear dispersive long gravity waves travelling in two
horizontal directions on shallow waters of uniform depth format formulated as⎧⎪⎨

⎪⎩
θt + θθx + uθy + vx = 0,
ut + θux + uuy + vy = 0,
vt + (θv)x + (uv)y + 1

3 (θxxx + θxyy + uxxy + uyyy) = 0,
(1.1)

where θ (resp., u) is the surface velocity of water along the x (resp., y) direction
and v is the elevation of the water wave. For dispersive long wave equation (1.1),
Chen, Tang and Lou [15] obtained a special type of multisoliton solution by the
Weiss-Tabor-Carnvale Painlevé truncation expansion. Equation (1.1) reduces to the
following (1 + 1)-dimensional dispersive long wave equation (for short, DLWE) by
symmetry reduction and scale transition:{

ut = −uux − vx,

vt = −vux − uvx − 1
3uxxx.

(1.2)

Due to it models the nonlinear water wave availably, (1 + 1)-dimensional DLWE
(1.2) is often applied to coastal design and harbour construction. So far, a lot of
articles have been concerned with the exact solutions of (1 + 1)-dimensional DLWE
(1.2) by using various methods, such as a modified Conte’s invariant Painlevé expan-
sion (Chen and Lou [4]), a new Jacobi elliptic function rational expansion method
(Wang, Chen and Zhang [32]), a new general algebraic method with symbolic com-
putation (Chen and Wang [5]), a generalized extended rational expansion method
(Zeng and Wang [41]) and extended tanh-function method (Fan [15]).

However, in the real world application, particularly for nonlinear wave, there are
many factors of uncertainty and unpredictable perturbations. Thus, small pertur-
bation terms are usually added to describe such unpredictable perturbations when
modelling the nonlinear waves. For shallow water wave equation, weak backward
diffusion uxx and dissipation uxxxx are called Kuramoto–Sivashinsky (KS, for short)
perturbation. However, to the best of our knowledge, there are no papers consider-
ing the perturbed (1 + 1)-dimensional DLWE. In this paper, we study a perturbed
(1 + 1)-dimensional DLWE described by{

ut = −uux − vx,

vt = −vux − uvx − 1
3uxxx + ε(uxx + uxxxx),

(1.3)

where 0 < ε� 1 (a sufficiently small parameter), uxx is backward diffusion and
uxxxx represents a dissipation term.

1.2. Methods, motivation and contributions

Note that the perturbed (1 + 1)-dimensional DLWE (1.3) is singular perturba-
tion system due to the introduction of εuxxxx. Considering the geometric singular
perturbations in the evolution equation is a effective method to describe the real
situation for the nonlinear waves. One of important themes of shallow water waves
is to study the existence of travelling wave solutions. In this paper, we will apply
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the geometric singular perturbation theory to study the travelling wave solutions
of the singular perturbed DLWE (1.3).

In fact, the theory of the geometric singular perturbation have been well devel-
oped by (Fenichel [16], Jones [21], Szmolyan [31], Guckenheimer and Holmes
[18], Wiggins [35], Zhang [42] and Li et al. [23–25]). And it is a powerful tool
to solve the applications arising in nonlinear waves, biological systems and other
dynamic systems. Up till now, there are an extensive literature applying GSP the-
ory to study such systems, including delayed CH equation (Du et al. [11]), CH
Kuramoto–Sivashinsky equation (Du et al. [10]), generalized CH equation (Qiu et
al. [28]), perturbed BBM equation (Chen et al. [2]), generalized BBM equation
(Sun et al. [30], Zhu et al. [45]), the delayed DP equation (Cheng and Li [8]), KdV
equation (Derks and Gils [9], Ogama [26]), generalized KdV equation (Chen et al.
[7], Yan et al. [39], Zhang et al. [44]), biological model (Chen and Zhang [6], Wang
and Zhang [33]), reaction-diffusion equation (Yang and Ni [40], Wu and Ni [36]),
Belousov–Zhabotinskii system (Du and Qiao [14]), MEMS model (Iuorio et al. [20]),
piecewise-smooth dynamical systems (Buzzi et al. [1]), perturbed Gardner equation
(Wen [34]), delayed Schrödinger equation (Xu et al. [38]), perturbed mKdV and
mK(3, 1) equation (Zhang et al. [43, 44]), generalized Keller–Segel system (Du et
al. [13], Qiao and Zhang [27]), and so on.

To apply the geometric singular perturbation approach to track invariant
manifolds of corresponding ordinary differential equations (ODEs), usually, it is
connected with the zeroes of the Melnikov functions associated to the perturbed
ODEs. However, it is not easy to determine the zeroes of the Melnikov functions
because of the complexity of the expression. To analyse the Melnikov functions,
usually, some auxiliary tools are needed. For examples, one of the effective method
is to detect the monotonicity of the ratio of Abelian integral (for short, MRAI)
associated to the Melnikov function. For instance, Derks and Gils [9], Ogawa [26]
computed the MRAI of perturbed KdV equation. Chen et al. [2, 3, 7] detected
the MRAI of perturbed BBM equation, perturbed defocusing mKdV equation and
perturbed generalized KdV equation by the similar method. Du et al. [12] consid-
ered MRAI of a generalized Nizhnik–Novikov–Veselov equation with diffusion term.
Then they all proved the existence of travelling wave solutions. Different from them,
Sun et al. [29] employed the Chebyshev criterion to detect the MRAI of a shallow
water fluid to analyse the coexistence of the solitary and periodic wave solutions.
Sun and Yu [30] also illustrated the existence and uniqueness of periodic waves of
a generalized BBM equation based on the same technique.

Different from applying the method of MRAI ([2, 3, 7, 9, 12, 26, 29, 30])
and the method of Fredholm orthogonality (Du and Qiao [14]), in this paper, we
directly compute the explicit expression of Melnikov function to determine the
zeroes of the Melnikov function. The main purpose of this paper is to investigate
the existence of solitary and kink (anti-kink) wave solutions for (1 + 1)-dimensional
DLWE under a small singular perturbation. Firstly, we introduce a new parameter κ
(horizontal ordinate of the saddle point associated to the homoclinic orbit) to obtain
the solitary wave solutions and kink (anti-kink) wave solutions of the unperturbed
(1 + 1)-dimensional DLWE. Then, the geometric singular perturbation approach is
used to construct homoclinic or heteroclinic orbits by tracking invariant manifolds
of corresponding ODEs. Finally, by Melnikov method, we analyse conditions such as
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the wave speed and parameter for the existence of solitary and kink (anti-kink) wave
solutions. The contributions and novelty of this paper is summarized as follows:

(1) By GSP approach and the bifurcation analysis, we prove that the solitary
wave solution exists at a suitable wave speed c for the bifurcation parameter
κ ∈

(
0, 1 −

√
3

3

)
∪

(
1 +

√
3

3 , 2
)
, while the kink and anti-kink wave solutions

exist at a unique wave speed c∗ =
√

15/3 for κ = 0 or κ = 2. This indicates
that the solitary and kink (anti-kink) wave solutions can’t coexist at the same
bifurcation parameter value in (1 + 1)-dimensional DLWE.

