
use, available at https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


NONEQUILIBRIUM QUANTUM FIELD THEORY

Research into the nonequilibrium processes of quantum many body systems, and
the statistical mechanical properties of interacting quantum fields, constitutes a
fast developing and widely applicable area of theoretical physics.

Bringing together the key ideas from nonequilibrium statistical mechanics and
powerful methodology from quantum field theory, this book captures the essence
of nonequilibrium quantum field theory.

Beginning with the foundational aspects of the theory, the book presents
important concepts and useful techniques, discusses issues of basic interest such
as decoherence and entropy generation, and shows how thermal field, linear
response, kinetic theories and hydrodynamics emerge. It also illustrates how these
concepts and methodology are applied to current research topics such as nonequi-
librium phase transitions, thermalization in relativistic heavy ion collisions, the
nonequilibrium dynamics of Bose-Einstein condensation, and the generation of
structures from quantum fluctuations in the early Universe.

The book is divided into five parts, with each part addressing a particular stage
in the conceptual and technical development of the subject. Full derivations or
detailed plausibility arguments are presented throughout. This self-contained
book is a valuable reference for graduate students and researchers in particle
physics, gravitation, cosmology, atomic-optical and condensed matter physics.

E steban A. Cal z etta is a Professor in the Departamento de F́ısica at
the Universidad de Buenos Aires and Researcher at CONICET, Argentina.

B e i -Lok B. Hu is a Professor in the Department of Physics and a Fellow of
the Joint Quantum Institute at the University of Maryland, College Park.

This title, first published in 2009, has been reissued as an Open
Access publication on Cambridge Core.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS

General editors: P. V. Landshoff, D. R. Nelson, S. Weinberg

S. J. Aarseth Gravitational N-Body Simulations
J. Ambjørn, B. Durhuus and T. Jonsson Quantum Geometry: A Statistical Field Theory Approach
A. M. Anile Relativistic Fluids and Magneto-Fluids: With Applications in Astrophysics and

Plasma Physics
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C. Gómez, M. Ruiz-Altaba and G. Sierra Quantum Groups in Two-dimensional Physics
M. B. Green, J. H. Schwarz and E. Witten Superstring Theory, Volume 1: Introduction†

M. B. Green, J. H. Schwarz and E. Witten Superstring Theory, Volume 2: Loop Amplitudes,
Anomalies and Phenomenology†

V. N. Gribov The Theory of Complex Angular Momenta: Gribov Lectures on Theoretical Physics
S. W. Hawking and G. F. R. Ellis The Large-Scale Structure of Space-Time†

F. Iachello and A. Arima The Interacting Boson Model
F. Iachello and P. van Isacker The Interacting Boson–Fermion Model
C. Itzykson and J. M. Drouffe Statistical Field Theory, Volume 1: From Brownian Motion to

Renormalization and Lattice Gauge Theory†

C. Itzykson and J. M. Drouffe Statistical Field Theory, Volume 2: Strong Coupling, Monte Carlo
Methods, Conformal Field Theory and Random Systems†

C. Johnson D-Branes†

P. S. Joshi Gravitational Collapse and Spacetime Singularities
J. I. Kapusta and C. Gale Finite-Temperature Field Theory: Principles and Applications, 2nd

edition
V. E. Korepin, N. M. Bogoliubov and A. G. Izergi Quantum Inverse Scattering Method and

Correlation Functions
M. Le Bellac Thermal Field Theory†

Y. Makeenko Methods of Contemporary Gauge Theory
N. Manton and P. Sutcliffe Topological Solitons
N. H. March Liquid Metals: Concepts and Theory
I. M. Montvay and G. Münster Quantum Fields on a Lattice†

L. O’Raifeartaigh Group Structure of Gauge Theories†

T. Ort́ın Gravity and Strings
A. Ozorio de Almeida Hamiltonian Systems: Chaos and Quantization†

R. Penrose and W. Rindler Spinors and Space-Time, Volume 1: Two-Spinor Calculus and
Relativistic Fields†

R. Penrose and W. Rindler Spinors and Space-Time, Volume 2: Spinor and Twistor Methods in
Space-Time Geometry†

S. Pokorski Gauge Field Theories, 2nd edition†

J. Polchinski String Theory Volume 1: An Introduction to the Bosonic String

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


J. Polchinski String Theory Volume 2: Superstring Theory and Beyond
V. N. Popov Functional Integrals and Collective Excitations†

R. J. Rivers Path Integral Methods in Quantum Field Theory†

R. G. Roberts The Structure of the Proton: Deep Inelastic Scattering†

C. Rovelli Quantum Gravity†

W. C. Saslaw Gravitational Physics of Stellar and Galactic Systems†

H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt Exact Solutions of
Einstein’s Field Equations, 2nd edition

J. Stewart Advanced General Relativity†

T. Thiemann Modern Canonical Quantum General Relativity
D. J. Toms The Schwinger Action Principle and Effective Action
A. Vilenkin and E. P. S. Shellard Cosmic Strings and Other Topological Defects†

R. S. Ward and R. O. Wells Jr Twistor Geometry and Field Theory†

J. R. Wilson and G. J. Mathews Relativistic Numerical Hydrodynamics

†Issued as a paperback

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


Nonequilibrium
Quantum Field Theory

ESTEBAN A. CALZETTA
University of Buenos Aires and CONICET

BEI-LOK B. HU
University of Maryland

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment,  
a department of the University of Cambridge.

We share the University’s mission to contribute to society through the pursuit of  
education, learning and research at the highest international levels of excellence.

www.cambridge.org 
Information on this title: www.cambridge.org/9781009289986

DOI: 10.1017/9781009290036

© Esteban A. Calzetta and Bei-Lok B. Hu 2022

This work is in copyright. It is subject to statutory exceptions and to the provisions  
of relevant licensing agreements; with the exception of the Creative Commons version the  

link for which is provided below, no reproduction of any part of this work may take  
place without the written permission of Cambridge University Press.

An online version of this work is published at doi.org/10.1017/9781009290036 under a  
Creative Commons Open Access license CC-BY-NC-ND 4.0 which permits re-use,  

distribution and reproduction in any medium for non-commercial purposes providing  
appropriate credit to the original work is given. You may not distribute derivative works  

without permission. To view a copy of this license, visit  
https://creativecommons.org/licenses/by-nc-nd/4.0

All versions of this work may contain content reproduced under license from third parties.
Permission to reproduce this third-party content must be obtained from these third-parties directly.

When citing this work, please include a reference to the DOI 10.1017/9781009290036

First published 2009
Reissued as OA 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-1-009-28998-6 Hardback 
ISBN 978-1-009-29002-9 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of  
URLs for external or third-party internet websites referred to in this publication  

and does not guarantee that any content on such websites is, or will remain,  
accurate or appropriate.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

http://www.cambridge.org
http://www.cambridge.org/9781009289986
http://dx.doi.org/10.1017/9781009290036
https://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.1017/9781009290036
http://dx.doi.org/10.1017/9781009290036
https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


Dedicated to—
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Preface

In the last decade or two we see increasing research activities in areas where quan-
tum field processes of nonequilibrium many-body systems prevail. This includes
nuclear particle physics in the relativistic heavy ion collision (RHIC) experi-
ments, early universe cosmology in the wake of high-precision observations (such
as WMAP), cold atom (such as Bose–Einstein) condensation (BEC) physics in
highly controllable environments, quantum mesoscopic processes and collective
phenomena in condensed matter systems. There is a demand for a new set of tools
and concepts from quantum field theory to treat the nonequilibrium dynamics
of relativistic many-particle systems and for the understanding of basic issues
like dissipation, entropy, fluctuations, noise and decoherence in these systems.

The subject matter of this book is at the intersection of nonequilibrium sta-
tistical mechanics (NEqSM) and quantum field theory (QFT). It deals with
the nonequilibrium quantum processes of relativistic many-body systems with
techniques from quantum field theory. To a lesser extent it also touches on the
nonequilibrium statistical mechanical aspects of interacting quantum field the-
ory itself. This subject matter is a natural extension of thermal field theory from
equilibrium (finite temperature) to nonequilibrium systems. One major technical
challenge is that the usual Euclidean or imaginary time quantum field theoretical
methods applicable to stationary quantum systems are no longer valid (except
for linear response in near-equilibrium conditions) and real-time formulations are
required.

The book has five parts: The first part comprising Chapters 1–3 deals with the
basics. After an introductory chapter on basic notions and issues in NEqSM, two
chapters are devoted to the basic ideas and techniques of nonequilibrium systems.
The second part comprising Chapters 4–6 begins with Chapter 4 on quantum
field processes in dynamical backgrounds. Chapters 5–6 form the backbone of the
book, in establishing the real-time quantum field theory framework based on
the so-called closed time path (CTP or Schwinger–Keldysh) effective action and
the influence functional (IF, or Feynman–Vernon) formalisms. This is followed by
three chapters in Part III to illustrate the use of these formalisms for addressing
issues like gauge invariance, dissipation, entropy, noise and decoherence. From
these formalisms we proceed to Part IV, including Chapters 10–12 in the devel-
opment of thermal, kinetic and hydrodynamics theories for interacting quantum
fields, with linear response and thermal field theory as the near-equilibrium lim-
its. Part V of this book shows how to apply this body of knowledge with examples
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xiv Preface

drawn from three areas: Bose–Einstein condensates (BEC), relativistic heavy
ion collisions (RHIC) and early universe cosmology discussed in Chapters 13–15
respectively. The range of application is much broader than that represented by
these chosen examples.

We assume the reader has a good knowledge of quantum field theory as taught
in a typical first or second year graduate course, with standard textbooks, but
we do not require the reader to have much more knowledge of nonequilibrium
statistical mechanics beyond those discussed (regrettably light) in a standard
first/second year statistical mechanics course. Prior exposure to nonrelativistic
many-body theory is helpful but not required, so is thermal field theory, as they
will be developed as subcases of the fully relativistic nonequilibrium quantum
field theory, the main theme of this book.

Below is a quick guide to the use of this book for readers with different back-
grounds. Readers with some good understanding of NEqSM may go directly to
Part II while readers familiar with the CTP-IF formalism may start with Part I
and go to Part III. Readers more interested in the structure of the kinetic and
hydrodynamic theories can delve into Part IV after Part II, while readers more
interested in statistical mechanical issues manifested in quantum field theory
may want to focus on Chapters 1, 8, 9. Recognizing that readers may come from
different disciplines with solid knowledge of their own field who want to learn
nonequilibrium quantum field theory for applications to their own problems, we
suggest the following streams:

(1) Atomic-optical and condensed matter physics: Chapters 2, 3, 5, 6, 8, 10, 11,
13

(2) Nuclear-particle physics: Chapters 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
(3) Gravitation and cosmology: Chapters 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15

A book on this relatively new but fast developing subject can be of some
substance or usefulness only if the authors make a serious attempt to capture
or represent the collective research effort by their colleagues working in this
field. With this belief we sent out each chapter before it saw its final form to
experts on that particular topic, and were blessed with many careful comments
and insightful suggestions. For this we are indebted to Alejandra Kandus, Gabor
Kunstatter, Da-Shin Lee, Daniel Litim, Fernando Lombardo, Sabino Matarrese,
Diego Mazzitelli, Stanislav Mrowczynski, Marcello Musso, Kin-Wang Ng, Juan
Pablo Paz, Robert Pisarski, Ana Maria Rey, Antonio Riotto, Ray Rivers, Albert
Roura, Dam Son, Rafael Sorkin, Enric Verdaguer, Alexander Vilenkin, Serge
Winitzki and Laurence Yaffe. We received able help from A. Eftekharzadeh and
Taihung Wu in the preparation of the bibliography and from Chad Galley in
checking the consistency of some notations and conventions.

Many of our colleagues and co-workers have contributed to our understand-
ing and development of nonequilibrium quantum field theory over the years.
We would like to thank Mario Castagnino, the late Bryce DeWitt, J. Robert
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Preface xv

Dorfman, Michael E. Fisher, James B. Hartle, Werner Israel, Leonard E. Parker,
Zhao-Bin Su, John A. Wheeler, Lu Yu and Robert Zwanzig, as well as our former
postdocs and students who worked with us on this subject.

We also wish to thank Simon Capelin and Rufus Neel, senior editors of Cam-
bridge University Press for their sustained interest and patience, and Lindsay
Barnes for advice in the production of the book.

The writing of this book as an intellectual challenge was a joy for the authors,
but it also meant significant sacrifice at the personal level for a long duration,
taking our time and attention away from our families and friends; without their
understanding and forbearance it would not have been possible.

EC dedicates this book to Maŕıa Isabel and Francisco. To be able to dedicate
it to them was one of the main reasons to write it in the first place.

BLH would like to take this special opportunity to express his sincere appre-
ciation to his wife of 35 years, Chun-Chu Yee, for her companionship in meeting
the challenges of life, inward and outward; and her understanding and forbear-
ance at both the ethereal and mundane levels of coexistence and communion.
He wants to tell his beloved son Tung-Hui and daughter Tung-Fei that they
are the best that have ever happened to him and the most precious in his life:
Just being with you or simply hearing from you gives me the greatest pleasure. I
value you each for being a fiercely independent individual with such keen or even
painful senses of being, and yet able to reach out and connect with the closest
and farthest reaches of humanity. He wants to express his love and appreciation
to his brothers Bambi Hu and Shiu-Lok Hu, and to his cousin Kwen-Wai Lau
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Part I

Fundamentals of nonequilibrium

statistical mechanics
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1

Basic issues in nonequilibrium
statistical mechanics

Perhaps due to its technical complexity, oftentimes one sees in research papers
on nonequilibrium quantum field theory (NEqQFT) more emphasis placed on
the field-theoretical formalisms than the ideas these sophisticated techniques
attempt to capture, or the issues such problems embody. All the more so, we need
some basic understanding of the important issues and concepts in nonequilibrium
statistical mechanics (NEqSM), and how they are manifested in the context of
quantum field theory. Many important advances in this field came from asking
such questions and finding out how to answer them in the language of quantum
field theory. Because of this somewhat skewed existing emphasis in NEqQFT,
and since we do not assume the reader to have had a formal course on NEqSM
before, we shall give a brief summary of the basic concepts of NEqSM relevant to
the field-theoretical processes discussed in this book. Many fine monographs and
reviews written on this subject take a more formal mathematical approach. Since
our purpose here is to familiarize readers with these issues and their subtleties,
rather than training them to work in the rich field of NEqSM (which includes
in addition to the traditional subject matter such as the projection operator
formalism and open system concepts, also current topics at their foundation, such
as dynamical systems and quantum chaos), we choose to approach these topics in
a more intuitive and physical way, sacrificing by necessity rigor and completeness.

We first examine some commonly encountered physical processes and try to
bring out in each a different key concept in NEqSM. To have a concrete bearing
and a common ground, let us focus on just one such issue which is of paramount
importance and poses a constant challenge to theoretical physicists: How does
apparent irreversibility in the macroscopic world arise from the time-reversal
invariant laws of microphysics [Leb93, HaPeZu94, Mac92, Sch97]?

We begin with an analysis of the nature and origin of irreversibility in well-
known physical processes such as dispersion (referring in the specific context here
to the divergence of neighboring trajectories in configuration or phase space
due to dynamical instability), diffusion, dissipation and mixing. We will seek
the microdynamical basis of these processes and clarify the distinction between
processes whose irreversibility arises from the stipulation of special initial con-
ditions, and those arising from the system’s interaction with a coarse-grained
environment. It is beneficial to keep in mind these processes and the issues
they embody when we begin our study of quantum field processes so that they
will not be marred by the technical complexity of quantum field theory. We
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4 Basic issues in nonequilibrium statistical mechanics

can ask questions such as (1) “What is the entropy generation from particle
creation in an external field or a dynamical spacetime, as in cosmology?”; (2)
“How could an interacting field thermalize?”; (3) “Is there irreversibility asso-
ciated with quantum fluctuations in field theoretical processes like particle cre-
ation?” Or, more boldly, “Can the ‘birth of the Universe’ be viewed as a large
fluctuation?” “Might it not happen at all – a ‘still’ birth – due to the power-
ful dissipative effects of particle creation which suppresses the tunneling rate?”
(4) “Can one use thermodynamic relations to characterize certain quantum field
processes?”

These questions reveal how deeply one can probe into the NEqSM features of
quantum field theory and how quantum field processes can lend themselves to
statistical mechanical and thermodynamic depiction or characterization. Asking
question (1) reveals the differences resulting from many levels of coarse graining
between a quantum field understanding of particle creation processes (no
entropy production because the vacuum is a pure state) and a thermodynamic
description (yes, entropy is proportional to the number of particles produced).
Asking question (2) forces us to reckon with the intricate NEqSM features of an
interacting quantum field such as how a correlation entropy can be defined from
the Schwinger–Dyson hierarchy. These aspects are not usually discussed in quan-
tum field theory textbooks. The first part of question (3) brings out the often
used yet poorly understood aspects of noise – beginning with quantum noise
associated with vacuum fluctuations, properties of multiplicative colored noise,
and nonlocal dissipation and their effects on the dynamical processes. The second
part of question (3) is the so-called “back-reaction” effect of quantum fields on
a background field or background spacetime. Question (4) asks if this effect can
have a thermodynamic interpretation. To the degree that thermodynamics is the
long-wavelength, heavily coarse-grained limit of microphysics and quantum field
theory is a theory of microphysics, we certainly expect such relations to exist and
their discovery will reveal the relation between micro–macro and quantum-to-
classical transitions. A well-known relation is the black hole thermodynamics of
Bekenstein [Bek73] and the quantum Hawking radiation [Haw75]. Sciama [Sci79]
suggested that this can be understood from the viewpoint of quantum dissipative
systems. This view also applies to dissipation of anisotropy in the early universe
due to particle creation from the vacuum. We will find out later that both for
the black hole and the early universe these processes can indeed be understood
as manifestations of a fluctuation–dissipation relation, relating fluctuations
of quantum fields to dissipation in the dynamics of the background field or
spacetime.

1.1 Macroscopic description of physical processes

Let us begin by examining a few examples of irreversible processes to illustrate
their different natures and origins. Consider the following processes:
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1.1 Macroscopic description of physical processes 5

Dispersion
Diffusion
Dissipation
Relaxation
Mixing
Recurrence
Decoherence
Recoherence

They contain different aspects of irreversibility. The usage of these terms
appearing in general-purpose books could be rather loose or even confusing. For
example, diffusion, relaxation and dissipation are often seen used interchange-
ably. Even the same word could mean different things in different contexts. For
example, classical diffusion is often viewed as a form of dissipation, while quan-
tum diffusion refers to phase dispersion, usually occurs at a much faster time-
scale and is more closely related to decoherence than dissipation. We will discuss
quantum phenomena in Chapter 3. Here we will focus on the first six such pro-
cesses listed above and aim at providing some microdynamics basis to these
processes in order to give them a more precise meaning. In so doing we hope to
elucidate some basic notions and issues of NEqSM through examples.

We first highlight the distinction between dissipative processes (which are
always irreversible) and irreversible or “apparently” irreversible processes (which
are not necessarily dissipative). For example, in elastic scattering, neighboring
trajectories diverge exponentially fast. This is characteristic of mixing systems,
which are reversible. Relaxation and diffusion referring to dissipative systems
are irreversible. They are mixing systems with some type of coarse graining
introduced. As we shall see, not any type of coarse graining leads to irreversibil-
ity. Many factors enter, such as the large size of the system, the particular initial
conditions chosen, or the time-scales at work. This is where it calls for special
caution in doing the analysis. Better understanding of the chaotic behavior
in classical molecular dynamics has provided a firmer microscopic basis for
nonequilibrium statistical mechanics. Such studies for quantum systems are less
developed and for this reason we shall refrain from describing them. In Chapter
3 we shall have occasion to discuss quantum decoherence and dissipation where
the interplay of quantum and thermal fluctuations in the environment and their
effects on the system will be discussed. We shall also revisit these issues of
irreversibility and approach to equilibrium in Chapter 12.

A. Dispersion
Consider a system of dilute gas made up of interacting particles modeled as hard
spheres with diameter d. For simplicity, let us work in two dimensions with hard
disks. (Our illustration here follows [Gas98]; see also [Ma85] which contains excel-
lent conceptual discussions.) Assume the particles move with constant velocity v
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6 Basic issues in nonequilibrium statistical mechanics

and traverse a distance given by the mean free path � � d before colliding with
another particle elastically. The trajectory of any particle governed by the laws
of mechanics is of course reversible in time. However, upon just a few collisions
two neighboring trajectories will deviate from each other very rapidly if the scat-
tering surface is convex, as a sphere is. To see this, let’s set our stop watch time
zero (t = 0) right after the first collision (call this collision the n = 0 one) and
follow the particle’s trajectory for n subsequent collisions. Call the scattering
angle of the first collision θ(0) and the uncertainty associated with it δθ(0) and
likewise for the scattering angle after an additional n collisions θ(t) and its uncer-
tainty δθ(t). For each additional collision the uncertainty in the scattering angle
increases by a factor of �/d deduced from the simple trigonometry of incident
and scattered trajectories. So after n collisions then

|δθ(t)| ∼ |δθ(0)|n ≡ |δθ(0)|eλt (1.1)

The second equivalence relation above defines the parameter λ, which is called
the Lyapunov exponent (actually its maximal value enters into this expression).
The time for n successive collisions is given by t = nτ where τ is the time
between collisions related to the mean free path � by v = �/τ . Thus the (maximal)
Lyapunov exponent is given by

λ ∼ 1
τ

ln
�

d
(1.2)

This simple way of estimating the maximum Lyapunov exponent first given by
Krylov [Kry44, Kry79] remains very useful in illustrating the elemental process
of divergence of neighboring trajectories due to dynamical instability, referred
to here as “dispersion” for short. For hard sphere collisions we see that after a
sufficiently long time |δθ(t)| ≈ 1, the exit direction becomes completely indeter-
minate due to the accumulated error.

The asymmetry in the initial and final conditions of the collection of
trajectories (congruence) comes from the accumulation and magnification of
the uncertainty in the initial conditions due to the collisions, even though
the dynamical law governing each trajectory is time-symmetric. To trace a
particular trajectory backwards in time after a large number of collisions
requires an exponentially high degree of precision in the specification of the
initial condition. This ultra-sensitivity of dynamics to initial conditions is
characteristic of chaotic systems. Note that the divergence of neighboring
trajectories in phase space or parameter space is an intrinsic property of
the nonlinear Hamiltonian of the system, not a result of coarse graining by
the truncation of the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)
series and the causal factorizability of the two-particle correlation function as
in Boltzmann’s molecular chaos hypothesis. (Initially uncorrelated particles
become correlated after collisions, thus giving rise to time-asymmetry in the
dissipative dynamics of Boltzmann’s equation.) The evolution of an ensemble
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1.1 Macroscopic description of physical processes 7

of such systems at some finite time from the initial moment often appears to
be unrelated to their initial conditions, not because the individual systems are
insensitive to the initial conditions but because they are overly-sensitive to
them, thus making it difficult to provide an accurate prediction of each system’s
state in the future. It is in this sense that these systems manifest irreversibility.
In contrast, for an integrable system the trajectories stay close to each other
because the regions in phase space for its dynamics are limited by the constants
of motion. Such trajectories in integrable systems are referred to as “stable”
while those in chaotic systems are “unstable” as they become dispersive in the
sense defined above owing to their dynamical instability. We will return in a
later section to irreversibility and nonequilibrium thermodynamics considered
from the framework of Hamiltonian dynamics.

B. Diffusion
Let us look at some simple examples in kinetic theory: gas expansion, ice melt-
ing and an ink drop in water. These are irreversible processes because the ini-
tial states of 1023 molecules on one side of the chamber and a piece of ice
or ink drop immersed in a bath of water are highly improbable configurations
out of all possible arrangements. These initial conditions are states of very low
entropy. The only reason why they are special is because we arrange them to
be so. For these problems, we also know that the system–environment sepa-
ration and interaction make a difference in the outcome. In the case of an
expanding ideal gas, for example, for free expansion the change of entropy is
δSsystem > 0, δSenviron = 0, δStotal > 0. For isothermal quasistatic expansion:
δSsystem = −δSenviron > 0, δStotal = 0 instead (see, e.g. [Rei65]).

Another important factor in determining whether a process is irreversible
is the time-scale of observation compared to the dynamic time-scale of the
process. We are familiar with the irreversible process of an ink drop dispersing
in water which happens in a matter of seconds, but the same dye suspension
put in glycerine takes days to diffuse, and for a short duration after the initial
mixing (say, by cranking the column of glycerine with a vertical stripe of dye
one way) one can easily “unmix” them (by reversing the direction of cranking
[UMDdemo]). We will discuss in the next section under what conditions and in
what sense a “mixing” system, though time-reversible, can be viewed as capable
of approaching equilibrium. Diffusion, when used in the sense of dissipation, is
nevertheless an irreversible process.

C. Dissipation
There are two basic models of dissipation in nonequilibrium statistical mechanics:
the Boltzmann kinetic theory of dilute gas, and the Langevin theory of Brow-
nian motion. Each invokes a different set of concepts, and even their relation
is illustrative. In kinetic theory, the equations governing the n-particle distri-
bution functions (the BBGKY hierarchy) preserve the full information of an
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8 Basic issues in nonequilibrium statistical mechanics

n-particle system. It is (1) ignoring (more often restricted by the precision of
one’s observation than by choice) the information contained in the higher-order
correlations (truncation of the BBGKY hierarchy), and (2) the imposition of
causal factorization conditions, like the molecular chaos assumption, that brings
about dissipation and irreversibility in the dynamics of the lower-order correla-
tions [Zwa01, Bal75].

In the lowest order truncation of the BBGKY hierarchy valid for the descrip-
tion of dilute gases, the Liouvillian operator L acting on the one-particle distribu-
tion function f1(r1, p1, t) is driven by a collision integral involving a two-particle
distribution function f2(r1, p1, r2, p2, t) (cf. Chapters 2 and 11). Boltzmann’s
molecular chaos ansatz (MCA) assumes an initial uncorrelated state between
two particles: f2(1, 2) = f1(1)f1(2), i.e. that the probability of finding particle
1 at (r1, p1, t) and particle 2 at (r2, p2, t) at the same time t is equal to the
product of the single-particle probabilities (a factorizable condition). Note that
this condition is assumed to hold only initially, but not finally. A short-range
interaction in a collision process will almost certainly generate dynamical cor-
relations between the two collision partners. The truncated BBGKY hierarchy
(with MCA) is an example of what we call an effectively open system (see Sec-
tion 1.5 of this chapter). Boltzmann’s explanation of dissipation in macroscopic
dynamics is one of the crowning achievements of theoretical physics.

Dissipation in an open system described by the Langevin dynamics has
similarities with and differences from that of an effectively open system (as
exemplified by the Boltzmann system). The open system can be one distin-
guished oscillator, the Brownian particle (with mass M), interacting with
many oscillators (with mass m) serving as its environment (see Chapter 2).
Dissipation in the dynamics of the open system arises from ignoring details
of the environmental variables and only keeping their averaged effect on the
system (this also brings about a renormalization of the mass and the natural
frequency of the Brownian particle). Usually one assumes M � m and weak
coupling between the system and the environment to simplify calculations.
The effect of the environment on a particular system can be summarized
by its spectral density function, but other environments can produce equiv-
alent effects. In both of these models, as well as in more general cases,
the following conditions are essential for the appearance of dissipation (see,
e.g. [Hu89]):

(a) System–environment separation. This split depends on what one is interested
in, which defines the system: it could be the slow variables, the low modes,
the low order correlations, the mean fields; or what one is restricted to: the
local domain, the late history, the low energy, the asymptotic region, outside
the event horizon, inside the particle horizon, etc.

(b) Coupling. The environment must have many degrees of freedom to share with
and spread the information from the system; its coupling with the system
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1.1 Macroscopic description of physical processes 9

must be effective in the transfer of information (e.g. nonadiabatic) and the
response of the coarse-grained environment must be sufficiently nonsystem-
atic in that it will only react to the system in an incoherent and retarded
way. (An example of almost the opposite condition is a dressed atom, i.e. an
atom in a high finesse electromagnetic cavity where the quantum coherence
of the system can be preserved to a high degree [CoPaPe95].)

(c) Coarse graining. One must ignore or down-grade the full information in the
environmental variables to see dissipation appearing in the dynamics of the
open system. (The time of observation enters also, in that it has to be greater
than the interaction time of the constituents but shorter than the recurrence
time in the environment.) Coarse graining can be the causal truncation of
a correlation hierarchy, the averaging of the higher modes, the “integrating
out” of the fluctuation fields, or the tracing of a density matrix (discarding
phase information).

(d) Initial conditions. Whereas a dissipative system is generally less sensitive to
the initial conditions in that for a wide range of initial states dissipation
can drive the system to the same final (equilibrium) state, the process is
nevertheless possible only if the initial state is off-equilibrium. The process
manifests irreversibility also because the initial time is singled out as a special
temporal reference point when the system is prepared in that particular
initial state. Thus in this weaker sense, dissipation is also a consequence of
specially prescribed initial conditions.1

While the dynamics of the combined system made up of a subsystem and its
environment is unitarity, and its entropy remains constant in time, when certain
coarse graining is introduced in the environment, the subsystem turns into an
open system, and the entropy of this open system (constructed from the reduced
density matrix by tracing out the environmental variables) increases in time. In
this open system dynamics, the effect of the coarse-grained environment on the
subsystem leads to dissipation and irreversibility in its dynamics.

In our prior discussion of dynamical instability or “dispersion” with the
example of hard-disk scattering we were introduced to irreversible but nondis-
sipative processes. Irreversibility there refers to the ultra-sensitivity of the
dynamics to the initial conditions. It is extremely difficult to trace back in
time a highly divergent congruence of trajectories. The source of irreversibility

1 Note the distinction between these cases: If one defines t0 as the time when a dissipative
dynamics begins and t1 as when it ends, then the dynamics from t0 to −t is exactly the
same as from t0 to t, i.e. the system variable at −t1 is the same as at t1. This is expected
because of the special role assigned to t0 in the dynamics with respect to which there is
time-reversal invariance, but it is not what is usually meant by irreversibility in a
dissipative dynamics. The arrow of time there is defined as the direction of increase of
entropy and irreversibility refers to the inequivalence of the results obtained by reversing
t0 and t1 (or, for that matter reversing t0 and −t1), but not between t1 and −t1. The
time-reversal invariance of the H-theorem has the same meaning.
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10 Basic issues in nonequilibrium statistical mechanics

there is by nature fundamentally different from that found in open systems
discussed here. The former dynamics is irreversible but nondissipative, while
the latter is both dissipative and irreversible. Both types of processes depend
on the stipulation of initial conditions. The difference is that the former
depends sensitively so, the latter less sensitively. Thus dissipative processes
must involve some measure of coarse graining, but coarse graining alone need
not lead to dissipation. We will have a subsection later on the issue of coarse
graining.

D. Phase mixing
Two well-known effects fall under this category: Landau damping and spin echo
(e.g. [Bal75, Ma85]). Let us examine the first example. If one considers long-
ranged forces such as the Coulomb force in a dilute plasma gas where close
encounters and collisions are rare, the factorizable condition can be assumed to
hold throughout, before and after each collision (thus there is no causal condition
like the molecular chaos assumption imposed). Under these conditions the Boltz-
mann kinetic equation becomes a Vlasov (or collisionless Boltzmann) equation
(see, e.g. [Bal75, Kre81]). This problem will be discussed in Chapters 10 and 11.
The dependence on the one-particle distribution function f1(r,p, t) makes the
Vlasov equation nonlinear, and it has to be solved in a self-consistent way. (This
aspect is analogous to the Hartree approximation in many-body theory.) Note
that the Vlasov equation which has a form depicting free streaming is time-
reversal invariant: the Vlasov term representing the effect of the averaged field
does not cause dissipation. This mean-field approximation in kinetic theory,
which yields a unitary evolution of reversible dynamics, is, however, only valid
for times short compared to the relaxation time of the system in its approach to
equilibrium. This relaxation time is associated with the collision-induced dissi-
pation process.

Landau damping in the collective local charge oscillations, being a solution
of the Vlasov equation, is intrinsically a reversible process. The appearance of
apparent “irreversibility” is a consequence of some specially stipulated initial
conditions. One may even be able to find a function which is monotonically
increasing and refer to it as representing entropy generation. However, upon
the choice of some other condition, this feature can disappear and the entropy
function can decrease. (An example in Chapter 4 is the entropy function defined
in the particle number basis.) Landau “damping” is a mixing process, illustrated
here by the Vlasov dynamics. It is fundamentally different from the dissipation
process, in that the latter has an intrinsic damping time-scale but not the former,
and that while dissipation depends only weakly on the initial conditions, mixing
is very sensitive to the initial conditions. Spin echo is another well-known example
of phase mixing [Bal75]. For quantum plasma, one needs to coarse grain the phase
information in the wavefunctions and consider special initial conditions to see
this apparent “damping” effect (more in Chapter 4).
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1.2 Microscopic characterization 11

From the array of examples above we see that irreversibility and dissipation
involve very different causes. The effect of interaction, the role of coarse graining,
the choice of time-scales, and the specification of initial conditions in any process
can give rise to very different results. We will expand on these physical conditions
later, after we have had a chance to look at the microscopic characterization of
these macroscopic processes, i.e. their molecular dynamics basis.

1.2 Microscopic characterization from dynamical systems behavior

From a sampling of these macroscopic processes we see a variety of physical
behavior. The underlying causes should all be traceable to the microscopic molec-
ular dynamics, to which we now turn our attention. Let us start with a decep-
tively simple question: An isolated mechanical system is time-reversible. Under
what conditions and in what sense does a large isolated system reach equilibrium?

1.2.1 Ergodicity describes a system in equilibrium

An isolated system of N molecules in a volume V has a constant total energy
E under the Hamiltonian H(r,p), where r,p each is a 3N-dimensional vector
denoting the position and momenta of all the particles in a 6N-dimensional phase
space Γ. The density function ρ(γ) is defined such that the probability of finding
a member γ of the ensemble in a differential volume dΓ ≡ dr1 · · · drNdp1 · · ·dpN

is equal to ρ(γ)dΓ. Its dynamics is described by the flow of each member of the
ensemble restricted to the constant energy surface or manifold E in Γ. Since the
number of members flowing in and out of a region in phase space should be equal
for all times we have ρ satisfying the Liouville equation,

dρ

dt
≡ ∂ρ

∂t
+

N∑
1

(
ṙi ·

∂

∂ri
+ ṗi ·

∂

∂pi

)
ρ = 0 (1.3)

where an overdot denotes derivative with respect to time.
In statistical mechanics the microcanonical ensemble describes such an iso-

lated system. The number of states is represented by the area of the energy
surface E in phase space:

Ω(E) =
∫
H=E

dμ ≡
∫

Γ

δ(H − E)dμ, (1.4)

where μ is the invariant measure on Γ. The entropy is defined as S = kB ln Ω(E).
The ensemble average of a phase space function F over the energy surface E is
given by

〈F 〉μ ≡
∫
H=E

dμF (γ)∫
H=E

dμ
=

∫
Γ
F (γ)δ(H − E)dμ∫
Γ
δ(H − E)dμ

(1.5)
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12 Basic issues in nonequilibrium statistical mechanics

We also learned that a system in equilibrium (either by itself, as in a micro-
canonical ensemble, or in contact with a heat bath, as in a canonical ensemble)
will have equal a priori probability to occupy any of its accessible microstates.
How do these concepts: ensemble average, flows in phase space and equilibrium
state, connect with each other? Equivalence between the kinetic theory and sta-
tistical mechanics description implies that there must be a relation between the
way the system points in phase space move (the Liouville flow) and what makes
up a typical copy of the system (ensemble average). Equilibrium suggests that the
system is stationary. Thus a typical system point must spend an equal amount
of time in regions of phase space of equal measure on the energy surface. This is
the gist of Boltzmann’s ergodic hypothesis. If we define the time average of a
phase space function F (γ) on the energy surface E as

〈F 〉t ≡ lim
t→∞

1
T

∫ T

0

F (γt)dt (1.6)

where γt denotes the point in Γ space after evolving a time t, then the ergodic
hypothesis states that

〈F 〉t = 〈F 〉μ . (1.7)

This says that an arbitrary snapshot (time) of the system provides a typical
copy (ensemble) of the system in equilibrium, or, loosely, that time average is
equivalent to ensemble average.

Examples of an ergodic system include a one-dimensional harmonic oscilla-
tor, an automorphism on a 2-torus in phase space such as the baker’s transform
or the Arnold cat map. For a quantum system to be ergodic it has to have a
nondegenerate energy spectrum. Many simple yet important systems in statisti-
cal mechanics are nonergodic. Examples are an ideal gas and multiple harmonic
oscillators. For nonergodic systems the energy manifold is metrically decompos-
able, i.e. E can be partitioned into two or more invariant submanifolds each of
which is invariant under the flow in phase space Γ. An equilibrium condition is
described by an ensemble density which is constant on each submanifold, but
not necessarily on the entire energy manifold.

Note that ergodicity is a microdynamics condition depicting a system in equi-
librium but the property is irrelevant to whether a system can approach equilib-
rium [Far64].

1.2.2 Mixing system is time-reversible; weak sense

of approach to equilibrium

One would think that if the flow in a system is chaotic enough such that the
initial probability distribution spreads sufficiently evenly throughout the phase
space then there may be a chance for the energy surface to be uniformly occupied.
The first condition constitutes what is known as a mixing system. The second
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1.2 Microscopic characterization 13

condition is close to, but still insufficient to define a state of equilibrium. Let
μ(A) be the measure2 on a set A on the energy surface (the complete energy
surface is denoted by E) in phase space. Denote by At the same set at time t. It
is obvious that μ(A) = μ(At). A system is mixing if for all sets B on the energy
surface the following holds:

lim
t→∞

μ(At

⋂
B)

μ(B)
=

μ(A)
μ(E)

(1.8)

In practice the infinite time limit can be just the laboratory or observation time-
scale. What this means is that in a mixing system the stretching of the original
set will enable it to intersect with almost any region in the entire energy surface.
This requires two conditions. First, there must exist in the system trajectories
which spread out rapidly in certain directions of the phase space on the energy
surface. Second, that the flow can traverse the whole energy surface E , so it has
to be metrically nondecomposable (i.e. that it cannot be subdivided into two or
more regions of nonzero measure such that a trajectory starting in one region will
never leave it). Common examples of mixing systems are the baker’s transform
and the Arnold cat map. Since a mixing system has flows which are nearly
uniform in the phase space it can be understood to imply ergodicity. However
the converse is not true. Both ergodic and mixing systems are time-reversible.

To see irreversible behavior and the approach to equilibrium one needs to
introduce some measure of coarse graining, such as considering only the slow
variable associated with the unstable direction of the flows, or imposing certain
assumptions on the initial conditions in the distributions.