(2) To prove the existence of solitary and kink (anti-kink) wave solutions, we use
the analytical Melnikov method and bifurcation theory. Not only the ana-
lytical expression of Melnikov integral is directly obtained by hand (not by
mathematical software) for a perturbed PDE, but also the analytical expres-
sion of the limit wave speed c is directly obtained by hand [see (5.1), (5.2),
(5.17)–(5.19) in §5]. Indeed, the calculations and expressions are verified by
the mathematical softwares (e.g., Maple).

(3) To obtained the analytical expressions, we use the following two mathematical
skills.
(i) We apply a factorization technique together with the handbook of inte-

gral [17] to the calculate I(κ) and J(κ), which lead us to obtain analytical
Melnikov integral in §5. We perform very detailed computations and skil-
ful mathematical analysis to obtain the expressions of I(κ) and J(κ) [see
(5.9)–(5.16) in §5].

(ii) I(κ) and J(κ) are integrated over a closed curve. Usually, it is difficult to
be calculated. We transfer them to an definite integral by translating the
time variable ζ into the state variable z on homoclinic orbit. Then the
up and lower limits of the definite integral depend on the coordinates of
the intersections between the homoclinic orbit and z axis. For example,

I(κ) =
∮

Γ(κ)

y2 dζ =
∮

Γ(κ)

y dz = 2
∫ κ

z+

f(z) dz,

where f(z) is the expression related to the homoclinic orbit [see (5.9)
in §5].

(4) We introduce a new bifurcation parameter κ (horizontal ordinate of the saddle
point associated to the homoclinic orbit) instead of the integral constant G.
This benefits to the factorization of the integrand because there is a factor
(z − κ)2. For example, when we compute I(κ), it will lead us to

I(κ) = · · · =
∫ κ

z+

√
3
4
(z − κ)2(z − z+)(z − z−) dz = · · ·

[see (5.9) in §5].

(5) Numerical simulations are utilized to verify the theoretical results.
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1.3. Outline of the paper

The outline of the paper is as follows. Some preliminaries including geometric
singular perturbation theory are introduced in §2. Reduction of the model by geo-
metric singular perturbation theory and dynamical system method is presented in
§3. By introducing a bifurcation parameter κ, the solitary and kink (anti-kink)
wave solutions are determined in §4. In §5, combining the GSP approach and Mel-
nikov method, the existence of solitary and kink (anti-kink) wave solutions for a
perturbed (1 + 1)-dimensional DLWE is investigated. In §6, numerical simulations
are carried out to show the effectiveness of previous theoretical results.

2. Preliminaries

In this section, we introduce some known results on the theory of geometric singular
perturbation (see. e.g., [21]). Consider the system{

x′1 = f(x1, x2, ε),
x′2 = εg(x1, x2, ε),

(2.1)

where ′ = d
dt , x1 ∈ Rn, x2 ∈ Rl and ε is a positive real parameter, U ⊆ Rn+l is open

subset, and I is an open subset of R, containing 0. f and g are C∞ on a set U × I.
Moreover, the x1 (resp., x2) variables are called fast (resp., slow) variables. Letting
τ = εt which gives the following equivalent system{

εẋ1 = f(x1, x2, ε),
ẋ2 = g(x1, x2, ε),

(2.2)

where · = d
dτ . We refer to t (resp., τ) as the fast time scale or fast time (resp., slow

time scale or slow time). Each of the scalings is naturally associated with a limit as
ε tend to zero. These limits are respectively given by{

x′1 = f(x1, x2, 0),
x′2 = 0,

(2.3)

and {
0 = f(x1, x2, 0),
x′2 = g(x1, x2, 0).

(2.4)

System (2.3) is called the layer problem and system (2.4) is reduced system.

Definition 2.1 see [8, 11, 21]. A manifold M0 on which f(x1, x2, 0) = 0 is called
a critical manifold or slow manifold. A critical manifold M0 is said to be normally
hyperbolic if the linearization of system (2.1) at each point in M0 has exactly l
eigenvalues on the imaginary axis Re(λ) = 0.

Definition 2.2 see [8, 11, 21]. A set M is locally invariant under the flow of system
(2.1) if it has neighbourhood V so that no trajectory can leave M without also leaving
V . In other words, it is locally invariant if for all x1 ∈M , x1 · [0, t] ⊆ V implies
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that x1 ∈M , x1 · [0, t] ⊆M , similarly with [0, t] replaced by [t, 0] when t < 0, where
x1 · [0, t] denotes the application of a flow after time t to the initial condition x1.

Lemma 2.3 see [8, 11, 16]. Let M0 be a compact, normally hyperbolic critical man-
ifold given as a graph {(x1, x2) : x1 = h0(x2)}. Then for sufficiently small positive
ε and any 0 < r < +∞,

• there exists a manifold Mε, which is locally invariant under the flow of system
(2.1) and Cr in x1, x2, ε. Moreover, Mε is given as graph:

Mε = {(x1, x2) : x1 = hε(x2)}

for some Cr function hε(x2);

• Mε possesses locally invariant stable and unstable manifold W s(Mε) and
Wu(Mε) lying within O(ε) and being Cr diffeomorphic to the stable and unstable
manifold W s(M0) and Wu(M0) of the critical manifold M0;

• W s(Mε) is partitioned by moving invariant submanifolds �s(pε), which are
O(ε) close and diffeomorphic to �s(p0), with base point pε belonging to Mε.
Moreover, they are Cr with respect to p and ε. Moving invariance means the
submanifold �s(pε) is mapped under the time t flow to another submanifold
�s(pε · t) whose base point is the time t evolution image of the taken base point
pε;

• the dynamics on Mε is a regular perturbation of that generated by system (2.4).

3. Reduction of the model by geometric singular perturbation theory
and dynamical system method

In this section, to consider the exact solutions of the unperturbed (1 + 1)-
dimensional DLWE (1.3), we firstly reduce the model by GSP theory and dynamical
system method. From the view of physical meanings, we only consider the case of
c > 0 in this paper.

By introducing the following transformations:

u(x, t) = φ(ξ), v(x, t) = ψ(ξ), ξ = x− ct, (3.1)

we obtain

∂u(x, t)
∂t

= −cφξ,
∂v(x, t)
∂t

= −cψξ,

∂2u(x, t)
∂x2

= φξξ,
∂3u(x, t)
∂x3

= φξξξ,
∂4u(x, t)
∂x4

= φξξξξ,

(3.2)

where φξ and ψξ are the first order derivative with respect to ξ. And φξξ, φξξξ

and φξξξξ means the second, third and fourth order derivative with respect to ξ,
respectively.
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Substituting (3.1) and (3.2) into (1.3), then system (1.3) is given by{
cφξ = φφξ + ψξ,

cψξ = ψφξ + φψξ + 1
3φξξξ − ε(φξξ + φξξξξ).

(3.3)

Integrating both sides of the first equation of system (3.3) once with respect to ξ
and letting the integration constant be zero yields

ψ(ξ) = cφ(ξ) − 1
2
φ2(ξ). (3.4)

We substitute (3.4) into the second equation of (3.3), then the coupled system (3.3)
becomes the following ODE:

1
3
φξξξ − 3

2
φ2φξ + 3cφφξ − c2φξ − ε(φξξ + φξξξξ) = 0. (3.5)

Integrating both sides on (3.5) once with respect to ξ and rescaling ε = 3ε, it follows
that

φξξ − 3
2
φ3 +

9
2
cφ2 − 3c2φ− ε(φξ + φξξξ) = g, (3.6)

where g is an integration constant (g ∈ R).
Introducing new variables ζ = cξ, z = φ

c and G = g
c3 , equation (3.6) is equivalent

to

− 3z +
9
2
z2 − 3

2
z3 +

d2z

dζ2
− ε

(
1
c

dz
dζ

+ c
d3z

dζ3

)
= G. (3.7)

Obviously, equation (3.7) reduces to a three-dimensional system:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dz
dζ

= y,

dy
dζ

= w,

εc
dw
dζ

= −3z + 9
2z

2 − 3
2
z3 + w − ε

c
y −G,

(3.8)

where ε is a sufficiently small parameter such that 0 < ε� 1. Therefore, the travel-
ling wave solutions of equation (1.3) can be obtained by studying the corresponding
orbits of system (3.8).

Obviously, system (3.8) is a singularly perturbed system described as ‘slow
system.’ Rescaling ζ = εη, we have the following equivalent ‘fast system’:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dz
dη

= εy,

dy
dη

= εw,

c
dw
dη

= −3z +
9
2
z2 − 3

2
z3 + w − ε

c
y −G.

(3.9)
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Let ε = 0 in system (3.8) and (3.9). Then, the corresponding reduced system is
given by ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dz
dζ

= y,

dy
dζ

= w,

0 = −3z +
9
2
z2 − 3

2
z3 + w −G,

(3.10)

and the layer system is⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dz
dη

= 0,

dy
dη

= 0,

c
dw
dη

= −3z + 9
2z

2 − 3
2
z3 + w −G,

(3.11)

which admits a two-dimensional critical manifold as follows

M0 =
{

(z, y, w) ∈ R
3|w = 3z − 9

2
z2 +

3
2
z3 +G

}
. (3.12)

Suppose A to be the linearized matrix of system (3.11), then it is given by

A =

⎛
⎜⎜⎜⎝

0 0 0
0 0 0

−3 + 9z − 9
2
z2

c
0

1
c

⎞
⎟⎟⎟⎠ , (3.13)

that the eigenvalues of A are 0, 0 and 1
c . Thus,M0 is a normally hyperbolic invariant

manifold (see definitions 2.1 and 2.2). There exists a two-dimensional slow subman-
ifold Mε which is C1 O(ε) close to M0 (see lemma 2.3). The invariant submanifold
Mε is represented by

Mε =
{

(z, y, w) ∈ R
3|w = 3z − 9

2
z2 +

3
2
z3 +G

+ ε

[
cy

(
9
2
z2 − 9z + 3 +

1
c2

)]
+O(ε2)

}
. (3.14)

The dynamical behaviour of slow system (3.8) or fast system (3.9) is governed by⎧⎪⎪⎨
⎪⎪⎩

dz
dζ

= y,

dy
dζ

= 3z − 9
2
z2 + 3

2z
3 +G+ ε[cy(

9
2
z2 − 9z + 3 +

1
c2

)] +O(ε2).
(3.15)

Obviously, the unperturbed system (3.15)|ε=0 admits homoclinic, heteroclinic and
periodic orbits with the parameter G taking different values. By the bifurcation
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Figure 1. The bifurcation and phase portraits of unperturbed system (3.15)|ε=0.

theory of planar dynamical systems (see [22]), we have the following proposition of
unperturbed system (3.15)|ε=0:

Proposition 3.1.

(i) If | G |>
√

3
3 , there exists a single saddle point [see figures 1(a) or (g)].

(ii) If | G |=
√

3
3 , there exist a saddle point and a cusp point [see figures 1(b) or

(f)].

(iii) If G = 0, there exist two saddle points (0, 0) and (2, 0), and a centre point
(1, 0). It has two heteroclinic orbits surrounding the centre point (1, 0) to two
saddle points (0, 0) and (2, 0) [see figure 1(d)].

(iv) If 0 <| G |<
√

3
3 , there exist a saddle point and a centre point. It has a homo-

clinic orbit surrounding the centre point to one saddle point [see figures 1(c)
or (e)].

Assume that z(ζ) is a solution of equation (3.7) satisfying lim
ζ−→∞

z(ζ) = κ, thus

u(x, t) = cz(ζ) = cz[c(x− ct)] is a solitary wave solution or a kink wave solution of
equation (3.7).