1.2.3 Dissipative system: coarse-grained mixing permits

approach to equilibrium

For a system whose unstable trajectories stretch out any initial distribution
into very “long and narrow” filaments on the energy surface in the course of
time they can produce a uniform spread in phase space. We refer to systems
having these properties as satisfying the “chaotic hypothesis” of Cohen and
Gallavoti [GalCoh95], or chaotic systems (strictly speaking, the system needs
to satisfy the set of criteria which define a hyperbolic or an Anosov system,
which is much stronger than mixing; to delve into this topic will go beyond the
scope of our book, and we refer interested readers to nice monographs such as
[Dor99, Gas98]). In such systems neighboring trajectories diverge from each other
exponentially fast – with positive Liapunov exponents, in an unstable direction.
The chaotic hypothesis is to dissipative systems as ergodicity is to equilibrium

2 For hyperbolic systems, to capture the smoothness in the unstable directions and the
fractal nature in the stable directions, one needs to use the Sinai–Ruelle–Bowen measure
[RueEck85, Sinai72, BowRue75, Rue76].
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14 Basic issues in nonequilibrium statistical mechanics

systems. Thereupon one can speculate that averages taken with the distribu-
tion function defined on this extended set be equal to the average taken with
a smooth equilibrium distribution. (To fulfill the exact criterion of equilibrium
one also needs to consider whether the equal spreading in any region of phase
space on the energy surface is also uniform in time.) Gibbs correctly observed
that a mixing system will not reach the uniform phase space density ρ̄(γ) in the
fine-grained sense, i.e. limt→∞ ρt(γ) = ρ̄(γ) for each phase space point γ in Γ.
But it is likely to do so in a coarse-grained sense, i.e. that the average of ρt(γ)
over each fixed region of phase space will become uniform. ρ̄ is called the weak
limit of the family of functions ρt [Pen70].

It is only in this weak sense that a statement like “a mixing system approaches
equilibrium” becomes valid. Bear in mind that a mixing system is time-reversal
invariant without coarse graining. Even coarse graining does not automatically
turn a mixing system into a dissipative one. We will expand on this point in
the next section. Some additional conditions need to be introduced to turn
a mixing system into one which shows irreversibility and approaches equilibrium.

Averaging and tracing. Since irreversibility appears in macroscopic systems one
may attempt to scale up the system and hope that averaging over a larger
phase space may lead to irreversibility. Coarse graining in this way does lead to
entropy increase, but it does so in both time directions, so the system remains
time-reversible. On the other hand, projection to a lower dimension, or “tracing”
(in a sense defined by e.g. [Mac74]) does allow for increase in one time direction.

Molecular chaos assumption. Boltzmann’s Stosszahlansatz, or molecular chaos
assumption, is a causal condition, i.e. before each collision the two molecules are
uncorrelated but afterwards they are: This is where the irreversibility enters.
The dynamical origin of Boltzmann’s Stosszahlansatz is not clear. Note the
choice of time-scales involved here: the shorter time-scales describing higher
order correlation functions play a less important role in the long-time behavior
which is dominated by the time-scale associated with the behavior of the
one-particle distribution function.

Unstable versus stable direction. On the microscopic level we notice already some
coarse graining is introduced when we focus on the divergent trajectories in
defining the unstable directions of flow in phase space. In the simplest exam-
ple ([Dor99]) of a Boltzmann equation derived from the baker’s map it is the
distribution function projected in the slow variables associated with the unsta-
ble direction which has a chance to approach the equilibrium distribution. This
happens at a time-scale which is much shorter than the time it takes for any
small region of phase space to get mixed in the full space. Again this presumes
two conditions: that we are dealing with a projected distribution function by
paying attention only to the trajectories with positive Lyapunov exponents, and
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1.2 Microscopic characterization 15

that the initial conditions are conducive to starting the chaotic flow. Notice the
time factor involved. Here we see some similarity between our description of the
molecular (micro) dynamics of a few degrees of freedom and the gas (macro)
dynamics in terms of invoking projection (or reduction), imposing initial condi-
tions, and choosing time-scales. Their connection certainly depends on the role
of very large numbers, multi-time-scales or interaction strength. We now turn
our attention to these issues.

1.2.4 Nonequilibrium thermodynamics and chaotic dynamics3

It is often said that information loss is the source of irreversibility and the
approach to equilibrium. From the molecular dynamics description this is not
always the case. The baker model gives a good example here. It is essential that,
for chaotic systems at least (we really don’t understand much about nonchaotic
systems, paradoxically) the projection catches at least a piece of the unstable
directions in phase space, so the stretching mechanism can smooth out an irreg-
ular distribution function. It is also important that the distribution functions
be smooth enough not to be concentrated on special orbits which are insensi-
tive to the projection. The application of the molecular chaos assumption in the
Boltzmann theory is interesting in the sense that if one takes the correlations
to be destroyed by collisions, then one gets an anti-Boltzmann equation, with
funny properties. So to get irreversibility one needs both the projection onto a
space that has some stretching mechanism in phase space as well as some special
conditions imposed on an initial state distribution function.

The other form of coarse graining is more subtle and connected to chaos.
Even if no projections onto lower dimensional phase spaces are made, chaotic
dynamics, when present, forces a distribution function to become closer and
closer to a fractal with structure on arbitrarily fine scales. In the limit of large
times, distribution functions do not have nice mathematical properties. They
are not differentiable, for example. Thus some coarse graining is required to
go from an SRB fractal measure to a distribution function that can be used
to calculate averages. This necessitates a loss of information and is a source of
entropy increase.

The source of irreversibility in Landau damping is also connected with the
construction of a fractal structure.4 Mathematically the distribution function
becomes a Schwartz distribution and lives in a space where the usual theorems

3 The authors are grateful to Professor Robert Dorfman for sharing with them the latest
view on these issues in a correspondence from which some of the description in this
subsection is adopted.

4 In the opinion of some leading statistical physicists, Dorfman being one of them, who
conveyed this to the authors, the earliest notion of fractals was introduced in the physics
literature by van Kampen in his discussion of Landau damping. He called the distribution
function “corrugated” for lack of a better word.
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16 Basic issues in nonequilibrium statistical mechanics

about the spectra of differential operators no longer apply, and decays can appear
in unexpected ways. The notion of a “Gelfand triple” is useful here for its descrip-
tion [LaCaId99, ACGI00]. To delve further into these directions is beyond the
scope and intent of this book, but interested readers should consult the excellent
books of Dorfman [Dor99], Gaspard [Gas98] on the micro–macro relations. Pierre
Gaspard has pioneered this approach to irreversibility and the Second Law by
showing explicitly the deep connection between Kolmogorov–Sinai (KS) entropy
and thermodynamic entropy production as well as other distinct properties of
nonequilibrium thermodynamics from the theories of dynamical systems (see,
e.g. the book of Nicolis [Nic95]). Some salient features are mentioned below (see
Gaspard’s 2006 summer school lectures [Gas06]).

The aim is to understand the statistical behavior of a collection of particles
such as relaxation, diffusion, dissipation, viscosity from the microdynamics of
the particles and the divergence properties of their trajectories (congruence) in
time. The starting point is the familiar Liouville equation for Hamiltonian sys-
tems. One can extract the instrinsic relaxation rates from this equation under
certain assumptions on the dynamics. Two important quantities characterizing
the microdynamics of the particle congruence are the Lyapunov exponents and
the KS entropy per unit time. (The Lyapunov exponents characterize the sensi-
tivity to initial conditions of the underlying microscopic dynamics while the KS
entropy per unit time measures the degree of dynamical randomness developed
by the trajectories of the system during their time evolution.) The new focus in
this recent work is on the large deviations or large fluctuations that the dynam-
ical properties of a system develop in time. In the escape-rate formalism, these
large-deviation relationships relate these microscopic quantities to the trans-
port functions in the macroscopic dynamics of the collective particles (see, e.g.
[Gas98, Dor99]). These large-deviation relationships are also the basis for the for-
mulation of new fluctuation theorems [EvCoMo93, EvaSea94, GalCoh95, Jar97].
The concepts and techniques in these interfaces have also proven to be
invaluable in treating new mesoscopic physical phenomena at the nanoscale
[BuLiRi05].

1.3 Physical conditions

Let us be reminded that in addition to examining the microscopic basis of
nonequilibrium statistical mechanics via abstract dynamical systems we also need
to consider the fact that we are dealing with a large system. It is well-known
that the thermodynamic limit is obtained by taking N,V to infinity while keep-
ing the ratio of these two quantities finite. What is the effect of a large system
on fluctuations and irreversibility? How does the imposition of some specific
initial condition alter the macroscopic dynamics? How can we understand the
fundamental difference between microscopic and macroscopic behavior in terms
of time-scales or interaction strength? How do the averaging or coarse-graining
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1.3 Physical conditions 17

procedures affect the outcome of a macroscopic observation? One needs to seek
answers to these questions in order to address the fundamental issue of how the
macroscopic features arise from its microscopic dynamics. We shall now combine
the micro and macro descriptions in exploring these important physical factors.
The following items also make up a useful checklist to examine whenever we
encounter a new quantum field process and attempt to understand its basic
statistical mechanical meaning.

1.3.1 Large systems: Fluctuations, Poincaré recurrence and

thermodynamic limit

We are familiar with the advantage of taking the large number N and large
volume V limit. Thermodynamics obtained in this limit while keeping n = N/V

constant is a simple yet powerful theory which captures the essential features of
macroscopic phenomena. From microdynamics, a chaotic system (one which sat-
isfies the “chaotic hypothesis”) approaches equilibrium in a coarse-grained sense
([Dor99]). For systems whose microdynamics has the right properties the average
〈F 〉t of a dynamical variable F taken over the appropriate ensembles approaches
an equilibrium value 〈F 〉Eq. To infer that in any of the individual systems in the
ensemble F is close to 〈F 〉Eq one needs to ensure that the fluctuations of F are
small, and for this one needs to invoke the large size of the system as well as its
mixing or chaotic properties ([Pen79]).

On the relation of fluctuations, the size of the system, and the time-scales
involved, it is instructive to bring up the Poincaré recurrence and Zermelo’s
(1896) objection to Boltzmann’s theory. Poincaré (1892) stated that any isolated,
finite, conservative system will in a finite time come arbitrarily close to its initial
configuration. Boltzmann’s HB(t) function cannot decrease monotonically but
must eventually increase to reach its original value HB(0) in a finite time. Thus,
Zermelo argued that Poincaré recurrence would undermine Boltzmann’s theory
of approach to equilibrium.

Boltzmann’s answer to this paradox invokes fluctuations and probabilistic
arguments. We know from statistics that if N were just a few particles the fluc-
tuations are comparable to the mean. The Poincaré recurrence time TP is short
and there is no discernible trend of irreversibility. This case is not addressed by
Boltzmann’s theory. The larger the system the smaller the fluctuations become,
and the longer the Poincaré recurrence time. For example, Mazur and Montroll
[MazMon70] considered a linear chain of N classical point masses m harmoni-
cally (with natural frequency ω0) coupled to each other’s nearest neighbors. For
N = 10 and ω0 = 10/sec they found that TP = 1010 years, about the age of the
universe. Only with a long Poincaré recurrence time will the distribution function
for the macroscopic variables become sharp and the tenets of statistical mechan-
ics apply. In addition to the size of the system the recurrence time depends
sensitively and irregularly on the initial state. Because of random fluctuations
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18 Basic issues in nonequilibrium statistical mechanics

individual sample occurrences cannot be used for reliable prediction of the robust
behavior of the overall physical systems, which can only be made in a probabilis-
tic sense. Taking the thermodynamic limit permits one to construct a simpler,
asymptotic, statistical theory for large systems. In this limit Poincaré’s recur-
rence is probabilistically suppressed.

From kinetic theory considerations, the dynamical correlations established
between particles after collisions will become less significant, at least for a dilute
gas, when a larger system is considered by observers interested in the long-time
behavior of the system. This enables one to focus on those physical quantities of
most interest in the long-time limit, such as the expected value of the one-particle
distribution function. It is in this same context where Boltzmann proposed his
truly original and remarkable theory in depicting the dynamical behavior of the
macroscopic world.

1.3.2 Initial conditions: Specific, randomized,

dynamical correlations

For a mixing system any set of nonzero measure will be spread out in time
uniformly on the energy surface. This suggests that the trajectories must be
very sensitive to the initial conditions. Indeed it is so.

Boltzmann assumes that the molecular chaos assumption holds for each
collision. Lanford in 1975 [Lan75], using a Lorenz gas of hard spheres of
radius a, showed that in the (Grad) limit: a → 0 while n = N/V → ∞ in
such a way that the mean free path λ = (nπa2)−1 remains constant (it thus
applies for all values of the mean free path), and Boltzmann’s Stosszahlansatz
can be replaced by the assumption that the particles are uncorrelated ini-
tially: ρ(z1 . . . zN ; 0) =

∏N
i=1 fi(zi, 0) [zi = (ri,pi) denotes the coordinates and

momenta of the i-th particle] since in this limit the r-particle distribution con-
verges almost everywhere to products of one-particle distribution functions at
all times, i.e. lim fr(z1, · · · zr, t) =

∏r
i=1 f1(z1, t). (Note that the Grad limit is

different from the thermodynamic limit in that the volume is kept constant.)
Time-reversal of Boltzmann’s dynamics can be exact but any small uncer-

tainty or error can wipe out reversibility. Thus random initial conditions ensure
that we can extract the system’s generic and not specific behavior (by design,
such as putting all particles on one side of a partition). Let us see how the
Loschmidt paradox (1876) can illuminate the role played by the initial condi-
tions on irreversibility. An isolated system is time-reversal invariant. If a system
evolves towards equilibrium there must be an equally acceptable evolution which
takes the system away from equilibrium which is not seen in nature. At the dawn
of the computer age, one of the first computer simulations of molecular dynamics
was performed by Orban and Bellemans in 1967 [OrbBel67, Ald73] who numer-
ically integrated the equations of motion for a two-dimensional dilute gas (at
a density of 0.04 of close packing) of 100 hard disks in a square box colliding
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1.3 Physical conditions 19

with each other and the box. They let the system evolve for a definite number
of collisions up to time t1 short compared to the equilibration time tEq, and
then reversed all the velocities. Since this is a reversible microdynamics one may
expect to recover the initial state after a time 2t1. They found that the accu-
racy with which the original state is restored at time 2t1 falls off rapidly as t1 is
increased, due to the rounding errors in the numerical integration. This can be
understood in light of the divergence of trajectories (“dispersion,” or dynamical
instability) discussed in Section 1.1. It is also a good illustration of the important
role played by initial conditions: In the numerical simulation, Orban and Belle-
mans chose as initial condition t = 0 the molecules being placed at the vertices of
a square mesh in the box with equal speed but random direction. The gas reaches
equilibrium after about 200 collisions as the distribution approaches a Maxwell–
Boltzmann form and the Boltzmann H-function of the velocities HB(t) reaches a
minimum. In contrast the initial condition at t1 for the time-reversed evolution
is a very special one [Pri73], because the correlations established amongst the
particles (hard disks) are very particular to that instant in the entire history
of the system. If we consider the condition of the system close to equilibrium
(t ≈ tEq) as natural (highest probability of occurrence) then the condition of
the system at t1 is highly unnatural (very low probability) with respect to the
equilibrium state. Indeed it shows anti-kinetic (contrary to Boltzmann’s predic-
tions) behavior when HB(t) increases over a period of time. The result of these
numerical simulations in spin-echo experiments was obtained by Rhim, Pines
and Waugh in 1971 [RhPiWa71]. For experimental realization of the Loschmidt
echo see [PLURH00].

Note also that the anti-kinetic behavior (Boltzmann’s H-function HB(t)
increasing) cannot be obtained from solutions of the Boltzmann equation,
because it is predicated upon a molecular chaos assumption. To do the velocity
or time reversal one must solve for the correlations in time from the complete
BBGKY hierarchy of the N-body system, which is difficult but possible numeri-
cally or experimentally, but almost impossible analytically.

Thus the resolution of the Loschmidt paradox is that Boltzmann’s equation is
only an approximation to the exact equations of motion which describe systems
with random initial states and no dynamical correlations. This is a very differ-
ent situation from the time-reversed evolution, where the initial condition at t1
registers information of strong dynamical correlations.

1.3.3 Time-scales and interaction

We have already seen how one can characterize the condition for a system to
approach equilibrium by the discrepancy between characteristic time-scales. In
Bogoliubov’s explanation of the kinetic conditions, Boltzmann’s equation govern-
ing the one-particle distribution function measures the time between collisions
which is the slow variable (the relevant variable), while the fast variables giving
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20 Basic issues in nonequilibrium statistical mechanics

the time during collisions are ignored (the irrelevant variables). We saw a simi-
lar division of time-scales in the microdynamics of the chaotic systems. In such
systems, the unstable direction defines a slow variable while a stable direction
defines a fast variable. One can construct a Boltzmann equation (in the form of
a gain–loss equation) which permits the approach to equilibrium (see [Dor99]).
Such a Markovian equation shows irreversibility.

We also saw the relation of long time-scale (Poincaré recurrence) and large
systems in relation to the formulation of thermodynamic and kinetic theories in
the depiction of physical reality, likewise the dependence on the initial conditions.

It is often remarked that interaction (e.g. collisions amongst gas molecules) is
needed for a system to equilibrate and to show irreversibility. Interaction is neces-
sary for equilibration but interaction does not generate irreversibility. Mean field
dynamics such as that described by the Vlasov equation has interaction but the
dynamics is reversible. Equilibration (or thermalization when we refer to energy
specifically but not particle numbers or chemical species) shows irreversibility,
but irreversibility does not imply equilibration. We already saw at the molecular
dynamics level that divergent trajectories show irreversibility, but it takes more
to show equilibration (e.g. Anosov systems under coarse graining).

1.3.4 Coarse graining

Coarse graining in the most general sense refers to some information lost,
removed, or degraded from a system. It could come about because this infor-
mation is inaccessible to us, due to the limited accuracy in our observation or
measurement. A drastic example is Planck-scale physics, the details of which are
mostly lost (hard to retrieve) because the world we live in today is an ultra-low-
energy construct. For this one needs to invoke ideas like effective field theory
[Wei95]. Even when information is fully accessible to us in principle, in prac-
tice one may only be interested in some aspects of the system. We choose to
ignore certain variables such as ignoring the higher order correlations in Boltz-
mann’s kinetic theory, or ignoring the phase information in a quantum system
by imposing a random phase approximation. We do this by “integrating over”
or “projecting out” these “irrelevant” variables.5

Let us see some examples of coarse graining in action. We start with the famil-
iar Boltzmann theory: implementation of the molecular chaos assumption (i.e.

5 Quotation marks are put here to emphasize the colloquial usage and the warning that
operations bearing the same name could bring forth different results depending on the
assumptions introduced. For example, the projection operator formalism of Zwanzig and
Mori et al. ([Nak58] [Zwa60] [Zwa61] [Mor65] [WilPic74] [Gra82] [Kam85] [GoKaZi04]
[GorKar04] [Bal75]) applied to a closed system will turn the differential equations of motion
for each subsystem into an integro-differential equation for a particular subsystem. Without
casting away some information somewhere in the system this equation is just another way
to express the interaction of the subsystems. It contains no more or no less information as
the original equations describing the total system.
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1.4 Coarse graining and persistent structure 21

the two-particle distribution function f2 = f1f1 can be expressed schematically
as a product of two one-particle distribution functions f1) entails performing a
coarse graining in the collision integral of space over the range of interaction and
of time over the duration of a collision.

Another example concerns particle creation from an external background field
or changing spacetime. Since particle pairs originate from the vacuum which is
a pure state, there should not be any entropy generation. On the other hand,
in a thermodynamics description, the entropy S is related to the number N of
particles present. We may wonder whether to trust either or both of these state-
ments. The key lies in understanding that the thermodynamic description has
undergone several levels of coarse graining from the fundamental quantum field
theory description. Indeed it is a very educational intellectual exercise to see
what coarse-graining measures are introduced and what concepts are at work as
we move from a microscopic (quantum field theory) to a macroscopic (nonequi-
librium thermodynamics) description of this same system, but with different
degrees of precision.

Note also that coarse graining is a necessary but not sufficient condition for
entropy generation. It does not always produce a dissipative system. Truncation
of the BBGKY hierarchy leads to a closed subsystem composed of n-particle
correlation functions whose dynamical equations are unitary. (An example men-
tioned before is the Vlasov equation describing particle interaction via long-range
forces.) In quantum field theory equations derived from a finite-loop effective
action are also unitary – at one loop the effect of the quantum field on the par-
ticles manifests through the renormalized masses and charges (to be exact, the
equations of motion derived from a finite-loop effective action are unitary if none
of the relevant correlation functions are “slaved” – see Chapter 6 Section 6.3 and
Chapter 9 Section 9.2.3 for a discussion of this concept; for � loops, one must keep
the first (� + 1)th-order correlations, otherwise dissipation in the sense defined
above sets in – dissipation is absent only in very specific situations, such as a free
theory or equilibrium initial conditions). That is perhaps why (if one limits one’s
attention to loop expansions) statistical mechanical concepts rarely came to the
fore, until one starts asking questions of a distinct nature, such as how dissipative
dynamics appears in an otherwise unitary system, and the origin and nature of
noise in quantum field theory. A causal condition needs to be introduced to ren-
der the dynamics of the subsystem irreversible. This opens up another important
theme in this book: effective field theory viewed in the open system framework,
which will be developed in later chapters.

1.4 Coarse graining and persistent structure in the physical world

We have seen from the above discussions that the appearance of irreversibil-
ity is often traced to the initial condition being special in some sense. The
dynamics of the system and how it interacts with its environment also enter
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22 Basic issues in nonequilibrium statistical mechanics

in determining whether the system exhibits mixing or dissipative behavior. For
the sake of highlighting the contrast we could broadly divide the processes into
two classes depending on how sensitive they are to the initial conditions ver-
sus the dynamics.6 One can say that the first class is a priori determined by
the initial conditions, the other is a posteriori rather insensitive to the initial
conditions. Of the examples we have seen, the first group includes divergent
trajectories in molecular (micro) dynamics, Landau damping, vacuum particle
creation, and the second class includes gas (macro) or fluid dynamics (see the
discussions at the end of Section 1.2.3), diffusion, particle creation with interac-
tion, decoherence. Appearance of dissipation is accompanied by a degradation
of information via coarse graining (such as the molecular chaos assumption in
kinetic theory, restriction to one-particle distribution in particle creation with
interaction, “integrating out” some class of histories in decoherence). An arrow
of time appears because of some special prearranged conditions; how it mani-
fests in the system also depends on the system dynamics and the coarse graining
introduced to the system. The issues we have touched on involve the transforma-
tion of a closed to an open system, the relation between the microscopic and the
macroscopic world, and the transition from quantum multiplicities to classical
realities. Many perceived phenomena in the observable physical world, includ-
ing the phenomenon of time-asymmetry, can be understood in the open-system
viewpoint via the approximations introduced to the objective microscopic world
by a macroscopic observer [GKJKSZ96, Omn94, Per93].

Thus, time asymmetry in these processes is influenced by many factors: the
way one stipulates the boundary conditions and initial states, the time-scale of
observation in comparison with the dynamical time-scale, how one decides what
the relevant variables are and how they are separated from the irrelevant ones,
how the irrelevant variables are coarse grained, and what assumptions one makes
and what limits one takes in shaping a macroscopic picture from one’s imperfect
knowledge of the underlying microscopic structure and dynamics.

We have discussed the procedures which can bring about these results. How-
ever, a set of more important and challenging issues remain largely unexplored,
i.e. under what conditions the outcomes become less subjective and less sensi-
tive to these procedures, such as the system–environment split and the coarse
graining of the environment. These procedures provide one with a viable pre-
scription to get certain general qualitative results, but are still not specific and
robust enough to explain how and why the variety of observed phenomena in the
physical world arise and stay in their particular ways. To address these issues
one should ask a different set of questions:

6 As discussed earlier, dissipation also requires the stipulation of a somewhat special initial
condition, i.e. that the system is not in an equilibrium state; but, in the words of R. Sorkin,
“not more special than it needs to be”.
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1.4 Coarse graining and persistent structure 23

(1) By what criteria are the system variables chosen? Collectivity and hierarchy
of structure and interactions

In a model problem, one picks out the system variables – be it the Brownian
particle or the mini-superspace variables – by fiat. One defines one’s system in a
particular way because one wants to calculate the properties of that particular
system. But in the real world, certain variables distinguish themselves from oth-
ers because they possess a relatively well-defined, stable, and meaningful set of
properties for which the observer can carry out measurements and derive mean-
ingful results. Its meaningfulness is defined by the range of validity or degree of
precision or the level of relevance to what the observer chooses to extract infor-
mation from. In this sense, it clearly carries a certain degree of subjectivity – not
in the sense of arbitrariness in the exercise of free will of the observer, but in the
specification of the parameters of observation and measurement. For example,
the thermodynamic and hydrodynamic variables are only good for systems close
to equilibrium; in other regimes one needs to describe the system in terms of
kinetic-theoretical or statistical-mechanical variables.

The soundness in the choice of a system in this example thus depends on
the time-scale of measurement compared to the relaxation time. As another
example, contrast the variables used in the nuclear collective model and the
independent nucleon models. One can use the rotational–vibrational degrees of
freedom to depict some macroscopic properties of the motion of the nucleus,
and one can carry out meaningful calculations of the dissipation of the collective
trajectories (in the phase space of the nucleons) due to stochastic forces. In such
cases, the noncollective degrees of freedom can be taken as the noise source.
However, if one is interested in how the independent nucleons contribute to
the properties of the nucleus, such as the shell structure, one’s system variable
should, barring some simple cases, not be the elements of the SO(3) group, or
the SU(6) group. At a still higher energy where the attributes of the quarks
and the gluons become apparent, the system variables for the calculation of, say,
the stability of the quark–gluon plasma should change accordingly. The level of
relevance which defines one’s system changes with the level of structure of matter
and the relative importance of the forces at work at that level. The improvement
of the Weinberg–Salam model with W,Z intermediate bosons over the Fermi
model of four-point interactions is what is needed in probing a deeper level of
interaction and structure which puts the electromagnetic and weak forces on the
same footing. Therefore, one needs to explore the rules for the formation of such
relatively distinct and stable levels, before one can sensibly define one’s system
(and the environment) to carry out meaningful inquiries of a statistical nature.

What is interesting here is that these levels of structures and interactions come
in approximate hierarchical order (so one doesn’t need QCD to calculate the
rotational spectrum of a nucleus, and the Einstein spacetime manifold picture
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24 Basic issues in nonequilibrium statistical mechanics

will hopefully provide most of what we need in the post-Planckian era). One
needs both some knowledge of the hierarchy of interactions and the way effective
theories emerge from “integrating out” variables at very different energy scales
in the hierarchical structure (e.g. ordinary gravity plus particle theory regarded
as a low-energy effective higher-dimension or Kaluza–Klein theory). The first
part involves fundamental constituents and interactions and the second part the
application of statistical methods. One should also keep in mind that what is
viewed as fundamental at one level can be a composite or statistical mixture at a
finer level. There are system–environment separation schemes which are designed
to accommodate or reflect these more intricate structures, from the mean-field–
fluctuation-field split to the multiple source or nPI formalism (see Chapter 6)
for the description of the dynamics of correlations and fluctuations. The validity
of these approximations depends quite sensitively on where exactly one wants to
probe in between any two levels of structure. Statistical properties of the system
such as the appearance of dissipative effects and the associated irreversibility
character of the dynamics in an open system certainly depend on this separation.

(2) How does the behavior of the subsystem depend on coarse graining? Sen-
sitivity and variability of coarse graining, stability and robustness of emergent
structure

Does there exist a common asymptotic regime as the result of including succes-
sively higher order iterations in the same coarse-graining routine? This measures
the sensitivity of the end result to a particular kind of coarse graining. How well
can different kinds of coarse-graining measure produce and preserve the same
result? This is measured by its variability. Based on these properties of coarse
graining, one can discuss the relative stability of the behavior of the resultant
open system after a sequence of coarse grainings within the same routine, and its
robustness with respect to changes to slightly different coarse-graining routines.

Let us illustrate this point with some simple examples. When we present a
microscopic derivation of the transport coefficients (viscosity, heat conductivity,
etc.) in kinetic theory via the system–environment separation scheme, we usually
get the same correct answer independent of the way the environment is chosen
or coarse grained. Why? It turns out that this is likely only if we operate in the
linear-response regime (see [FeyVer63]). The linear coupling between the system
and the environment makes this dependence simple. This is something we usually
take for granted, but has some deeper meaning. For nonlinear coupling, the above
problem becomes nontrivial. Another aspect of this problem can be brought out
[BalVen87, Spo91] by comparing these two levels of structure and interaction,
e.g. the hydrodynamic regime and the kinetic regime. Construct the relevant
entropy from the one-particle classical distribution function f1, that gives us
the kinetic theory entropy Skt which is simply −kHB, where HB is Boltzmann’s
H-function. Now comparing it with the hydrodynamic entropy function Shd given
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1.4 Coarse graining and persistent structure 25

in terms of the hydrodynamic variables (in this case, the number and energy
density), one sees that Shd > Skt. A simple physical argument for this result is
that the information contained in the correlations amongst the particles is not
included in the hydrodynamic approximation. Even within the kinetic theory
regime there exist intermediate stages described by suitably chosen variables
[Spo91]. The entropy functions constructed therefrom will reflect how much fine-
grained information is lost. In this sense Shd is a maximum in the sequence of
different coarse-graining procedures. In the terminology we introduced above, by
comparison with the other regimes, the hydrodynamic regime is more robust in
its structure and interactions with respect to varying levels of coarse graining.
One way to account for this is that, as we know, the hydrodynamic variables
enter in the description of systems in equilibrium and they obey conservation
laws [HaLaMa95, Bru96, Hal98]. Further coarse graining on these systems is
expected to produce the same results, i.e. the hydrodynamic regime is a limit
point of sorts after the action from a sequence of coarse grainings. Therefore, a
kind of “maximal entropy principle” with respect to variability of coarse graining
is one way where thermodynamically robust systems can be located.

While including successively higher orders of the same coarse-graining mea-
sure usually gives rise to quantitative differences (if there is a convergent result,
that is, but this condition is not guaranteed, especially if a phase transition inter-
venes), coarse graining of a different nature will in general result in very different
behavior in the dynamics of the open system. Let us look further at the relation
of variability of coarse graining and robustness of structure.

Sometimes the stability of a system with respect to the variability of coarse
graining is an implicit criterion behind the proper identification of a system.
For example, Boltzmann’s equation governing the one-particle distribution func-
tion which gives a very adequate depiction of the physical world is, as we have
seen, only the lowest order equation in an infinite (BBGKY) hierarchy. If coarse
graining is by the order of the hierarchy – e.g. if the second and higher order cor-
relations are ignored – then one can calculate without ambiguity the error intro-
duced by such a truncation. The dynamics of the open system which includes
dissipation effects and irreversible behavior will not change drastically if one uses
a different (say more fine-grained) procedure, such as retaining the fourth-order
correlations (if the series converges, which is a nontrivial issue, see, e.g. [Dor81]).
Consider now a different approximation: For a binary gas of large mass discrep-
ancy, if one considers the system as the heavy mass particles, ignore their mutual
interactions and coarse grain the effect of the light molecules on the heavy ones,
the system now behaves like a Brownian particle motion described by a Fokker–
Planck equation. We get a qualitatively very different result in the behavior of
the system.

In general the variability of different coarse grainings in producing a quali-
tatively similar result is higher (more variations allowed) when the system one
works with is closer to a stable level in the interaction range or in the hierarchical
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26 Basic issues in nonequilibrium statistical mechanics

order of structure of matter. The result is more sensitive to different coarse-
graining measures if it is far away from a stable structure, usually falling in
between two stable levels.

One tentative analogy may help to fix these concepts. Robust systems are like
the stable fixed points in a parameter space in the renormalization group theory
description of critical phenomena: the points in a trajectory are the results of
performing successive orders of the same coarse-graining routine on the system
(e.g. the Kadanoff–Migdal scaling [Kad76, Kad77, WilKog74, Fis74, Fis83]), a
trajectory will form if the coarse-graining routine is stable. An unstable routine
will produce in the most radical situations a random set of points. Different
trajectories arise from different coarse-graining routines. Neighboring trajectories
will converge if the system is robust, diverge if not. Therefore the existence of a
stable fixed point where trajectories converge to is an indication that the system
is robust. Only robust systems survive in nature and carry definite meaning in
terms of their persistent structure and systematic evolution. This is where the
relation of coarse graining and persistent structures enters.

So far we have only discussed the activity around one level of robust structure.
To investigate the domain lying in-between two levels of structures (e.g. between
nucleons and quark–gluons) one needs to first know the basic constituents and
interactions of the two levels. This brings back our consideration of levels of
structures above. Studies in the properties of coarse graining can provide a use-
ful guide to venture into the often nebulous and elusive area between the two
levels and extract meaningful results pertaining to the collective behavior of the
underlying structure. But one probably cannot gain new information about the
fine structure and the new interactions from the old just by these statistical
measures (cf. the old bootstrapping idea in particle physics versus the quark
model).7

1.5 Physical systems: Closed, open, effectively closed and
effectively open

1.5.1 Open systems: Coarse graining and back-reaction

In treating physical systems containing many degrees of freedom one often
attempts to select out a small set of variables to render the problem techni-
cally tractable while preserving its physical essence. Familiar examples abound:
e.g. thermodynamics from statistical mechanics, hydrodynamic limit of kinetic
theory, collective dynamics in condensed matter and nuclear physics [Wil82].

7 In this sense, one should not expect to gain new fundamental information about quantum
gravity just by extrapolating what we know about the semiclassical theory, although
studying the way the semiclassical theory takes shape (viewed as an effective theory) from
possible more basic theories is useful. It may also be sufficient for what we can understand
or care about in this later stage of the universe we now live in.
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1.5 Physical systems 27

When one starts from the microscopic picture, one distinguishes the variables
which depict the system of interest from those which can affect the system but
whose detail is otherwise of lesser interest or importance. Making a sensible
distinction involves recognizing and devising a set of criteria to separate the rel-
evant from the irrelevant variables. This procedure is simplified when the two
sets of variables possess very different characteristic time or length or energy
scales or interaction strengths. An example is the separation of slow–fast vari-
ables as in the Born–Oppenheimer approximation in molecular physics where
the nuclear variables are assumed to enter adiabatically as parameters in the
electronic wavefunction. Similar separation is possible in quantum cosmology
between the “heavy” gravitational sector characterized by the Planck mass and
the “light” matter sector. In statistical physics this separation can be made for-
mally with projection operator techniques. This usually results in a nonlinear
integro-differential equation for the relevant variables, which contains the causal
and correlational information from their interaction with the irrelevant variables.

Apart from finding some way of separating the overall closed system into a
“relevant” part of primary interest (the open system) and an “irrelevant” part
of secondary interest (the environment) in order to render calculations possible,
one also needs to devise some averaging scheme to reduce or reconstitute the
detailed information of the environment such that its effect on the system can
be represented by some macroscopic functions, such as the transport functions.
This involves introducing certain coarse-graining measures. It is usually by the
imposition of such measures that an environment is turned into a bath, and
certain macroscopic characteristics such as temperature and chemical potential
can be introduced to simplify its description. A coarse-grained description of the
effect of the environment on the system (in terms of, say, thermodynamic or
hydrodynamic variables and their associated response functions) is qualitatively
very different from the detailed description (in terms of the underlying micro-
scopic variables and dynamics). A familiar example in many-body theory used
for simplifying the effect of the environment is by assuming that each indepen-
dent particle interacts with an effective potential depicting the averaged effect
of all other particles. Vlasov dynamics in a plasma is of such a nature, so is the
mean field approximation in quantum field theory (where the effect of quantum
fluctuations of fields is described at this level of approximation in terms of a
renormalized interaction potential and couplings to the system).

How good an effective theory is in its depiction of physical phenomena at a
particular scale is usually determined by the appropriateness in the choice of
the collective variables, the correctness and extent of coarse graining in rela-
tion to the probing scale and the precision of measurement. How the environ-
ment affects the open system is determined by the back-reaction effects. By
referring to an effect as a back-reaction, it is implicitly assumed that a sys-
tem of interest is preferentially identified, that one cares much less about the
details of the other sector (the “irrelevant” variables in the “environment”). The
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28 Basic issues in nonequilibrium statistical mechanics

back-reaction can be significant, but should not be too overpowering, so as to
invalidate the separation scheme. To what extent one views the interplay of
the two sectors as interaction (between two subsystems of approximately equal
weight) or as back-reaction (of a less relevant environment on the more impor-
tant system) is reflexive of and determined by the degree to which one decides
to keep or discard the information in one subsystem versus the other. It also
depends on their interaction strength. Through reaction and back-reaction the
behavior of each sector is linked to the other in an inseparable way, i.e. by their
interplay.

Self-consistency is thus a necessary requirement in back-reaction considera-
tions. This condition can manifest itself as the fluctuation–dissipation theorem
(FDT). When the environment is a bath, for systems near equilibrium, their
response can be depicted by linear response theory. Even though such relations
are usually presented in such a context, its existence in a more general form can
be shown to cover nonequilibrium systems. Indeed as long as back-reaction is
included, such a relation can be understood as a corollary of the self-consistency
requirement, which ultimately can be traced to the unitary condition of the
original closed system.

A familiar example of a self-consistent back-reaction process is the time-
dependent Hartree–Fock approximation in atomic physics or nuclear physics,
where the system could be described by the wavefunction of the electrons obey-
ing the Schrödinger equations with a potential determined by the charge density
of the electrons themselves via the Poisson equation. In a cosmological back-
reaction problem, one can view [Hu89] the system as a classical spacetime, whose
dynamics is determined by Einstein’s equations with sources given by particles
produced by the vacuum excited by the dynamics of spacetime and depicted by
the appropriate wave equations in this particular curved spacetime [BirDav82].

Much of the physics of open systems is concerned with the appropriateness
in the devising and the implementation of these procedures. They are: (1) the
identification and separation of the physically interesting variables which make
up the open system – one needs to first come up with the appropriate collective
variables; (2) the “averaging” away of the environment or irrelevant variables –
how different coarse-graining measures affect the final result is important (as
discussed in the last section); and (3) the evaluation of the averaged effect of
the environment on the system of interest. We will refer to these procedures as
separation, coarse graining and back-reaction for short.

These considerations surrounding an open system are common and essential
not only to well-posed and well-studied examples of many-body systems like
molecular, nuclear and condensed-matter physics, they also bear on some basic
issues at the foundations of quantum mechanics and statistical mechanics, such
as decoherence and the existence of the classical limit [HarGel93], with pro-
found implications on the emergence of time and spacetime [Har92], or quantum
mechanics itself [Adl04].