For −
√

3
3 < G � 0 and 0 � G <

√
3

3 , the unperturbed system (3.15)|ε=0 admits
a saddle point defined by S0(κ, 0). We know that G = − (

3κ− 9
2κ

2 + 3
2κ

3
)
, then

we obtain 1 +
√

3
3 < κ � 2 for G ∈

(
−

√
3

3 , 0
]

and 0 � κ < 1 −
√

3
3 for G ∈

[
0,

√
3

3

)
,

respectively. We can regard κ as a bifurcation parameter to find the homoclinic
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orbits of system (3.15). Therefore, we rewrite system (3.15), that is:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dz
dζ

= y,

dy
dζ

= 3z − 9
2
z2 +

3
2
z3 −

(
3κ− 9

2
κ2 +

3
2
κ3

)

+ ε

[
cy

(
9
2
z2 − 9z + 3 +

1
c2

)]
+O(ε2).

(3.16)

4. Travelling wave solutions of equation (1.3)|ε=0

In this section, we study the solitary and kink (anti-kink) wave solutions of equation
(1.3)|ε=0. By dynamical method, we consider the travelling wave solution of system
(3.16)|ε=0 with κ ∈

[
0, 1 −

√
3

3

)
∪

(
1 +

√
3

3 , 2
]
. The unperturbed system (3.16) is of

the form: ⎧⎪⎪⎨
⎪⎪⎩

dz
dζ

= y,

dy
dζ

= 3z − 9
2
z2 +

3
2
z3 −

(
3κ− 9

2
κ2 +

3
2
κ3

)
.

(4.1)

It is easy to obtain the first integral of system (4.1), it is given by

H(z, y) =
1
2
y2 − 3

8
z4 +

3
2
z3 − 3

2
z2 +

(
3
2
κ3 − 9

2
κ2 + 3κ

)
z. (4.2)

The homoclinic orbit Γ(κ) to the saddle (κ, 0) is defined by

H(z, y) =
1
2
y2 − 3

8
z4 +

3
2
z3 − 3

2
z2 +

(
3
2
κ3 − 9

2
κ2 + 3κ

)
z

=
9
8
κ4 − 3κ3 +

3
2
κ2. (4.3)

And the heteroclinic orbits Υ(κ)± (where ± represents upper and lower branch
curves) to the two saddle points (0, 0) and (2, 0), namely, κ = 0 or κ = 2, the
heteroclinic curve is determined by

H(z, y) =
1
2
y2 − 3

8
z4 +

3
2
z3 − 3

2
z2 = 0. (4.4)

4.1. Solitary wave solutions of equation (1.3)|ε=0

By (4.3) and proposition 3.1(iv), we can obtain the expression of y as follows:

y = ±
√

3
4
z4 − 3z3 + 3z2 − (3κ3 − 9κ2 + 6κ)z +

9
4
κ4 − 6κ3 + 3κ2

= ±
√

3
4
(z − κ)2(z − z+)(z − z−), (4.5)

where z± = −κ+ 2 ±√−2κ2 + 4κ. It can be seen that z− < z+ < κ for 1 +
√

3
3 <

κ < 2 [see figure 1(c)] and κ < z− < z+ for 0 < κ < 1 −
√

3
3 [see figure 1(e)].
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Bifurcation of the travelling wave solutions 11

Since dz
dζ = y, it implies

dz
dζ

= ±
√

3
4
(z − κ)2(z − z+)(z − z−), (4.6)

which yields

ζ = ±
∫ z

z+

1√
3
4 (s− κ)2(s− z+)(s− z−)

ds,

(
1 +

√
3

3
< κ < 2

)
, (4.7)

and

ζ = ±
∫ z

z−

1√
3
4 (s− κ)2(z+−s)(z−−s)

ds,

(
0 < κ < 1 −

√
3

3

)
. (4.8)

Thus, for 1 +
√

3
3 < κ < 2, the parametric representation of the dark solitary wave

of system (3.16)|ε=0 can be obtained by [see figure 2(a)]

z(ζ) = − 2(6κ2 − 12κ+ 4)
2cosh

(
1
2

√
18κ2 − 36κ+ 12ζ

)√−2κ2 + 4κ+ 4κ− 4
. (4.9)

Then, it corresponds to a dark solitary wave solution [see figure 2(b)] of equation
(1.3)|ε=0 is given by:

u(x, t) = − 2(6κ2 − 12κ+ 4)c
2cosh

[
1
2

√
18κ2 − 36κ+ 12c(x− ct)

]√−2κ2 + 4κ+ 4κ− 4
. (4.10)

For 0 < κ < 1 −
√

3
3 , the expression of the bright solitary wave of system (3.16)|ε=0

can be obtained by [see figure 3(a)]

z(ζ) = − 2(6κ2 − 12κ+ 4)
4κ− 4 − 2cosh

(
1
2

√
18κ2 − 36κ+ 12ζ

)√−2κ2 + 4κ
. (4.11)

The bright solitary wave solution of equation (1.3)|ε=0 [see figure 3(b)] is of the
form

u(x, t) = − 2(6κ2 − 12κ+ 4)c
4κ− 4 − 2cosh

[
1
2

√
18κ2 − 36κ+ 12c(x− ct)

]√−2κ2 + 4κ
. (4.12)

In summary, we give the theorem as follows.

Theorem 4.1. For any wave speed c > 0 and κ ∈
(
0, 1 −

√
3

3

)
∪

(
1 +

√
3

3 , 2
)
,

equation (1.3)|ε=0 has solitary wave solutions given by (4.10) or (4.12).
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12 H. Zheng and Y. Xia

Figure 2. Dark solitary wave of system (3.16)|ε=0 and exact solution of equation
(1.3)|ε=0 for c = 0.5 and κ = 1.7. (a) Dark solitary wave. (b) Exact solution.

Figure 3. Bright solitary wave of system (3.16)|ε=0 and exact solution of equation
(1.3)|ε=0 for c = 0.5 and κ = 0.3. (a) Bright solitary wave (b) Exact solution.

4.2. Kink and anti-kink wave solutions of equation (1.3)|ε=0

According (4.4) and proposition 3.1(iii), we can obtain the expression of y as
follows:

y = ±
√

3
4
z4 − 3z3 + 3z2 = ±

√
3
4
(z − 0)2(2 − z)2 = ±

√
3

2
z(z − 2). (4.13)
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Bifurcation of the travelling wave solutions 13

Similarly, due to dz
dζ = y, we have

ζ = ±
∫ z

1

1
√

3
2 s(s− 2)

ds. (4.14)

For κ = 0 or κ = 2, the expression of the kink or anti-kink wave of system (3.16)|ε=0

can be obtained by [see figures 4(a) and (c)]

z(ζ) =
2c

1 + e±
√

3cζ
. (4.15)

Therefore, we obtain the following kink and anti-kink wave solutions (see figures
4(b) and (b)]:

u(x, t) =
2c

1 + e±
√

3c(x−ct)
. (4.16)

Based on above analysis, we have the following theorems:

Theorem 4.2. For any wave speed c > 0 and κ = 0 or κ = 2, equation (1.3)|ε=0

has kink or anti-kink solutions given by (4.16).

5. Bifurcations of the travelling wave solutions for the perturbed
equation (1.3)

In this section, before stating our main results on the existence of the solitary and
kink wave solutions for the perturbed equation (1.3), denote

c1(κ)
∣∣∣
κ∈

(
0,1−

√
3

3

) =
√

15
3

[(
6ln2κ3 + 6κ3ln

(√
6κ2 − 12κ+ 4 + 2κ− 2

)
− 18ln2κ2

− 18κ2ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 12ln2κ

+12κln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 2
√

6κ2 − 12κ+ 4
]

−
√

3κ
[
2κ2ln

(
−
√

2κ− κ2
)

+3ln2κ2 − 6κln
(
−
√

2κ− κ2
)
− 9ln2κ

+4ln
(
−
√

2κ− κ2
)

+ 6ln2
)/(

27κ4
√

6κ2 − 12κ+ 4

+ 30κ3ln
(
−
√

2κ− κ2
)

+ 60κln
(
−
√

2κ− κ2
)

+ 15ln2κ3

− 30κ3ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)
− 90κ2ln

(
−
√

2κ− κ2
)

+ 90κ2ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 30
√

2κ
√

(3κ2 − 6κ+ 2)3
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14 H. Zheng and Y. Xia

Figure 4. Kink and anti-kink wave of system (3.16)|ε=0. Kink and anti-kink wave solutions
of equation (1.3)|ε=0 for c = 0.5. (a) Kink wave (b) Kink wave solution (c) Anti-kink wave
(d) Anti-kink wave solution.

+ 294κ2
√

6κ2 − 12κ+ 4 − 45ln2κ2 − 198κ3
√

6κ2 − 12κ+ 4

− 60κln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 10
√

2
√

(3κ2 − 6κ+ 2)3

−72κ
√

6κ2 − 12κ+ 4 + 30ln2κ− 18
√

6κ2 − 12κ+ 4
)] 1

2
,

(5.1)
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Bifurcation of the travelling wave solutions 15

and

c2(κ)
∣∣∣
κ∈

(
1+

√
3

3 ,2
) =

√
15
3

[(
6ln2κ3 + 6κ3ln

(√
6κ2 − 12κ+ 4 + 2κ− 2

)
− 18ln2κ2

− 18κ2ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 12ln2κ

+12κln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 2
√

6κ2 − 12κ+ 4
]

−
√

3κ
[
κ2ln(2κ− κ2) + 3ln2κ2 − 3κln(2κ− κ2) − 9ln2κ

+2ln(2κ− κ2) + 6ln2
) /(

27κ4
√

6κ2 − 12κ+ 4

+ 15κ3ln(2κ− κ2) − 198κ3
√

6κ2 − 12κ+ 4

− 30κ3ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 15ln2κ3 − 45κ2ln(2κ− κ2)

+ 90κ2ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 30
√

2κ
√

(3κ2 − 6κ+ 2)3

+ 294κ2
√

6κ2 − 12κ+ 4 − 45ln2κ2 + 30κln(2κ− κ2)

− 60κln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 10
√

2
√

(3κ2 − 6κ+ 2)3

−72κ
√

6κ2 − 12κ+ 4 + 30ln2κ− 18
√

6κ2 − 12κ+ 4
)] 1

2
.

(5.2)

Now we are in a position to state our main results on the bifurcations of the
travelling waves for the perturbed equation (1.3).

Theorem 5.1.

(i) If κ ∈
(
0, 1 −

√
3

3

)
, then for sufficiently small ε (0 < ε� 1), there exists a

wave speed c̃1(κ, ε) = c1(κ) +O(ε) such that system (3.16) possesses a homo-
clinic orbit. Thus, equation (1.3) has a solitary wave solution u = u(x, t, κ, ε)
with a wave speed c = c̃1.

(ii) If κ ∈
(
1 +

√
3

3 , 2
)
, then for sufficiently small ε (0 < ε� 1), there exists a

wave speed c̃2(κ, ε) = c2(κ) +O(ε) such that system (3.16) possesses a homo-
clinic orbit. Thus, equation (1.3) has a solitary wave solution u = u(x, t, κ, ε)
with a wave speed c = c̃2.

(iii) If κ = 0 or κ = 2, then for sufficiently small ε (0 < ε� 1), there exists a
unique wave speed c̃3(ε) =

√
15/3 +O(ε) such that system (3.16) has a hete-

roclinic orbit. Therefore, equation (1.3) has a pair of kink and anti-kink wave
solutions u = u(x, t, κ, ε) with a wave speed c = c̃3.
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16 H. Zheng and Y. Xia

Remark 5.2. Different kinds of travelling wave solutions exist in the different bifur-
cation parameter regions. For DWLE, solitary wave and kink wave can not coexist
at a same wave speed.

Remark 5.3. The exact limit wave speed is given for each bifurcation parameter
regions.

In order to prove theorem 5.1, we need to introduce some lemmas.
Poincaré map di (i = 1, 2) is a powerful tool to study the bifurcation of homoclinic

or heteroclinic orbits (e.g., see [19, 34, 35, 45]).

Case a. It is defined by [see figure 5(a)]

d1 : A(h) −→ P (h, c, ε),

and

d1(h, c, ε) =
∫ P (h,c,ε)

A(h)

dH

=
∫ +∞

−∞

(
∂H

∂x

dx
dt

+
∂H

∂y

dy
dt

)
|L(h,c,ε) dt,

where A(h) is the initial point and P (h, c, ε) is the mapping point. L(h, c, ε)
and L(h, c) are the perturbed and unperturbed orbits, respectively. We
have lim

ε→0
L(h, c, ε) = L(h, c). And d1(h, c, ε) can be Taylor expanded in ε,

one has

d1(h, c, ε) = εMhom(h, c) +O(ε2).