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


1.5 Physical systems 29

1.5.2 From closed to effectively open systems

There are many systems in nature which are apparently closed (to the observer),
in that there is no obvious way to define a system which is so much different from
an environment. These systems do not possess a parameter which can enable the
observer to distinguish possible heavy–light sectors, high–low frequency behavior
or slow–fast dynamics. Boltzmann’s theory of molecular gas is a simple good
example: All molecules in the gas are on an equal footing, in that no one can
claim to be more special than the others. Because of the lack of parameters which
marks the discrepancy of one component from the other, these systems do not
lend themselves to an obvious or explicit separation from their environment (like
open systems would), and appear like closed systems. However, usually in their
effective description a separation is introduced implicitly or operationally because
of their restricted appearance or due to the imprecision in one’s measurement.
These are called effectively open systems.

In this example, on the microscopic level (of molecular dynamics) all molecu-
lar movements are time-reversal invariant, but on the macroscopic level (of our
observation), dissipation and violation of time-reversal invariance obviously exist.
To reconcile this difference and understand the origin of dissipation in nature
was of course the great challenge Boltzmann posed for himself and which he so
ingeneously resolved. Boltzmann came up with the idea that if only one-particle
distribution functions were observed, and the molecular chaos assumption was
imposed (for any collision process), there is an explanation for the origin of dis-
sipation in macroscopic phenomena. Using the correlation functions (the lowest
order being the one-particle distribution function) as a way to systemize the
information in the gas, one would get the BBGKY hierarchy, which contains the
full information of the gas. It is only upon the truncation of the hierarchy and the
re-expression of the higher correlation functions in terms of the lower ones, e.g.
the causal factorization condition (assuming that colliding partners are uncorre-
lated initially, what we shall call “slaving,” to be discussed in detail later), that
the otherwise closed system expressed by the full hierarchy is rendered open, and
dissipation appears. It is in this sense that it is called an effectively open system.

1.5.3 Two major paradigms of nonequilibrium

statistical mechanics

We can highlight the distinction between open and effectively open systems
by comparing the two primary models which characterize these two major
paradigms of nonequilibrium statistical mechanics (see, e.g. [AkhPel81, Pri62,
ToKuSa92]): the Boltzmann–BBGKY theory of molecular kinetics, and the
Langevin (Einstein–Smoluchowski) theory of Brownian motions. The differences
between the two are of both formal and conceptual nature.

To begin with, the setup of the problem is different: As we remarked above,
in kinetic theory one studies the overall dynamics of a system of gas molecules,
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30 Basic issues in nonequilibrium statistical mechanics

treating each molecule in the system on the same footing, while in Brownian
motion one (Brownian) particle which defines the system is distinct, the rest are
relegated as the environment. The terminology of “relevant” versus “irrelevant”
variables not so subtly reflects the discrepancy.

The object of interest in kinetic theory is the (one-particle) distribution func-
tion (or the nth-order correlation function), while in Brownian motion it is the
reduced density matrix. The emphasis in the former is the behavior of the gas as
a whole (e.g. dissipative dynamics) taking into account the correlations amongst
the particles, while in the latter it is the motion of the Brownian particle under
the influence of the environment.

The nature of coarse graining is also very different: in kinetic theory coarse
graining resides in confining one’s attention to one-particle distribution functions,
a factorization condition for the two-point functions and the adoption of the
molecular chaos assumption. This corresponds formally to a truncation of the
BBGKY hierarchy and introducing a causal slaving condition, while in Brownian
motion it is in the integration over the environmental variables. The part that
is truncated or “ignored” is where the noise comes from, while its main physical
effect on the “system” is to render its dynamics dissipative. Thus the fluctuation–
dissipation relation and other features.

Finally the philosophies behind these two paradigms are quite different: In
Brownian motion problems, the separation of the system from the environment
is prescribed: it is usually determined by some clear disparity between the two
systems. These models represent “autocratic systems,” where some degrees of
freedom are more relevant than others. By contrast, molecular gas models sub-
scribing to the effectively open systems represent “democratic systems” where
all particles in a gas are equally relevant. In the lack of any clear discrepancy
in scales, making a separation “by hand” is ad hoc, contrived, and often leading
to wrong description. Coarse graining in Boltzmann’s kinetic theory is also very
different from that of Brownian motion. The latter is explicit while the former
appears implicit (having its own systematics). However, as we shall see later,
the coarse graining in the Boltzmann theory lies in the truncation and slaving
procedures, where information attached to higher correlation orders is not kept
in full. Now just what correlation order is sufficient for the physics under study
is an objectively definable and verifiable fact, which ultimately is determined by
the degree of precision in a measurement and judged by how well it depicts the
relevant physics.

In Chapter 2 we will provide a physical discussion of the Boltzmann and
Langevin dynamics, two prime examples of these two major paradigms. To see
the mathematical origin of these stochastic equations it is best to acquire some
knowledge of stochastic processes. A brief summary of this subject is given in
Appendix A, which starts with rudimentary probability theory and ends with
a derivation of the Chapman–Komogorov/Einstein–Smolochousky equation and
the Kramers–Moyal/Fokker–Planck equation.
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1.6 Appendix A 31

1.6 Appendix A: Stochastic processes and equations in
a (tiny) nutshell

We give here a brief summary of the theory of stochastic processes, leading
to the derivation of the Chapman–Komogorov/Einstein–Smolochousky equa-
tion and the Kramers–Moyal/Fokker–Planck equation. We will convey the
necessary yet minimal set of information to enable the reader without prior
knowledge of this subject to follow the development of later chapters lead-
ing to its application to quantum field theory of nonequilibrium processes.
The emphasis here is more on physical ideas than mathematical rigor. One
can find nice discussions of these topics in standard books such as those
by van Kampen [Kam81], Papooulis [Pap84], Gardiner [Gar90], Gardiner and
Zoller [GarZol00b], Carmichael [Car93], and Reichl [Rei98]. More succinct and
accessible summaries can be found in, for example, Weissbluth [Wei88] and Man-
del and Wolf [Man95]. Here we follow mainly the discussions by van Kampen.

1.6.1 Probability, random variables and stochastic processes

Probability

We start with some basic concepts and definitions in probability theory. A prob-
ability space, or simply, an experiment, consists of the triplet (Ω,F, P ) where
Ω is the sample space containing all possible outcomes of the experiment. An
event A is a subset of Ω, and F is a collection of subsets of Ω. P is the prob-
ability of finding A in such an experiment. Example: In a single throw of a
dice (our experiment) what is the probability of finding an even number fac-
ing up? Then Ω = {1, 2, 3, 4, 5, 6}, A = {2, 4, 6}, P = 1

2 . Set theory is usefully
applied to probability theory starting with P (Ω) = 1, P (∅) = 0, where ∅ denotes
the empty set. Two events are said to be mutually exclusive, or disjoint, if
P (A ∪B) = P (A) + P (B) or P (A ∩B) = 0. Two events A,B are independent
iff P (A ∩B) = P (A)P (B). Note that independent events are not mutually exclu-
sive events because for mutually exclusive events P (A ∩B) = 0.

Let A1, . . . , An be a finite collection of events. They are called mutually inde-
pendent if for any 1 ≤ i1 < i2 < · · · < ik ≤ n

P (Ai1 ∩Ai2 ∩ · · · ∩Aik) = P (Ai1)P (Ai2) · · ·P (Aik) (1.9)

The events are called pairwise independent if for any 1 ≤ i1 < i2 ≤ n

P (Ai1 ∩Ai2) = P (Ai1)P (Ai2) (1.10)

Obviously pairwise independence is a much weaker condition than mutual inde-
pendence.

Finally we define the conditional probability P (A|B) as the probability that
event A will occur if B occurs, or simply, A given B. Obviously the probability
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32 Basic issues in nonequilibrium statistical mechanics

that both events A,B will occur is P (A ∩B) = P (A|B)P (B). From this it is
easy to derive Bayes’ rule

P (A|B)P (B) = P (B|A)P (A) (1.11)

Random variables

A random variable X defined on a sample space Ω is a function which maps
Ω into the set of real numbers. It assigns a real number to each sample point. In
the example of throwing a dice, winning a certain amount of money xi (out of
the whole range X(Ω) = {xi}) when some number in the set i = {1 · · · 6} faces
up is one such mapping. One can define a probability distribution P (xi) = f(xi).
For continuous variables the probability P that an event occurs resulting in X

taking on values in an interval a ≤ X ≤ b is given by

P (a ≤ X ≤ b) =
∫ b

a

fX(x)dx (1.12)

fX(x) is called the probability density for such an occurrence. The cumulative
probability distribution function (cdf) FX(x) ≡ P (X ≤ x) is obtained by inte-
grating fX up to the value x, i.e.

FX(x) =
∫ x

−∞
fX(x′)dx′ (1.13)

Now consider two stochastic variables X,Y on the same sample space
Ω, X(Ω) = {xi}, Y (Ω) = {yj}. We define the joint probability distribu-
tion f(X,Y ) of X and Y as the probability of an ordered pair occurring,
P (xiεX, yjεY ) = f(xi, yj). For continuous variables f(x, y) ≥ 0 is normalized∫ ∫

dxdyf(x, y) = 1. The single-variable distribution fX is obtained if one disre-
gards (integrates over) the value of Y in f(x, y), i.e.

fX(x) =
∫

dyf(x, y), fY (y) =
∫

dxf(x, y) (1.14)

We now generalize the number of stochastic variables to r and define an r-
dimensional vector X = (X1, X2, . . . , Xr). We can think of this as the vector
denoting the space and momenta of N particles in the phase space Γ, in which
case r = 6N . (Note we used i, j earlier to denote the (discrete) sample space vari-
ables, while r, s here denote the dimension of the space of stochastic variables.)
The probability density Pr(X) is the joint probability density of the r variables
(X1, X2, . . . , Xr). For a projection of X into a smaller space of dimension s, s < r,
the joint probability density of a subset s < r of variables Ps(X1, X2, . . . , Xs)
regardless of the remaining variables Xs+1, . . . , Xr is obtained from integrating
over these variables, i.e.

Ps(X1, X2, . . . , Xs) =
∫

Pr(X1, . . . , Xs, Xs+1, . . . , Xr)dXs+1 · · · dXr (1.15)
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1.6 Appendix A 33

In probability theory this is called the marginal distribution of subset r. In
statistical mechanics this is called the reduced (probability density) distri-
bution function.

One can define the nth moments of a stochastic variable X by

〈Xn〉 =
∑
i

xn
i fX(xi) =

∫
dx xnfX(x) (1.16)

where the first is for discrete and the second for continuous variables. The first
two moments are familiar: For n = 1, 〈X〉 is called the mean; for n = 2, σ2

X =〈
X2
〉
− 〈X〉2 is called the variance.

One can also define the characteristic function Φ as the Fourier transform
of the probability density

ΦX(k) =
〈
eikX

〉
=
∫ +∞

∞
dx eikxfX(x) =

∞∑
n=0

(ik)n

n!
〈Xn〉 (1.17)

with inverse transform

fX(x) =
1
2π

∫
dk e−ikxΦX(k) (1.18)

Equivalently, in terms of Laplace transforms we can define the moment gen-
erating function

MX(s) =
〈
esX
〉

(1.19)

This name becomes obvious when we rewrite the moments as

〈Xn〉 =
dnMX(s)

dsn
|s=0 (1.20)

Likewise one can define a cumulant expansion by the relation

ln ΦX(k) =
∞∑

n=1

(ik)n

n!
Cn(X) (1.21)

The relations between cumulants and moments are as follows:

C1(X) = 〈X〉 C2(X) =
〈
X2
〉
− 〈X〉2

C3(X) =
〈
X3
〉
− 3
〈
X2
〉
〈X〉 + 2 〈X〉3

C4(X) =
〈
X4
〉
− 4
〈
X3
〉
〈X〉 − 3

〈
X2
〉2

+ 12
〈
X2
〉
〈X〉2 − 6

〈
X4
〉

(1.22)

Note again that the first two cumulants are the mean and the variance. The
covariance and correlation of two different stochastic variables X,Y are
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34 Basic issues in nonequilibrium statistical mechanics

defined respectively as

Cov(X,Y ) ≡
∫ ∫

dxdy (x− 〈X〉)(y − 〈Y 〉)f(x, y)

= 〈XY 〉 − 〈X〉 〈Y 〉

Cor(X,Y ) ≡ Cov(X,Y )
σXσY

(1.23)

Stochastic processes

Given a stochastic variable X, one can define a stochastic function Ξ obtained
from X by some mapping

ΞX(t) = g(X, t) (1.24)

where t is some smooth variable. If t denotes time, Ξ(t) is called a stochas-
tic process. When X takes on the value x, Ξx(t) = g(x, t) becomes a sample
function or a realization of the process.

The probability density for a stochastic function Ξx(t) to take on value ξ at
time t is given by

P1(ξ, t) =
∫

δ(ξ − Ξx(t))fX(x)dx (1.25)

We recognize that fX(x) is the probability density for the stochastic variable X.
The subscript 1 denotes a function of one stochastic variable. The probability
over all values of ξ1 at any particular time t1 should be unity, thus the normal-
ization condition is

∫
P1(ξ, t1)dξ = 1. Generalizing to n we can define the joint

probability density as

Pn(ξ1, t1, · · · ξn, tn) ≡
∫

δ(ξ1 − Ξx(t1)) · · · δ(ξn − Ξx(tn))fX(x)dx (1.26)

When one ignores one stochastic function ξn one obtains the reduced joint
probability density∫

Pn(ξ1, t1, · · · ξn, tn)dξn = Pn−1(ξ1, t1, · · · ξn−1, tn−1) (1.27)

The correlation between values of Ξ at different times is measured by the time-
dependent moments

〈ξ1(t1)ξ2(t2) · · · ξn(tn)〉 =
∫

· · ·
∫

dξ1dξ2 · · · dξn ξ1ξ2 · · · ξn Pn(ξ1, t1, · · · ξn, tn)

(1.28)
For stationary processes

Pn(ξ1, t1, · · · ξn, tn) = Pn(ξ1, t1 + τ, · · · ξn, tn + τ) (1.29)

for all n, tj and τ .
The conditional probability density P1|1(ξ2, t2|ξ1, t1) for Ξ to take on values

ξ2 at t2 given that it took on values ξ1 at t1 is defined by the joint probability
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1.6 Appendix A 35

density

P1|1(ξ2, t2|ξ1, t1)P1(ξ1, t1) = P2(ξ1, t1, ξ2, t2) (1.30)

In physics language this is often referred to as the transition probability
between state 1 and state 2. Generalizing this, the conditional probability density

Pm|k(ξk+1, tk+1, · · · ξk+m, tk+m|ξ1, t1, · · · ξk, tk) (1.31)

for Ξ to take on the value ξk+1 at tk+1 · · · ξk+mat tk+m given that it took on the
value ξ1 at t1, · · · ξk at tk is defined by

Pm|k(ξk+1, tk+1, · · · ξk+m, tk+m|ξ1, t1, · · · ξk, tk) ≡
Pk+m(ξ1, t1, · · · ξk+m, tk+m)

Pk(ξ1, t1, · · · ξk, tk)
(1.32)

where Pk+m is the joint probability density.

1.6.2 Markov processes

A Markov process is a stochastic process where the random variable has mem-
ory only of its immediate past, i.e.

P1|n−1(ξn, tn|ξ1, t1, · · · ξn−1, tn−1) = P1|1(ξn, tn|ξn−1, tn−1) (1.33)

A Markov process is entirely determined by P1(ξ1, t1) and P1|1(ξ2, t2|ξ1, t1). It is
easy to show by using the Bayes rule that for Markov processes

P1|1(ξ3, t3|ξ1, t1) =
∫

dξ2P1|1(ξ3, t3|ξ2, t2)P1|1(ξ2, t2|ξ1, t1) (1.34)

i.e. the two steps are statistically independent. This is the Chapman–
Komogorov (CK) or Einstein–Smolochousky (ES) equation. For stationary
Markov processes, if we define

P1|1(ξ2, t2|ξ1, t1) ≡ Pτ (ξ2|ξ1) (1.35)

since they depend only on τ = t2 − t1, the CK or ES equation can be written
schematically as

Pτ ′+τ = Pτ ′Pτ (1.36)

in the sense of integral kernels.8 We now derive a differential form of the CK
equation which is known as the (Markovian) Pauli master equation. Consider a
small increment τ in time from t1 and expand P1|1(ξ2, t1 + τ |ξ1, t1) in a Taylor

8 In probability theory understandably the symbol P is used profusely. Here a single
subscript τ denotes the conditional probability density P1|1 in a stationary process. Notice
this equation which we see quite commonly in physics actually presupposes the Markovian
property. When it involves probability concepts, as in quantum mechanics, interpreting
physics equations in the stochastic process sense may reveal a deeper layer of meaning for
these common objects.
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36 Basic issues in nonequilibrium statistical mechanics

series around t1 making sure that the normalization condition is preserved to all
orders in τ ; we have

P1|1(ξ2, t1 + τ |ξ1, t1) = P1|1(ξ2, t1|ξ1, t1) + τ∂P1|1/∂τ + . . . (1.37)

Extract the singular part from ∂P1|1/∂τ

∂P1|1
∂τ

≡ −a0(ξ1)δ(ξ2 − ξ1) + W (ξ2|ξ1) (1.38)

We say W (ξ2|ξ1) is the transition probability per unit time. In physics
language this is called the transition rate. a0(ξ1) is determined by the condi-
tion that the normalization condition

∫
P1|1(ξ2, t2|ξ1, t1)dξ2 = 1 is satisfied to all

orders of τ . To first order in τ , the condition yields

a0(ξ1) =
∫

W (ξ2|ξ1)dξ2 (1.39)

Using this we have

Pτ (ξ2|ξ1) = (1 − a0(ξ1)τ)δ(ξ2 − ξ1) + τW (ξ2|ξ1) (1.40)

Writing down a copy of this equation for Pτ ′(ξ3|ξ2)

Pτ ′(ξ3|ξ2) = (1 − a0(ξ2)τ ′)δ(ξ3 − ξ2) + τ ′W (ξ3|ξ2) (1.41)

and putting them back into the CK equation we obtain

Pτ+τ ′(ξ3|ξ1) =
∫

(1 − a0(ξ2)τ ′)δ(ξ3 − ξ2)Pτ (ξ2|ξ1)dξ2

+
∫

τ ′W (ξ3|ξ2)Pτ (ξ2|ξ1)dξ2 (1.42)

Performing the integral in the first term, we obtain upon dividing by τ ′ on both
sides and letting τ ′ → 0

∂Pτ (ξ3|ξ1)
∂τ

=
∫

dξ2[−W (ξ2|ξ3)Pτ (ξ3|ξ1) + W (ξ3|ξ2)Pτ (ξ2|ξ1)] (1.43)

where we have used the expression for a0 above. This is the CK equation for
stationary Markov process which include the familiar gain–loss, birth–death
processes.

To cast this in a more familiar form we can eliminate ξ1 by introducing the
two conditional probability densities

Pτ (ξ3|ξ1) = P1(ξ3, t) → Pn(t) (1.44)

Pτ (ξ2|ξ1) = P1(ξ2, t) → Pn′(t) (1.45)

The right arrow indicates transforming to a notation for processes via discrete
variables Ξ, as in quantum states. We get the familiar Pauli master equation

dPn

dt
=
∑
n′

[−Wn→n′Pn(t) + Wn′→nPn′(t)] (1.46)
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1.6 Appendix A 37

In conventional (less rigorous) physics language we call Pn(t) the probability to
find the system in state n, and Wn→n′Pn(t) the transition probability from state
n to state n′ in time t. Thus the first term measures the “loss” of system in state
n (depletion), and the second term its “gain” (increase).9

1.6.3 Kramers–Moyal and Fokker–Planck equations

For linear systems and in the limit where the jumps in a Markov process are
small, this equation takes a special form known as the Fokker–Planck equation.
Define η = ξ − ξ′ as the jump size. The transition probability W (ξ|ξ′) = W (ξ′; η)
is assumed to vary slowly with ξ, ξ′, and is a sharply peaked function of η. From
the CK equation,

∂P1(ξ, t)
∂t

=
∫

dξ′[W (ξ|ξ′)P1(ξ′, t) −W (ξ′|ξ)P1(ξ, t)]

=
∫

dη[W (ξ − η; η)P1(ξ − η, t) − P1(ξ, t)
∫

dηW (ξ − η;−η) (1.47)

Taylor expanding P1 around ξ in the integrand of the first term on the right-hand
side, i.e.

P1(ξ − η, t) = P1(ξ) − η
∂P1

∂η
+

η2

2
∂2P1

∂η2
+ · · · (1.48)

we have

∂P1(ξ, t)
∂t

=
∞∑
ν=1

(−1)ν

ν!
∂ν

∂ξν
[aν(ξ)P1(ξ, t)] (1.49)

where

aν(ξ) =
∫ ∞

∞
ηνW (ξ; η)dη (1.50)

This is called the Kramers–Moyal expansion of the Markovian master equation.
Keeping only the first two terms and dropping the subscript 1 on P1 (to convert

9 The Pauli equation could be the first instance we learn about the master equation, usually
in the context of quantum mechanics (e.g. Chapter 15 of Reif [Rei67]), but it is not tied to
any quantum notion whatsoever. (The only relevant concept from quantum physics is the
discrete state, but we know there is a corresponding version of the CK equation for
continuous variables.) To begin with, it deals with probabilities, not amplitudes, so there is
no phase information, and thus is useless in dealing with issues like quantum decoherence,
which probes into how the quantum phase information gets lost as a system’s classical
behavior emerges. More importantly it describes only Markovian stationary process – we
will see that it is far from the most general conditions. For example these are the conditions
behind the Fermi Golden rule, or the Wigner-Weisskopf lineshape, which are built upon
time-dependent perturbation theory. What this tells us is that it is always helpful to ask a
few questions about the tacit assumptions behind any physical law, no matter how familiar
they appear.
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38 Basic issues in nonequilibrium statistical mechanics

to physics notation) yields the Fokker–Planck (FP) equation

∂P (ξ, t)
∂t

= − ∂

∂ξ
[a1(ξ)P (ξ, t)] +

1
2
∂2

∂ξ2
[a2(ξ)P (ξ, t)] (1.51)

For small changes in time we can write the coefficients a1, a2 as follows:

a1(ξ) =
∫

ηW (ξ, η)dη � 〈Δξ〉
Δt

= 〈vξ〉 (1.52)

a2(ξ) =
∫

η2W (ξ, η)dη �
〈
(Δξ)2

〉
Δt

(1.53)

If there is no external force a1 = 0, the FP equation is in the form of a diffusion
equation

∂P (ξ, t)
∂t

= Dξ
∂2P (ξ, t)

∂ξ2
(1.54)

with diffusion coefficient

Dξ =
a2

2
=

〈
(Δξ)2

〉
2Δt

(1.55)

This is known as the first Einstein relation.
In Chapter 2 we shall use intuitive physical reasoning to give a derivation of

the Boltzmann and Langevin equation, and their quantum version in Chapter 3.
These equations, together with the general (not just the Pauli) master equation,
will be the starting point for our expedition into nonequilibrium quantum field
processes.
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2

Relaxation, dissipation, noise and fluctuations

2.1 A simple model of Brownian motion

In this chapter we shall continue the study of relaxation, dissipation, noise and
fluctuations by analyzing how they appear in simple models extracted from
classical physics. We shall also introduce some specific concepts, such as the
fluctuation–dissipation relation, which will be central to the development of our
subject matter.

Possibly the simplest manifestation of the relaxation process is the damping
of a pendulum swinging in open air. The simplest model of a pendulum is the
harmonic oscillator

ẍ + Ω2x = 0 (2.1)

At this level of description, it belongs to the realm of mechanics rather than
thermodynamics [LanLif69]; it obeys the conservation of phase space volume
theorem, it generates no entropy, and it does not relax. To see relaxation, we must
introduce damping. Let us proceed phenomenologically by adding a “damping
constant” γ to our oscillator equation (2.1), which becomes

ẍ + 2γẋ + Ω2x = 0 (2.2)

Later we will probe into the microscopic origin of dissipation.
Introduce an angle ϕ such that γ = Ω sinϕ and write Ω1 = Ω cosϕ. The solu-

tion to equation (2.2) is

x (t) = e−γt

{
x (0)

cos [Ω1t− ϕ]
cosϕ

+
p (0)
MΩ1

sin Ω1t

}
(2.3)

where M is the mass of the oscillator. Although this system does relax, it is a little
boring: the only possible equilibrium is at the bottom of the potential. But we
know that a classical pendulum at finite temperature has nonzero average kinetic
and potential energies, obeying the energy equipartition theorem. So something
is missing. Let us call ξ (t) the missing term, so that the system (2.2) becomes

ẍ + 2γẋ + Ω2x =
ξ (t)
M

(2.4)

A solution is in the form x = xh + xp, where xh is the homogeneous solution
[given by equation (2.3)], and xp is the particular solution

xp (t) =
∫ t

0

dt′ e−γ(t−t′) sin Ω1 (t− t′)
MΩ1

ξ (t′) (2.5)
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40 Relaxation, dissipation, noise and fluctuations

Let us consider the source ξ (t) as some kind of “noise” or stochastic forcing
term, and assume that the expectation value at any time is zero 〈ξ (t)〉 = 0, where
〈 〉 stands for the average over realizations of the noise. Then 〈xp〉 ≡ 0, so that
〈x〉 → 0 as t → ∞. As for

〈
x2
〉
, we know that xh will eventually die away, so for

long times
〈
x2 (t)

〉
∼
〈
x2
p (t)
〉
, given by

〈
x2
p (t)
〉
=

1
M2Ω2

1

∫ t

0

dt′dt′′ e−γ(2t−t′−t′′) sin Ω1 (t− t′) sin Ω1 (t− t′′) 〈ξ (t′) ξ (t′′)〉

(2.6)

To proceed we must say something about the noise correlator. If in our intu-
itive picture ξ (t) represents the stochastic bombardment of the ball of the pen-
dulum by its surrounding air molecules, then the simplest property is that the
noise is stationary and statistically independent at macroscopically distinguish-
able times, hence 〈ξ (t) ξ (t′)〉 = σ2δ (t− t′). Discarding exponentially decaying
and other small terms, we obtain

〈
x2 (t)

〉
∼ σ2/4M2Ω2γ. Comparing with the

equipartition theorem
〈
x2 (t)

〉
= kBT/MΩ2, where kB is Boltzmann’s constant,

this suggests that the system is equilibrating at a temperature given by the
Einstein relation [Ein05]

σ2 = 4γMkBT (2.7)

We have succeeded (our model successfully describes relaxation) where we
ought to have failed (we violated the time reversibility of the original model
equation (2.1)). Let us take our model apart, and try to understand the secret
of its working.

Observe that the system–environment interaction goes both ways: while the γ

term steadily dumps system energy into the environment, whereby the informa-
tion on initial conditions is lost, the noise term works in the opposite direction,
feeding the right amount of fluctuations into the system and compensating its
tendency to drop to the bottom of the potential. Neither alone would do the job,
as clearly shown by equation (2.7), which, when seen in this light, goes under
the name of a fluctuation–dissipation theorem [Nyq28, CalWel51].

In this view of the fluctuation–dissipation theorem, if we wish the system
to relax at a certain temperature T , we’d better throw in white noise with the
proper amplitude. But it could be that Nature does not care about relaxation,
and therefore that it does not need a fluctuation–dissipation theorem. Well, as
we know from everyday experience, it does, and there is a deeper reason for
equation (2.7). In the final analysis, the Einstein relation is an expression of the
unitarity of the dynamics of the system–environment complex. To understand
how this comes about, we shall backtrack a little, and offer a simple mechanical
model of how the environment works.

2.1.1 The linear oscillator model

The simplest possible mechanical model of the environment is to consider it as a
large set of linear harmonic oscillators with displacement qα, proper frequency ωα
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2.1 A simple model of Brownian motion 41

and mass mα coupled to the system through a time-dependent coupling constant
cα (t) (see below) [Rub60, Rub61, FoKaMa65]. This is a very poor model of an
environment; in a certain sense, it is no environment at all, as we may and will
easily integrate the full dynamics, so there is little to be gained in regarding the
qα as different or “irrelevant,” as the word “environment” may imply. In the real
world, environments are huge nonlinear systems, and the information dumped in
them is lost for all practical purposes as far as the observer is concerned. However,
this modest ansatz for an environment will be adequate for our purpose here,
which is why the above model actually works.

The full dynamics is given by

ẍ (t) + Ω2x (t) +
∑
α

cα (t)
M

qα (t) = 0

q̈α (t) + ω2
αqα (t) +

cα (t)
mα

x (t) = 0 (2.8)

The second set of equations is easily solved as qα (t) = qαp (t) + qαh (t), where

qαh (t) =
[
qα (0) +

cα (0)
mαω2

α

x (0)
]

cosωαt +
pα (0)
mαωα

sinωαt

qαp (t) =
−1

mαωα

∫ t

0

dt′ sinωα (t− t′) cα (t′)x (t′) − cα (0)
mαω2

α

x (0) cosωαt

= − cα (t)
mαω2

α

x (t) +
1

mαω2
α

∫ t

0

dt′ cosωα (t− t′)
d

dt′
(cαx) (2.9)

We have kept this level of detail just to show that the evolution of the environ-
ment is not indifferent to the way the interaction is switched on. The simplest
assumption is that the interaction is introduced adiabatically, but quickly set-
tles to a constant value. In this scheme, we have cα (0) = 0 but ċα = 0 at any
macroscopically positive time. Introducing this into the equation for the system,
we obtain

ẍ (t) +
∫ t

0

dt′ γ (t− t′) ẋ (t′) + Ω2
rx (t) =

ξ (t)
M

(2.10)

where

Ω2
r = Ω2 − 1

M

∑
α

c2α
mαω2

α

(2.11)

γ (t− t′) =
1
M

∑
α

c2α
mαω2

α

cosωα (t− t′) (2.12)

ξ (t) = −
∑
α

cαqαh (t) (2.13)

There are three differences between equations (2.10) and (2.4). First, the fre-
quency of the system has been renormalized. The second difference is that γ now
has a finite memory, reducing to the simple ohmic case γ (t− t′) = 4γδ (t− t′)
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42 Relaxation, dissipation, noise and fluctuations

only for a rather special (and unphysical) choice of the bath; this is unimpor-
tant for our present purpose. The real difference is that ξ (t) is not a stochastic
variable: it is a complex function of the bath’s initial conditions. For this reason,
equation (2.10) does not describe relaxation. It is simply the unitary dynamics
of the system–bath complex, written in a different set of variables. So, what is
missing?

Could it be that we forgot to record the actual initial conditions for the envi-
ronment? If so, we may consider that these initial conditions are taken at random.
To make it even simpler, we may assume that the initial conditions are taken
independently for each oscillator, and that they sample each classical orbit homo-
geneously. Under these conditions, we have, from the classical virial theorem

1
mα

〈pα (0) pα′ (0)〉 = mαω
2
α 〈qα (0) qα′ (0)〉 = δαα′ 〈εα〉 (2.14)

〈pα (0) qα′ (0)〉 = 0 (2.15)

where 〈εα〉 is the expectation value of the energy of the αth oscillator at t = 0.
Now ξ (t) is a bona fide stochastic variable, and

〈ξ (t) ξ (t′)〉 =
∑
α

c2α
mαω2

α

〈εα〉 cosωα (t− t′) (2.16)

If the bath itself is at equilibrium, then 〈εα〉 = kBT , and 〈ξ (t) ξ (t′)〉 =
MkBTγ (t− t′). This is Einstein’s relation for the non-ohmic case, reducing to
the case above in the ohmic limit.

Somewhere between equations (2.13) and (2.16) the environment oscillators
lose their role as dynamical variables. The “ordered” part of the system–
environment energy transfer is replaced by the γ term in equation (2.10), which
refers to the system alone (we say that the bath variables have been slaved
to the system); the “disordered” part is replaced by a generic stochastic force,
whose effect is to compensate the dissipation and thus to make a nontrivial
steady equilibrium possible. Time-reversal invariance becomes devoid of opera-
tional meaning, because the choice of a random initial condition for the bath
forfeits one’s ability to reverse the initial velocities of each oscillator in the bath.
This introduces an arrow of time in the macrodynamics.

Of course, the actual time development of ξ (t) as given in equation (2.13) looks
a lot like a realization of the stochastic process defined by equation (2.16) for any
finite period. But as time goes by, correlations build up between the system and
its environment which are not contained in the stochastic model. Because these
correlations are neglected, the stochastic model describes a nonunitary evolution;
therein lies the true reason for Boltzmann’s H-theorem – if all correlations were
kept, unitarity would be restored.

This basic framework for irreversibility will be the backdrop for our future
discussions. Of course, the Brownian motion paradigm which we discussed here
is an example of an autocratic system: the ball is the king, the relevant party,
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2.1 A simple model of Brownian motion 43

the center of attention, and the molecules in its environment are subservient,
slaved and “irrelevant.” Irreversibility also obtains in democratic systems, such
as a Boltzmann gas: all molecules are born equal and treated equally. However,
limitation of observational precision introduces coarse graining of a different
sort. In particular, we shall see below how irreversibility in the Boltzmann gas is
actually a consequence of the slaving of irrelevant, many-particle correlations to
the one-particle distribution function, which is of special interest as the coarsest
yet most accessible level of description.

2.1.2 Fluctuation–dissipation theorem

Let us discuss the fluctuation–dissipation theorem (FDT) in a still simple but
more general framework. This formulation of the FDT will be relevant when we
come to discuss fluctuations in the Boltzmann equation later on. This presenta-
tion follows closely that given by Landau and Lifshitz [LaLiPi80a].

The simplest setting for the FDT is a homogeneous system described by vari-
ables Xi. Equilibria are located at the maxima of a thermodynamic potential
S
(
Xi
)
. For an isolated system, S is the entropy, for an isothermal system,

S = −F/kBT, where F is the free energy, etc.
The thermodynamic forces are the components of the gradient of S, Li = −S,i

(a comma denotes a derivative). We chose coordinates so that thermodynamic
equilibrium lies at Xi = 0. Then Li also vanish at the origin, and for small devia-
tions, we get a linear relationship Li = CijX

j , where the matrix C is nonnegative.
For example, we could consider an isolated system made of a system proper

and an environment. Let us choose as coordinates the energy, volume and particle
number of the system Xi = (E, V,N). The function S is the total entropy, and
from the first law

dS =
(

1
Ts

− 1
Te

)
dE +

(
ps

Ts
− pe

Te

)
dV −

(
μs

Ts
− μe

Te

)
dN (2.17)

where T , p and μ stand for temperature, pressure and chemical potential, and
the subscripts “s” and “e” denote system and environment, respectively. The
coefficients in this differential form are (minus) the forces, and we see that they
indeed vanish at equilibrium. The matrix elements of C are the specific heat and
compressibility functions, etc. (for example, CEE = 1/T 2CV ), and the condition
of C being nonnegative engenders a set of thermodynamic inequalities such as
positivity of the specific heat.

We wish to motivate a dynamics for this system, under the basic requirement
that it should describe regression to equilibrium. This suggests writing Ẋi =
−ΓijLj , where Γ is nonnegative; then Ṡ = ΓijS,iS,j ≥ 0, and we obtain an H-
theorem of sorts. But this dynamics is too efficient, because we know that in
true equilibrium the system is not just sitting at X = 0, but fluctuating around
it. Following Einstein, we identify the probability of a fluctuation carrying the
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44 Relaxation, dissipation, noise and fluctuations

system from 0 to X as expS [X], whereby (in equilibrium)
〈
XiLj

〉
= δij . To

obtain these fluctuations, we must modify our ansatz to

Ẋi = −ΓijLj + Ξi. (2.18)

The first term describes the mean regression of the system towards a local entropy
maximum, Γij being the dissipative coefficient or function, and the second term
describes the random microscopic fluctuations induced by its interaction with
an environment. To simplify, let us assume that Ξi is a Gaussian white noise,
namely

〈
Ξi (t) Ξj (t′)

〉
= σijδ (t− t′), where the matrix σ is, of course, symmetric

and nonnegative. The FDT will allow us to relate the matrices σ and Γ.
In equilibrium, correlation functions are stationary. In particular

d

dt

〈
Xi (t)Xj (t)

〉
=
〈
Ẋi (t)Xj (t) + Xi (t) Ẋj (t)

〉
= 0 (2.19)

Therefore 〈
Ξi (t)Xj (t) + Xi (t) Ξj (t)

〉
= Γij + Γji (2.20)

If the noise is Gaussian, we have the Novikov identity [Nov65]〈
Xi (t) Ξj (t′)

〉
=
∫

dt′′
δXi (t)
δΞk (t′′)

〈
Ξk (t′′) Ξj (t′)

〉
(2.21)

which for our chosen autocorrelation becomes〈
Xi (t) Ξj (t′)

〉
= σkj δX

i (t)
δΞk (t′)

(2.22)

Since the dynamics is linear, we may write

Xi (t) = Xi
h (t) +

∫ t

dt′ Gi
k (t− t′) Ξk (t′) (2.23)

where the homogeneous solution Xi
h (t) is independent of the noise, and the

propagator G satisfies Gi
k (0) = δik. In the coincidence limit t′ = t we find

δXi (t)
δΞk (t)

=
∫ t

dt′ Gi
k (t− t′) δ (t− t′) =

1
2
δik (2.24)

From equations (2.20), (2.22) and (2.24), we get

σik = Γik + Γki (2.25)

which is the FDT in a simple classical formulation.
In the case of a one-dimensional system, the above argument can be simplified

even further because there is only one variable X, and Γ, C, σ are simply con-
stants. In equilibrium, we have

〈
X2
〉

= C−1. On the other hand, the late time
solution of the equations of motion reads

X (t) =
∫ t

du e−ΓC(t−u)Ξ (u) (2.26)

which implies
〈
X2
〉

= σ/2ΓC. Thus σ = 2Γ, in agreement with equation (2.25).
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2.2 The Fokker–Planck and Kramers–Moyal equations 45

As an example of this view of the FDT, let us return to the problem of the
dissipative pendulum. The system is described by two degrees of freedom x and
p = Mẋ. Since we are interested in the pendulum coming to equilibrium at a
given temperature, the relevant thermodynamic potential is S = −F/kBT . We
identify the free energy associated with a phase space point (x, p) as the work
necessary to bring the pendulum from rest to (x, p), in a reversible way and at
constant temperature. This work is, of course, the mechanical energy, so

S = − p2

2MkBT
− MΩ2x2

2kBT
(2.27)

The forces are then Lx = MΩ2x/kBT and Lp = p/MkBT . In these terms, Hamil-
ton’s equations become

ẋ =
p

M
= kBTLp; ṗ = −MΩ2x = −kBTLx (2.28)

This corresponds to an antisymmetric Γ matrix, and therefore the potential S is
conserved. We get no H-theorem, as expected.