Case b. A heteroclinic orbit L(h, c) connecting two saddle points S1 and S2. Then,
L+

s (h, c, ε) and L−
u (h, c, ε) represent the stable and unstable manifolds of

perturbed heteroclinic orbit L(h, c, ε). Taking a point P (h, c) ∈ L(h, c), we
let L∗ be a segment normal of L(h, c) at point P (h, c). For 0 < ε� 1,
we assume that L+

s (h, c, ε) and L−
u (h, c, ε) intersect the normal line L∗

transversally at points P+
s (h, c, ε) and P−

u (h, c, ε) [see figure 5(b)].

Let

d2(h, c, ε) = −−→n · −−−−→P+
s P

−
u ,

where −→n = (Hz(P (h,c)),Hy(P (h,c)))
|(Hy(P (h,c)),−Hz(P (h,c)))| . And d2(h, c, ε) can be Taylor expanded in ε,

we have

d2(h, c, ε) = ε ·A ·Mhet(h, c) +O(ε2),

where A is a constant.
Usually, di(h, c, ε) (i = 1, 2) is used to measure the distance between perturbed

stable and unstable manifolds. Then, we say that Mhom(h, c) or Mhet(h, c) is the
so called ‘first-order’ Melnikov integral.

In this paper, ‘first-order’ Melnikov integral is employed to detect the persistence
of the homoclinic and heteroclinic orbits under small perturbation, respectively.
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Figure 5. Poincaré map. (a) The type of periodic or homoclinic orbits (b) The type of
heteroclinic orbits.

Consequently, the existence of solitary and kink wave solutions are proved under
small perturbation.

Firstly, the homoclinic Melnikov function of system (3.16) is defined by

Mhom(c, κ) =
∮

Γ(κ)

(
9
2
z2 − 9z + 3 +

1
c2

)
y2 dζ =

1
c2
I(κ) + J(κ), (5.3)

where I(κ) =
∮
Γ(κ)

y2 dζ and J(κ) =
∮
Γ(κ)

(
9
2z

2 − 9z + 3
)
y2 dζ.

Lemma 5.4. For any κ ∈
(
0, 1 −

√
3

3

)
∪

(
1 +

√
3

3 , 2
)
, there exists a positive root

c = c(κ) of Mhom(c, κ) = 0. Moreover, ∂Mhom

∂c |c=c(κ) 	= 0.

Proof. Obviously, we know that I(κ) =
∮

Γ(κ)

y2 dζ > 0. Because J(κ) integrates

along the homoclinic orbit Γ(κ), then

y′′ =
(

9
2
z2 − 9z + 3

)
z′ =

(
9
2
z2 − 9z + 3

)
y, (5.4)

which yields

dy′ =
(

9
2
z2 − 9z + 3

)
z′ dζ =

(
9
2
z2 − 9z + 3

)
y dζ. (5.5)

By integration of parts, it is not difficult to have

J(κ) =
∮

Γ(κ)

(
9
2
z2 − 9z + 3)y2 dζ =

∮
Γ(κ)

y dy′

= −
∫

R

(y′)2 dζ < 0. (5.6)
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Hence, − I(κ)
J(κ) > 0, there exists a single positive root c = c(κ) of Mhom(c, κ) = 0 that

c(κ) =

√
− I(κ)
J(κ)

. (5.7)

On the other hand, it follows from (5.3) that

∂Mhom(c, κ)
∂c

|c=c(κ)= −2
1
c3
I(κ) = −2J(κ)

√
−J(κ)
I(κ)

> 0. (5.8)

The proof is completed. �

In fact, the analytical expressions of I(κ) and J(κ) can be computed by dividing
them into two cases.

Case (I): 1 +
√

3
3 < κ < 2.

Firstly, since I(κ) and J(κ) are integrated over a closed curve, and the time
variable ζ can be represented by the state variable z on homoclinic orbit. Thus, by
(4.5), we have

I(κ) =
∮

Γ(κ)

y2 dζ =
∮

Γ(κ)

y dz

= 2
∫ κ

z+

√
3
4
z4 − 3z3 + 3z2 − (3κ3 − 9κ2 + 6κ)z +

9
4
κ4 − 6κ3 + 3κ2 dz

= 2
∫ κ

z+

√
3
4
(z − κ)2(z − z+)(z − z−) dz

=
√

3

[∫ κ

z+

κ
√

(z − z+)(z − z−) dz −
∫ κ

z+

z
√

(z − z+)(z − z−) dz

]

=
√

3 [κI1(κ) − I2(κ)] , (5.9)

where I1(κ) =
∫ κ

z+

√
(z − z+)(z − z−) dz and I2(κ) =

∫ κ

z+
z
√

(z − z+)(z − z−) dz.
Note that the formulas 2.261, 2.262 (1) and 2.262 (2) in handbook [17] read:

∫
dx√
R

=
1√
c1

ln(2
√
c1R+ 2c1x+ b), (c1 > 0, 2c1x+ b >

√−Δ, Δ < 0),

∫ √
R dx =

(2c1x+ b)
√
R

4c1
+

Δ
8c1

∫
dx√
R
,

∫
x
√
R dx =

√
R3

3c1
− (2c1x+ b)b

√
R

8c21
− bΔ

16c21

∫
dx√
R
,

(5.10)
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where R = a+ bx+ c1x
2 and Δ = 4ac1 − b2. Combining (5.9) and (5.10), it follows

that

I(κ) =
√

3
3

[
6ln2κ3 + 6κ3ln

(√
6κ2 − 12κ+ 4 + 2κ− 2

)
− 18ln2κ2

− 18κ2ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 12ln2κ

+12κln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 2
√

6κ2 − 12κ+ 4
]

−
√

3κ
[
κ2ln(2κ− κ2) + 3ln2κ2 − 3κln(2κ− κ2) − 9ln2κ

+2ln(2κ− κ2) + 6ln2
]
. (5.11)

Secondly,

J(κ) =
∮

Γ(κ)

(
9
2
z2 − 9z + 3

)
y2 dζ =

∮
Γ(κ)

(
9
2
z2 − 9z + 3

)
y dz

= 2
∫ κ

z+

(
9
2
z2 − 9z + 3

)
√

3
4
z4 − 3z3 + 3z2 − (3κ3 − 9κ2 + 6κ)z +

9
4
κ4 − 6κ3 + 3κ2 dz

=
√

3
∫ κ

z+

(
9
2
z2 − 9z + 3

)√
(κ− z)2(z − z+)(z − z−) dz

=
√

3
∫ κ

z+

[
−9

2
z3 +

(
9
2
κ+ 9

)
z2 − (9κ+ 3)z + 3κ

]√
(z − z+)(z − z−) dz

=
√

3
[
−9

2
J1(κ) +

(
9
2
κ+ 9

)
J2(κ) − (9κ+ 3)I2(κ) + 3κI1(κ)

]
,

(5.12)

where J1(κ) =
∫ κ

z+

z3
√

(z − z+)(z − z−) dz, J2(κ) =
∫ κ

z+

z2
√

(z − z+)(z − z−) dz.