In order to obtain regression to equilibrium, we must include dissipation. As is
stressed by Landau and Lifshitz, it makes no sense to modify the first of equation
(2.28), since this represents the definition of p rather than a true dynamical law.
Thus our only possibility is to modify the second equation

ṗ = −MΩ2x− 2γp = −kBT (Lx + 2MγLp) (2.29)

The new understanding is that this modification must be necessarily followed by
the inclusion of noise Ξi =

(
ξ̃, ξ
)

ẋ =
p

M
+ ξ̃; ṗ = −mω2x− 2γp + ξ (2.30)

and that we have no freedom in choosing the noise autocorrelation, as this is
given by the FDT. In our case, discarding the antisymmetric part of γij , we get
σxx = σxp = 0, σpp = 4γMkBT , which of course reproduces the result from the
last section.

2.2 The Fokker–Planck and Kramers–Moyal equations

Let us now consider a single variable X (t) evolving according to the Langevin
equation [Cha43, Kam81]

dX

dt
(t) + Γ (t)X (t) = Ξ (t) (2.31)

(that is, in comparison with equation (2.18), we now take the entropy as simply
S = (−1/2)X2, thus L = X, and allow Γ to depend on time), where Ξ is a
Gaussian colored noise

〈Ξ (t) Ξ (t′)〉 = s2 (t, t′) (2.32)
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46 Relaxation, dissipation, noise and fluctuations

Under the influence of noise the variable X will show a complicated behavior,
even if its initial value is accurately known. It becomes uninteresting to try and
follow the evolution of X in all its detail; just knowing the probability density
f (x, t) for actually finding X in a neighborhood of x at times t is enough.
Formally

f (x, t) = 〈δ (X (t) − x)〉 (2.33)

where the average is over realizations of the noise and also over all possible initial
conditions X (0). For simplicity, we assume the noise acts independently of the
initial condition.

The probability density f evolves according to the so-called Fokker–Planck
equation [Ris89, Gar90]. To derive this equation, observe that [SanMig89]

∂

∂t
f (x, t) =

〈
dX

dt
(t)

∂

∂X (t)
δ (X (t) − x)

〉

= − ∂

∂x

〈
dX

dt
(t) δ (X (t) − x)

〉

=
∂

∂x
[Γ (t)xf (x, t)] − ∂

∂x
〈Ξ (t) δ (X (t) − x)〉 (2.34)

To compute the last expectation value, we appeal to the Novikov identity
(2.21)

〈Ξ (t) δ (X (t) − x)〉 =
∫ t

0

dt′ s2 (t, t′)
〈

δ

δΞ (t′)
δ (X (t) − x)

〉

= − ∂

∂x
[σ (t) f (x, t)] (2.35)

where

σ (t) =
∫ t

0

dt′ s2 (t, t′)
δX (t)
δΞ (t′)

(2.36)

which in this simple case can be computed almost explicitly. The final result
takes the form of a continuity equation

∂

∂t
f (x, t) =

∂

∂x

{[
Γ (t)x +

∂

∂x
σ (t)

]
f (x, t)

}
(2.37)

One remarkable feature of this equation is that it is local in time, in spite
of the noise being colored. Moreover, it does not seem possible to reconstruct
s2 (t, t′) from σ (t) in general, unless some further hypothesis is added (for exam-
ple, that the noise is actually white). In this sense, the original Langevin descrip-
tion contains more information about the system than the Fokker–Planck one
[CaRoVe03].

Equation (2.31) may be generalized to nonlinear dynamics [BixZwa71, Zwa73]

dX

dt
(t) + Γ [X (t) , t] = ξ (t) (2.38)
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2.2 The Fokker–Planck and Kramers–Moyal equations 47

Repeating our earlier steps, we find

∂

∂t
f (x, t) =

∂

∂x
[Γ [x, t] f (x, t)] +

∂2

∂x2

∫ t

0

dt′ s2 (t, t′)
〈
δX (t)
δξ (t′)

δ (X (t) − x)
〉

(2.39)

where

∂

∂t

δX (t)
δξ (t′)

+
∂Γ [X (t) , t]

∂X (t)
δX (t)
δξ (t′)

= δ (t− t′) (2.40)

In general, this will be a complicated function of the base trajectory X (t) .
However, if the noise is white

s2 (t, t′) = σ2 (t) δ (t− t′) (2.41)

then the Fokker–Planck equation simplifies to

∂

∂t
f (x, t) =

∂

∂x

{[
Γ [x, t] +

σ2 (t)
2

∂

∂x

]
f (x, t)

}
(2.42)

An important particular case of the above is when the Langevin dynamics
follows from adding local dissipation and white noise to an otherwise Hamiltonian
system. We then have two variables X and P , with

dX

dt
=

∂H

∂P
(2.43)

dP

dt
= −∂H

∂X
− 2γP + ξ (2.44)

H =
P 2

2M
+ V (X) (2.45)

where H is the Hamiltonian (following Landau, we only add noise to the second
equation). Then

f (x, p, t) = 〈δ (X (t) − x) δ (P (t) − p)〉 (2.46)

and

∂

∂t
f (x, t) = −{H, f} +

∂

∂p

[(
2γp +

σ2 (t)
2

∂

∂p

)
f

]
(2.47)

where

{H, f} =
∂H

∂p

∂f

∂x
− ∂H

∂x

∂f

∂p
(2.48)

is the Poisson bracket. This is the so-called Kramers–Moyal equation [Kra40,
Moy49].

In the derivation of the Kramers–Moyal equation we have used the fact that
a change in the external force changes the acceleration, but neither the position
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48 Relaxation, dissipation, noise and fluctuations

nor the velocity, instantaneously, so

δX (t)
δξ (t)

= 0 (2.49)

The resulting Kramers–Moyal equation contains only second-order p-derivatives.
This is the so-called normal diffusion. For colored noise there are both normal
and anomalous diffusion (we shall see an example in Chapter 3).

For a thermodynamic system in contact with a heat bath any spontaneous
transformation decreases the free energy F = U − TS. For a system described
by the Kramers–Moyal equation, if both γ and σ2 are time-independent, there
is an analog to this statement. We replace the internal energy U by the average
value of the Hamiltonian, the entropy S by the Boltzmann HB function

HB = −kB

∫
dXdP f ln [f ] (2.50)

and the temperature T by σ2/4MγkB [cf. equation (2.7)]. Thus we obtain
Kramers’ nonequilibrium free energy [Kur98, Kur05]

FK =
∫

dXdP f

{
H +

σ2

4Mγ
ln [f ]

}
(2.51)

and an H-theorem of sorts

dFK

dt
= −2γ

M

∫
dXdP f

[
P +

σ2 (t)
4γf

∂f

∂P

]2
(2.52)

This also shows that there is only one stationary solution

feq ∝ e−(4γM/σ2)H (2.53)

so we are led to the identify σ2 = 4γMkBT , as expected.
If γ and σ2 go to zero, the Kramers–Moyal equation reduces to the Liouville

equation

∂

∂t
f (x, t) = −{H, f} (2.54)

In the opposite limit, it reduces to a Fokker–Planck equation. For very large
damping, we have

P ∼ 1
2γ

[−V ′ + ξ] (2.55)

dX

dt
= −V ′ (X)

2γM
+ Ξ ∼ −V ′′ (0)

2γM
X + Ξ (2.56)

where Ξ = ξ/2γM . This is the kind of dynamics we studied at the beginning
of this section. Since the kinetic energy is negligible compared to the poten-
tial energy, we have S = −V (X) /kBT, C = V ′′ (0) /kBT and Γ = kBT/2γM .
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2.3 The Boltzmann equation 49

The fluctuation–dissipation relation appropriate to the Fokker–Planck equation
〈Ξ (t) Ξ (t′)〉 = 2Γδ (t− t′) leads us back to 〈ξ (t) ξ (t′)〉 = 4γMkBTδ (t− t′).

2.3 The Boltzmann equation

We shall now examine the other major paradigm of irreversible behavior in clas-
sical physics, namely, Boltzmann’s theory of dilute gases [Bol64, ChaCow39,
LifPit81]. As we already mentioned, the Brownian motion paradigm we examined
in the last section corresponds to an autocratic system where an environment is
subservient to our system of interest. The Boltzmann model of a gas, on the other
hand, seems to be democratic in that it embraces all molecules on equal terms.
In this sense, the Boltzmann gas appears as a truly closed system. However, this
system will be shown to be an effectively open system in the space of correlation
functions. Specifically, our relevant system shall be the one-particle distribution
function, and its environment consists of the higher correlations. When seen in
this light, we shall see that irreversibility in the Boltzmann equation follows a
similar pattern as in the Brownian motion problem.

This view of the Boltzmann theory as describing an effectively open system
shows how nontrivial it may be to identify the right degrees of freedom to describe
a given system. We may say that the genius of Boltzmann has been to realize that,
while the characteristic time for the dynamics of individual molecules is the colli-
sion time, the characteristic time for the dynamics of the one-particle distribution
function is the relaxation time, which is much longer. Thus, the one-particle dis-
tribution function is the collective degrees of freedom in whose terms the dynam-
ics becomes slow and simple. The very first step in treating the nonequilibrium
dynamics of a system, i.e. identifying the right collective degrees of freedom in a
given situation, may turn out to be the most important, and at times the most
difficult, task.

Consider a gas of N identical molecules interacting through a binary central
potential V (r); we shall assume the forces are short range and the gas is dilute,
Na3/V � 1 where a is the range of the potential. We shall consider no external
forces. The Hamiltonian

H =
N∑
i=1

p2
i

2m
+

1
2

∑
i �=j

Vij ; Vij = V (|xi − xj |) (2.57)

(we assume no self-energies: Vii = 0) leads to the Hamilton equations

dxi

dt
=

∂H

∂pi
=

pi

m
;

dpi

dt
= −∂H

∂xi
= −

∑
i �=j

∂Vij

∂xi
(2.58)

Equivalently we may describe the state of the system through a 6N -dimensional
distribution function ρ = ρ ((x1,p1) , . . . , (xN ,pN ) , t) , which satisfies the
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50 Relaxation, dissipation, noise and fluctuations

Liouville equation

∂ρ

∂t
= −{H, ρ} (2.59)

where we introduced the Poisson bracket (generalizing (2.48))

{f, g} =
N∑
i=1

[
∂f

∂pi

∂g

∂xi
− ∂g

∂pi

∂f

∂xi

]
(2.60)

ρ integrates to 1 over the whole phase space. We shall assume that ρ is totally
symmetric, which in the quantum case yields Bose–Einstein statistics.

Given a (one-particle) phase space point (x,p), we may define the density at
that point

F (x,p) =
N∑
i=1

δ (xi − x) δ (pi − p) (2.61)

The one-particle distribution function f1 is the expectation value of the density

f1 (x,p) =
N∑
i=1

〈δ (xi − x) δ (pi − p)〉 (2.62)

〈δ (xi − x) δ (pi − p)〉

=
∫ ∏

j

d3xjd
3pj ρ ((x1,p1), . . . , (xN ,pN ) , t) δ (xi − x) δ (pi − p) (2.63)

which from symmetry becomes

〈δ (xi − x) δ (pi − p)〉 =
∫ N∏

j=2

d3xjd
3pj ρ((x,p), (x2,p2), . . . , (xN ,pN ), t)

(2.64)
and is independent of i. Therefore

f1 (x,p) = N

∫ N∏
j=2

d3xjd
3pj ρ((x,p), (x2,p2), . . . , (xN ,pN ), t) (2.65)

For later use, we shall introduce also the s-particle distribution function

fs ((x1,p1) , . . . , (xs,ps))

=
N !

(N − s)!

∫ N∏
j=s+1

d3xjd
3pj ρ((x1,p1), . . . , (xs,ps), (xs+1,ps+1) . . .) (2.66)

We obtain the dynamics of f1 integrating side by side in Liouville’s equation

∂f1

∂t
= −N

∫ N∏
j=2

d3xjd
3pj {H, ρ} (2.67)
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2.3 The Boltzmann equation 51

Developing the Poisson bracket, we observe that all terms involving derivatives
with respect to xj or pj , j �= 1, may be reduced to total derivatives and discarded
(under suitable boundary conditions at infinity). The only surviving terms yield

∂f1

∂t
(x1,p1) = −p1

m

∂f1

∂x1
+

∂

∂p1

∫
d3x2d

3p2

[
∂

∂x1
V (|x1 − x2|)

]
×f2((x1,p1), (x2,p2)) (2.68)

To obtain the dynamics for f1 we need the dynamics for f2. This is obtained
in an analogous way

∂f2

∂t
= −N (N − 1)

∫ N∏
j=3

d3xjd
3pj {H, ρ} (2.69)

Repeating the above argument, we get
∂f2

∂t
= −{H2, f2} +

∫
d3x3d

3p3 Kf3 (2.70)

where H2 is the two-particle Hamiltonian

H =
p2

1

2m
+

p2
2

2m
+ V (|x1 − x2|) (2.71)

The precise form of the kernel K in equation (2.70) is unimportant. What
matters is that, if the dynamics of f1 depends on f2, it will depend on f3, which
in turn depends on f4, etc. Thus we obtain an infinite hierarchy of equations,
commonly known as the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)
hierarchy.

We face a situation which is different from our oversimplified Brownian motion
model. In the linearly coupled harmonic oscillators problem the dynamics is so
simple that one is seriously tempted to just solve it, without ever mobilizing all
the Langevin equation machinery. In the BBGKY case, a solution of the infinite
hierarchy is close to impossible. So we need to find ways to reduce the problem to
a simpler one. Usually the first step in this simplification is to reduce the infinite
hierarchy to a finite system by just discarding an infinite set of distribution
functions. We shall call this brute force reduction a truncation of the hierarchy.

For example, we may argue that, since the integral over x2 is effectively reduced
to a sphere of radius a around x1, the collision term in equation (2.68) is smaller
than the first term by a factor Na3/V , which is � 1 by assumption. In turn,
the collision term in equation (2.70) will be smaller than the other terms in this
equation by about the same factor. For a dilute gas with short-range interactions,
we would be dealing with small corrections to ever smaller terms, and at some
point they may become negligible. For simplicity, we shall assume that we are
interested in a situation where the first nontrivial truncation works, namely, we
put K = 0 in equation (2.70).

We stress that this strategy is by no means guaranteed to work. If there were
long-range interactions (like Coulomb forces), something drastically different
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52 Relaxation, dissipation, noise and fluctuations

may be required, such as a Vlasov scheme where all far away particles are replaced
by an effective continuous charge distribution supporting an average potential.
This is another example of why finding the right collective degrees of freedom
may constitute the hardest part of the work, as we already mentioned.

2.3.1 Slaving of higher correlations in the Boltzmann equation

Our goal is to solve equation (2.70) for f2 (with K = 0) and to substitute the
solution in equation (2.68) for f1. At first sight it may look like these equations
are decoupled, but, as we shall see, they couple through the boundary conditions,
as the behavior of f2 for large separations will be determined by f1, through the
so-called molecular chaos hypothesis [AkhPel81].

Equation (2.70) expresses the conservation of probability as the particles move
along the classical orbits generated by the Hamiltonian H2. These trajectories
are easiest to study if we decompose the motion in center of mass and relative
variables

X =
1
2
(x1 + x2); u = x1 − x2 (2.72)

Introducing the conjugate momenta

P = p1 + p2; 2p = p1 − p2 (2.73)

we get the Hamiltonian

H2 =
P2

2M
+

p2

2μ
+ V (u); M = 2m, μ =

m

2
(2.74)

The center of mass motion represents a particle of mass M moving with uniform
speed, while the relative motion represents a particle of mass μ scattering off a
fixed center of force at the origin.

Let us observe that the integral in equation (2.68) is effectively restricted to
the range |x1 − x2| ∼ a, and so the center of mass variable changes little. Thus
we may ignore the dependence of f2 on X (on a more formal level, we are
computing the first term in a development of the collision integral in derivatives
with respect to X). Also an initial domain of initial conditions will move along the
classical orbits and be distorted. Since relative motion is very fast with respect
to macroscopic time-scales, we may assume that on the time-scales relevant to
our observations, the initial domain has been elongated and fills the classical
trajectory uniformly (this effect is known as phase diffusion, or the running men
effect: a line of runners with differential velocities will elongate and eventually
go uniformly round the track). Under the twin hypothesis of center of mass
independence and phase diffused relative motion, we get f2,t = f2,X = 0, and
the equation for f2 becomes

p
μ
· ∇uf2 − (∇uV ) · ∇pf2 = 0 (2.75)
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2.3 The Boltzmann equation 53

We may add a term

[∇x2V (|x1 − x2|)]∇p2f2 ((x1,p1), (x2,p2)) (2.76)

under the integral in equation (2.68), since it integrates to zero anyway. Now
observe that

∇x1V (|x1 − x2|) = −∇x2V (|x1 − x2|) = ∇uV (2.77)

∇p1f2 −∇p2f2 = ∇pf2 (2.78)

Changing variables from x2 to u, we get

∂f1

∂t
(x1,p1) = −p1

m
∇x1f1 +

∫
d3p2

∫
du

p
μ
∇uf2 (2.79)

For a given p, we may choose adapted cylindrical coordinates (u, b, ϕ). Then
this simplifies to

∂f1

∂t
+

p1

m

∂f1

∂x1
=
∫

d3p2

∫
2πbdb

|p|
μ

[f2(p1,p2, b, u = ∞)

−f2(p1,p2, b, u = −∞)] (2.80)

where by u = ±∞ we mean a relative coordinate which is large enough to take
the particles out of interaction range, but still small in macroscopic terms.

It is at this point that the crucial step is taken. At u = −∞, the two particles
have not yet interacted. Here we impose the molecular chaos condition, namely,
that there are no correlations among them initially, and thus

f2 (p1,p2, b, u = −∞) ∼ f1 (x1,p1) f1 (x1,p2) (2.81)

At u = ∞ the particles have interacted and are correlated. However, since f2

is constant along the trajectories, we have

f2 (p1,p2, b, u = ∞) = f2 (p′
1,p

′
2, b, u = −∞) ∼ f1 (x1,p′

1) f1 (x1,p′
2) (2.82)

where p′
1,p

′
2 are the momenta which evolve into p1,p2 after a collision with

impact parameter b. Equations (2.81) and (2.82) implement the slaving of the
two-particle correlation to the one-particle distribution. After this, no trace of
f2 is left, but only functionals of f1.

To make the content of these equations even clearer, let us write

f2 (p1,p2, b, u = ∞) =
∫

d3p3dp4 δ (p3 − p′
1) δ (p4 − p′

2) f1 (x1,p3) f1 (x1,p4)

(2.83)
and also the trivial identity

f2 (p1,p2, b, u = −∞)=
∫

d3p3dp4 δ (p3 − p′
1) δ (p4 − p′

2) f1 (x1,p1) f1 (x1,p2)

(2.84)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


54 Relaxation, dissipation, noise and fluctuations

The final result is
∂f1

∂t
+

p1

m

∂f1

∂x1
=
∫

d3p2d
3p3d

3p4 T (p1,p2,p3,p4)

×{f1 (p3) f1 (p4) − f1 (p1) f1 (p2)} (2.85)

where T is the transition probability

T =
∫

2πbdb
|p|
μ

δ (p3 − p′
1) δ (p4 − p′

2) (2.86)

T is zero unless p3,p4 do evolve into p1,p2 for some impact parameter. Equation
(2.85) is the Boltzmann equation, and it is dissipative. We observe that the
source of dissipation is the slaving of f2 to f1, similar in philosophy as in our
Brownian motion toy model. As in Brownian motion, in equilibrium there will
be density fluctuations. Thus equation (2.85) is incomplete: there must also be
a stochastic term, which is determined by the fluctuation–dissipation theorem.
We shall derive this term, but first let us consider the changes in equation (2.85)
brought by relativity and quantum statistics.

2.3.2 Corrections from quantum statistics

The Boltzmann equation has the structure of a balance equation where changes
in the particle number within a given cell in phase space are attributed (other
than transport along classical one-particle trajectories) either to gain or loss
processes. Gain obtains when one of two particles with momenta p3, p4 are
injected into the cell through a collision, and loss when a particle within the cell
is scattered off by collision with another particle of momentum p2. If the particles
obey quantum statistics, we must take into account the effect of stimulated
emission for Bose–Einstein (BE) statistics and Pauli blocking for Fermi–Dirac
(FD) statistics [Lib98]. The kinetic equation is then changed into

∂f1

∂t
+

p1

m

∂f1

∂x1
=
∫

d3p2d
3p3d

3p4 T I (2.87)

where T is a suitable transition probability, not necessarily identical to (2.86),
and

I = (1 ± f1) (1 ± f2) f3f4 − (1 ± f3) (1 ± f4) f1f2 (2.88)

Hereafter we drop the subindex 1 in f (we shall not consider higher correlation
functions) and use the shorthand fi = f (x,pi). The upper sign holds for BE,
and the lower sign for FD.

In equilibrium the collision integral must vanish, and therefore ln [f/(1 ± f)]
must be an additive constant of motion [Hua87]. If the gas is globally at rest,
we may discard a term proportional to p, which would conflict with rotational
invariance, to get

ln
f

1 ± f
= −β (ε− μ) (2.89)
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2.3 The Boltzmann equation 55

where ε is the one-particle energy, and β and μ are constants. Therefore

feq =
1

eβ(ε−μ) ∓ 1
(2.90)

where again the signs correspond to BE (upper) or FD (lower) statistics. We
recognize that β = 1/kBT , and μ is the chemical potential. From now on we
shall assume BE statistics.

The lesson from equation (2.90) is that to specify an equilibrium state we need
five numbers: the three components of the velocity of the rest frame, and the
temperature and chemical potential in that frame. In other words, equilibrium
states are astonishingly simpler than the generic states of the theory, which live
in a 6N -dimensional parameter space. This essential simplicity is the ultimate
reason why we can describe real physical systems so elegantly by thermodynamics
and statistical mechanics.

2.3.3 Relativistic kinetic theory

Let us now add the demands of relativity [Isr72, Isr88]. We consider our par-
ticles as living in a four-dimensional spacetime with coordinates xμ (x0 = ct,
xi = x, y, z), endowed with a metric tensor gμν , which in Minkowski space is just
ημν = diag (−1, 1, 1, 1) (we use Misner–Thorne–Wheeler conventions (MTW)
[MiThWh72]). The system is described by the one-particle distribution func-
tion f (xμ, pμ), where x is a position variable, and p is a momentum variable.
Momentum is assumed to lie on a mass shell p2 + M2 = 0 and have positive
energy p0 > 0.

We assume there is a conserved charge which allows us to define a meaningful
conserved particle number. Given a spatial element dΣμ = nμdΣ and a momen-
tum space element d4p, the number of particles with momentum p lying within
that phase space volume element is

dn = −4πf (x, p) θ
(
p0
)
δ
(
p2 + M2

)
pμnμ dΣ

d4p

(2π)4
√−g

(2.91)

where the normalization will be useful later on. In this formula, g = det gμν ; of
course, −g = 1 in Minkowski space, which we shall assume from now on. Observe
that this definition is covariant. The particle number density is defined as (minus)
the flux of the particle number current

Nμ (x) = 2
∫

Dp pμf (x, p) (2.92)

where we introduced the momentum space volume element

Dp = θ
(
p0
)
δ
(
p2 + M2

) d4p

(2π)3
√−g

(2.93)
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56 Relaxation, dissipation, noise and fluctuations

If we are only concerned with the particle number flux across equal time surfaces,
we may decompose the particle current into Nμ = (cρ,J), where ρ is the ordinary
density and J the ordinary particle flux.

The energy–momentum density is defined in terms of the energy–momentum
tensor

dPμ = −TμνdΣν ; Tμν = 2
∫

Dp pμpνf (x, p) (2.94)

T 00 = cE, where E is the ordinary energy density, T 0i = E are the energy flux,
T i0 = cP are the momentum density, and T ij are the components of the momen-
tum flux. Since Tμν is symmetric, we get P = E/c.

The dynamics of the distribution function is given by the Boltzmann equation

pμ1
∂

∂xμ
f = Icol (2.95)

Icol =
∫ [ 4∏

i=2

Dpi

] [
(2π)4 δ (p1 + p2 − p3 − p4)

]
T I (2.96)

where once again T is a suitable transition probability, not necessarily identical to
(2.86), and I is given in equation (2.88). We have made explicit the momentum
conservation delta function, and assume that the transition probability T is
symmetric under particle exchange and time reversal. These symmetry conditions
lead directly to the conservation laws for particle number and energy–momentum
Nμ

;μ = Tμν
;ν = 0, which hold for any distribution function. In equilibrium, we have

the stronger result I = 0, leading to

feq =
1

e−βμpμ−α − 1
, (2.97)

where βμ = μμ/kBT , uμ is the macroscopic four-velocity of the gas (u2 = −1)
and α = μ/kBT . The number of parameters which identify an equilibrium state
remains at five.

Besides the conserved currents Nμ and Tμν , we may define the entropy current

Sμ (x) =
∫

Dp pμ {[1 + f (p)] ln [1 + f (p)] − f (p) ln f (p)} (2.98)

Unlike the other currents, entropy is not conserved: Sμ
,μ ≥ 0 is the relativistic

H-theorem.
Consider a small deviation from the equilibrium distribution f = feq + δf cor-

responding to the same particle and energy fluxes∫
Dp pμδf (p) =

∫
Dp pμp0δf (p) = 0 (2.99)

The variation in entropy becomes

δS0 = −1
2

∫
Dp p0 (δf)2

[1 + feq (p)] feq (p)
(2.100)

showing that entropy is indeed a maximum at equilibrium.
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2.3 The Boltzmann equation 57

In the classical theory, the distribution function is concentrated on the pos-
itive frequency mass shell. Therefore, it is convenient to label momenta just
by their spatial components p, the temporal component being necessarily ωp =√
M2 + p2 > 0. In the same way, it is simplest to regard the distribution function

as a function of the three momentum p alone, according to the rule

f (3) (x,p) = f [x, (ωp,p)] (2.101)

where f represents the distribution function as a function on four-dimensional
momentum space, and f (3) its restriction to the three-dimensional mass shell.
With this understood, we shall henceforth drop the superscript, using the same
symbol f for both functions, since only the distribution function on mass shell
enters into our discussion. The variation of the total entropy now reads

δS = −1
2

∫
d3x
∫

d3p

(2π)3
(δf)2

[1 + feq (p)] feq (p)
(2.102)

This formula shall be relevant to our discussion of fluctuations in the Boltzmann
equation.

2.3.4 Fluctuations in the Boltzmann equation

We have seen that the Boltzmann equation has a dissipative character: by virtue
of the H-theorem, any initial condition is eventually transformed into the equi-
librium solution. On the other hand, we have seen that there is a well-defined
entropy decrease associated with fluctuations in the distribution function. If we
believe in Einstein’s formula for the probability of a fluctuation, we must con-
clude that in equilibrium the number of particles in a phase space cell must not
have a definite value, but rather be a Gaussian stochastic variable with mean
deviation

〈δf (x,p) δf (x′,p′)〉 ∼ (2π)3 δ (x − x′) δ (p − p′) feq [1 + feq] (2.103)

It is not hard to derive this result. The formula for the equilibrium distribution
function is equivalent to considering the gas in a grand canonical ensemble, and
therefore there must be number fluctuations〈

(δN)2
〉

= β
∂ 〈N〉
∂μ

=
∫

d3x
d3p

(2π)3
feq [1 + feq] (2.104)

On the other hand

N =
∫

d3x
d3p

(2π)3
f (2.105)

so 〈
(δN)2

〉
=
∫

d3x
d3p

(2π)3
d3x′ d

3p′

(2π)3
〈δf (x,p) δf (x′,p′)〉 (2.106)
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58 Relaxation, dissipation, noise and fluctuations

taking us back to equation (2.103). This means that if at t = 0 we actually mea-
sure the number of particles f0 in each phase space cell, we will rarely obtain
those given by feq (although we will get numbers that will remain statistically
close to it). However, if we adopt f0 as the initial condition and solve the Boltz-
mann equation, after a long enough time the solution converges to feq in each
and every cell. To obtain these occupation numbers from an actual measurement
would be highly unlikely for a system in equilibrium under a grand canonical
distribution.

This outrage against Gibbsian common sense means that the Boltzmann equa-
tion is not telling the whole story. There is another term besides the collision
integral, which sustains the right amount of deviations from the equilibrium
state. We could trace back to the derivation of the Boltzmann equation to
see where the relevant information was disregarded (and for this reason, we
unfolded that derivation in some detail). However, in practice, we know this extra
term represents fluctuations which may be quantified by a noise distribution,
whose statistics is determined from fluctuation–dissipation considerations; for
some classic implementations of this insight see [LanLif57, LanLif59, FoxUhl70a,
FoxUhl70b, BixZwa69, KacLog76, KacLog79]. The two points we wish to stress
are (1) the incompleteness of the Boltzmann equation which only accounts for
dissipation, and (2) the possibility of using fluctuation–dissipation relation con-
siderations to add fluctuations to the Boltzmann equation, valid for all practical
purposes.

Let us consider the regression of a small deviation δf from the equilibrium
distribution feq. In order to apply the fluctuation–dissipation theorem we must
obtain an expression for the time derivative of δf in terms of the thermodynamic
force

F (x,p) = − δS

δ (δf)
=

1
(2π)3

δf (x,p)
[1 + feq (p)] feq (p)

(2.107)

Writing the linearized equation as
∂f

∂t
+

p
ωp

∇f =
1
ωp

Icol + ξ(X,p) (2.108)

the Γ matrix has an asymmetric part (coming from the spatial gradients term)
and a symmetric part (coming from the linearization of the collision integral).
Only the latter contributes to the noise autocorrelation, and so we obtain

〈ξ (X,p) ξ (Y,q)〉 = −
{

1
ωp

δIcol (X,p)
δF (Y,q)

+
1
ωq

δIcol (Y,q)
δF (X,p)

}
(2.109)

To obtain a crude idea of what is going on, we may keep only those terms in
Icol which are proportional to F (p), as is usually done in deriving the “collision
time approximation” to the Boltzmann equation (also related to the Krook–
Bhatnager–Gross kinetic equation [Lib98, Cer69]), thus we write

δIcol (p) ∼ −ωpν
2(p)F (x,p) (2.110)
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2.3 The Boltzmann equation 59

where

ν2(X,p) =
(2π)3

ωp

∫ [ 4∏
i=2

Dpi

] [
(2π)4 δ (p1 + p2 − p3 − p4)

]
TI+ (2.111)

I+ = [1 + feq (p1)] [1 + feq (p2)] feq (p3) feq (p4) (2.112)

Under this approximation we find the noise autocorrelation

〈ξ(y,k)ξ (x,p)〉 = 2δ(4) (x− y) δ (k − p) ν2(x,p) (2.113)

Equations (2.108) and (2.113) are the solution to our problem, that is, they
describe the fluctuations in the Boltzmann equation, required by consistency
with the FDT. Observe that, unlike equation (2.103), the mean square value of
the stochastic force vanishes for a free gas. This does not mean that there are
no fluctuations (equation (2.103) does not vanish) but that in the collisionless
case it is enough to include the fluctuations in the initial conditions, since they
are preserved by the dynamics. It is only in the dissipative case that an explicit
noise term is necessary to keep fluctuations at the required level [CalHu00].
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3

Quantum open systems

Before we develop the nonequilibrium aspects, we want to go over some
basics of ordinary quantum mechanics [Dir58, LanLif76, Bes04]. Our goal is
to review some formal manipulations which will be used later in the statistical
physics contexts, and along the way establish some common notations. We shall
develop the theory of quantum open systems from the point of view of the so-
called Feynman–Vernon influence functional [FeyVer63, FeyHib65, CalLeg83a,
GrScIn88, Kle90, HuPaZh92, HuPaZh93a, Wei93]. This approach and its closely
related Schwinger–Keldysh or closed time path method will underlie the anal-
ysis of nonequilibrium quantum fields in the rest of the book. We refer the
reader to the literature for alternative approaches to quantum open systems
[GarZol00b, Car93, Per98].

3.1 A quick review of quantum mechanics

Let us consider a quantum mechanical system described by a single degree of
freedom x. The states |α〉 of the system live in a Hilbert space H and observables
A are represented by Hermitian linear operators Â in this space. We have different
“pictures” of the dynamics, of which the most useful are the Schrödinger and
Heisenberg ones. In the former, observables are time-independent, while states
evolve in time according to the Schrödinger equation

i�
∂

∂t
|α〉 = Ĥ |α〉 (3.1)

where the Hamiltonian operator Ĥ is associated with the observable “energy.”
This equation may be integrated

|α (t)〉 = U (t, t0) |α (t0)〉 , (3.2)

with the evolution operator

U = T

[
exp
(
− i

�

∫ t

t0

dt′ Ĥ (t′)
)]

(3.3)

where T stands for temporal order. We are mostly interested in cases where the
Hamiltonian is time-independent, whereby U (t, t0) = exp

(
−iĤ (t− t0) /�

)
. In

the Heisenberg picture states do not evolve, but observables do, according to
the rule

Â (t) = U† (t) ÂU (t) (3.4)
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3.1 A quick review of quantum mechanics 61

The rationale for this rule is that we get consistent values for expecta-
tion values of observables in either picture:

〈
Â (t)

〉
=
〈
α (t)

∣∣∣Â (0)
∣∣∣α (t)

〉
Sch

=〈
α (0)

∣∣∣Â (t)
∣∣∣α (0)

〉
Hei

. The evolution of operators in the Heisenberg picture is
summarized by the Heisenberg equation

dÂ

dt
=

i

�

[
Ĥ, Â

]
(3.5)

As shown by Einstein, Podolsky and Rosen (EPR) [EiPoRo35], this quantum
mechanical description of physical reality cannot be considered complete, since
there are states of the system which are not described by kets in the Hilbert
space. They occur when we know that the state of the system belongs with
certainty to a given class of states |αi〉 , but our knowledge does not allow us to
go beyond assigning a probability of occurrence ρi to each member of this class.
These situations are depicted by density matrices ρ =

∑
i ρi |αi〉 〈αi|, where we

assume that the |αi〉 states are orthonormal. We always have Tr ρ = 1. Kets in
the Hilbert space are particular cases of density matrices with Tr ρ2 = 1, the
general case being Tr ρ2 ≤ 1. In the Schrödinger picture, ρ is time-dependent,
and obeys the Liouville–von Neumann equation

dρ

dt
= − i

�

[
Ĥ, ρ

]
(3.6)

Observe that this is not the Heisenberg equation for the ρ matrix.
Let us now assume that the variable X is continuous and unbounded, and

that the states |x〉 where this variable is well defined form a basis. We have the
translation operators Πa given by 〈x|Πa |α〉 = 〈x + a | α〉 , which are unitary,
and given the semigroup structure of these operators, we must have a Hermitian
generator P̂ such that Πa = exp

(
iaP̂ /�

)
. The action of the generator is

〈x| P̂ |α〉 = −i�
∂

∂x
〈x | α〉 (3.7)

P̂ has eigenstates |p〉 such that

〈x | p〉 =
eipx/�

√
2π�

(3.8)

The momentum observable P̂ and the position observable X̂ do not commute,
but rather

[
P̂ , X̂

]
= −i�1.

Consider a Hamiltonian of the form Ĥ = K(P̂ ) + V (X̂), K = P̂ 2/2M . Since
tK and tV do not commute, we cannot factor out the evolution operator as a
product of a function of P̂ times a function of X̂. But since the commutator is
of order t2, factorization becomes a good approximation when t is small enough.
This gives rise to the Trotter formula [Sch81]

e−itĤ/� =
[
e−iτK/�e−iτV/�

]N+1

, (N + 1) τ = t, N → ∞ (3.9)
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62 Quantum open systems

and thereby to the path integral representation of the evolution operator
[FeyHib65, Sch81], since

〈xN+1|U (t) |x0〉 = 〈xN+1|
[
e−iτK/�e−iτV/�

]N+1

|x0〉

=
∫ [ N∏

i=1

dxi

]⎧⎨
⎩

N∏
j=0

〈xj+1| e−iτK/� |xj〉 e−iτV (xj)/�

⎫⎬
⎭

=
∫ [ N∏

i=1

dxi

][
N+1∏
i=1

dpi
2π�

]

×

⎧⎨
⎩

N∏
j=0

eipj+1(xj+1−xj)/�e−iτp2
j+1/2M�e−iτV (xj)/�

⎫⎬
⎭

=
∫ [ N∏

i=1

√
−iM

2π�τ
dxi

]⎧⎨
⎩

N∏
j=0

eiM(xj+1−xj)
2/2τ�e−iτV (xj)/�

⎫⎬
⎭

(3.10)

which as N → ∞ yields

〈xt|U (t) |x0〉 =
∫
x(t)=xt,x(0)=x0

Dx eiS/� (3.11)

The converse is also true, namely, if we take equation (3.11) as the definition
of the evolution operator, we may derive the Schrödinger equation. We have

〈xt|U (t + τ) |x0〉 =
∫ √−iM

2π�τ
dx′ eiM(xt−x′)2

/2τ�e−iτV (x′)/� 〈x′|U (t) |x0〉

(3.12)

The Gaussian factor makes sure that only values y ≈ xt contribute, so we may
expand everything else in powers of (y − xt) and integrate term by term, whereby

〈xt|U (t + τ) |x0〉 =
[
1 − iτ

�
V (xt)

]
〈xt|U (t) |x0〉

+
i�τ

2M
∂2

∂x2
t

〈xt|U (t) |x0〉 + O
(
τ2
)

(3.13)

QED

3.1.1 Wigner functions

So far, we have described states of a quantum system in terms of kets |α〉 in
a Hilbert space. Considering the position and momentum states |x〉 and |p〉,
we may introduce the wavefunctions in position and momentum representations
ψ (x) = 〈x | α〉 and ψ (p) = 〈p | α〉 , which are related to each other through a
Fourier transform

ψ (p) =
∫

dx√
2π�

e−ipx/�ψ (x) (3.14)
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3.1 A quick review of quantum mechanics 63

|ψ (x)|2 and |ψ (p)|2 represent the probability distribution functions for position
and momentum, respectively. The question arises on whether these distributions
may be obtained as marginal distributions from a joint probability for position
and momentum. The answer is of course not, at least in general, since the exis-
tence of such a joint probability density would be almost conjured as saying that
position and momentum may be simultaneously well defined. Nevertheless, in
1932 Wigner found an object which comes remarkably close [Wig32, HOSW84].
This object is the Wigner function

fW (x, p) =
∫

du

2π�
e−ipu/�ψ∗

(
x− u

2

)
ψ
(
x +

u

2

)
(3.15)

Indeed, if we integrate over p we get the probability distribution for x∫
dp fW (x, p) = |ψ (x)|2 (3.16)

while integrating over x and switching variables to x± u/2 we get∫
dx fW (x, p) = |ψ (p)|2 (3.17)

The reason why fW cannot be directly identified as a probability distribution
function is that fW , although real, is not necessarily nonnegative. We shall see
examples below.

The dynamics of the Wigner function is also quite remarkable. If the wave-
function obeys the Schrödinger equation (equation (3.1) in the coordinate rep-
resentation)

i�
∂ψ

∂t
= − �

2

2M
∂2ψ

∂x2
+ V (x)ψ (x) (3.18)

then

∂fW

∂t
=

1
i�

∫
du

2π�
e−ipu/�

×
{(

− �
2

2M

)[
ψ∗
(
x− u

2

) ∂2ψ

∂x2

(
x +

u

2

)
− ψ

(
x +

u

2

) ∂2ψ∗

∂x2

(
x− u

2

)]

+
[
V
(
x +

u

2

)
− V

(
x− u

2

)]
ψ∗
(
x− u

2

)
ψ
(
x +

u

2

)}
(3.19)

In the first line, we observe that

ψ∗
(
x− u

2

) ∂2ψ

∂x2

(
x +

u

2

)
− ψ

(
x +

u

2

) ∂2ψ∗

∂x2

(
x− u

2

)
= 2

∂2

∂u∂x

[
ψ∗
(
x− u

2

)
ψ
(
x +

u

2

)]
After integration by parts, this term contributes

1
i�

(
− �

2

2M

)(
2ip
�

)
∂fW

∂x
≡ −p

M

∂fW

∂x
(3.20)
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64 Quantum open systems

The second term is much harder to handle. If the potential is smooth, one can
try a Kramers–Moyal expansion [Kra40, Moy49, Kam81]

V
(
x +

u

2

)
− V

(
x− u

2

)
= 2

∞∑
k=0

V (2k+1) (x)
(2k + 1)!

(u
2

)2k+1

(3.21)

Commuting the integral and the sum, we obtain the second term as

2
i�

∞∑
k=0

V (2k+1) (x)
(2k + 1)!

[
i�

2
∂

∂p

]2k+1

fW (3.22)

In terms of the classical Hamiltonian H = p2/2m + V , our result reads

∂fW

∂t
= −

{
H, fW

}
+ O

(
�

2
)

(3.23)

where the Poisson bracket
{
H, fW

}
was introduced in Chapter 2, equation

(2.48). In other words, the dynamics of the Wigner function follows remark-
ably closely the classical transport equation with external potential V (x). If
V is harmonic, there are no higher order terms, and the dynamics followed by
the Wigner function is exactly the classical dynamics of a distribution function
[Hab04, CDHR98]. However, as we have already remarked, that does not mean
that f is classical, as it may be negative in some regions of phase space.

It is clear that we may compute the Wigner function fW associated with any
wavefunction ψ, but the converse is not true: it is easy to imagine phase space
functions fW which cannot be obtained as Wigner functions from any ψ. Indeed,
it is enough to imagine a distribution function violating Heisenberg’s uncertainty
principle to exclude such an identification. To the best of our knowledge, there
is no simple sufficient condition to see whether a given fW is a Wigner function,
although there are many necessary conditions (such as positivity of the marginal
distributions).

To summarize, although fW itself cannot be understood as a probability den-
sity, conveniently smeared versions of fW are nonnegative and may be used
to assign probabilities to different events. This restricted interpretation of the
Wigner function will be enough for our requirements below.

Some examples

The simplest possible example of a Wigner function is a momentum state

ψ (x) =
eipx/�

√
2π�

(3.24)

Then

fW =
1

2π�
δ (p− p) (3.25)

Now consider a stationary wave

ψ (x) =
1√
π�

cos
(px

�

)
(3.26)
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3.1 A quick review of quantum mechanics 65

representing a coherent superposition of two states of opposite momentum. Then

fW (x, p) =
1

4π�
[δ (p− p) + δ (p + p)] + cos

(
2px
�

)
δ (p) (3.27)

We see that fW is not nonnegative. The oscillatory terms are related to the
interference between the two components of the wave packet [PaHaZu93].

As a second example, let us consider a Gaussian wave packet

ψ (x) =
e−x2/4σ2

(2πσ2)1/4
(3.28)

Then

fW (x, p) =
1
π�

e−x2/2σ2
e−2σ2(p/�)2 (3.29)

In this case fW is positive definite, and the dispersions in x and p are what may
be expected for a minimum uncertainty state.

In particular, suppose our state is the ground state for a harmonic oscillator.
Then σ2 = �/2MΩ, and

fW (x, p) =
1
π�

exp
{
−E

ε

}
; ε =

1
2

�Ω, E =
p2

2M
+

MΩ2x2

2
(3.30)

As a final example, let us consider a superposition of two Gaussian wave
packets

ψ (x) =
1

(2πσ2)1/4

{
Ae−(x−a)2/4σ2

+ Be−(x+a)2/4σ2
}

(3.31)

leading to

fW (x, p) =
e−2σ2(p/�)2

π�

{
|A|2 e−(x−a)2/2σ2

+ |B|2 e−(x+a)2/2σ2

+ e−x2/2σ2
[
AB∗e−2ipa/� + A∗Be2ipa/�

]}
(3.32)

Again, we see nonpositive terms arising from the interference between the dif-
ferent components. If A and B had random phases, fW would be nonnegative.

Wigner functions and probabilities

We know that if the system is in the state ψ (x), the probability of observing it
in the state φ (x) is

P =
∣∣∣∣
∫

dx φ∗ (x)ψ (x)
∣∣∣∣
2

(3.33)

If we call fW
ψ and fW

φ the corresponding Wigner functions, and call

Q = 2π�

∫
dxdp fW

ψ (x, p) fW
φ (x, p) (3.34)
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66 Quantum open systems

then P = Q. Indeed

Q =
∫

dxdp

∫
dudu′

2π�
e−ip(u+u′)/�ψ∗

(
x− u

2

)

×ψ
(
x +

u

2

)
φ∗
(
x− u′

2

)
φ

(
x +

u′

2

)

=
∫

dxdu ψ∗
(
x− u

2

)
ψ
(
x +

u

2

)
φ∗
(
x +

u

2

)
φ
(
x− u

2

)
= P (3.35)

This implies in particular that the inner product (3.34) of two Wigner func-
tions must be positive. Since Gaussian distributions consistent with Heisenberg’s
principle are allowed Wigner functions, this implies that Gaussian smearings of
a Wigner function are positive definite.

3.1.2 Closed time path (CTP) integrals

Recall that states evolve according to equation (3.2). Using the matrix elements
(3.11) for the evolution operator, we obtain

ψ (x, t) =
∫

dx (0) U (x, x (0) , t)ψ (x (0) , 0) =
∫
x(t)=x

Dx eiS/�ψ (x (0) , 0)

(3.36)

in the coordinate representation, where U (x, x (0) , t) = 〈x|U (t) |x (0)〉. By lin-
earity, we infer that the density matrix evolves according to

ρ (x, x′, t) = 〈x|U (t) ρU† (t) |x′〉

=
∫
x(t)=x,x′(t)=x′

DxDx′ ei(S[x]−S[x′])/�ρ (x (0) , x′ (0) , 0) (3.37)

The possibility of cyclic permutations under a trace shows that Tr ρ (t) =
Tr ρ (0) = 1, as it should.

We see that the path integral representation involves two histories, rather
than a single history of the system as in equation (3.11). This observation is
the departure point of the so-called closed time path formalism, which we shall
develop at length in this book, especially in Chapters 5 and 6; for source ref-
erences see [Sch60, Sch61, BakMah63, Kel64, ChoSuHa80, CSHY85, SCYC88,
DeW86, Jor86, CalHu87, CalHu88, CalHu89]. To investigate further the meaning
of these two-time-path integrals, let us consider the expression

G11 (τ, τ ′) =
∫
x(t)=x′(t)

DxDx′ ei(S[x]−S[x′])/�ρ (x (0) , x′ (0) , 0) x (τ)x (τ ′)

(3.38)

The upper limit is free, provided it is the same for both histories. We may describe
this as an integral over single histories defined on a closed time path (CTP). This
time path has a first branch from 0 to t, where the history takes the values x (t),
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3.1 A quick review of quantum mechanics 67

and a second branch from t back to 0, where the history takes the values x′ (t).
The CTP boundary condition x (t) = x′ (t) says that the history is continuous
as a function on the time path.

To understand why we are describing the second branch as going backwards in
time, let us translate G11 (τ, τ ′) to canonical language. To this end, let us assume
τ > τ ′, and make explicit the value of the histories at these two preferred times,
namely

G11 (τ, τ ′) =
∫

dx (0) dx′ (0) dx (τ ′) dx (τ) dx (t)

×
[∫

0≤t≤τ ′
Dx eiS[x]/�

]
x (τ ′)

[∫
τ ′≤t≤τ

Dx eiS[x]/�

]
x (τ)

×
[∫

τ≤t≤t

Dx eiS[x]/�

][∫
x′(t)=x(t)

Dx′ e−iS[x′]/�

]

× ρ (x (0) , x′ (0) , 0) (3.39)

Identifying each bracket as a matrix element for some evolution operator, we get

G11 (τ, τ ′) =
∫

dx (0) dx′ (0) dx (τ ′) dx (τ) dx (t)

×〈x (t)|U (t, τ) |x (τ)〉 x (τ) 〈x (τ)|U (τ, τ ′) |x (τ ′)〉 x (τ ′)

×〈x (τ ′)|U (τ ′, 0) |x (0)〉 〈x (0)| ρ |x′ (0)〉 〈x′ (0)|U (0, t) |x (t)〉
= Tr

{
U (t, τ) X̂ U (τ, τ ′) X̂ U (τ ′, 0) ρ (0) U (0, t)

}
(3.40)

in the Schrödinger representation, or equivalently

G11 (τ, τ ′) = Tr
{
X̂ (τ) X̂ (τ ′) ρ

}
≡
〈
X̂ (τ) X̂ (τ ′)

〉
(3.41)

in the Heisenberg representation. Observe that if we had not specified the
relationship between τ and τ ′, then the path integral would have automati-
cally set the largest time to the left. This expresses the “time ordering” of the
two Heisenberg operators, so that we may generalize the result to G11 (τ, τ ′) ≡〈
T
[
X̂ (τ) X̂ (τ ′)

]〉
, where T stands for temporal ordering.

Now consider instead

G12 (τ, τ ′) =
∫
x(t)=x′(t)

DxDx′ ei(S[x]−S[x′])/�ρ (x (0) , x′ (0) , 0) x (τ)x′ (τ ′)

(3.42)
The corresponding Schrödinger picture canonical expression is

G12 (τ, τ ′) = Tr
{
U (0, τ ′) X̂ U (τ ′, t) U (t, τ) X̂ U (τ, 0) ρ (0)

}
(3.43)

or, in Heisenberg’s representation, G12 (τ, τ ′) ≡
〈
X̂ (τ ′) X̂ (τ)

〉
. In this case, the

primed Heisenberg operator comes out to the left, whichever time is greatest.
We may think of this as a path, rather than a time, ordering. Finally, with the
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68 Quantum open systems

same argument we see that

G22 (τ, τ ′) =
∫
x(t)=x′(t)

DxDx′ ei(S[x]−S[x′])/�ρ (x (0) , x′ (0) , 0) {x′ (τ)x′ (τ ′)}

≡
〈
T̃
[
X̂ (τ) X̂ (τ ′)

]〉
(3.44)

where T̃ stands for anti-time ordering (that is, the latest time to the right).
This anti-time ordering property justifies regarding the second branch as going
backwards with respect to the first branch.

If necessary, more involved time paths may be considered. For example, it
may be that the initial density matrix corresponds to a thermal state ρ (0) =
e−βH/Z, which can be regarded as an evolution operator in Euclidean time
τβ = −i�β. Then its matrix elements admit a path integral representation on a
time branch going from 0 to τβ , which appears as a third branch in the path
integral representation for average values [Mil69, McL72a, McL72b]. We will have
a lot more to say on thermal states in Chapter 10.

3.2 Influence functional

We wish to use the above to study the dynamics of a quantum open system.
The set-up is the usual one: a system S described by a variable x interacts
with an environment E described by variable(s) q = {qn}. The classical action
takes the form S [x, q] = SS [x] + SE [q] + Sint [x, q] . The Hamiltonian Ĥ = ĤS +
ĤE + Ĥint, where

Ĥs =
1
2
p2 + V (x) ; Ĥint = Vint (x, q) (3.45)

The quantum state of the total system is described by the density matrix
ρ (xq, x′q′, t) depending on both system and environment variables. It evolves
unitarily under Ĥ from an initial density matrix ρ(0) at t = 0 to ρ (t) =
e−itĤ/�ρ (0) eitĤ/� at finite time t. Explicitly, using completeness conditions in
a path integral representation:

ρ(x q, x′ q, t) = 〈x q, t|ρ|x′ q, t〉

=
∫
dxi dqi

∫
dx′

i dq
′
i 〈x q, t|xi qi, 0〉〈xi qi, 0|ρ|x′

i q
′
i,0〉〈x′

i q
′
i, 0|x′ q,t〉

=
∫

dxi dqi

∫
dx′

i dq
′
i

∫ x

xi

Dx

∫ q

qi

Dq eiS[x,q]/�ρ(xi qi, x
′
i q

′
i, 0)

×
∫ x′

x′
i

Dx′
∫ q

q′i

Dq′ e−iS[x′,q′]/�

≡
∫

dxi dqi

∫
dx′

i dq
′
i J (x q, x′ q, t|xi qi, x

′
i q

′
i, 0) ρ(xi qi, x

′
i q

′
i, 0)

(3.46)

where J is seen to be an evolution operator for the system plus environment.
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3.2 Influence functional 69

Since we care more about the system’s behavior than the environment, we need
not keep track of the details of the environment in the specifics of its Hamilto-
nian. In particular, we are mostly interested in computing the expectation values
of system observables. Considered as operators on the whole Hilbert space for
the system, these take the form Â⊗ 1, where Â is an operator in the system
Hilbert space, and 1 is the unit operator on the environment Hilbert space. The
expectation value of such observables may be computed with the reduced density
matrix ρr. This is obtained from the total density matrix as a partial (Landau’s)
trace over the environment variables, namely ρr = Trq ρ. Explicitly,

ρr(xx′, t) =
∫ ∞

−∞
dq ρ(x q, x′ q, t) (3.47)

Let us further assume that at t = 0 the system and environment (variables
with subscript i) are uncorrelated,

ρ(xi qi, x
′
i q

′
i, 0) = ρS(xi x

′
i, 0) ρE(qi q′i, 0) (3.48)

(Thus we are bringing the system and its environment together with all due
care to avoid the complications associated with the sudden switching on and off
of interactions. For the general case, see [HakAmb85, MorCal87, DavPaz97].)
As such, we are able to rearrange the order of integration to write the reduced
density matrix in the following way:

ρr(xx′, t) =
∫

dxi dx
′
i Jr(xx′, t|xi x

′
i, 0) ρS(xi x

′
i, 0) (3.49)

where the evolution operator for the reduced density matrix is defined by

Jr(xx′, t|xi x
′
i, 0) ≡

∫ x

xi

Dx

∫ x′

x′
i

Dx′ ei�
−1(S[x]−S[x′]) F [x, x′] (3.50)

F [x, x′] is the so-called Feynman–Vernon influence functional [FeyVer63,
FeyHib65, Wei93]:

F [x, x′] ≡ eiSIF[x,x′,t]/�

=
∫

dq dqi dq
′
i ρE(qi q′i 0)

∫ q

qi

Dq ei�
−1(SE [q]+Sint [x,q])

×
∫ q

q′i

Dq′ e−i�−1(SE [q′]+Sint [x
′,q′]) (3.51)

Here, SIF is called the influence action. Equation (3.49) looks like the evolution
of a density matrix for a closed system, but it contains a nonlocal term SIF,
which induces an explicit interaction between the two histories in the CTP. All
the influence of the environment on the system is encoded into the influence
action SIF.

We can also write the influence functional in a basis-independent form
as follows. In terms of the propagators U(t), U ′(t) for SE [q] + Sint[x, q] and
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70 Quantum open systems

SE [q] + Sint[x′, q], respectively, the path integrals can be expressed as

F [x, x′] =
∫

dq dqi dq
′
i ρE(qi q′i, 0) 〈q|U(t)|qi〉 〈q′i|U ′†(t)|q〉 (3.52)

Then upon integrating over q, qi and writing the remaining integral as a trace,
we obtain:

F [x, x′] = TrU(t) ρE(0)U ′†(t) (3.53)

3.2.1 Some properties of the influence action

Let us explore the main properties of the influence action. From equation (3.53)

eiSIF[x,x′,t]/� = Tr {Ux′ (0, t)Ux (t, 0) ρE (0)} (3.54)

The U ’s represent evolution operators with respect to a dynamics where the
system variable x plays the role of an external, time-dependent parameter. For
two different histories x (t) and x′ (t) the U ’s do not cancel each other. But when
x = x′, they do, and we get SIF [x, x, t] ≡ 0. Even in the presence of an explicit
time dependence, the evolution operator Ux is unitary, whereby SIF [x′, x, t] ≡
−SIF [x, x′, t]∗ . This means that, in a functional Taylor expansion in terms of the
difference variable u = x− x′ and the “center of mass” variable X = (x + x′) /2,

SIF [X,u, t] =
∑
k=1

1
k!

∫
dt1 . . . dtk S(k) [X (τ) , t1, . . . tk, t]u (t1) . . . u (tk) (3.55)

all the odd terms are real, and all the even terms are imaginary. Taking a varia-
tion along the diagonal we get the additional property SIF,x|x=x′ = − SIF,x′ |x=x′ .

At this point, it is convenient to introduce a notation that will stay with
us for the rest of the book. Let us call x (t) = x1 (t), x′ (t) = x2 (t). We shall
think of xa, a = 1, 2, as a single field doublet defined on a conventional (single
branch) time path. Moreover, as in a σ model, we define a metric tensor cab =
diag(1,−1) in target space. The metric tensor, together with its contravariant
(cab = (c−1)ab = diag (1,−1)) and mixed (cab = cadcdb = δab ) forms may be used
to raise and/or lower indices, as in x1 = c1ax

a = x1 = x, x2 = c2ax
a = −x2 =

−x′. From now on, the Einstein convention of summation over repeated indices
will be assumed; for example, the kinetic terms in the system action will be
written as

1
2

∫
dt cabẋ

aẋb =
1
2

∫
dt ẋaẋ

a =
1
2

∫
dt
[
ẋ2 − ẋ′2] (3.56)

and we shall refer to the CTP action S [xa] ≡ S [x] − S [x′] without discriminat-
ing the contributions from either branch.
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3.2 Influence functional 71

3.2.2 The linear bath model

As an example, let us assume that the environment action is quadratic in
the (many) q variable(s), the initial environment density matrix is Gaussian,
and the interaction term is bilinear Sint =

∫
dt xa (t)Qa [q (t)] (in CTP nota-

tion!), where the Q’s are linear combinations of the q’s [CalLeg83a, CalLeg83b,
GrScIn88]. Under all these assumptions, the influence action must also be
quadratic in x and x′ (equation (3.51) is a functional Fourier transform of
an elaborate Gaussian functional of histories Q (t) and Q′ (t) , and the Fourier
transform of a Gaussian is another Gaussian). Therefore we write SIF =
(1/2)

∫
dtdt′ xa (t)Mab (t, t′)xb (t′) , where

Mab (t, t′) = −i�
δ2

δxa (t) δxb (t′)
eiSIF[xa,T ]/�

∣∣∣∣
xa=0

(3.57)

A direct variation from equation (3.51) yields

δ2eiSIF[xa,T ]/�

δxa (t) δxb (t′)

∣∣∣∣
xa=0

=
−1
�2

∫
q1(T )=q2(T )

Dqa eiSE [qa]/�Qa (t)

×Qb (t′) ρe
(
q1 (0) , q2 (0) , 0

)
(3.58)

As per the earlier discussion, we obtain

Mab (t, t′) =
i

�

(
〈T [Q (t)Q (t′)]〉 − 〈Q (t′)Q (t)〉
− 〈Q (t)Q (t′)〉

〈
T̃ [Q (t)Q (t′)]

〉) (3.59)

(where the expectation values are computed disregarding the interaction with
the system), or, in terms of the original variables

SIF =
i

2�

∫
dtdt′

{
〈T [Q (t)Q (t′)]〉x (t)x (t′) − 〈Q (t′)Q (t)〉x (t)x′ (t′)

−〈Q (t)Q (t′)〉x′ (t)x (t′) +
〈
T̃ [Q (t)Q (t′)]

〉
x′ (t)x′ (t′)

}
(3.60)

If we now write x = X + u/2, x′ = X − u/2, we get the equivalent expression

SIF =
∫

dtdt′
{
u (t)D (t, t′)X (t′) +

i

2
u (t)N (t, t′)u (t′)

}
(3.61)

where we encounter for the first time the dissipation D and noise N kernels

D (t, t′) =
i

�
〈[Q (t) , Q (t′)]〉 θ (t− t′) ; N (t, t′) =

1
2�

〈{Q (t) , Q (t′)}〉
(3.62)

Square and curly brackets stand for commutator and anticommutator, respec-
tively. They are both real, as expected, and D is also causal.

Unraveling the physical meaning of these kernels and applying them to differ-
ent situations will be a major theme for the rest of the book.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core
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3.3 The master equation

When the influence functional is quadratic, and hence may be written as in
equation (3.61), it is possible to derive a dynamical equation for the evolution of
the reduced density matrix [Zha90, HuPaZh92, HuPaZh93a, PaHaZu93, Paz94,
HalYu96].

First use equation (3.61), plus the observation that D is causal and vanishes
on the diagonal (cf. equation (3.62)), to obtain an explicit representation for
SIF [t + dt]

SIF [xa, t + dt] = SIF [xa, t] + dt u (t)
∫ t

0

dt′ {D (t, t′)X (t′) + iN (t, t′)u (t′)}
(3.63)

Now use this in equation (3.49) to obtain

∂

∂t
ρr (x, x′, t) = − i

�

[
Ĥs, ρr (t)

]
x,x′

−1
�

(x− x′)
∫ t

0

dt′
{
N (t, t′) [X − X′] (x, x′, t′)

− i

2
D (t, t′) [X + X′] (x, x′, t′)

}
(3.64)

The first term is just the Liouville–von Neuman equation (3.6) for the closed
system. In the second term

X (x, x′, t′) =
∫
x(t)=x,x′(t)=x′

DxDx′ ei(SS [x]−SS [x′]+SIF[x,x′,t])/�

×ρs (x (0) , x′ (0) , 0) x (t′) (3.65)

with a similar expression for X′ (x, x′, t′) , replacing the last factor x (t′) by x′ (t′) .
In general, X (x, x′, t′) and X′ (x, x′, t′) are complicated functions of x, x′ and t.

However, since in general N and D are of second order in the system–bath inter-
action (cf. equation (3.62)), SIF may be neglected within the integral in equation
(3.65) to third order in this interaction, and X (x, x′, t′) and X′ (x, x′, t′) may
be expressed in terms of quantities belonging to the system alone. Concretely,
X (x, x′, t′) is the (x, x′) matrix element of the operator

X (t′) = e−iĤs(t−t′)/�X̂e−iĤst
′/�ρs (0) eiĤst/� (3.66)

where X̂ is the position operator in the Schrödinger representation. Introducing
the Heisenberg operator X̂(t) = eiĤst/�X̂e−iĤst/� and writing t′ = t− τ , we get,
to second order in the system–bath coupling

X (t′) = X̂ (−τ) ρr (t) (3.67)

Similarly, X′ (x, x′, t′) is the (x, x′) matrix element of the operator

X′ (t′) = ρr (t) X̂ (−τ) (3.68)
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whereby we get the so-called master equation

�
∂

∂t
ρr (t) = −i [Hs, ρr (t)]

−
∫ t

0

dτ

{
N (t, t− τ)

[
X̂,
[
X̂ (−τ) , ρr (t)

]]

− i

2
D (t, t− τ)

[
X̂,
{
X̂ (−τ) , ρr (t)

}]}
(3.69)

3.3.1 The linear system model

When the system is also linear we can give an explicit formula for the Heisenberg
operators

X̂ (−τ) = cos [Ωτ ] X̂ − sin [Ωτ ]
MΩ

P̂ (3.70)

and we can write the master equation in a way which is explicitly local in time

�
∂

∂t
ρr (x, x′, t) =

{
i�2

2M

[
∂2

∂x2
− ∂2

∂x′2

]
− iM

[
Ω2 + δΩ2 (t)

]
2

(
x2 − x′2)

− σ2 (t)
2�

(x− x′)2 − iΔad (t) (x− x′)
[
∂

∂x
+

∂

∂x′

]

− �Γ (t) (x− x′)
[
∂

∂x
− ∂

∂x′

]}
ρr (x, x′, t) (3.71)

where

σ2 (t)
2

=
∫ t

0

dτ �N (t, t− τ) cos [Ωτ ] (3.72)

Δad (t) =
1

MΩ

∫ t

0

dτ �N (t, t− τ) sin [Ωτ ] (3.73)

Γ (t) =
1
2

∫ t

0

dτ γ (τ) cos [Ωτ ] (3.74)

δΩ2 (t) = Ω
∫ t

0

dτ γ (τ) sin [Ωτ ] − γ (0) (3.75)

and we have written D (t, t− τ) = −M (dγ (τ) /dτ), with the convention that
γ (t) = 0. Observe that besides the effects of noise and dissipation, the σ2 term
clearly acts to suppress the off-diagonal elements of the density matrix. Therefore
we must add decoherence to the list of effects of the environment on the system,
together with dissipation, diffusion and renormalization.

3.4 The Langevin equation

We now present two ways to derive the Langevin equation: first, formally from
the influence action using the Feynman–Vernon identity [FeyVer63, FeyHib65]
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74 Quantum open systems

to reduce the part containing the noise kernel to an integral over a new classical
stochastic forcing term, and second, through the time evolution of the reduced
Wigner function. When the influence functional has the form (3.61), either rig-
orously or as a result of approximations, it is possible to read the Langevin equa-
tion directly off the path integral representation for the reduced density matrix,
without explicit reference to the Wigner function. The idea is to substitute the
Gaussian identity (3.76) into the path integral representation (3.51). We then
commute the integrals, and perform the x and x′ integrations by the method of
stationary phase. The coupled equations for the stationary paths admit solutions
where x = x′, and the Langevin equation (3.93) is just the stationarity condi-
tion for these solutions. The final integration over ξ is, of course, necessary to
compute physical observables.

Later, in Chapter 5, when we treat open systems of quantum fields, we shall
use this method as an efficient way to derive the functional Langevin equation.
In Chapter 9 we will discuss in greater detail a class of problems where the
fluctuations predicted by this Langevin equation have a direct physical meaning.

From the influence action via a noise average

For linear coupling to a linear bath, the influence functional has the form (3.61).
In this case Feynman and Vernon showed that the noise kernel part of the influ-
ence functional can be written as a classical stochastic force ξ acting on the
system. The following is an identity of the Gaussian functional integral:

exp
{−1

2�

∫
dtdt′ u (t)N (t, t′)u (t′)

}
=
∫

Dξ P [ξ] exp
[
i

�

∫ ∞

0

dt ξu

]
(3.76)

where P [ξ] is a Gaussian measure such that

〈ξ〉 = 0, 〈ξ (t) ξ (t′)〉 = �N (t, t′) (3.77)

The stochastic force ξ has zero mean and correlation function given by N(t, t′)
the noise kernel, thus its name. We observe that P [ξ] does not depend on t.
The probability density functional is a functional of X(s) if we allow the statis-
tical properties of ξ to depend on the system history. This functional defines a
stochastic average 〈 〉ξ as a functional integral over ξ(s) multiplied by a normal-
ized Gaussian probability density functional P[ξ(s);X(s)].

One can then write the total influence functional (3.51) as

F [X,u] =
〈

exp
[
i

�

∫ tf

ti

ξfull(s)u(s)ds
]〉

(3.78)

ξfull(s) =
∫ s

ti

ds′D(s, s′)X(s′) + ξ(s) (3.79)

The equation of motion generated by the influence action is

∂L

∂x
− d

dt

∂L

∂ẋ
+
∫ s

ti

ds′ D(s, s′)X(s′) = −ξ(t) (3.80)
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3.4 The Langevin equation 75

whereby we obtain the Langevin equation. In general D generates nonlocal dis-
sipation while ξ represents a colored noise source.

The reduced Wigner function

We have seen that any wavefunction is associated with a function in phase
space, the so-called Wigner function (cf. equation (3.15)). Suppose the system is
described by a density matrix rather than a single wavefunction. Decomposing
the density matrix in terms of its own eigenfunctions

ρ (x, x′, t) =
∑
α

ρα (t)ψα (x, t)ψ∗
α (x′, t) (3.81)

∫
dx ψ∗

α (x, t)ψβ (x, t) = δαβ (3.82)

we see that ρα(t) is the probability of finding the system in one of the ψα states.
Let us associate each ψα state with its corresponding Wigner function fW

α , and
compute the expectation value

fW (x, p, t) =
∑
α

ρα (t) fW
α (x, p, t)

=
∫

du

2π�
e−ipu/�

∑
α

ρα (t) ψ∗
α

(
x− u

2
, t
)
ψα

(
x +

u

2
, t
)

=
∫

du

2π�
e−ipu/� ρ

(
x +

u

2
, x− u

2
, t
)

(3.83)

The Wigner function is directly given as the partial Fourier transform of the
density matrix, without any explicit reference to the latter eigenstates.

For a quantum open system, we define the reduced Wigner function as the
partial Fourier transform of the reduced density matrix

fW
r (X,P, t) =

∫
du

2π�
e−iPu/� ρr

(
X +

u

2
, X − u

2
, t
)

(3.84)

From the path integral representation of the reduced density matrix containing
its dynamics one can derive how the reduced Wigner function evolves in time
[CaRoVe01, Rou02, CaRoVe03].

Let us replace ρr in equation (3.84) by its path integral representation, with
the initial reduced density matrix given in terms of the initial reduced Wigner
function

fW
r (Xf , Pf , t) =

∫
duf

2π�
e−iPfuf/�

∫
x(t)=Xf+uf/2,x′(t)=Xf−uf/2

DxDx′

× exp
{
i

�
[SS [x] − SS [x′] + SIF [x, x′, t]]

}

×
∫

dPi exp
[
i

�
Pi (x (0) − x′ (0))

]
fW
r

(
x (0) + x′ (0)

2
, Pi, 0

)
(3.85)
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76 Quantum open systems

Insert the momentum variables by means of the identity

eiSS [x]/� = exp
[
− i

�

∫ t

0

dt V [x (t)]
] ∫

Dp exp
{
i

�

∫ t

0

dt

[
pẋ− p2

2M

]}
(3.86)

and introduce new variables

x, x′ = X ± u

2
(3.87)

p, p′ = P ± π

2
(3.88)

We assume a linear bath so the influence functional has the form (3.61). We
then use the Gaussian identity (3.76) to introduce the stochastic variable ξ and
write

V (x) − V (x′) = uV ′ (X) + V (X,u) , V ∼ O
(
u3
)

(3.89)

We may now formally integrate over the u and π variables, to get

fW
r (Xf , Pf , t) =

∫
X(t)=Xf ,P (t)=Pf

DXDP fW
r (X (0) , P (0) , 0)

×
∫

Dξ PQ [ξ, t] δ
[
Ṗ + V ′ (X) + D (t) − ξ

]
δ

[
Ẋ − P

M

]
(3.90)

where

D (t) = −
∫ t

0

dt′ D (t, t′)X (t′) (3.91)

PQ [ξ, t] = exp
[−i

�

∫ t

0

dt V
(
X, i�

δ

δξ (t)

)]
P [ξ] (3.92)

In other words, the Wigner function evolves as if it described an ensemble of
particles following trajectories which obey the equations

Ẋ (t) =
P (t)
M

, Ṗ (t) = −V ′ (X (t)) −D (t) + ξ (t) (3.93)

with random initial conditions weighted by the initial Wigner function and noise
autocorrelation given by equation (3.77). These are the Hamilton equations of
the system but now acquiring two extra terms, D and ξ, describing the influence
of the environment. D is a deterministic, memory-dependent term, while ξ plays
the role of “noise” with a “probability” distribution PQ. Observe that this is
an exact relation; in particular, the system retains fully its quantum coherence,
which is encoded in PQ. This means that we can use averages over the “noise”
and initial conditions to compute exact quantum expectation values of system
variables. In this sense, the Langevin equation gives the most detailed description
of the quantum open system we shall see in this chapter.
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3.4 The Langevin equation 77

Incidentally, observe that since V involves cubic derivatives or higher, the noise
autocorrelation is given by equation (3.77), independent of the self-interaction
potential V .

The path integral representation (3.90) may be simplified greatly if the X

dependence of V can be ignored (as it happens when the potential is cubic), or
at least X may be replaced by the solution X̄ [X (0) , P (0) , 0; t) to the classical
equations of motion with Cauchy data (X (0) , P (0)) at time 0. In this case the
path integral over X and P may be performed, and we get

fW
r (Xf , Pf , t) = 〈δ (X (t) −Xf ) δ (P (t) − Pf )〉 (3.94)

where X(t) and P (t) are the solutions of the Langevin equation (3.93) and the
average is over the initial conditions and noise realizations. This average is more
involved than the one we considered in Chapter 2, because of the more complex
noise distribution function.

3.4.1 The linear bath model

It is interesting to compare equations (3.93) to the simple linear bath model
we discussed in Chapter 2. To this end, we shall use expressions (3.62) for the
dissipation and noise kernels. Let us write q = {qα}, Q =

∑
cαqα. Recall that

the expectation values in equation (3.62) are computed at X = 0, and that for a
linear system the commutator of two field operators, being a c-number, is state
independent. Thus, we may write

[Q (t) , Q (t′)] =
∑

c2α [qα (t) , qα (t′)] (3.95)

For a linear system we may solve Heisenberg’s equations

qα (t) = qα (0) cosωαt + pα (0)
sinωαt

mαωα
(3.96)

[qα (t) , qα (t′)] =
�

i

sinωα (t− t′)
mαωα

(3.97)

To compare with the Brownian motion model, we write

D
(
t, t

′
)

= −M
∂

∂t
γ (t− t′) (3.98)

After an integration by parts, and discarding the term from the lower limit
because we assume the interaction is switched on smoothly, we get

D (t) = MδΩ2
0X (t) +

∫ t

0

dt′ γ (t− t′)P (t′) (3.99)

γ (t− t′) =
1
M

∑
α

c2α
mαω2

α

cosωα (t− t′)

δΩ2
0 = −γ (0)
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78 Quantum open systems

as in Chapter 2, equation (2.12). We now see the origin of the name dissipation
kernel for D (t, t′).

In reference to the noise, we observe first of all that
1
2
〈{Q (t) , Q (t′)}〉 = 〈Q (t)〉 〈Q (t′)〉 +

1
2
〈{Q (t) − 〈Q (t)〉 , Q (t′) − 〈Q (t′)〉}〉

(3.100)

If, for example, the initial state for the environment is thermal, then 〈Q (t)〉 = 0,
and we recover the result from Chapter 2, equation (2.16)

〈ξ (t) ξ (t′)〉 = �N (t, t′) =
∑
α

c2α
mαω2

α

〈εα〉 cosωα (t− t′) (3.101)

only now we must use the quantum energy expectation value

〈εα〉 = �ωα

[
1
2

+
1

e�ωα/kBT − 1

]
(3.102)

whereby we recover the quantum form of the fluctuation–dissipation theorem.
Of course, the noise is truly Gaussian only if V is zero, which means the system
itself is linear.

If the bath frequencies span a continuum, we should replace∑
α

→
∫ ∞

0

dω ρ (ω) (3.103)

where ρ (ω) dω is the number of oscillators with frequencies between ω and ω +
dω. We say the bath is ohmic if

ρ (ω) =
4γM
π

mωω
2

c (ω)2
(3.104)

for some constant γ. Observe that for an ohmic bath γ (t− t′) = 4γδ (t− t′) and
D (t) = 2γP (t) , so the Langevin equation is local in time. No physical bath
can be exactly ohmic, because it would require either an infinite number of
oscillators or else arbitrarily strong coupling to the bath, but many physical
systems exhibit ohmic dissipation (for example, a biased Josephson junction)
and may be modeled as if they were in contact with an ohmic bath.

Let us investigate the noise autocorrelation for an ohmic bath in equilibrium.
We have

〈ξ (t) ξ (t′)〉 = �N (t, t′) =
4�Mγ

π

∫ ∞

0

dω ω

[
1
2

+
1

e�ω/kBT − 1

]
cosω (t− t′)

(3.105)

For high temperature and t− t′ � �/kBT, we may argue that the integral is
dominated by low frequencies, whereby the noise is white and we recover the
classical fluctuation–dissipation theorem

�N (t, t′)|T→∞ = 4MγkBTδ (t− t′) (3.106)
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3.5 The Kramers–Moyal equation 79

As T → 0, however, the integral becomes singular. Let us define

Pf
[

1
t2

]
= −

∫ ∞

0

dω ω cosωt, (3.107)

where Pf stands for the Hadamard finite part prescription. For example, if we
regularize the integral by including a convergence factor e−ω/Λ, then

Pf
[

1
t2

]
= limΛ→∞

t2 − Λ−2

(t2 + Λ−2)2
(3.108)

With this definition, the noise correlation at T = 0 becomes

�N (t, t′)|T=0 = −2�Mγ

π
Pf

[
1

(t− t′)2

]
(3.109)

Observe that the decay of the noise correlation obeys a power law, which implies
a very strongly colored noise.