Similarly, by the formulas 2.262 (3) and 2.262 (4) in [17], they are expressed by:

∫
x2

√
R dx =

(
x

4c1
− 5b

24c21

)√
R3 +

(
5b2

16c21
− a

4c1

)
(2c1x+ b)

√
R

4c1

+
(

5b2

16c21
− a

4c1

)
Δ
8c1

∫
dx√
R
,

∫
x3

√
R dx =

(
x2

5c1
− 7bx

40c21
+

7b2

48c31
− 2a

15c21

)√
R3 −

(
7b3

32c31
− 3ab

8c21

)
(2c1x+ b)

√
R

4c1

−
(

7b3

32c31
− 3ab

8c21

)
Δ
8c1

∫
dx√
R
.

(5.13)
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Using (5.10), (5.12) and (5.13), we have

J(κ) = −
√

3
5

[
27κ4

√
6κ2 − 12κ+ 4 + 15κ3ln(2κ− κ2) − 198κ3

√
6κ2 − 12κ+ 4

− 30κ3ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 15ln2κ3 − 45κ2ln(2κ− κ2)

+ 90κ2ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 30
√

2κ
√

(3κ2 − 6κ+ 2)3

+ 294κ2
√

6κ2 − 12κ+ 4 − 45ln2κ2 + 30κln(2κ− κ2)

− 60κln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 10
√

2
√

(3κ2 − 6κ+ 2)3

−72κ
√

6κ2 − 12κ+ 4 + 30ln2κ− 18
√

6κ2 − 12κ+ 4
]
. (5.14)

Case (II): 0 < κ < 1 −
√

3
3 .

Same calculation method as case (I), we obtain

I(κ) =
∮

Γ(κ)

y2 dζ =
∮

Γ(κ)

y dz = 2
∫ κ

z−
· · · dz

=
√

3
3

[
6ln2κ3 + 6κ3ln

(√
6κ2 − 12κ+ 4 + 2κ− 2

)
− 18ln2κ2

− 18κ2ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 12ln2κ

+12κln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 2
√

6κ2 − 12κ+ 4
]

−
√

3κ
[
2κ2ln

(
−
√

2κ− κ2
)

+ 3ln2κ2 − 6κln
(
−
√

2κ− κ2
)
− 9ln2κ

+4ln
(
−
√

2κ− κ2
)

+ 6ln2
]
, (5.15)

and

J(κ) =
∮

Γ(κ)

(
9
2
z2 − 9z + 3

)
y2 dζ =

∮
Γ(κ)

(
9
2
z2 − 9z + 3

)
y dz = 2

∫ κ

z−
· · · dz

= −
√

3
5

[
27κ4

√
6κ2 − 12κ+ 4 + 30κ3ln

(
−
√

2κ− κ2
)

+ 60κln
(
−
√

2κ− κ2
)

− 30κ3ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 15ln2κ3 − 90κ2ln
(
−
√

2κ− κ2
)

+ 90κ2ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 30
√

2κ
√

(3κ2 − 6κ+ 2)3

+ 294κ2
√

6κ2 − 12κ+ 4 − 45ln2κ2 − 198κ3
√

6κ2 − 12κ+ 4

− 60κln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 10
√

2
√

(3κ2 − 6κ+ 2)3

−72κ
√

6κ2 − 12κ+ 4 + 30ln2κ− 18
√

6κ2 − 12κ+ 4
]
. (5.16)
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Figure 6. The algebraic curves of I(κ) and J(κ) with respect to κ for 1 +
√

3
3 < κ < 2.

(a) (κ, I(κ)) (b) (κ, J(κ)).

Figure 7. The algebraic curves of I(κ) and J(κ) with respect to κ for 0 < κ < 1 −
√

3
3 .

(a) (κ, I(κ)) (b) (κ, J(κ)).

We plot the algebraic curve of I(κ) with respect to κ and J(κ) with respect to
κ, respectively. (see figures 6 and 7)

We can see that I(κ) > 0 and J(κ) < 0 for 1 +
√

3
3 < κ < 2 in figure 6, I(κ) > 0

and J(κ) < 0 for 0 < κ < 1 −
√

3
3 in figure 7. It is shown that a good agreement

with the proof of lemma 5.4.
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Hence, we substitute (5.11) and (5.14) into (5.3), and the expression of the
homoclinic Melnikov function of system (3.16) for 1 +

√
3

3 < κ < 2 can be rewritten
as

Mhom(c, κ)
∣∣∣
κ∈

(
1+

√
3

3 ,2
)

=
1
c2

√
3

3

[
6ln2κ3 + 6κ3ln

(√
6κ2 − 12κ+ 4 + 2κ− 2

)
− 18ln2κ2

− 18κ2ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 12ln2κ

+12κln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 2
√

6κ2 − 12κ+ 4
]

− 1
c2

√
3κ

[
κ2ln(2κ− κ2) + 3ln2κ2 − 3κln(2κ− κ2) − 9ln2κ

+2ln(2κ− κ2) + 6ln2
]− √

3
5

[
27κ4

√
6κ2 − 12κ+ 4

+ 15κ3ln(2κ− κ2) − 198κ3
√

6κ2 − 12κ+ 4

− 30κ3ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 15ln2κ3 − 45κ2ln(2κ− κ2)

+ 90κ2ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 30
√

2κ
√

(3κ2 − 6κ+ 2)3

+ 294κ2
√

6κ2 − 12κ+ 4 − 45ln2κ2 + 30κln(2κ− κ2)

− 60κln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 10
√

2
√

(3κ2 − 6κ+ 2)3

−72κ
√

6κ2 − 12κ+ 4 + 30ln2κ− 18
√

6κ2 − 12κ+ 4
]
. (5.17)

It is easy to verify that for κ ∈
(
1 +

√
3

3 , 2
)
, there is c = c1(κ) such that

Mhom(c, κ)
∣∣∣
κ∈

(
1+

√
3

3 ,2
) = 0.