3.5 The Kramers–Moyal equation

As in Chapter 2, the Langevin equation for the “trajectories” of the quantum
open system may be turned into a Kramers–Moyal equation for the reduced
Wigner function. To obtain this equation, we simply take the time derivative of
the path integral representation (3.90). Observe that we get a new term coming
from the explicit time dependence of PQ. Indeed, write

PQ [ξ, t] = PQ [ξ, t∗] − i

�
(t− t∗) V

(
Xf , i�

δ

δξ (t∗)

)
PQ [ξ, t∗] (3.110)

where the reference time t∗ < t is taken to t after computing the derivatives.
Then the noise averages may be split in two, and

∂

∂t
fW
r (Xf , Pf , t) = −

{
H, fW

r

}
+ MδΩ2

0Xf
∂fW

r

∂Pf
+

∂

∂Pf
[A + B] + C (3.111)

where the first term contains the Poisson brackets. The new terms are

A =
∫ t

0

dt′ γ (t− t′) 〈P (t′) δ (X (t) −Xf ) δ (P (t) − Pf )〉 (3.112)

B = −〈ξ (t) δ (X (t) −Xf ) δ (P (t) − Pf )〉 (3.113)

C =
(−i

�

)〈
V
(
Xf ,−i�

δ

δξ (t∗)

)
δ (X (t) −Xf ) δ (P (t) − Pf )

〉
(3.114)

We may use certain approximations to extract the leading behavior of these
expressions. To simplify the A term, for example, we replace P (t′) by the
solution P̄ [Xf , Pf , t; t′) to the classical equations of motion with Cauchy data
[Xf , Pf ] at time t. Observe that even for a strong system–bath interaction this
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80 Quantum open systems

approximation is justified if the kernel γ decays fast enough; it is exact for an
ohmic bath. So we approximate

A ∼ Γ (Xf , Pf , t) fW
r (Xf , Pf , t) (3.115)

Γ (Xf , Pf , t) =
∫ t

0

dt′ γ (t− t′) P̄ [Xf , Pf , t; t′) (3.116)

To simplify the B term, let us first neglect the X dependence in V. This
approximation is actually exact for a cubic potential. Also recall that since the t

dependence of V is explicitly considered through the C term, the time-integral
in PQ in the B term is truncated at t−. Then we have

−ξ (t)PQ [ξ, t] = − exp

[
−i

�

∫ t−

0

dt′ V
(
X, i�

δ

δξ (t)

)]
ξ (t)P [ξ]

=
∫ t

0

dt′ �N (t− t′)
δ

δξ (t′)
PQ [ξ, t] (3.117)

and after a further integration by parts

B =
∫ t

0

dt′ �N (t− t′)
{〈

δX (t)
δξ (t′)

∂

∂Xf
δ (X (t) −Xf ) δ (P (t) − Pf )

〉

+
〈
δP (t)
δξ (t′)

δ (X (t) −Xf )
∂

∂Pf
δ (P (t) − Pf )

〉}
(3.118)

To compute the variations with respect to the noise, recall the identities

δX (t′)
δξ (t′)

= 0;
δP (t′+)
δξ (t′)

= 1 (3.119)

and use the chain rule

0 =
δX (t′)
δX (t)

δX (t)
δξ (t′)

+
δX (t′)
δP (t)

δP (t)
δξ (t′)

(3.120)

1 =
δP (t′)
δX (t)

δX (t)
δξ (t′)

+
δP (t′)
δP (t)

δP (t)
δξ (t′)

(3.121)

Now assume that (X,P ) (t) and (X,P ) (t′) are linked through the classical equa-
tions of motion. The determinant of the system is 1 from Liouville’s theorem,
and so

δX (t)
δξ (t′)

= −δX̄ [Xf , Pf , t; t′)
δPf

;
δP (t)
δξ (t′)

=
δX̄ [Xf , Pf , t; t′)

δXf
(3.122)

The final result is

B= −
{
Φ, fW

r

}
, (3.123)

Φ =
∫ t

0

dt′ �N (t− t′) X̄ [Xf , Pf , t; t′) (3.124)
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3.5 The Kramers–Moyal equation 81

Finally, to compute C we use the identities (3.119) at time t to get

C =
(−i

�

)
V
(
Xf , i�

δ

δPf

)
fW
r (Xf , Pf , t) (3.125)

To summarize, the quantum Kramers–Moyal equation reads

∂

∂t
fW
r (Xf , Pf , t)

= −
{
H, fW

r

}
−
(
i

�

)
V
(
Xf , i�

δ

δPf

)
fW
r (Xf , Pf , t)

+MδΩ2
0Xf

∂fW
r

∂Pf

+
∂

∂Pf

[
Γ (Xf , Pf , t) fW

r (Xf , Pf , t)−
{
Φ, fW

r

}]
(3.126)

The first line gives the evolution of the Wigner function without interaction with
the environment, while the second and third lines describe the renormalization,
dissipation, diffusion and decoherence effects.

3.5.1 The linear system model

If the system itself is linear, we can obtain simple analytic expressions for
X̄ [Xf , Pf , t; t′) and P̄ [Xf , Pf , t; t′) and thus derive an explicit result. We have
(cf. equation (3.70))

X̄ [Xf , Pf , t; t′) = Xf cos Ω (t− t′) − Pf

MΩ
sin Ω (t− t′) (3.127)

P̄ [Xf , Pf , t; t′) = Pf cos Ω (t− t′) + MΩXf sin Ω (t− t′) (3.128)

The Kramers–Moyal equation now reads (for a linear system, V =0)

∂

∂t
fW
r (Xf , Pf , t) = −

{
H, fW

r

}
+ MδΩ2 (t)Xf

∂fW
r

∂Pf

+
∂

∂Pf

[
2Γ (t)Pf+

σ2 (t)
2

∂

∂Pf
+ Δad (t)

∂

∂Xf

]
fW
r

(3.129)

where the coefficients σ2 (t), Δ (t), Γ (t) and δΩ2 (t) were defined above, from
equations (3.72)–(3.75). The identity of the coefficients to those in the master
equation (3.71) is not surprising, since for linear systems the Kramers–Moyal
equation (3.129) and the master equation (3.71) are equivalent. For nonlinear
systems, they are still closely related, but the approximations which go into one
or the other are not exactly the same.

The form (3.129) of the Kramers–Moyal equation makes it clear that the coef-
ficient γ (t) is associated with dissipation and σ2 (t) with “normal” diffusion. We
call Δad (t) the “anomalous” diffusion constant.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


82 Quantum open systems

σ2 (t) also pertains to decoherence. To see this, consider the pseudo-entropy

S̃ = 1 − tr ρ2
r

= 1 − (2π�)
∫

dXdP (fW
r )2 (X,P ) (3.130)

Then

dS̃

dt
= 2Γ(1 − S̃) + (4π�)

∫
dXdP

{
σ2 (t)

2

(
∂fW

r

∂Pf

)2

+ Δad (t)
∂fW

r

∂Xf

∂fW
r

∂Pf

}

(3.131)

The first term represents heat loss to the environment and the second induces
decoherence. The third does not have a definite sign.

To conclude, let us evaluate these coefficients for an ohmic bath. At high tem-
perature, we get the expected relations Γ (t) = γ, σ2 (t) = 4γMkBT , Δad (t) =
δΩ2 (t) = 0. At T = 0, though, the naive expressions diverge. Suppose we use
an exponential cut-off to regularize them, as in (3.108). Then as the cut-off is
removed, we get Γ (t) = γ and δΩ2 (t) = 0. For the expressions involving the noise
kernel (3.109), we get that Δad diverges logarithmically, while σ2 diverges lin-
early in the cut-off Λ. This result suggests that at late times the system perceives
the environment as a heat bath at a temperature kBTeff ≈ �Λ [ALMV06].

3.6 Derivation of the propagator and the master equation

For the influence functional path integral treatment of quantum Brownian
motion (QBM) the formal expression of the evolutionary operator for the reduced
density matrix was derived by Grabert, Schramm and Ingold [GrScIn88] and an
exact master equation for QBM in a general (non-ohmic) environment at an arbi-
trary temperature was derived by Hu, Paz and Zhang [HuPaZh92, HuPaZh93a].
In this section we give a discussion of this problem based on their work. This is
useful not only as a model example of this important method, but also because
in some problems such as the calculation of entropy generation (to be discussed
in Chapter 9) in quantum open systems we need some of these details.

Let us consider the general case of a quantum harmonic oscillator with time-
dependent mass, cross-term and natural frequency undergoing Brownian motion
through its interaction with an environment made up of n harmonic oscillators
with the same time-dependent parameters. The total Lagrangian of the system
is given by

S[x,q] = S[x] + SE [q] + Sint[x,q]

=
∫ t

ti

ds

{
1
2
M(s)

[
ẋ2 + 2E(s)xẋ− Ω2(s)x2

]

+
∑
n

[
1
2
mn(s)

[
q̇2
n + 2εn(s)qnq̇n − ω2

n(s)q2
n

]]
+
∑
n

[−c(s)xqn]

}

(3.133)
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3.6 Derivation of the propagator and the master equation 83

where the particle and the bath oscillators have coordinates x and qn, respec-
tively; we may also let the system variable interact with the environment variable
through a more general f(x) functional form. This Hamiltonian is considered in
detail by Hu and Matacz [HuMat94] as an example of a squeezed quantum open
system. We will discuss this in the last section of Chapter 4.

3.6.1 Evolution of the reduced density matrix

Given some initial system density matrix ρS(xi x
′
i 0) we want to evolve it in

time using (3.49). The formal expression for Jr was derived by Grabert et al.
[GrScIn88] using path integral methods, and calculated explicitly in [HuPaZh92,
HuPaZh93a, HuMat94] for a general (non-ohmic) environment.

In terms of the sum and difference variables the classical paths followed by the
system, Xcl, ucl, can be written in terms of more elementary functions u, v:

Xcl(s) = Xcl(ti)u1(s) + Xcl(t)u2(s)

ucl(s) = ucl(ti)v1(s) + ucl(t)v2(s) (3.134)

Then it can be shown [HuMat94] that the evolutionary operator Jr is equal to

Jr(x, x′, t|xi, x
′
i, ti) =

|b2|
2π�

exp
[
i

�
(b1Xu− b2Xui + b3Xiu− b4Xiui)

− 1
�

(
a11u

2
i + a12uiu + a22u

2
)]

(3.135)

The functions b1 → b4 can be expressed as

b1(t, ti) = M(t)u̇2(t) + M(t)E(t)

b2(t, ti) = M(ti)u̇2(ti)

b3(t, ti) = M(t)u̇1(t)

b4(t, ti) = M(ti)u̇1(ti) + M(ti)E(ti) (3.136)

while the functions aij are defined by

aij(t, ti) =
1

1 + δij

∫ t

ti

ds

∫ t

ti

ds′ vi(s) N(s, s′) vj(s′) (3.137)

The functions u1 → v2 are solutions to the following equations (dropping sub-
scripts on u, v):1

ü(s) +
Ṁ

M
u̇ +

(
Ω2 + Ė +

Ṁ

M
E
)
u− 1

M(s)

∫ s

ti

ds′ D(s, s′) u(s′) = 0 (3.138)

v̈(s) +
Ṁ

M
v̇ +

(
Ω2 + Ė +

Ṁ

M
E
)
v − 1

M(s)

∫ t

s

ds′ v(s′)D(s′, s) = 0 (3.139)

1 Do not confuse u here with u ≡ x1 − x2 in Chapter 2 or u ≡ x− x′ in Chapter 3.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


84 Quantum open systems

subject to the boundary conditions

u1(ti) = v1(ti) = 1, u1(t) = v1(t) = 0 (3.140)

u2(ti) = v2(ti) = 0, u2(t) = v2(t) = 1 (3.141)

To proceed further we need explicit expressions for a11 → b4. These are
expressed in terms of u1 → v2, which in turn come from solving equations (3.138)
and (3.139). To solve these equations we need to know the dissipation D ker-
nel of the environment, which is determined by the coupling and the spectral
density function of the environment. We consider an ohmic bath and assume
an unsqueezed (coherent) thermal bath made up of unit mass static (time-
independent frequency) oscillators so the dissipation and noise kernels simplify
to the form

D(s, s′) = −4γ0 c(s)c(s′) δ′(s− s′)

N(s, s′) =
2γ0

π
c(s)c(s′)

∫ ∞

0

ω coth
�ω

2kBT
cosω(s− s′) dω (3.142)

If c(s) = c = constant, we may identify γ0c
2 = Mγ. In this case, in the high-

temperature limit the noise becomes white, that is, N tends toward a delta
function.

3.6.2 Master equation

We now proceed with the derivation of the master equation from the evolution
operator using the simplified method of Paz [Paz94]. We first take the time
derivative of both sides of equation (3.135), multiply both sides by ρr(Xi, ui, ti)
and integrate over Xi, ui to obtain

ρ̇r(Xf , uf , t) =

[
ḃ2
b2

+
i

�
ḃ1Xfuf − ȧ22

u2
f

�

]
ρr(Xf , uf , t)

+
i

�
uf ḃ3

∫
duidXi XiJrρr(Xi, ui, ti)

− 1
�
(iḃ2Xf + ȧ12uf )

∫
duidXi uiJrρr(Xi, ui, ti)

− i

�
ḃ4

∫
duidXi XiuiJrρr(Xi, ui, ti)

− ȧ11

�

∫
duidXi u

2
iJrρr(Xi, ui, ti)

(3.143)

Here the dot denotes the derivative with respect to t. We can perform the
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integrals in (3.143) by using

uiJr =
i�

b2

∂Jr

∂Xf
+

b1uf

b2
Jr (3.144)

XiJr = − i

b3

[
�
∂Jr

∂uf
+ (uia12 + 2ufa22)Jr)

]
− b1

b3
XfJr (3.145)

XiuiJr = −
(
i�

b2

∂

∂Xf
+

b1uf

b2

)

×
(
i�

b3

∂

∂uf
+

i

b3
[uia12 + 2ufa22] +

b1
b3
Xf

)
Jr (3.146)

The ui functions obey mixed boundary conditions. It is convenient to express
them in terms of functions wi obeying initial conditions only. We write

u1(s) = w1(s) − w2(s)
w1(t)
w2(t)

, u2(s) =
w2(s)
w2(t)

(3.147)

In order to satisfy the boundary conditions (3.140) we require

w1(ti) = ẇ2(ti) = 1, w2(ti) = ẇ1(ti) = 0 (3.148)

In this representation we can show that

ḃ4
b2b3

= − 1
M(t)

, b1 = −M(t)
ḃ2
b2

+ M(t)E , ȧ11 = −v̇1(t)a12 (3.149)

With these relations the master equation is the same as equation (3.71) with two
additional terms

i�
∂

∂t
ρr(x, x′, t) =

{
− �

2

2M(t)

( ∂2

∂x2
− ∂2

∂x′2

)
+ i�E

(
x
∂

∂x
+ x′ ∂

∂x′

)

+
M(t)

2
[
Ω2 + δΩ2 (t)

] (
x2 − x′2)+ i�E

}
ρr(x, x′, t)

− i�Γ(t, ti)(x− x′)
( ∂

∂x
− ∂

∂x′

)
ρr(x, x′, t)

− i
σ2 (t)
2�

(x− x′)2 ρr(x, x′, t)

+ Δad (t) (x− x′)
( ∂

∂x
+

∂

∂x′

)
ρr(x, x′, t)

− i�2Dxx(t, ti)
( ∂

∂x
+

∂

∂x′

)2

ρr(x, x′, t) (3.150)
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where we identify

[
Ω2 + δΩ2 (t)

]
=

b1ḃ3
M(t)b3

− ḃ1
M(t)

+ E2 − ḃ2
b2
E (3.151)

Γ(t, ti) = −1
2

(
ḃ3
b3

− ḃ2
b2

)
(3.152)

−σ2 (t)
2�

=
b21
b2

(
a12

M(t)
− ȧ11

b2

)
+

2b1
M(t)

a22 − ȧ22 + 2
ḃ3
b3
a22 + a12

b1ḃ3
b2b3

− ȧ12
b1
b2

(3.153)

Δad (t) = �

[
ȧ12

b2
− 2

a22

M(t)
− ḃ3a12

b3b2
− 2b1

b2

(
a12

M(t)
− ȧ11

b2

)]
(3.154)

Dxx(t, ti) =
1
b2

(
a12

M(t)
− ȧ11

b2

)
(3.155)

The dot in these equations denotes taking the derivative with respect to t.
The factor a12/M(t) − ȧ11/b2 vanishes only when the dissipation kernel is sta-

tionary (i.e. a function of s− s′) and the system is a time-independent harmonic
oscillator. When this happens v1(s) = u2(t− s) and we have v̇1(t) = −b2/M(t).
We see from equation (3.149) that the factor a12/M(t) − ȧ11/b2 is zero in this
case. All the diffusion coefficients contain this factor and Dxx depends solely
on it.

3.7 Consistent histories and decoherence functional

The question which remains unanswered is whether individual solutions of the
Langevin equation are actually observable. This question contains two aspects,
namely, (a) whether the evolution of the quantum open system may be analyzed
in terms of trajectories, and (b) whether these trajectories describe any recog-
nizable dynamics. As we shall see, the answer is not straightforward, because
it involves a new component, namely, the accuracy of our observations. Out of
quantum common sense, we expect that if we follow the trajectories too closely,
we would be feeding noise into the system (Heisenberg’s principle), eventually
masking the system–environment interaction. Still the question remains whether
there is any range where the Langevin equation is a satisfactory description of
the observed evolution of the system.

To analyze this question we shall adopt the consistent histories approach to
quantum mechanics, in the version advanced by Gell-Mann and Hartle (see
[Gri84, Gri93, Omn88, Omn90, Omn92, KoEzMuNo90, Har92, Har93, GelHar90,
HarGel93, Bru93, GelHar06]). The idea is to define a history by a set of projec-
tors Pα acting at times ti. In canonical terms, a history is given by an evolution
of the state vector such that at every time ti, it belongs to the proper space of
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3.7 Consistent histories and decoherence functional 87

Pα (ti). In path integral terms, the projectors are represented by window func-
tions wα [x (ti)], which take on unit value if the instantaneous configuration x

satisfies the requirements of the history α, and vanish otherwise. The limiting
case of a fine-grained history, namely, when x (t) is specified for all times, is
assigned an amplitude exp iS/�, as usual in the Feynman path integral formu-
lation. The amplitude for a coarse-grained history defined by window functions
wα [x (ti)] is defined by the superposition

A [α] =
∫

Dx eiS/�ψ [x (0)]

{∏
i

wα [x (ti)]

}
(3.156)

The probability is naturally expressed in terms of a closed time path integral

P [α] = |A [α]|2 =
∫

DxDx′ ei[S−S′]/�ρ [x (0) , x′ (0)]

×
{∏

i

wα [x (ti)]

}{∏
i

wα [x′ (ti)]

}
(3.157)

In this way we may assign a probability to any coarse-grained history, but these
probability assignments are not generally consistent, namely, the probabilities
of two mutually exclusive histories do not generally add up. Indeed, let us define
the decoherence functional of two histories α and β

D [α, β] =
∫

DxDx′ ei[S−S′]/�ρ [x (0) , x′ (0)]

{∏
i

wα [x (ti)]

}⎧⎨
⎩
∏
j

wβ [x′ (tj)]

⎫⎬
⎭

(3.158)

P[α] = D[α, α] but P[α ∨ β] = D[α, α] + D[β, β] + 2ReD[α, β] �= P[α] + P[β].
The probability sum rule P [α ∨ β] = P [α] + P [β] only applies when the third
term vanishes, and in particular when there is strong decoherence, D [α, β] = 0
for α �= β. As physicists, who deal with reality, we shall be satisfied that a set
of mutually exclusive histories is consistent when |D [α, β]| � D [α, α] ,D [β, β]
whenever α �= β.

A simple set of consistent histories refers to the values of conserved quantities
[HaLaMa95]. First observe that the path integral expression (3.158) translates
into the canonical expression

D [α, β] = Tr

⎧⎨
⎩T̃

⎡
⎣∏

j

Pβ (tj)

⎤
⎦T
[∏

i

Pα (ti)

]
ρ (0)

⎫⎬
⎭ (3.159)

The projectors at different times are related in the usual way Pα (t) =
U (t)Pα (0)U† (t) . If a projector commutes with the Hamiltonian, then it is time-
independent, and expression (3.159) collapses unless all projectors are indeed
identical. The only histories with nonzero probabilities are those defined by
ranges of conserved quantities in the initial state, and they are automatically
consistent if these ranges do not overlap.
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88 Quantum open systems

For open quantum systems we are interested in histories where the system vari-
able X is specified to follow a trajectory χ (t) with a given accuracy σ (t), while
the environment variable q is left unspecified. For technical reasons, it is con-
venient to use Gaussian, rather than sharp, windows. We also make a Gaussian
ansatz for the initial state, which we assume to be pure. Therefore, we replace

ρ [x (0) , x′ (0)]

{∏
i

wα [x (ti)]

}⎧⎨
⎩
∏
j

wβ [x′ (tj)]

⎫⎬
⎭ (3.160)

by

exp
[
−
∫

dt

2σ2 (t)

{
(x− χ)2 + (x′ − χ′)2

}]
(3.161)

The unconstrained integration over environment variables yields the action func-
tional, which has the structure we already know. Adopting a shorthand notation

D [χ, χ′] =
∫

DxDx′ exp
(−1

2

)

×
{
−2iuLX + Nu2 +

1
σ2

[
(x− χ)2 + (x′ − χ′)2

]}
(3.162)

where X = x + x′/2, u = x− x′, the symbols L, N and 1/σ2 denote operators
(which we shall handle as if they were c-numbers) and we have applied Einstein’s
convention to time integrals. Write χ, χ′ = Υ ± y/2 and develop the last term to
get

D [χ, χ′] = exp
( −1

2σ2

)[
2Υ2 +

y2

2

]

×
∫

DXDu exp
(−1

2

){
−2iuLX +

[
N +

1
2σ2

]
u2 +

2
σ2

X2

}

× exp
1

2σ2
[uy + 4XΥ] (3.163)

Now consider the matrix

M =

(
2σ−2 (−i)L
(−i)L N +

(
2σ2
)−1

)
(3.164)

Already from the fact that the noise kernel appears in the combination N +(
2σ2
)−1 we see that there must be a limit where the “Langevin noise” is

drowned in the “Heisenberg noise.” The determinant of this matrix is Det (M) =(
N +

(
2σ2
)−1
)

2σ−2 + L2, and the inverse is (we assume all operators commute)

M−1 = [Det (M)]−1

(
N +

(
2σ2
)−1

iL

iL 2σ−2

)
(3.165)
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Therefore

|D [χ, χ′]| ∼ exp

{
−
[
1 − 2 [Det (M)]−1

σ2

(
N +

(
2σ2
)−1
)] Υ2

σ2

−
[
1 − [Det (M)]−1

σ4

]
y2

4σ2

}
(3.166)

We see that the dynamics and the decoherence aspects are clearly separated. To
obtain a simpler expression, we shall assume that the L operator is “small,” so
we can expand in powers of L. Keeping only the first nonzero contributions, we
get

|D [χ, χ′]| ∼ exp
(−1

2

){(
N +

(
2σ2
)−1
)−1

(LΥ)2 + N
(
2σ2N + 1

)−1
y2

}
(3.167)

To find the probability of a given history, we must set y = 0. We see that the
most likely histories are those which satisfy the “classical” equations of motion
Lχ = 0; these are the equations of motion for the expectation value of the system
variable, and include the dissipative terms, but not the noise. The magnitude of
the expected deviations from the deterministic behavior is given by N +

(
2σ2
)−1.

The noise kernel provides a lower bound for the “noisiness” of the dynamics, but
we can say that the deviations from the classical motion are well described by
the Langevin equation only in the limit of “fuzzy” observations,

(
2σ2
)−1 � N.

In the opposite limit, the dominant effect is the Heisenberg noise.
To study consistency, we must follow the decoherence functional as y increases.

We see that our histories tend to decohere, and they become approximately con-
sistent whenever y2 ≥

(
2σ2 + N−1

)
. The relevant question is whether any two

histories which may be resolved by our apparatus are automatically consistent.
The limit of resolution is y2 ∼ σ2; therefore, consistency is obtained only asymp-
totically for strong noise σ2N � 1.

In conclusion, a picture of the system evolution based on actual nearly clas-
sical trajectories may only result from a compromise whereby the accuracy of
observations is adjusted to the noise level, σ2 ∼ N−1. Larger noise for a given σ

means more decoherence but less predictability; for a weaker noise, predictabil-
ity is only limited by the Heisenberg bounds, but individual trajectories will not
decohere. If we are satisfied with predictability within the limits imposed by the
Langevin equation, then in the strong noise limit we may consider individual
trajectories as actually depicting physical reality.

For a critique of the consistent history approach to quantum mechanics, see
[DowKen96, BasGhi99].
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Part II

Basics of nonequilibrium quantum field theory
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4

Quantum fields on time-dependent backgrounds:
Particle creation

Beginning with this chapter we will introduce quantum field theory (QFT) and
develop the necessary ideas and methods which form the basis of nonequilibrium
(NEq) QFT. We focus on quantum field systems in external fields or in a time-
varying background spacetime. The latter is included here because many basic
concepts and techniques in QFT in external fields were developed historically in
the area of QFT in curved spacetimes, especially in time-dependent backgrounds
used in relativistic cosmology. Cosmology is also the arena where some of the
basic tenets of NEqQFT were established and tested out.

In a dynamical background some basic concepts of QFT need to be reexam-
ined. We point out the problem in straightforwardly extending the methodology
of Minkowski spacetime QFT, such as the definition of particles by way of instan-
taneous diagonalization of the Hamiltonian. The vacuum state defined this way
is nonviable since particles are being created as the system evolves. We intro-
duce the Bogoliubov transformation between two sets of mode functions of the
field, and discuss how two different particle models defined at different times
are related to each other. Particle creation is a nonadiabatic process. We intro-
duce the nth order adiabatic vacuum and number state as the proper way to
construct a QFT in dynamical backgrounds. We derive expressions for sponta-
neous particle production as parametric amplification of vacuum fluctuations,
and stimulated production as amplification of particles already present in the
quantum or thermal state.

Following this we give two examples for the problem of charged particle motion
in an external field. The first one is for a uniform electric field. We show how
to use the adiabatic number state and the Bogoliubov transformation to obtain
the famous result of Schwinger. In the second problem we study periodically
driven fields based on the Floquet theory of parametric resonance. For charged
particles in an external field we derive a quantum Vlasov equation for the rate
of particle creation and show that particle creation is a non-Markovian (history
dependent) process. We point out the intrinsic relation between number and
phase of a quantum system, and under what conditions particle number may
increase and others when it may decrease.

We then turn to a discussion of the second class of problems, that of quan-
tum fields in dynamic background spacetimes. These are useful for the study
of quantum processes in the early universe. We introduce the wave equation in
curved spacetime, and discuss the conditions where one can construct a physically
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94 Quantum fields on time-dependent backgrounds: Particle creation

meaningful particle model, including the conformal vacuum for conformal fields
in conformally flat spacetimes, which are relevant to the standard model in cos-
mology. We use a simple observation to show why gravitons are not produced
in a radiation-dominated universe, and a simple model to illustrate how thermal
particle creation arises. We then demonstrate how one can identify and remove
the ultraviolet divergences in the stress–energy tensor of the quantum field by
the method of adiabatic regularization. Obtaining a physically reasonable reg-
ularized stress–energy tensor is an essential step in approaching the so-called
“back-reaction problem,” i.e. finding a self-consistent solution of the quantum
particle–EM field or quantum field–background spacetime system.

This is followed by a self-contained description of particle creation in the
squeezed state language which can better elucidate the relation between number
and phase representations. We first give the result of spontaneous and stimu-
lated production, discuss the difference between bosons and fermions, and their
dependence on the initial state. We then introduce the statistical mechanics of
particle creation and relate entropy generation to the specification of the initial
state and the choice of representations, such as the number state, the coherent
and the squeezed state. Finally we present results for the fluctuations in parti-
cle number as it is relevant to defining noise in quantum fields and the vacuum
susceptibility of spacetime. In the last section we give a description of squeezed
quantum open systems. These discussions bring out some basic issues in the sta-
tistical mechanics of quantum fields and prepare the ground for investigating the
statistical, kinetic, and stochastic features of quantum processes such as back-
reaction and dissipation, entropy generation, fluctuations, correlations, noise and
decoherence, which will be elaborated in later chapters.

4.1 Basic field theory

4.1.1 Classical fields

A field theory is concerned with extended physical systems, whose configurations
are defined by giving some set of numbers at each spacetime point associated
with an event, with coordinates denoted by a 4-vector xμ = (t,x) containing the
time and space components respectively. The simplest field theories have only
one (real) number assigned to each event (or, attached to each spacetime point)
and this number is prescribed to be the same for all observers. These are the so-
called scalar field theories. For example, if we imagine spacetime as a continuous
fluid, we may define a temperature (scalar) field T (x) whose field configuration
is given by the temperature T reading (a number) at each spatial point x at
a given time t as measured by an observer at rest with respect to the fluid.
Another familiar example of a scalar field is the magnetization density μ(x) in a
ferromagnetic material, again in the continuous spacetime approximation.

For pedagogical reasons we shall be using the scalar field theory to illustrate
new ideas and methods in this book. Extensions to vector (e.g. electromagnetic),
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4.1 Basic field theory 95

tensor (e.g. gravitational) and spinor (e.g. electron) fields can be made with
proper treatment of their specific tensor characters. In most parts of this book,
except Chapters 9 and 15, we shall work in flat spacetime, endowed with the
Minkowski metric ημν = diag(−1, 1, 1, 1), with time being the zeroth coordinate.

A scalar field theory describes the field variable φ (x), namely, the single real
number to be prescribed at every event. Its dynamics is given by the action S[φ]
of the theory; for example

S [φ] =
∫

d4x

{
−1

2
(∇φ)2 − V [φ (x)]

}
(4.1)

where (∇φ)2 in Minkowski space is equal to ∂μφ∂
μφ = (∂φ)2 and the potential

V (φ) is a real functional of the field variable φ. In this chapter we choose units
such that the speed of light c = 1. A common example for massive interacting
fields is the φ4 potential

V (φ) =
1
2
m2φ2 +

λ

4!
φ4 (4.2)

where m is the mass of the field (also known as the inverse correlation length) and
λ is the coupling constant. The equations of motion are given by the variational
principle δS/δφ = S,φ = 0. In our case they read

∇2φ− V ′ (φ) = 0 (4.3)

where ∇2 = ∂μ∂
μ in Minkowski space and V ′ = dV/dφ. We can define the field

momentum as π = φ,t

(
φ,t ≡ φ,0 or φ̇

)
. A particular solution of the equations of

motion is identified by its Cauchy data φ, π on a constant time surface. (There
are more general surfaces one can use, the so-called Cauchy surfaces, but we
won’t go into that here.) The dynamics inherits the symmetries of the action,
which in Minkowski spacetime possesses Poincaré invariance, and, for an even
potential such as in equation (4.2), φ → −φ symmetry.

The second-order equation (4.3) can also be written as a first-order equation
for π, namely

∂π

∂t
= ∇2φ− V ′ (φ) (4.4)

The definition of π and (4.4) together have the structure of canonical equations
derivable from a Hamiltonian

H =
∫

d3x
[
1
2
π2 +

1
2

(∇iφ)2 + V (φ)
]

(4.5)

Observe that the integral extends over space variables only. In other words, the
nondenumerable set

{
φ (t,x) ,xεR3

}
defines the canonical coordinates at time

t, and the π’s are their conjugate momenta. These canonical variables obey the
equal-time Poisson brackets

{φ (t,x) , φ (t,x′)} = {π (t,x) , π (t,x′)} = 0; {π (t,x) , φ (t,x′)} = δ (x − x′)
(4.6)

This formulation is called the canonical formalism of field theory.
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96 Quantum fields on time-dependent backgrounds: Particle creation

4.1.2 Quantum fields

The theory is quantized by replacing the field variable φ by an operator-valued
distribution Φ. In the Heisenberg picture, for each event x there is an operator
Φ (x) acting on some Hilbert space H of states. The conjugate momentum π

goes over to the momentum operator Π, and the Poisson brackets equation (4.6)
become the equal-time canonical commutation relations (ETCCRs)

[Φ (t,x) ,Φ (t,x′)] = [Π (t,x) ,Π (t,x′)] = 0; [Π (t,x) ,Φ (t,x′)] = −i�δ (x − x′)
(4.7)

The field operator moreover obeys the equation

∇2Φ − V ′ (Φ) = 0 (4.8)

which is equivalent to the first-order system

Φ̇ =
i

�
[H,Φ] ; Π̇ =

i

�
[H,Π] (4.9)

leading to the rule

Φ (t,x) = U† (t, t′) Φ (t′,x)U (t, t′) (4.10)

where U is the evolution operator

U (t, t′) = e−i(t−t′)H/� (4.11)

More generally, we may introduce the generators Pμ of translations. The Pμ

operators commute among themselves, as dictated by the algebra of the Poincaré
group, and equation (4.11) is a particular case of the transformation rule

Φ (x) = e−iPx/�Φ (0) eiPx/� (4.12)

after identifying the Hamiltonian H = P 0.

4.1.3 Free fields

A free field corresponds to a quadratic potential V (Φ). A generic example is
a free massive scalar field with V (Φ) = (1/2)m2Φ2. The Heisenberg equation of
motion for this field becomes the Klein–Gordon equation ∇2Φ(x) −m2Φ(x) = 0.

Assuming that the field lives in a finite large volume V and expanding the
scalar field operator in (spatial) Fourier modes, we have

Φ(t,x) =
1√
V

∑
k

ϕk(t)uk(x) (4.13)

where k = 2πn/L, and n = (n1, n2, n3) in general consists of a triplet of integers.
In Minkowski space the spatial mode functions are simply uk = eik·x. In the
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4.1 Basic field theory 97

infinite volume continuum limit this becomes

Φ(t,x) =
∫

d3k

(2π)3/2
eikxϕk (t) (4.14)

The (operator-valued) amplitude function ϕk(t) for each mode k obeys a har-
monic oscillator equation

d2ϕk

dt2
+ ω2

kϕk = 0 (4.15)

where ω2
k = |k|2 + m2 in Minkowski space.

Given two complex independent solutions fk, f∗
k of equation (4.15), we may

write

ϕk (t) = fk (t) ak + f∗
k (t) a†−k (4.16)

Let us introduce the Wronskian (f, g) = fġ − gḟ , which is conserved by equation
(4.15), and impose the normalization

(fk, f∗
k ) = i� (4.17)

The ETCCRs are equivalent to

[ak, ak′ ] =
[
a†k, a

†
k′

]
= 0;

[
ak, a

†
k′

]
= δ (k − k′) (4.18)

These operators may be interpreted as particle destruction and creation oper-
ators. We say that each choice of the basis functions fk constitutes a particle
model , where fk is the positive frequency component and f∗

k is the negative fre-
quency component of the kth mode; the state which is destroyed by all the ak’s
is the vacuum of the particle model. The vacua of different particle models are
in general inequivalent. This situation becomes more challenging for quantum
fields in a dynamical background field or spacetime, which is the central theme
of this chapter.

In terms of the creation and destruction operators, the Hamiltonian is

H =
∫

d3k

(2π)3

{
A�ωk

(
N̂k +

1
2

)
+ Fkaka−k + F ∗

ka
†
ka

†
−k

}
(4.19)

Here,

N̂k = a†kak; A�ωk ≡
(∣∣∣ḟk∣∣∣2 + ω2

k |fk|2
)

; Fk ≡ ḟ2
k + ω2

kf
2
k (4.20)

We may diagonalize the Hamiltonian at any time t = 0 by imposing the con-
dition ḟk (0) = −iωkfk (0) , making Fk(0) = 0. In Minkowski space, and with
the natural time coordinate, the Hamiltonian stays diagonal at all times. The
corresponding particle model in Minkowski space is given by

fk (t) =
√

�

2ωk
e−iωkt; A = 1 (4.21)
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98 Quantum fields on time-dependent backgrounds: Particle creation

which possesses a well-defined meaning of particles at all times. This is the
framework of (flat space) quantum field theory implicitly assumed in textbooks.

4.1.4 Particle creation

We now consider quantum fields propagating on dynamic backgrounds. When a
mode decomposition is available the (c-number) amplitude function of the kth
mode obeys, from equation (4.15), the wave equation

d2fk
dt2

+ ω2
k(t)fk(t) = 0 (4.22)

where the natural frequency ωk now acquires an explicit time dependence.
In Minkowski space QFT we are accustomed to the notion that positive energy

solutions to the wave equation for every normal mode correspond to particles
while negative energy solutions correspond to antiparticles. One can diagonalize
the Hamiltonian to select a preferred particle model, e.g. the Minkowski modes
(4.21). However for a time-dependent background field this notion becomes
meaningless and the criterion of instantaneous diagonalization of the Hamil-
tonian is inviable as a particle model. This is because the mode equation (4.22)
generally possesses time-dependent solutions which have no clear a priori phys-
ical meaning in terms of particles or antiparticles. The energy of individual
particle/antiparticle modes is not conserved, and a consistent separation into
positive and negative energy solutions of the wave equation is not always possi-
ble. This is just a reflection of the fact that physical particle number does not
correspond to an operator which commutes with the Hamiltonian. We can see
this point more clearly by way of the Bogoliubov transformation.

The transformation between any two Fock space bases ak and ãk is known as
the Bogoliubov transformation. Let the first basis ak be associated with modes
(fk, f∗

k) , the second basis ãk with modes
(
f̃k, f̃

∗
k

)
. We may expand the field

operators in either base, leading to equation (4.16) in the first case, and to

ϕk (t) = f̃k (t) ãk + f̃∗
k (t) ã†−k (4.23)

in the second. Since both sets of solutions of the mode equations are complete,
we must have

fk (t) = αkf̃k (t) + βkf̃
∗
k (t) (4.24)

and its inverse

f̃k(t) = α∗
kfk(t) − βkf

∗
k(t) (4.25)
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4.1 Basic field theory 99

The Wronskian condition (fk, f∗
k) =

(
f̃k, f̃

∗
k

)
= i� imposes a condition on the

Bogoliubov coefficients

|αk|2 − |βk|2 = 1 (4.26)

for each k. We can thus write

|αk(t)| = cosh rk(t)

|βk(t)| = sinh rk(t) (4.27)

where rk(t) is called the squeeze parameter for mode k, a terminology adopted
from quantum optics. In Section 4.7 we will give a description of particle creation
in the squeezed state language.

The linear relationship between the f̃ ’s and f ’s induces a corresponding trans-
formation between a, ã

ãk = αkak + β∗
ka

†
−k (4.28)

with inverse

ak = α∗
kãk − βkã

†
−k (4.29)

Each particle model is associated with a particular vacuum state, in this case,
|0〉 and

∣∣0̃〉 , defined by

ak |0〉 = 0 and ãk

∣∣0̃〉 = 0 (4.30)

separately for all k. Fock spaces can be constructed from the vacuum states by
the action of the creation operators. One can easily see that generally ãk |0〉 �= 0
because the two vacua are different by the coefficients α, β. Introducing the par-

ticle number operator
(
Ñk

)∧
≡ ã†kãk of the second particle model, we see that

its expectation value with respect to the vacuum of the first model is nonzero,
but equal to

Ñk = 〈0 |
(
Ñk

)∧
| 0〉 = V | βk |2 (4.31)

where V is the “volume” of space. An observer of the second particle model would
say that Ñk particles have been created from the first vacuum (from now on, we
shall disregard factors of V , assuming that particle counts are always referred to
a unit volume). When we think of the second particle model as defined at a time
t while the first particle model is defined at the initial time t0, we may write
the particle numbers at these two times as 〈N̂k(t)〉t, 〈N̂k(t0)〉0 respectively, i.e.
N̂ denotes a generic number operator which takes on eigenvalues N and Ñ in
the two Fock spaces respectively. (We may at times use the notation n and N
for these two values also.) In an S-matrix formulation of quantum field theory in
a dynamical background (field or spacetime), where one assumes an asymptotic
region where the background field is constant or the spacetime is static (so the
modes obtained by the diagonalization of the Hamiltonian in those regions give
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100 Quantum fields on time-dependent backgrounds: Particle creation

a preferred particle model), the states of the first (ak) and second (ãk) particle
models are conventionally called the in and the out states respectively. We will
use these nomenclatures interchangeably.

It is interesting to give a closed expression for the amplitude for finding ñ pairs
in the |0〉 state in terms of the Bogoliubov coefficients. We have

〈 ñk, ñ−k| 0〉 =
1
α∗
k

[
β∗
k

α∗
k

]ñk

(4.32)

4.1.5 Adiabatic vacua

The transformation of the Fock space operators described by the Bogoliubov
transformation (4.28), despite its appearance, is only a formal expression. The
creation and annihilation operators do not give particle creation unless the vac-
uum state is well defined. We will discuss below situations where there are
preferred particle models asymptotically, such as constant background fields or
stationary spacetimes at t = ±∞, or conformally-invariant fields in conformally-
static spacetimes without asymptotic conditions. Then the Fock spaces are well
defined and one can calculate the amplitude for particle creation in a S-matrix
sense. Under general conditions the particle number at any one time during
the evolution is not well-defined. A straightforward intuitive generalization from
flat space field theory – the so-called method of instantaneous diagonalization
of the Hamiltonian – leads to severe problems; see e.g. [Ful89]. One has to
appeal to other methods. If the external field (or background spacetime) does
not change too rapidly (to be quantified below by the nonadiabaticity param-
eter) there is a conceptually clear and technically simple method which has
proven to be useful in problems involving time-dependent fields (as in the exter-
nal field problem) and spacetimes (as in cosmological particle creation). It is
the nth order adiabatic vacuum or number state, and, when applied to the
removal of ultraviolet divergences in the current or energy–momentum tensor, it
is called adiabatic regularization. A selection of influential papers on this subject
is [Park66, Park69, ParFul74, FulPar74, Park76, Park77].

Both the time-dependence of the Fock space operators and the evolution of the
amplitude functions are dictated by the wave equations for the normal modes
of the quantum scalar field with time-dependent natural frequency ωk as in
equation (4.22). To single out a solution, we need to specify initial data for fk
and dfk/dt at some time t0. When ωk is constant one can use the same Fock space
representation of the field theory as it remains the same as originally defined at t0.
Staticity means that the dynamics is invariant in time, and implies the existence
of a Killing vector in time ∂t, which enforces the positive and negative frequency
components to remain separated. This means, in second quantized language,
that the particles and antiparticles are separately well-defined and their number
remains a constant. Therefore the possibility of defining a positive frequency
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4.1 Basic field theory 101

component in a field theory is the precondition for a vacuum state to exist. We
learned that maintaining such a condition in the evolution is not always possible.

If the external field or background spacetime changes gradually one can extend
this idea and define an adiabatic vacuum or number state. Recall from elementary
wave or quantum theory that a WKB solution can give a reasonable approxi-
mation to the wave equation when the system changes gradually enough. Suc-
cessively higher order WKB (or adiabatic) solutions can encompass more rapid
changes in the background field as they show up in the natural frequency func-
tion. This is the lead idea behind the adiabatic method.

The sequence of successively higher order WKB solutions to this wave equation
has been explored quite extensively by researchers working on wave propagation
in inhomogeneous media. There, the reflection of waves due to successively higher
order derivatives in the dielectric media can be treated with successively higher
order WKB solutions. Translating the variation in spatial homogeneity to time
dependence is a physically intuitive way to understanding the adiabatic vacuum.
This route explored by Hu [Hu72, Hu74] gives the same result as that established
first by Parker and Fulling. It was also shown to be equivalent to the result
obtained by Zeldovich and Starobinsky [ZelSta71, FuPaHu74] in their “n-wave
regularization.”

Consider the wave equation (4.22) in t time for the amplitude function of the
kth mode. (We shall omit the k subscript, as only one mode is being considered.)
The idea is to use a transformation of both time t and dependent variable f to
reduce this equation to one we can solve.

Define a new time variable t1 = t1 (t) , and write equation (4.22) as(
dt1
dt

)2
d2f

dt21
+
(
d2t1
dt2

)
df

dt1
+ ω2f = 0 (4.33)

The equation is simplified by choosing

dt1
dt

= ω (t) (4.34)

whereby

d2f

dt21
+

1
ω

(
dω

dt1

)
df

dt1
+ f = 0 (4.35)

The first-order term is eliminated by writing

f = ω−1/2f1 (4.36)

obtaining

d2

dt21
f1 + w2

1f1 = 0 (4.37)
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102 Quantum fields on time-dependent backgrounds: Particle creation

where

w2
1 = 1 + ε2, ε2 = − 1

ω1/2

d2

dt21
(ω1/2) (4.38)

Observe that equation (4.37) has the same structure as the original equation
(4.22). If ω varies sufficiently slowly, we can neglect ε2, and it becomes trivial.

Higher order WKB approximations to the wave equation are obtained by iter-
ating this procedure. Define (note r here is an adiabatic order parameter, not
the squeeze parameter introduced earlier)

dtr ≡ wr−1dtr−1 ≡ Wrdt (w0 ≡ ω, t0 ≡ t) (4.39)

fr ≡ w
1/2
r−1fr−1 = W 1/2

r f (4.40)

Wr ≡ w0w1 · · ·wr−1 (4.41)

Θr ≡
∫

Wrdt (4.42)

The n(= 2r)th-order WKB equation is given by (r = 1, 2, . . .)

d2

dt2r
fr + w2

rfr = 0 (4.43)

where, for r = 1, 2, 3 . . .,

w2
r = 1 + ε2r, ε2r = − 1

w
1/2
r−1

d2

dt2r
(w1/2

r−1) (4.44)

The quantities ε2r are called the adiabatic frequency corrections [FuPaHu74]. If
|ε2r| � 1, the solution of the wave equation correct up to the n(= 2r)th order of
derivatives of the natural frequency w2(t) with respect to tr is given by

f(n)(t) =
�

1/2

(2Wr)
1/2

[
Ae−i

∫
Wrdt + Bei

∫
Wrdt

]
(4.45)

where A,B are complex functions. The subscript (n) on f indicates that a solu-
tion to the full wave equation is sought including up to the nth adiabatic order. In
contradistinction, we define a n(= 2r)th-order adiabatic solution as the solution
with ε2r set equal to zero.

The nth-order adiabatic vacuum is defined such that there is no negative fre-
quency component in the nth-order WKB solution. What this means is that, at
the nth adiabatic order approximation the nth-order adiabatic number state is
obtained by assuming that the wavefunction f(t) is given only by the positive
frequency nth-order WKB solution

f(t) � f+
(n)(t) =

Ae−i
∫ t Wn/2dt√
2Wn/2

(4.46)

So intrinsically this is a quasi-local (in time) expansion counting time derivative
orders, which can be translated to frequency ranges. In terms of what adiabatic
order will encompass what range of frequencies we shall see how this method
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4.1 Basic field theory 103

becomes useful for identifying and isolating ultraviolet divergences in quantum
field theory in dynamical spacetimes, as in cosmology. This method, known as
adiabatic regularization, will be discussed in a later section.

4.1.6 Hamiltonian mean field dynamics and

general Gaussian ansatz

Let us broaden our scope somewhat to introduce an important class of approx-
imations in quantum field theory which shares the same dynamics as the prob-
lem under discussion so far. This is the mean field (or Gaussian) approximation.
Mean field methods have a long history in such diverse areas as atomic physics
(Born–Oppenheimer), nuclear physics (Hartree–Fock), condensed matter (BCS)
and statistical physics (Landau–Ginzburg), quantum optics (coherent/squeezed
states), and semiclassical gravity. Because no higher than second moments of
the fluctuations are incorporated, the mean field approximation is related to a
Gaussian variational ansatz for the wavefunction of the system.

For the mixed state density matrix ρ Habib et al. [HKMP96] have shown
that the time-dependent mean field approximation is equivalent to the general
Gaussian ansatz. It is instructive to follow the exposition of this feature.

As a matter of principle, the Hamiltonian nature of the evolution makes it clear
from the outset that the mean field approximation does not introduce dissipation
or time irreversibility at a fundamental level. Any such behavior must come from
some assumption in coarse graining some information of this closed system away.
We shall remark on this aspect at the end of this section and further in Chapter 9
on entropy generation.

Consider again the one-dimensional harmonic oscillator with Hamiltonian

Hosc(q, p; t) =
1
2
(
p2 + ω2(t) q2

)
(4.47)

where ω(t) is the natural frequency. The most general Gaussian ansatz for the
mixed state normalized density matrix is

〈x′|ρ|x〉 = (2πξ2)−
1
2 exp

{
i
p̄

�
(x′ − x) − ζ2 + 1

8ξ2

[
(x′ − q̄)2 + (x− q̄)2

]
+ i

η

2�ξ

[
(x′ − q̄)2 − (x− q̄)2

]
+

ζ2 − 1
4ξ2

(x′ − q̄)(x− q̄)
}

(4.48)

in the coordinate representation. The five parameters (q̄, p̄, ξ, η, ζ) of this Gaus-
sian may be identified with the two mean values, q̄ = 〈q〉 ≡ Tr(ρq), p̄ = 〈p〉 ≡
Tr(ρp), and the three symmetrized variances via

〈(q − q̄)2〉 = ξ2, 〈(pq + qp− 2q̄p̄)〉 = 2ξη

〈(p− p̄)2〉 = η2 +
�

2ζ2

4ξ2
(4.49)
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104 Quantum fields on time-dependent backgrounds: Particle creation

The one antisymmetrized variance is fixed by the commutation relation, [q, p] =
i�. The parameter ζ measures the degree to which the state is mixed: Tr ρ2 =
ζ−1 ≤ 1, with unity for pure states. If the state is pure, ρ = |ψ〉〈ψ|, and only two
of the three symmetrized variances in (4.49) are independent.

The Gaussian ansatz for the density matrix is preserved under time evolu-
tion. In the Schrödinger picture ρ evolves according to the Liouville equation,
ρ̇ = −i[H, ρ]. Substitution of the Gaussian form (4.48) into this equation with
Hamiltonian (4.47) and equating coefficients of x, x′, x2, x′2 and xx′ gives five
evolution equations for the five parameters specifying the Gaussian,

q̄,t = p̄ ; p̄,t = −ω2(t)q̄
ξ,t = η ; η,t = −ω2(t)ξ + �

2ζ2

4ξ3

(4.50)

and ζ̇ = 0. Since ζ is a constant and the von Neumann entropy −Tr ρ ln ρ of the
state (4.48) is a (monotonic) function of ζ alone, this quantity is also a constant
of the motion. This establishes the equivalence between mean field methods and
Gaussian density matrices for all evolutions of the form of equations (4.50).

An essential property of the evolution equations (4.50) is that they are Hamil-
ton’s equations (hence, time reversible) for an effective classical Hamiltonian
[RajMar82], with η playing the role of the momentum conjugate to ξ,

Heff(q̄, p̄; ξ, η) = Tr(ρH) =
1
2
(
p̄2 + η2

)
+ Veff (4.51)

and Veff(q̄, ξ) depending on the particular form of ω2(q̄(t), ξ(t); t).
The unitary time evolution operator U(t) for the density matrix (4.48),

ρ(t) = U(t)ρ(0)U†(t) , U(t) = exp
(
−i�−1

∫ t

0

Hdt

)
(4.52)

is given explicitly in the coordinate basis by

〈x′|U(t)|x〉 = (2πi�v(t))−
1
2 exp

{
i

2�v (t)
(
u(t)x2 + v̇(t)x′2 − 2xx′)} (4.53)

in terms of the two linearly independent solutions to the classical evolution equa-
tion, (

d2

dt2
+ ω2(t)

)(
u

v

)
= 0 ;

u(0) = v̇(0) = 1
u̇(0) = v(0) = 0

(4.54)

The Gaussian dynamics may be expressed as well by means of a Fock repre-
sentation of the time-dependent Heisenberg operators,

q(t) = U†(t) q(0)U(t) = q̄(t) + af(t) + a†f∗(t)

p(t) = U†(t) p(0)U(t) = p̄(t) + aḟ(t) + a†ḟ∗(t) (4.55)

where [a, a†] = 1. The complex mode functions f satisfy the evolution equation
(4.54) and the Wronskian condition (4.17). This shows that Gaussian time evo-
lution is essentially classical, with � appearing only in the time-independent
condition (4.17) enforcing the quantum uncertainty relation.
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4.1 Basic field theory 105

Time-dependent basis

One can choose a basis in which all expectation values vanish, except

〈a†a〉 = 〈aa†〉 − 1 ≡ N ≥ 0 (4.56)

The Gaussian density matrix is diagonal in the corresponding a†a time-
independent number basis,

〈n′|ρ|n〉 =
2δn′n

ζ + 1

(
ζ − 1
ζ + 1

)n

(4.57)

with ζ = 2N + 1 = A (the parametric amplification factor as introduced in
equation (4.20)) and ξ2(t) = ζ|f(t)|2. Upon identifying ζ = coth(�ω/2kBT ), the
diagonal form (4.57) will be recognized as a thermal density matrix at temper-
ature T . The pure state Gaussian wavefunction (ζ = 1) corresponds therefore
to a coherent, squeezed zero temperature vacuum state. The smoothness of the
finite temperature classical limit �ζ → 2kBT/ω as � → 0, ζ → ∞ shows that
quantum and thermal fluctuations are treated by the mean field approximation
in a unified way.

Instantaneous diagonalization

It is always possible to diagonalize (4.47) at any given time, bringing the
quadratic Hamiltonian into the standard harmonic oscillator form, Hosc =
�ω
2

(
ãã† + ã†ã

)
with ã time dependent. This time-dependent basis is defined by

the relations,

q(t) = ãf̃ + ã†f̃∗, p(t) = −iωãf̃ + iωã†f̃∗

f̃(t) =

√
�

2ω(t)
exp
(
−i

∫ t

0

dt′ω(t′)
)

(4.58)

in place of (4.55). In the ã†ã number basis, ρ is no longer diagonal, 〈ã〉, 〈ãã〉, etc.
are nonvanishing, and Ñ ≡ 〈ã†ã〉 �= N in general, becoming equal only in the
static case of constant ω. As cautioned by Fulling [Ful89] this is the incorrect
way to establish a quantum field theory in dynamical backgrounds.

Adiabatic basis

If ω(t) varies slowly in time, an adiabatic invariant may be constructed from the
Hamilton–Jacobi equation corresponding to the effective classical Hamiltonian
(4.51). By a simple quadrature we find the adiabatic invariant,

W

2π�
=

〈H〉
�ω

− ζ

2
= Ñ(t) −N (4.59)

Since N is time independent, Ñ(t) is an adiabatic invariant of the evolution. On
the other hand, the phase angle conjugate to the action variable W varies rapidly
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106 Quantum fields on time-dependent backgrounds: Particle creation

in time. Since the diagonal matrix elements of ρ in the Ñ basis are independent
of this phase angle, they are slowly varying, whereas the off-diagonal matrix
elements of ρ in this basis (which depend on the phase angle) are rapidly varying
functions of time. If we are interested only in the effects of the fluctuations on the
more slowly varying mean fields it is natural to define an effective density matrix
ρeff(t) by time-averaging the density matrix (4.48), thereby truncating ρ to its
diagonal elements only, in the adiabatic Ñ basis [HuPav86, Kan88a, Kan88b].
Clearly, for this truncation to be justified there must be very efficient phase
cancellation, i.e. dephasing, either by averaging the fluctuations over time or by
summing over many independent fluctuating degrees of freedom at a fixed time.
This is perhaps the most direct way to understand the decoherence of the mean
field. We shall discuss this issue in Chapter 8.

4.2 Particle production in external fields

After the above simple introduction we can begin to explore two classes of
problems involving quantum fields in dynamical backgrounds. In this section
we study the production of charged scalar particles in an external field, rel-
evant to problems of collective excitations in QED plasma (and by extension
to QCD quark–gluon processes). There are good introductions to this topic
in standard texts, such as [ItzZub80]. In the next section we study a neu-
tral scalar field in a dynamical spacetime, applicable to cosmological problems,
such as vacuum particle creation at the Planck time or reheating after GUT
(Grand-Unified Theory) scale inflationary expansion. Both problems have been
studied extensively; the former began with the works of Klein [Kle29], Sauter
[Sau31, Sau32], Heisenberg and Euler [HeiEul36], Schwinger [Sch51], and others
[Greiner, GrMaMo88, FrGiSh91, Ginz87, Ginz95]; the latter by Parker, Sexl and
Urbantke, Zel’dovich and Starobinsky, Fulling, Hu, and many others. For later
and current developments, see [DeW75, BirDav82, Bordag]. For the first part in
this section our treatment follows the work of Kluger, Mottola and Eisenberg
[KlMoEi98]. For the second part in the next section, we follow the approach of
Zel’dovich, Starobinsky [ZelSta71] and Hu [Hu72, Hu74, FuPaHu74].

Assuming that the electric field is spatially homogeneous, in the Coulomb
gauge, we can express the vector potential as

A = A(t)ẑ, A0 = 0 (4.60)

and the electric field as

E = −Ȧẑ = Eẑ (4.61)

Assuming also the field lives in a finite large volume V we can expand
the charged scalar field operator in Fock space in Fourier modes. Since parti-
cles are physically distinct from antiparticles, we need two independent sets of
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4.2 Particle production in external fields 107

destruction operators

Φ(x, t) =
1√
V

∑
k

eik·xϕk(t) =
1√
V

∑
k

{
eik·xfk(t)ak + e−ik·xf∗

−k(t)b†k
}
(4.62)

Denote the time-independent annihilation operator of a particle in mode k
by ak and the creation of an antiparticle in mode −k by b†k. They obey the
commutation relations

[ak, a
†
k′ ] = [bk, b

†
k′ ] = δkk′ (4.63)

Therefore

N+(k) ≡ 〈a†kak〉
N−(k) ≡ 〈b†kbk〉 (4.64)

are the mean numbers of particles and antiparticles respectively. Without loss
of generality we can make use of the freedom in defining the initial phases of
the mode functions to set the correlation densities 〈akak〉 = 〈bkbk〉 = 0. In a
Hamiltonian description we can take for each mode k

ϕk(t) ≡ fk(t)ak + f∗
k(t)b†−k (4.65)

as the (complex) generalized coordinates of the field Φ and

πk(t) = ϕ̇†
k(t) = ḟ∗

k(t)a†k + ḟk(t)b−k (4.66)

as the momentum canonically conjugate to it. By virtue of the commutation
relation (4.63) they obey the canonical commutation relation,

[ϕk, πk′ ] = i�δkk′ (4.67)

provided that the mode functions satisfy the Wronskian condition (4.17).
The complex amplitude function fk(t) of the kth mode satisfies the equations

of motion (4.22), where the time-dependent frequency ω2
k(t) is given by

ω2
k(t) = (k − eA)2 + m2 = (kz − eA(t))2 + k2

⊥ + m2 (4.68)

where kz is the constant canonical momentum in the ẑ direction while the phys-
ical (gauge-invariant) kinetic momentum is given by

pz(t) = kz − eA(t); ṗz = −eȦ = eE (4.69)

(In the directions transverse to the electric field the kinetic and canonical
momenta are the same: p⊥ = k⊥.) Any function of the kinetic momenta con-
tains these two components, e.g. ω(pz, p⊥) =

√
p2
z + p2

⊥ + m2.
Since the definition of particle number becomes very different from that con-

ceived in QFT in Minkowski space, especially in arbitrarily strong and rapidly
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108 Quantum fields on time-dependent backgrounds: Particle creation

time-varying fields, it is often easier to deal with the conserved physical cur-
rents like j(t) in an external field problem (or the stress–energy tensor Tμν(x) in
curved spacetimes). For a spatially homogeneous electric field (i.e. ∇·E = 0), by
Gauss’ law, the mean charge density must vanish,

j0(t) = e

∫
d3k [N+(k) −N−(−k)] = 0 (4.70)

The mean current in the ẑ direction is

j(t) = 2e
∫

d3k [kz − eA(t)]|fk(t)|2(1 + N+(k) + N−(−k)) (4.71)

One can further restrict to the subspace of states for which

N+(k) = N−(−k) ≡ Nk (4.72)

Clearly the vacuum N+(k) = N−(−k) = 0 (as well as a thermal state) belongs
to this class of states.

Particle pairs will be produced in a strong background field, and in turn, affect
the strength and evolution of this background field. At the first level of sophistica-
tion (simplification), one can assume the background field (electric field or space-
time) is fixed in what is called a “test field” approximation (language also used
in QFT in curved spacetime). At the second level, one looks for a self-consistent
solution of the mean electric field E(t) (or the classical background spacetime)
coupled to the expectation value of the current j(t) of the quantum charged scalar
field (or, in the case of cosmology, the energy–momentum tensor of the quantized
matter field). This is known as the dynamical back-reaction problem. For the
creation of charged particles in a homogeneous electric field, the back-reaction
problem involves solving for the current j(t) from the charge field ϕk(t), and
using it as source in the Maxwell equation for the vector potential A. In a spa-
tially homogeneous electric field, the only nontrivial Maxwell equation is simply

−Ė(t) = Ä(t) = j(t) (4.73)

where the current is given by (4.71). Since the charged scalar field depends
on the vector potential A to begin with, fk(t) and A(t) need to be solved
self-consistently from equations (4.22) with (4.68) and (4.73).

4.2.1 Particle creation in a constant electric field

As a concrete example of particle creation in strong fields, let us review the well-
known case of a uniform time-independent electric field worked out by Schwinger
[Sch51]. There is a very detailed treatment of this problem in [KlMoEi98]. We
may take E to be along the z direction with A (t) = −Et. The wave equation for
the amplitude function of the kth mode can be written in terms of a new time
τ (we omit the mode subscripts, since only one mode is considered):

d2f

dτ2
+ ω2(τ)f = 0 , ω2(τ) = ν2

0 + ν4
1τ

2 (4.74)
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4.2 Particle production in external fields 109

where

τ = t +
kz
eE

, ν2
0 = k2

⊥ + m2, ν4
1 = e2E2 (4.75)

We are interested in the strong-field case ν2
1 ≥ ν2

0 . It is obvious that the natu-
ral frequency is never constant. However, the second-order adiabatic frequency
correction (4.38)

ε2 = − 1
ω

1
2

d2

dτ2
1

(ω
1
2 ) =

ν4
1

[ν2
0 + ν4

1τ
2]2

{
3
4
− 5

4
ν2
0

[ν2
0 + ν4

1τ
2]

}
(4.76)

is small provided |τ | � ν−1
1 ≥ ν0/ν

2
1 . Therefore, for this problem, the zeroth-

order adiabatic vacua already can provide a consistent particle definition both
in the distant past and future.

Let us then consider the nth adiabatic order positive frequency solution f+
(n) in

equation (4.46) with n = 0 and W0 = ω. To be precise, we adopt the convention
that the WKB exponent (adiabatic phase) takes on the values

Θ (τ) ≡
∫ τ

0

ω (τ ′) dτ ′ (τ ≥ 0) and Θ (τ) ≡ −Θ (−τ) (τ < 0) (4.77)

Computing the integral, we get the parametric form

Θ0 =
ν2
0

2ν2
1

[u + sinhu coshu], τ =
ν0

ν2
1

sinhu (4.78)

For large τ,

u ∼ ln
[
2ν2

1τ

ν0

]
+ O

(
τ−2
)

(4.79)

Θ =
ν2
1

2
τ2 +

ν2
0

2ν2
1

ln
[
2ν2

1τ

ν0

]
+

ν2
0

4ν2
1

+ O
(
τ−2
)

(4.80)

ω ∼ ν2
1τ + O

(
τ−1
)

(4.81)

Using equation (4.77) we obtain the corresponding form for τ → −∞,

Θ (τ) ∼ −ν2
1

2
τ2 − ν2

0

2ν2
1

ln
[
2ν2

1 |τ |
ν0

]
− ν2

0

4ν2
1

+ O
(
τ−2
)

(4.82)

ω ∼ ν2
1 |τ | + O

(
τ−1
)

(4.83)

The asymptotic behavior of the WKB-approximate positive frequency mode
function f+ is

f+ (τ) ∼ �
1/2

ν1

1√
2 |τ |

[
2ν2

1 |τ |
ν0

]iν2
0/2ν

2
1

exp
{
iν2

1

2
τ2 +

iν2
0

4ν2
1

}
(τ → −∞) (4.84)

We define the positive frequency mode associated to the in vacuum as the
exact solution fin of equation (4.74) which matches this behavior in the distant
past.
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110 Quantum fields on time-dependent backgrounds: Particle creation

Similarly, for τ → ∞,

f+ (τ) ∼ �
1/2

ν1

1√
2τ

[
2ν2

1τ

ν0

]−iν2
0/2ν

2
1

exp
{−iν2

1

2
τ2 − iν2

0

4ν2
1

}
(τ → ∞) (4.85)

and we define the positive frequency mode associated with the out vacuum as
the exact solution fout of equation (4.74) which matches this behavior in the
distant future. The whole point of the analysis is that fin �= fout.

A basis of solutions of equation (4.74) is given by the parabolic cylin-
der functions Dp (z) and its conjugate Dp∗ (z∗) , where z = (−1 + i) ν1τ and

p =
(
i (ν0/ν1)

2 − 1
)
/2. When τ → −∞, z ∼

√
2ν1 |τ | e−iπ/4, and

Dp (z) ∼ zpe−z2/4 =
(√

2ν1 |τ |
)−1/2 (√

2ν1 |τ |
)iν2

0/2ν
2
1

× eiπ/8eπ(ν0/ν1)
2/8 exp

{
i

2
(ν1τ)2

}
(4.86)

(τ → −∞). Comparing with the corresponding expansion of f+, equation (4.84),
we find that the normalized mode function associated with the in vacuum is

fin =
�

1/2√√
2ν1

[√
2ν1

ν0

]iν2
0/2ν

2
1

e−iπ/8e−π(ν0/ν1)
2/8 exp

{
iν2

0

4ν2
1

}
Dp (z) (4.87)

When τ → ∞, z ∼
√

2ν1τ e3iπ/4, and

Dp (z) ∼ zpe−z2/4 −
√

2π
Γ [−p]

eiπpz−p−1ez
2/4

=
(√

2ν1τ
)−1/2

e−3iπ/8

{(√
2ν1τ

)iν2
0/2ν

2
1
e−3π(ν0/ν1)

2/8 exp
{
i

2
(ν1τ)2

}

−
√

2π
Γ [−p]

e−iπ/2
(√

2ν1τ
)−iν2

0/2ν
2
1
e−π(ν0/ν1)

2/8 exp
{
− i

2
(ν1τ)2

}}

(4.88)

(τ → ∞) . Substituting this into equation (4.87) and comparing with the devel-
opment equation (4.85) we find that fin and fout are related in a way given
exactly by the Bogoliubov transformation

fin = α fout + β f∗
out = α f+ + β f− (τ → ∞) (4.89)

where f− is the corresponding negative frequency solution of the same adiabatic
order [the term with coefficient B in (4.45)]. Note that the first identity actually
holds everywhere. Hence we can identify the Bogoliubov coefficients as

α =

[√
2ν1

ν0

]iν2
0/ν

2
1

exp
{
iν2

0

2ν2
1

} ( √
2π

Γ [−p]

)
e−π(ν0/ν1)

2/4 (4.90)

and

β = e−iπ/2e−π(ν0/ν1)
2/2 (4.91)
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4.3 Spontaneous and stimulated production 111

As a check, observe that

|α|2 = 2 cosh

[
π

2

(
ν0

ν1

)2
]

exp

[
−π

2

(
ν0

ν1

)2
]

(4.92)

|β|2 = exp

[
−π

(
ν0

ν1

)2
]

(4.93)

obeys the Wronskian condition |α|2 − |β|2 = 1.
It is clear that if we set up the quantum state to be the in vacuum, when we

arrive at the out region we find

N = |β|2 = exp
{
−π

(
k2
⊥ + m2

eE

)}
(4.94)

particles in each mode. This is Schwinger’s celebrated result [Sch51].

4.3 Spontaneous and stimulated production

So far we have focused on how to define a physically meaningful vacuum state and
the number of particles produced in a changing external field or dynamical space-
time. We learn how to define adiabatic vacuum states in a dynamical setting,
via the adiabatic expansion. The nth order adiabatic number state is well-defined
to the nth adiabatic order. In this section we will show how to derive the energy
density of these particles produced in adiabatic orders. A related problem is
the identification and subtraction of ultraviolet divergences in the stress–energy
tensor of quantum fields in a dynamical background. Here we will explain how
to apply the adiabatic method introduced above in what is called the adiabatic
regularization scheme.

We begin with a formal rendition to the parametric oscillator equation (4.22)
describing the amplitude function of the k th normal mode. We want an expres-
sion of sk ≡ |βk|2 in terms of |fk| and |ḟk|. Here following [ZelSta71, Hu74] we
seek a solution in the form:

fk(t) =
√

�

2ωk

{
αke

−
k + βke

+
k

}
; e±k ≡ exp

{
±i

∫
ωkdt

}
(4.95)

The two functions αk, βk are the positive and negative frequency components
of a formal solution fk, but without a well-defined vacuum they do not convey
the meaning of particles and antiparticles, as we forewarned with regard to the
Bogoliubov coefficients. Since the single equation (4.95) does not determine the
coefficients αk and βk uniquely, we need another condition, which is chosen so
that the Wronskian condition equation (4.17) is satisfied. The auxiliary condition
imposed on ḟk is

ḟk(t) = −i

√
�ωk

2
(
αke

−
k − βke

+
k

)
(4.96)
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112 Quantum fields on time-dependent backgrounds: Particle creation

Inverting these two equations we can express the complex function βk in terms
of |fk|2, |ḟk|2 as follows:

αk =
√

ωk

2�

(
fk +

i

ωk
ḟk

)
e+
k , βk =

√
ωk

2�

(
fk − i

ωk
ḟk

)
e−k (4.97)

Making use of the Wronskian condition we obtain

sk ≡| βk |2= 1
2�ωk

(∣∣∣ḟk∣∣∣2 + ω2
k |fk|2

)
− 1

2
(4.98)

It is tempting to regard sk = |βk|2 as the amount of particle production. How-
ever, we need to be careful that the vacuum state is well-defined to make sense
of particles. To which adiabatic order one needs to carry out the expansion is
determined by the physical conditions (foremost how rapidly the natural fre-
quency changes) of the system and by the accuracy demanded in its description.
For slowly varying fields if one is interested in problems concerning the adiabatic
particle number or mean current distribution as used in quantum kinetic theory
[GrLeWe80] (low particle creation rate and minimal phase information) the adi-
abatic number state of [KlMoEi98] to be introduced in a later section, which is
in the lowest adiabatic order, will suffice.

4.3.1 Spontaneous production

The energy–momentum tensor of a massive scalar field in flat space is

TMink
μν = ∇μφ∇νφ− 1

2
ημν∇ρφ∇ρφ− 1

2
ημνm

2φ2 (4.99)

The energy density associated with these particles is given by the expectation
value of the 00 component of Tμν with respect to the Minkowski vacuum, i.e.

ρMink
0 ≡ 〈0 | T00 | 0〉 =

∫
d3k

2(2π)3
(| ḟk |2 +ω2

k | fk |2) =
∫

d3k
(2π)3

(2sk + 1)
�ωk

2
(4.100)

In a Hamiltonian description of the dynamics of a finite system of parametric
oscillators, the Hamiltonian is simply

HMink(t) =
1
2

∑
k

(π2
k + ω2

kq
2
k) =

∑
k

(
Nk +

1
2

)
�ωk (4.101)

Comparing this with (4.100) one can identify | fk |2 and | ḟk |2 with the canonical
coordinates q2

k and moment π2
k, the eigenvalue of H0 being the energy Ek =

(Nk + 1
2 )�ωk. The analogy of particle creation with parametric amplification is

formally clear: equation (4.98) defines the number operator

Nk(t) =
1

2�ωk
(π2

k + ω2
kq

2
k) − 1

2
= sk (4.102)
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4.3 Spontaneous and stimulated production 113

and equation (4.100) says that the energy density of vacuum particle creation
comes from the amplification of vacuum fluctuations �ωk/2 by the factor Ak =
2sk + 1. Now it is easy to recognize that the Minkowski result in equation (4.21)
corresponds to Ak = 1, no particle creation or zero amplification.

In general there are ultraviolet divergences appearing in the integral (4.100)
which requires a subtraction scheme. The adiabatic method comes in handy for
such a task, because as we have explained before, the lowest few orders of the
WKB solutions encompass particle production from the high-frequency range
downwards in the spectrum. This is just what one needs for the subtraction
of ultraviolet divergences. For renormalization of the energy–momentum tensor
of quantum fields in curved spacetimes the zeroth, second and fourth adiabatic
order expressions give the quartic, quadratic and logarithmic divergences. We
will discuss this method in the context of cosmological particle creation in Sec-
tion 4.6. To facilitate adoption of the formula there for flat space field theory
in a dynamical background field, just replace χ by φ, η by t (thus primes by
overdots) and set a = 1.

A quantity which enters in the expressions for the adiabatic expansion of the
energy–momentum tensor of quantum fields is the nonadiabaticity parameter
defined as (for the kth mode with natural frequency ωk in t time) ω̄k ≡ ω̇k/ω

2
k .

Particle production is more pronounced in modes which evolve nonadiabatically,
i.e. ω̄k(t) � 1 (or ω̄k(η) � 1 in the conformal wave equation of Section 4.6). Thus
particle production is a nonadiabatic process. We will learn soon that it is also
a non-Markovian process (nonlocal in time, memory, or history, dependent).

4.3.2 Stimulated production

Equation (4.98) gives the vacuum energy density of particles produced from an
initial vacuum, a pure state. If the initial state at t0 is a statistical mixture
of pure states, each of which contains a definite number of particles, then an
additional mechanism of particle creation enters. This is known as induced or
stimulated creation. In particular, if the statistical density matrix μ is diagonal in
the representation whose basis consists of the eigenstates of the number operators
a†kak at time t0, then for bosons this process increases the average number of
particles (in mode k in a unit volume) at a later time t over and above the initial
amount present. From (4.28) we have

Ñ ≡ 〈Nk(t)〉t = Tr[μã†k(t)ãk(t)] = 〈Nk(t0)〉+ | βk(t) |2 [1 + 2〈Nk(t0)〉] (4.103)

where angular brackets without a subscript t refers to that taken at the initial
time t0, 〈Nk(t0)〉 = Tr[μa†kak], if the system is in a pure state at t0. For fermions
induced (or stimulated) particle creation decreases the initial number.

The above result can be understood in the parametric oscillator description
as the sum of two parts: First, the amount sk = |βk(t)|2 from spontaneous pro-
duction of particles from the amplification of vacuum fluctuations by the factor
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114 Quantum fields on time-dependent backgrounds: Particle creation

Ak = 2sk + 1. Second, an amplification by the same factor Ak, of the particles
already present Nk(t0), i.e.

〈Nk(t)〉t =| βk(t) |2 + Ak〈Nk(t0)〉 (4.104)

where sk = |βk(t)|2. The second part is called stimulated production. It yields
an energy density ρn with respect to the n-particle state at t0 given by

ρMink
n = 〈n | T00 | n〉 =

∫
d3k

(2π)3
(| ḟk |2 +ω2

k | fk |2)〈a†kak〉

=
∫

d3k
(2π)3

(2sk + 1)�ωk〈Nk(t0)〉 (4.105)

Combining (4.100) and (4.105), for a density matrix diagonal in the number
state, the total energy density of particles created from the vacuum and from
those already present in the n-particle state is given by

ρMink = ρMink
0 + ρMink

n =
∫

d3k
(2π)3

(| ḟk |2 +ω2
k | fk |2)

(
1
2

+ 〈a†kak〉
)

=
∫

d3k
(2π)3

Ak�ωk

(
1
2

+ 〈Nk(t0)〉
)

(4.106)

This can be understood as the result of parametric amplification by the factor
Ak of the energy density of vacuum fluctuations �ωk/2 plus that of the particles
originally present in the kth mode at t0, i.e. 〈Nk(t0)〉�ωk.

4.4 Quantum Vlasov equation

Having familiarized ourselves with the general scheme of adiabatic vacuum and
number states, we now return to the problem of charged particle production in
an external electromagnetic field. We continue to follow the treatment given by
Kluger, Mottola and Eisenberg [KlMoEi98] for pedagogical advantage.

4.4.1 Adiabatic number state

An adiabatic number state f̃+
k(0)(t) was suggested by [KlMoEi98] for the descrip-

tion of a kinetic theory of charged particles moving in an electromagnetic field.
That corresponds to the n = 0 adiabatic state defined in equation (4.46)

f̃
(0)
k (t)

(
= f+

k(0) equation (4.46)
)
≡
√

�

2ωk(t)
exp
(
−iΘk(n=0)

)
(4.107)

where Θk(n=0) ≡
∫ t

ωk(t′)dt′ is the (n = 0)th-order adiabatic phase. At this level
of accuracy one measures particle numbers at all times with respect to the initial
vacuum state at time t0. This definition of a number state makes use of the fact
that under adiabatic evolution, particle number is an adiabatic invariant. This
restricts its validity from the start to weak or slowing varying background fields.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


4.4 Quantum Vlasov equation 115

The adiabatic particle number is defined to be [KlMoEi98]

Ñk(t) ≡ 〈ã†k(t)ãk(t)〉 + 〈b̃†−k(t)b̃−k(t)〉 = |αk|2〈a†kak〉 + |βk|2〈b−kb
†
−k〉

=
(
1 + |βk|2

)
N+(k) + |βk|2 (1 + N−(−k))

= |βk|2 + (1 + 2|βk|2)Nk = Nk + (1 + 2Nk) |βk(t)|2 (4.108)

where the last line is valid only if the number of positive and negative charges are
equal (cf. (4.72)). To verify that Ñk is an adiabatic invariant we show that it is
proportional to the ratio of the energy to frequency for any mode k, εk(t)/�ωk(t),
which is known as such for a harmonic oscillator with time-dependent frequency.
After the discussions on spontaneous and stimulated production we can actually
read off this expression from (4.106): Viewing

∫
d3k/(2π)3as 1/V , the inverse

volume, the integrand there is the energy in mode k. Dividing by �ω and mul-
tiplying it by 2 for the presence of both ± charges gives the expression we are
looking for:

εk(t)
�ωk(t)

= 1 + 2Ñk(t) (4.109)

The amount of particle production at time t in this basis is given by the
expectation value of the number operator ã†ã at time t with respect to the
vacuum state |〉0 defined at t0 (not the vacuum state |〉t defined at t). As discussed
above this is fine if the vacuum states are well defined at the initial t0 and final
times t, as in an asymptotically-static evolution. Otherwise one needs to specify
the adiabatic order to make the vacuum well-defined: the adiabatic number state
of [KlMoEi98] corresponds to the lowest adiabatic order.