Similarly, the expression of the homoclinic Melnikov function of system (3.16) for
0 < κ < 1 −

√
3

3 is

Mhom(c, κ)
∣∣∣
κ∈

(
0,1−

√
3

3

)

=
1
c2

√
3

3

[
6ln2κ3 + 6κ3ln

(√
6κ2 − 12κ+ 4 + 2κ− 2

)
− 18ln2κ2

− 18κ2ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 12ln2κ

+12κln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 2
√

6κ2 − 12κ+ 4
]

− 1
c2

√
3κ

[
2κ2ln

(
−
√

2κ− κ2
)

+ 3ln2κ2 − 6κln
(
−
√

2κ− κ2
)
− 9ln2κ
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+4ln
(
−
√

2κ− κ2
)

+ 6ln2
]
−

√
3

5

[
27κ4

√
6κ2 − 12κ+ 4

+ 30κ3ln
(
−
√

2κ− κ2
)

+ 60κln
(
−
√

2κ− κ2
)

+ 15ln2κ3

− 30κ3ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)
− 90κ2ln

(
−
√

2κ− κ2
)

+ 90κ2ln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 30
√

2κ
√

(3κ2 − 6κ+ 2)3

+ 294κ2
√

6κ2 − 12κ+ 4 − 45ln2κ2 − 198κ3
√

6κ2 − 12κ+ 4

− 60κln
(√

6κ2 − 12κ+ 4 + 2κ− 2
)

+ 10
√

2
√

(3κ2 − 6κ+ 2)3

−72κ
√

6κ2 − 12κ+ 4 + 30ln2κ− 18
√

6κ2 − 12κ+ 4
]
. (5.18)

It is easy to verify that for κ ∈
(
0, 1 −

√
3

3

)
, there is c = c2(κ) such that

Mhom(c, κ)
∣∣∣
κ∈

(
0,1−

√
3

3

) = 0.

Secondly, the Melnikov method is also employed to detect the existence of kink
(anti-kink) wave solutions under small perturbation. The heteroclinic Melnikov
function of system (3.16) is defined as follows:

Mhet(c, κ) =
∫

Υ(κ)

(
9
2
z2 − 9z + 3 +

1
c2

)
y2 dζ

=
∫ +∞

−∞

(
9
2
z2 − 9z + 3 +

1
c2

)
y2 dζ

=
∫ 2

0

(
9
2
z2 − 9z + 3 +

1
c2

)
y dz

=
√

3
2

∫ 2

0

(
9
2
z2 − 9z + 3 +

1
c2

)
z(2 − z) dz = −2

√
3(3c2 − 5)
15c2

. (5.19)

Lemma 5.5. For κ = 0 or κ = 2, Mhet(c, κ) = 0 has a positive root c∗ =
√

15
3 .

Moreover, ∂Mhet

∂c |c=c∗ 	= 0.

Proof. Clearly, it directly follows form (5.19) that Mhet(c, κ) = 0 has a positive root
c∗ =

√
15
3 . Meanwhile,

∂Mhet

∂c
= −4

√
3

5c
+

4
√

3(3c2 − 5)
15c3

,

and

∂Mhet

∂c
|c=c∗= −12

√
5

25
	= 0.

�

Proof of theorem 5.1. By lemmas 5.4 and 5.5, theorem 5.1 follows immediately. �
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Figure 8. (a) Phase portraits with c = c(1.7), (b) Time history curves of (ζ, z) for system
(3.16) for ε = 0.01, κ = 1.7 and initial value (z(0), y(0)) = (z+, 0) = (1.309950494, 0). (a)
c = c(1.7) (b) (ζ, z).

6. Numerical analysis

Numerical simulations are employed to confirm the theoretical results derived in
previous sections. Here, maple software 18.0 is used.

Firstly, we simulate the existence of solitary wave solution of perturbed (1 + 1)-
dimensional DLWE (1.3). Let κ = 1.7 and ε = 0.01. By (5.11) and (5.14), we
obtain I(1.7) ≈ 0.0648882124 and J(1.7) ≈ −0.02790800120 such that c(1.7) =√

− I(1.7)
J(1.7) ≈ 1.524819859. Then, according to theorem 5.1, we take c = c(1.7) and let

the initial value be (z(0), y(0)) = (z+, 0) = (1.309950494, 0) (red point) which the
homoclinic orbit would pass through. The phase portraits (z, y) and time history
curves (ζ, z) of system (3.16) are plotted in figure 8.

One can see that the homoclinic orbit and dark solitary wave solution of system
(3.16) still persist after a small singular perturbation.

Secondly, set κ = 0.3 and ε = 0.01. By (5.15) and (5.16), we have I(0.3) ≈
0.0648882229 and J(0.3) ≈ −0.02790784012 such that c(0.3) =

√
− I(0.3)

J(0.3) ≈
1.524824377. Taking c = c(0.3) and initial value to be (z(0), y(0)) = (z−, 0) =
(0.690049506, 0) (red point) which the homoclinic orbit would pass through. The
phase portraits (z, y) and time history curves (ζ, z) of system (3.16) are plotted in
figure 9.

We see that the homoclinic orbit and bright solitary wave solution of system
(3.16) still exist after a small singular perturbation which verifies the theorem 5.1(i)
and (ii).

Next, let us to see the existence of kink and anti-kink wave solution of system
(3.16). Giving κ = 0 or κ = 2, ε = 0.01 and initial value (z(0), y(0)) =

(
1,±

√
3

2

)
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Figure 9. (a) Phase portraits with c = c(0.3), (b) Time history curves of (ζ, z) for system
(3.16) for ε = 0.01, κ = 0.3 and initial value (z(0), y(0)) = (z−, 0) = (0.690049506, 0). (a)
c = c(0.3) (b) (ζ, z).

Figure 10. Phase portraits with c =
√

15
3 for ε = 0.01, initial value

(z(0), y(0)) =
(
1,±

√
3

2

)
. (a) c =

√
15
3 (b) Kink wave (c) Anti-kink wave.

(red point). We draw the phase portraits of system (3.16) after taking c =
√

15
3 in

figure 10. Form the figure 10(a), it is shown that the heteroclinic orbits still persist.
Correspondingly, a pair of kink and anti-kink wave solutions exists [see figures 10(b)
and (c)], which is consistent with theorem 5.1(iii).
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