From earlier discussions, we know that this level of approximation will not give
a good measure for on-going particle creation, as particle creation is basically a
nonadiabatic process. It is however useful for quantum kinetic theory descrip-
tions, where a quasi-particle approximation is usually introduced which amounts
to incorporating only the quantum radiative corrections to the particles but not
fully field theoretical effects such as particle creation. In other words, quantum
kinetic theory is usually treated at the same level of approximation described
by the adiabatic number basis. We will describe quantum kinetic field theory in
Chapter 11.

4.4.2 Number and correlation

We now proceed to derive an equation for the time rate of change of the number
of particles created in each mode with respect to the time-dependent particle
number basis. Differentiating (4.108), we obtain

d

dt
Ñk = 2 (1 + 2Nk) Re (β∗

kβ̇k) (4.110)
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116 Quantum fields on time-dependent backgrounds: Particle creation

We need an expression for β̇k in terms of α, β and Θk0(t) ≡
∫ t

ωk(t′)dt′ (we will
omit the subscript 0 on Θ0 in this subsection). To do so we use equations (4.97)
and (4.22) to get

α̇k =
ω̇k

2ωk
βk exp(2iΘk), β̇k =

ω̇k

2ωk
αk exp(−2iΘk) (4.111)

thus
d

dt
Ñk =

ω̇k

ωk
(1 + 2Nk) Re {αkβ

∗
k exp(−2iΘk)} =

ω̇k

ωk
Re {Ck exp(−2iΘk)}

(4.112)
where we have defined the time-dependent pair correlation function

Ck(t) ≡ 〈ãk(t)b̃−k(t)〉 = (1 + 2Nk)αkβ
∗
k (4.113)

The pair correlation Ck(t) is a very rapidly varying function, since the time-
dependent phases on the right side of (4.113) add rather than cancel. The phases,
however, nearly cancel in the final combination of (4.112) to render Ñk a slowly
varying function. The time derivative of the pair correlation function is given by

d

dt
Ck =

ω̇k

2ωk
(1 + 2Nk) exp(2iΘk)

(
1 + 2|βk|2

)
=

ω̇k

2ωk

(
1 + 2Ñk

)
exp(2iΘk)

(4.114)

4.4.3 Current and energy density

To obtain the current (4.71) in terms of the particle number and its time deriva-
tive, we need to express |fk(t)|2 in terms of the Bogoliubov coefficients. For this
we use equations (4.98), (4.96) and obtain

j(t) = e�

∫
d3k

(kz − eA(t))
ωk(t)

(1 + 2|βk(t)|2 + 2Re{αkβ
∗
ke

−2iΘk(t)})(1 + 2Nk)

(4.115)

The vacuum term in this expression,
∫
d3k (kz − eA(t)) /ωk(t), vanishes by

charge conjugation symmetry, when proper gauge invariant integration bound-
aries are chosen. Using the mean value of particles in the adiabatic number basis
(4.108), its time derivative and the equations of motion (4.112), we can rewrite
the current as

j(t) = 2e�
∫

d3k
(k − eA(t))

ωk(t)
Ñk(t) +

2�

E

∫
d3k ωk(t)

dÑk

dt
(t) = jcond + jpol

(4.116)

Classically, if the particle distribution Ñk is coupled to a uniform electric field
the energy density and its time derivative are given by

ε =
E2

2
+ 2
∫

d3k �ωkÑk (4.117a)

ε̇ = ĖE + 2
∫

d3k

(
e�E

(k − eA)
ωk

Ñk + ωk�
dÑk

dt

)
= 0 (4.117b)
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4.4 Quantum Vlasov equation 117

Using the Maxwell equation −Ė = j this last relation is precisely the same as the
mean value of the quantum current in (4.116). Hence we may identify the adia-
batic particle number Ñk(t) with the (quasi) classical single-particle distribution.
This is the starting point of a quantum kinetic theory description.

4.4.4 Quantum Vlasov equation

Let us return now to the two equations for the rates of change of the particle
number and the quantum correlations. Solving equation (4.114) formally for Ck,
assuming that Ck vanishes at some t = t0 which could be taken to −∞, and
substituting into (4.112) we obtain

d

dt
Ñk =

ω̇k

2ωk

∫ t

t0

dt′
{
ω̇k

ωk
(t′)
(
1 + 2Ñk(t′)

)
cos [2Θk(t) − 2Θk(t′)]

}
(4.118)

Equation (4.118) may be called a “quantum Vlasov equation,” in the sense that
it gives the rate of particle creation in an arbitrary time-varying mean field. Note
the appearance of the Bose enhancement factor (1 + 2Ñk) in (4.118) indicates
that both spontaneous and induced particle creation are present. One important
feature of equation (4.118) is that it is nonlocal in time, the particle creation rate
depending on the entire previous history of the system. Thus particle creation in
general is a non-Markovian process [BirDav82, Rau94, RauMue96, SRSBTP97].
Note that the nonlocal form of (4.118) results from solving one variable C in
terms of the other Ñ , each obeying a Hamiltonian equation of motion. This is a
general feature of coupled subsystems.

Equation (4.118) becomes exact in the limit in which the electric field can
be treated classically, i.e. the limit in which real and virtual photon emission is
neglected, and there is no scattering. We will learn later that this semiclassical
limit is obtained at the leading order of a large N approximation [CoJaPo74,
Roo74].

Inclusion of scattering processes leads to collision terms on the right side of
(4.118) which are also nonlocal in general. This nonlocality is essential to the
quantum description in which phase information is retained for all times. The
phase oscillations in the cosine term are a result of the quantum coherence
between the created pairs, which must be present in principle in any unitary
evolution. However, precisely because these phase oscillations are so rapid it is
clear that the integral in (4.118) receives most of its contribution from t′ close to
t, which suggests that some local approximation to the integral should be possi-
ble, provided that we are not interested in resolving the short-time structure or
measuring the phase coherence effects. The time-scale for these quantum phase
coherence effects to wash out is the time-scale of several oscillations of the phase
factor Θk(t) − Θk(t′), which is of order τqu = 2π/ωk = 2π�/εk, where εk is the
single-particle energy.
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118 Quantum fields on time-dependent backgrounds: Particle creation

We will return to this equation in Chapter 9 to construct the density matrix
and discuss entropy generation in these quantum field processes.

4.5 Periodically driven fields

As another example of particle production from parametric amplification, we
give in this section a brief discussion of the solutions of equation (4.22) in the
important case when the natural frequency depends periodically on time, that
is, ω2(t + T ) = ω2(t) for some period T. Again we drop the mode label k, as
only one mode will be considered. This is a case of parametric resonance. In the
mathematical literature, the corresponding problem is the subject of the so-called
Floquet theory [WhiWat40, Inc56]. In physics there are many applications (e.g.
[Shi65, MilWya83, MonPaz01]). One such area in cosmology which has drawn
considerable attention is particle creation by parametric resonance during the
preheating epoch after the universe came out of inflation, see Chapter 15. Our
treatment here is influenced by the work of Kofman, Linde and Starobinsky
[KoLiSt97].

The key insight is that, if f (t) is a solution, then f (T + t) is a solution too.
If f1 and f2 are linearly independent solutions, then we must have

fi (t + T ) = Ai1f1 (t) + Bi2f2 (t) (i = 1, 2) (4.119)

Thus there must exist solutions F1 (t), F2 (t) such that

Fi (t + T ) = eμiTFi (t) (4.120)

or equivalently

Fi (t) = eμitf̃i (t) (4.121)

where the functions f̃i (t) are periodic with period T . The eigenvalues μi are the
so-called Floquet exponents. Sometimes Floquet energies i�μi are introduced. As
we shall see presently, the Floquet exponents may be real, leading to exponential
amplification of the solution (or, in quantum language, exponential squeezing of
the quantum state, see later in this chapter).

The second key insight is that if μ is a Floquet exponent, then −μ and μ∗

must be exponents as well. The first follows from the fact that the Wronskian of
two solutions must be a constant, and the second because the equation is real.
So we only have two possibilities, either the Floquet exponents are imaginary
and complex conjugate to each other, or real and opposite to each other. In the
second case, we say there is parametric resonance.

To be concrete, we shall restrict ourselves to the Mathieu equation, which is
obtained when

ω2 (t) = ω2
0 + ω2

1 [1 + cos γt] (4.122)
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4.5 Periodically driven fields 119

where ω0, ω1 and γ are constants. There are two interesting regimes, namely,
the so-called broad resonance when ω1 � ω0, γ, and the narrow resonance when
the opposite obtains. Of course, we may take γ = 1 with no loss of generality.

4.5.1 Broad resonance

In the broad resonance regime, ω � ω0, 1 unless t ∼ (2j + 1)π, where j is an
integer. The second-order adiabatic frequency correction is given by

ε2 =
(
− 1

4ω2
1

) 1 +
[
1 +
(

ω0
ω1

)2
]

cos t + 1
4 sin2 t[

1 +
(

ω0
ω1

)2

+ cos t
]3 (4.123)

which is much smaller than 1 unless cos t ∼ −1. Therefore we may describe
the evolution as a series of adiabatic periods, separated by nonadiabatic tran-
sitions when t ∼ tj = (2j + 1)π. Between transitions we may use the (n = 0)
adiabatic function f̃0 = f+

0 of (4.107), there being no net amplification. Near tj ,
we may approximate ω2 (t) = ω2

0 + ω2
1 (t− tj)

2
/2. We have already encountered

the resulting equation in our study of pair creation by a constant electric field.
Let tk−1 < t ≤ tk, and consider the exact solution f which behaves as a positive

frequency (+) lowest WKB order (n = 0) solution near t. For t ≥ tk this solution
plays the same role as the in-region positive frequency wave in the calculation
of particle creation. Thus, for t ≥ tk, it assumes the form (cf. equation (4.89))

f = αf+
0 + βf−

0 (4.124)

with α and β given in equations (4.90) and (4.91) respectively. Neglect any
further evolution of the Bogoliubov coefficients, and write

f+
0 (t + 2π) = e−iΘ0f+

0 (t) (4.125)

Therefore

f (t + 2π) = αe−iΘ0f (t) + βeiΘ0f∗ (t) (4.126)

The general solution is F = Af + Bf∗, and the eigenvalue condition (4.120)
becomes a set of linear equations for the coefficients(

αe−iΘ0 β∗e−iΘ0

βeiΘ0 α∗eiΘ0

)(
A

B

)
= λ

(
A

B

)
(4.127)

where λ = exp (2πμ). We see that the Floquet exponents must satisfy(
α∗ − λe−iΘ0

) (
α− λeiΘ0

)
− |β|2 = 0 (4.128)

The condition for μ to be real is

Re
[
αe−iΘ0

]
> 1 (4.129)

We see that it is not sufficient to have β �= 0.
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120 Quantum fields on time-dependent backgrounds: Particle creation

4.5.2 Narrow resonance

Let us now consider the case of narrow resonance. Consider the case when at the
boundary of a resonant region the Floquet exponents vanish, meaning that there
are purely periodic solutions; a second family of unstable regions corresponds
to antiperiodic solutions at the boundary, and can be treated in a similar way.
When ω1 → 0, we obtain periodic solutions if ω0 = �, where � is an integer. So we
expect to find an infinite sequence of resonant regions in the (ω1, ω0) plane, the
�th region reducing to ω0 = � when ω1 = 0. Our goal is to describe these regions
and the corresponding Floquet exponents when ω1 � 1, ω0.

To this end, observe that if we write a solution as a linear combination of ±
frequency solutions in the WKB form, as in equations (4.95) and (4.96) (exact),
then the evolution of the α and β coefficients to a sufficiently high adiabatic
order (presently r = 0) is dictated by equations (4.111) and (4.107), where

ω̇

2ω
∼
(−ω2

1

4ω2
0

)
sin t (4.130)

Θ0(t) ∼
[
1 +

ω2
1

2ω2
0

]
ω0t +

ω2
1

2ω0
sin t (4.131)

leading to

exp {2iΘ0} = exp
{

2i
[
1 +

ω2
1

2ω2
0

]
ω0t

} ∞∑
n=−∞

Jn

[
ω2

1

ω0

]
eint (4.132)

where the Jn are Bessel functions (recall that for integer n, J−n = (−1)n Jn).
Now consider the �-th resonant region where ω0 = � + δ�. Keeping only the

slowly varying terms in equation (4.111), we get

α̇� = iβ�κ� exp (2iσ�t) (4.133)

β̇� = −iα�κ� exp (−2iσ�t) (4.134)

where

κ� ≡
ω2

1K�

8ω2
0

, σ� ≡
ω2

1

2ω0
+ δ� (4.135)

and

K� = J2�−1

[
ω2

1

ω0

]
− J2�+1

[
ω2

1

ω0

]
∼ 1

(2�− 1)!

(
ω2

1

2ω0

)2�−1

(4.136)

We seek a solution of the form

α� (t) = α�0e
μ�t exp (iσ�t) (4.137)

β� (t) = β�0e
μ�t exp (−iσ�t) (4.138)
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4.6 Particle creation in a dynamical spacetime 121

where μ� is the Floquet exponent of the �th resonance band. We get

(μ� + iσ�)α�0 = iβ�0κ� (4.139)

(μ� − iσ�)β�0 = −iα�0κ� (4.140)

Therefore

μ2
� = κ2

� − σ2
� (4.141)

The boundaries of the resonant region are given by

δ� ∼ −ω2
1

2�
± ω2

1K�

8�2
(4.142)

We see that the regions become narrower, and the Floquet indices become
weaker, as we go to higher resonance bands. Particle production by parametric
resonance is the principal mechanism in the pre-heating stage when the universe
is warmed up after an inflationary expansion.

4.6 Particle creation in a dynamical spacetime

Another important class of problems similar to the external field model above is
cosmological particle creation. There, a classical dynamical background space-
time governs the quantum field and imparts a time-dependence in the natural
frequencies of its normal modes. Historically this is a major arena where nonequi-
librium field theory was inculcated and constructed. It has wide ranging implica-
tions in modern cosmology since many late era phenomena have originated from
quantum effects in the very early universe including inflationary cosmology. The
era from the Planck to the GUT era is depicted by quantum field theory in
curved spacetime (the test field description) and semiclassical gravity (including
the back-reaction).

Cosmological particle creation is a physical process of basic theoretical interest
in quantum field theory in curved spacetime [Park66, Park68, Park69, Park71,
ZelSta71, SexUrb69, Zel70, Hu72, Hu74, FuPaHu74, Gri74, Berger74, Berger75a,
Berger75b, HuPar77, HuPar78, HarHu79, DeW67, DeW75, BirDav82], and
important practical interest in the quantum dynamics of the early universe.
Our summary here is based on earlier work of [Hu74, ZelSta71]. We begin with
the underlying physics, which is rooted in parametric amplification of clas-
sical waves [Zel70]. This effect in second quantized language manifests itself
as particle creation. A modern representation of such processes is by means
of the squeezed state language developed in quantum optics. It is useful for
the discussion of entropy and coherence issues. We defer such a discussion to
Section 4.7.
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122 Quantum fields on time-dependent backgrounds: Particle creation

4.6.1 Wave equations in curved spacetimes

Consider a massive (m) neutral scalar field φ coupled arbitrarily (ξ) to a back-
ground spacetime with metric gμν and scalar curvature R. Its dynamics is
described by the action

S =
∫

d4xL(φ,∇φ, gμν) (4.143)

where the Lagrangian density is given by

L(φ,∇φ, gμν) = −1
2
√−g

[
gμν(x)∇μφ∇νφ + (m2 + ξR)φ2(x)

]
(4.144)

where g ≡ det gμν and ∇ denotes taking the covariant derivative defined on the
background spacetime. Here ξ = 1/6 and 0 denote, respectively, conformal and
minimal coupling. The indices μ = (0, 1, 2, 3) denote time and spatial compo-
nents. The scalar field satisfies the wave equation

[−∇2 + m2 + ξR]φ(x, t) = 0 (4.145)

where

∇2 ≡ gμν∇μ∇ν =
1√−g

∂

∂xμ

(
gμν

√−g
∂

∂xν

)
(4.146)

is the Laplace–Beltrami operator defined on the background spacetime.
In the canonical quantization approach, one assumes a foliation of spacetime

into dynamically evolving, time-ordered, spacelike hypersurfaces Σ. If the three-
dimensional space Σ possesses some symmetry, such as a homogeneous space
with a group of motion, a separation of variables is usually possible which per-
mits a normal mode decomposition of the field. (The spacetimes considered in
this book, e.g. Friedmann–Lemaitre–Robertson–Walker (FLRW) and De Sitter
(DS) all possess these properties.) One can then impose canonical commutation
relations on the creation and annihilation operators corresponding to the (time-
dependent) amplitude functions of each normal mode, define the vacuum and
number states, and then construct the Fock space. In flat space, Poincaré invari-
ance guarantees the existence of a unique global Killing vector ∂t orthogonal
to all constant-time spacelike hypersurfaces, an unambiguous separation of the
positive- and negative-frequency modes, and a unique and well-defined vacuum.
In curved spacetime, general covariance precludes any such privileged choice of
time and slicing. There is no natural mode decomposition and no unique vac-
uum [Ful72, Ful89]. We assume the background spacetime under consideration
has at least enough symmetry to allow for a normal mode decomposition of the
invariant operator at any constant-time slice.

The classical field theory is quantized by replacing the field variable φ by
the operator-valued distribution Φ. In the Heisenberg picture, Φ and its con-
jugate momentum Π = δL/δ(∂0Φ) obey the equal time commutation relation
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4.6 Particle creation in a dynamical spacetime 123

(4.7). Note that the scalar delta function δ(x,x′) in curved spacetime is defined
by
∫ √−gδ(x,x′)h(x) = h(x′), where h is any test function.

Consider the field Φ in a coordinate volume V = L3 with coordinate length
L. We can expand the field Φ in terms of a complete set of (spatial) orthonor-
mal modes uk(x) as in equation (4.13). We use x as a generic notation for the
spatial coordinates. (This is also applicable for spatially nonflat spacetimes, e.g.
in S3 with radius a, V = 2π2a3, one can use the hyperspherical coordinates,
x = (χ, θ, φ), and the wavenumbers are then labeled by the corresponding prin-
cipal quantum numbers k = (n, l,m). See, e.g. [Wig68].) As before, we write the
operator-valued amplitude function ϕk(t) in terms of the time-independent anni-
hilation operators ak and the (c-number) amplitude functions fk(t) as in (4.16).
The canonical commutation rules on Φ then imply the conditions on ak and a†k′

as in (4.18).
For the spatially-flat Friedmann–Lemaitre–Robertson–Walker (FLRW) space-

time [Park69], the spatial mode functions are simply uk = eik·x and the wave
equation for the amplitude function of the kth mode in cosmic time t becomes
(because of spatial isotropy, f depends only on k ≡ |k|)

f̈k(t) + 3H ḟk(t) + [ω2
k(t) + q(t)]fk(t) = 0 (4.147)

where an overdot denotes taking the derivative with respect to cosmic time,
· = d/dt. Here

ω2
k(t) =

k2

a2
+ m2; q = ξR (4.148)

R = 6
[
Ḣ(t) + 2H2(t)

]
(4.149)

H(t) ≡ ȧ
a being the expansion (Hubble) rate of the background space. We have

grouped terms containing two time derivatives of a (second derivative or first
derivative squared) and call them q. As we will define below, they are of second
adiabatic order while ωk is of zero adiabatic order.

In curved space the inequivalence of Fock representation due to the lack of
a global time-like Killing vector makes the constant separation of positive and
negative-frequency components in general impossible. The mixing of positive-
and negative-frequency components is the source of particle creation (in the
second quantization description). Particle creation may arise from topological,
geometrical, or dynamical causes. In cosmological spacetimes the inequivalence
of vacua appears at different times of evolution, and thus cosmological particle
creation is by nature a dynamically induced effect. Note that we are dealing here
with a free field: particles are not produced from interactions, but rather from the
excitation (parametric amplification [Zel70]) of vacuum fluctuations (or quantum
noise) by the changing background gravitational field. The basic mechanism is
also different from thermal particle creation in black holes [Haw75], accelerated
detectors [Unr76] or moving mirrors [FulDav76, DavFul77], which involves the
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124 Quantum fields on time-dependent backgrounds: Particle creation

presence of an event horizon or the exponential red-shifting of outgoing modes
[HuRav96, RaHuAn96, RaHuKo97].

4.6.2 Conformal vacuum in conformally-static spacetimes

In the class of conformally-static spacetimes where the metric is conformally
related to a static spacetime by a conformal factor a there exists a global confor-
mal Killing vector ∂η, where η =

∫
dt/a(t) is the conformal time. For example,

the spatially-flat FRW spacetime with metric

gμν(x) = a2(η)ημν (4.150)

is conformally related to the Minkowski metric ημν :

ds2 = a2(η)(−dη2 + dx2) (4.151)

In this case the vacuum defined by the mode decomposition with respect to
∂η is globally well-defined, known as the conformal vacuum. For conformally-
invariant fields (e.g. a massless scalar field with ξ = 1/6 in equation (4.145)) in
conformally-static spacetimes, it is easy to see that there is no particle creation
[Park69]. Thus any small deviation from these conditions, e.g. small m, ξ − (1/6),
can be treated perturbatively from these states.

Consider a neutral massive scalar field coupled to a spatially-flat FRW met-
ric with constant ξ. It is convenient to define a conformal amplitude function
χk(η) ≡ a(η)fk(η) related to the c-number amplitude function fk for the kth
normal mode. It satisfies the following wave equation (cf. equation (4.147))

χ′′
k(η) + [ω2

k(η) + Q]χk(η) = 0 (4.152)

where a prime denotes differentiation: ′ ≡ d/dη and

ω2
k(η) ≡ ω2

k(t)a
2 = k2 + m2a2 (4.153)

is the time-dependent natural frequency. For spatially flat FRW spacetime Q =
Qξ = (ξ − 1

6 )Ra2. For anisotropic spatially homogeneous universe (Bianchi type-
I) where the expansion rates Hi(t) ≡ ȧi

ai
are different in the three directions

i = 1, 2, 3 (a3 = a1a2a3), the wave equation in conformal time has in addition
to Qξ another term Qβ≡− 1

2

∑
i>j(Hi −Hj)2, which, like Qξ, is also of second

adiabatic order.
One sees that, for massless (m = 0) conformally coupled (ξ = 1

6 ) fields in
a spatially flat FLRW universe (Q = 0), the conformal wave equation admits
solutions

χk(η) = Aeiωkη + Be−iωkη (4.154)

which are of the same form as traveling waves in flat space. Since ωk(m = 0, ξ =
1
6 ) = k =const., the positive- and negative-frequency components remain sepa-
rated and there is no particle production.

In this connection, Grishchuk [Gri74] showed that there is no production of
gravitons in a radiation-dominated FLRW universe. This is easily seen as follows:
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4.6 Particle creation in a dynamical spacetime 125

The gravitons are quantized linear perturbations. In a FLRW universe, just as
in Minkowski spacetime, there are two polarizations, each obeying an equation
(the Lifshitz equation [Lif46]) which has the same form as a massless (m = 0)
minimally coupled (ξ = 0) scalar field [ForPar77]. For a FLRW universe R =
6a′′/a3, the wave equation (4.152) reads, in conformal time,

χ′′
k(η) + (k2 − a′′/a)χk(η) = 0 (4.155)

For a radiation-dominated FLRW universe, a ∼
√
t ∼ η, and thus R = 0. The

natural frequency is a constant and there is no production of massless minimally
coupled scalar particles or gravitons in the conformal vacuum.

More generally, the wave equation for each mode has a time-dependent
natural frequency. The negative-frequency modes can thus be excited by the
dynamics of the background through a(η) and R(η). In analogy with the time-
dependent Schrödinger equation, one can view the ω2

k + Q term in (4.152) as
a time-dependent potential V (η) which can induce back-scattering of waves
[Zel70, Hu74], thus mixing the positive and negative frequency components in
each mode. This, as we have learned, signifies particle creation.

4.6.3 Thermal radiance

It is rather commonly known that black holes emit thermal radiation, known as
the Hawking effect [Haw75]. Hawking radiation has a deep meaning and many
ways to derive and understand it. One way is to view it as arising from the
exponential red-shifting of outgoing modes from the black hole. This condition
is responsible for thermal radiance observed in uniformly accelerated detectors,
known as the Unruh effect [Unr76], and in an exponential expansion of the early
universe [Park76]. We can see this from the simple theory we have presented
above.

Consider a conformally coupled massive field in a spatially-flat FRW universe.
One can define the conformal vacua at η± with χin,out in terms of the positive
frequency components. The probability Pn(k) of observing n particles in mode
k at late time is given by the modulus of the ratio of the Bogoliubov coefficients
[Park76]: Pn(k) = |βk/αk|2n |αk|−2

. One can find the average number of particles
〈Nk〉 created in mode k (in a comoving volume) at late times to be nk ≡ 〈Nk〉 =∑∞

n=0 nPn(k) = |βk|2.
The model studied by Bernard and Duncan [BerDun77, BirDav82] has the

scale factor a(η) evolving like a2(η) = A + B tanh ρη which tends to constant
values a2

± ≡ A±B at asymptotic times η → ±∞. Here ρ measures how fast the
scale factor rises, and is the relevant parameter which enters in the temperature of
thermal radiance. With this form for the scale function, αk and βk have analytic
forms in terms of products of gamma functions. One obtains

|βk/αk|2 = sinh2(πω−/ρ)/ sinh2(πω+/ρ) (4.156)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


126 Quantum fields on time-dependent backgrounds: Particle creation

where

ω± = (1/2)(ωout ± ωin) (4.157)

ωout
in =

√
k2 + m2a2

± (4.158)

For cosmological models in which a(+∞) � a(−∞), the argument of sinh is very
large (i.e. (π/ρ)ω± � 1). To a good approximation this has the form |βk/αk|2 =
exp(−2πωin/ρ). For high momentum modes, one can recognize the Planckian
distribution with temperature given by kBTη = �ρ/(2πa+) as detected by an
observer (here in the conformal vacuum) at late times.

4.6.4 Conformal stress–energy tensor

The conformal vacuum in the above section is well defined at all times and is
useful to describe particle creation for fields which are nearly conformal and in
spacetimes which are nearly conformally flat. We shall use the conformal wave
equation (4.152) for the amplitude function χ for the k mode in conformal time
to derive the corresponding number density and energy density of conformally
invariant fields from spontaneous and stimulated particle production studied
before for Minkowski space in Section 4.3. and also to illustrate the adiabatic
regularization method.

The appropriate energy–momentum tensor which is conformally related to
the flat space counterpart is the so-called “new, improved” one, or simply the
conformal energy–momentum tensor [CaCoJa70]

Λμν = ∇μφ∇νφ− 1
2
gμν∇ρφ∇ρφ− 1

2
gμνm

2φ2

+ ξ

(
Rμν − 1

2
gμνR

)
φ2 + ξ[gμν∇2(φ2) −∇μ∇ν(φ2)] (4.159)

The conformal wave equation (4.152) has the same form as the generic wave
equation for Minkowski space in t time because they are conformally related. So
all the results for external field problems in flat space given before are identical
for conformal fields in curved spacetime upon the substitution of f by χ, t by
η, and Tμν by Λμν plus a suitable power of the scale factor a to give the correct
dimensionality.

The vacuum energy density associated with these particles is given by the
expectation value of the t− t component of Λμν with respect to the conformal
vacuum, i.e.

ρconf
0 ≡ 〈0 | Λ00 | 0〉 =

1
a4

∫
d3k

2(2π)3
(| χ′

k |2 +ω2
k | χk |2) (4.160)

=
1
a4

∫
d3k

(2π)3
(2sk + 1)

�ωk

2
(4.161)
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4.6 Particle creation in a dynamical spacetime 127

The energy density of particles produced from an initial n particle state by
stimulated production is

ρconf
n ≡ 〈n | Λ00 | n〉 =

1
a4

∫
d3k

(2π)3
(| χ′

k |2 +ω2
k | χk |2)〈a†kak〉 (4.162)

=
1
a4

∫
d3k

(2π)3
(2sk + 1)�ωk〈Nk(t0)〉 (4.163)

Combining (4.160) and (4.162), for a density matrix diagonal in the number
state, the total energy density of particles created from the vacuum and from
those already present in the n-particle state is given by

ρconf = ρconf
0 + ρconf

n =
1
a4

∫
d3k

(2π)3
Ak�ωk(

1
2

+ 〈Nk(t0)〉).

For a thermal density matrix μ at temperature T = β−1 the magnification of
the n-particle thermal state gives the finite-temperature contribution to particle
creation, with energy density

ρconf
T =

1
a4

∫
d3k

(2π)3
(2sk + 1)�ωk/(eβ�ωk − 1) (4.164)

If sk = 0 the Stefan–Boltzmann relation holds for a massless conformal field in
a FLRW universe

ρconf
T =

π2

30�3
T 4 (4.165)

Thus Ta is a constant throughout the evolution of the radiation-dominated
FLRW universe. Nγ ∼ (Ta)3 is proportional to the number of relativistic parti-
cles present or the entropy content of the universe [HarHu79, DeW67, Hu81]. Fur-
ther discussions of finite-temperature particle creation and the related entropy
generation problem can be found in [Hu82, Hu84].

4.6.5 Adiabatic regularization

To apply the adiabatic method to the regularization of the stress energy tensor
in an external field or dynamical spacetime, we need to carry out a fourth-order
adiabatic expansion. We study a slightly more general wave equation (4.152) for
χk(ηk) with natural frequency

√
ω2

k(η) + Q where Q is a term of second adiabatic
order. In the cosmological context Q stands for either Qξ for a nonconformally
coupled scalar field in a FLRW universe or for Qβ for a conformally coupled
scalar field in an anisotropic Bianchi I universe.

Taking n = 6 in (4.46), we have the fourth adiabatic order positive frequency
solution (we will suppress the mode index k in χ,W, ω, ε below)

χ(6) = �
1/2 e

−i
∫
W2dt

√
2W3

(4.166)
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128 Quantum fields on time-dependent backgrounds: Particle creation

where

W3 = ω(1 + ε2 + ε4)1/2 (4.167)

Assuming that the solution χ is well-approximated by χ(6) we have

|χ|2 = �(2W3)−1, |χ′|2 = �(2W3)−1

[
W 2

3 +
1
4

(
d

dη
lnW3

)2
]

(4.168)

The adiabatic frequency corrections are given by

ε2(2) =
Q

ω2
− ω̄2

4
− ω̄′

2ω
, ε′2(2) =

Q′

ω2
− 2Q

ω̄

ω
− ω̄′′

2ω
(4.169)

where the subscripts in parentheses denote the adiabatic order and we have
defined the nonadiabaticity parameter (here, for frequency ω in conformal time η)
as ω̄k ≡ ω′

k/ω
2
k. Substituting these into (4.102) and keeping terms of the same

adiabatic order (as measured by the time derivatives) we get

sk(2) =
1
16

ω̄2

sk(4) =
1
16

(
−(1/2)

ω̄ω̄′′

ω2
+

1
4
ω̄′2

ω2
+ (1/2)

ω̄′ω̄2

ω
+

3
16

ω̄4

+
Q2

ω4
+ Q′ ω̄

ω3
−Q

ω̄′

ω3
− 3Q

ω̄2

ω2

)
(4.170)

The adiabatic expansion for particle production in the high-frequency range
at the zeroth, second and fourth adiabatic order above matches the quartic,
quadratic and logarithmic divergences in the vacuum energy density respectively.
Substituting these expressions for sk(div) = sk(2) + sk(4) for each k mode into
the vacuum energy density (4.160) we can identify the divergent vacuum energy
density contributions as

ρ0(div) =
1
a4

∫
d3k

(2π)3
(2sk(div) + 1)

�ωk

2
(4.171)

Subtracting these we get the regularized vacuum energy density given
by ρ0(reg) = ρ0 − ρ0(div). These results were obtained by [ZelSta71, Hu74,
FuPaHu74].

We note again that the above adiabatic expressions give the amount of par-
ticle creation only in the high-frequency modes when ω̄k ≤ 1. That is why they
are suitable for the identification and removal of ultraviolet divergences in the
energy–momentum tensor. Adiabatic regularization has been applied to cosmo-
logical particle creation with back-reaction [ParFul73, HuPar77, HuPar78].

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


4.6 Particle creation in a dynamical spacetime 129

4.6.6 A simple model of a cosmological phase transition

As a final example of quantum field dynamics in conformally flat universes, we
shall show a simple model of the development of a cosmological phase transition
through spinodal decomposition. Our discussion follows [SCHR99].

Let us consider a λΦ4 theory on a spatially flat, expanding Friedmann–
Lemaitre–Robertson–Walker universe. We assume the field is conformally cou-
pled (ξ = 1/6) but has a bare mass m2

b , thus breaking conformal invariance.
The field equation now has an extra term a2 (η)λBΦ3/6 describing the self-
interaction. However, at early times we may adopt the Hartree approximation

Φ3 ∼ 3
〈
Φ2
〉
(η) Φ (4.172)

and the wave equation becomes formally the equation for a free field with a
self-consistent mass

m2
eff (η) = m2

b +
λB

2
〈
Φ2

HF

〉
(η) (4.173)

We are assuming of course that the initial condition is also spatially homoge-
neous, so that

〈
Φ2
〉

depends only on η. The “free” field ΦHF admits a mode
expansion in terms of conformal amplitudes χk which obey equation (4.152)
with Q = 0 and m2 = m2

eff (η) , and boundary conditions

χk (0) =

√
�

2ωk (0)
(4.174)

χ′
k (0) = −i

√
�ωk (0)

2
(4.175)

We assume the expectation values〈
a†kak′

〉
= nkδ (k − k′) ;

〈
a†2k

〉
=
〈
a2
k

〉
= 0 (4.176)

whereby 〈
Φ2

HF

〉
(η) =

1
a2 (η)

∫
d3k

(2π)3
|χk (η)|2 (1 + 2nk) (4.177)

As in flat spacetime,
〈
Φ2

HF

〉
(η) diverges. The theory may be rendered finite

by imposing a cut-off at some physical scale Λphys = Λ (η) /a (η) . However the
resulting renormalized parameters are strongly cut-off dependent. To eliminate
this dependence, let κphys be a second physical scale, large enough that for modes
higher than κ (η) = a (η)κphys the mode functions χk are well approximated by
adiabatic modes, but still much lower than Λ. Then we write〈

Φ2
HF

〉
(η) = �

{
Λ2

8π2
− m2

eff (η)
8π2

ln
[
Λ
κ

]
+ μ2 (η)

}
(4.178)

μ2 (η)=
1

a2 (η)

∫ aΛ d3k

(2π)3

{
|χk (η)|2

�
(1 + 2nk) −

1
2k

+
a2 (η)m2

eff (η)
4k3

θ (k − aκ)

}

(4.179)
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130 Quantum fields on time-dependent backgrounds: Particle creation

The point is that μ2 (η) is essentially cut-off independent. The gap equation now
reads

m2
eff (η) = m2

b +
�λB

2

{
Λ2

8π2
− m2

eff (η)
8π2

ln
[
Λ
κ

]
+ μ2 (η)

}
(4.180)

The bare mass m2
b is defined by the condition that in flat space time (a = 1)

and at the critical temperature TC, m2
eff = 0. Thus

0 = m2
b +

�λB

2

{
Λ2

8π2
+

T 2
C

6

}
(4.181)

where we set the Boltzmann constant kB = 1, for simplicity. We now have the
finite gap equation

m2
eff (η) =

�λ

2

{
μ2 (η) − T 2

C

6

}
(4.182)

where

1
λ

=
1
λB

+
�

16π2
ln
[
Λ
κ

]
(4.183)

We may now start discussing the early time evolution of the field. The central
aspect of this behavior is the suppression factor a−2 (η) in μ2 (η) (cf. equation
(4.179)). Because of this factor, m2

eff (η) decreases and eventually becomes nega-
tive. Indeed, assume the initial spectrum nk corresponds to a Planck distribution
with temperature T 2

0 � m2
eff (0) , T 2

C. Then, when m2
eff (η) is small we get

m2
eff (η) ∼ �λ

12

{
T 2

0

a2 (η)
− T 2

C

}
(4.184)

and so

ω2
k (η) = k2 +

�λ

12
[
T 2

0 − a2 (η)T 2
C

]
(4.185)

If the expansion is slow enough, we may approximate this by

ω2
k (η) = k2 − 1

τ

�λT 2
0

12
(η − ηC) (4.186)

where ηC is the conformal time at which m2
eff vanishes for the first time, and

τ−1 = (2aH) (ηC) is the quench rate. H = a′/a2 is the Hubble constant.
At η = ηC the homogeneous mode becomes unstable. If m2

eff actually becomes
negative, then other infrared modes become unstable as well, and the correspond-
ing mode functions start to grow exponentially. The result is the formation of an
infrared peak. Eventually, though, the approximation (4.186) becomes invalid.

To obtain an improved estimate, observe that once
∣∣∣(ω2

k

)′∣∣∣ ≤ ∣∣ω3
k

∣∣ we may
approximate the mode functions by WKB wave forms. This inequality translates
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4.7 Particle creation as squeezing 131

into

1
τ

�λT 2
0

12
≤
[

1
τ

�λT 2
0

12
(η − ηC) − k2

]3/2
(4.187)

When this inequality holds, we may write

χk (η) ∼
√

�√
2 |ωk (η)|

eSk(η) (4.188)

where

Sk (η) =
∫ η

ηk

|ωk (η′)| dη′ =
2
3

(
12τ

�λT 2
0

)[
�λT 2

0

12τ
(η − ηC) − k2

]3/2
(4.189)

ηk = ηC + τ

(
12k2

�λT 2
0

)
< η (4.190)

In the infrared, we may approximate

Sk (η) = S0 (η) − 1
2
σ2 (η) k2 (4.191)

σ2 (η) =
(

48τ
�λT 2

0

(η − ηC)
)1/2

(4.192)

Provided ησ−1 < η, we get

μ2 (η) =
1

a2 (η)

[
T 2

0

6
+

e2S0(η)T0

(2π)2 |ω0 (η)|σ2 (η)

]
(4.193)

The infrared peak in mode space is correlated with the appearance of correlated
domains in physical space, whose comoving size is σ (η) and increases with time
(coarse graining). We see that the exponential growth of the infrared peak coun-
terbalances the red-shift due to the Hubble expansion. If we simply extrapolate
this model, we conclude that eventually the infrared peak becomes dominant,
and the effective mass is driven again to zero from below.

The actual picture is more involved. Within these domains, there is nondiag-
onal long-range order, and we may describe the field as a quantum field (repre-
sented by the stable modes) evolving on a nontrivial background field (which is
the “square root” of the infrared peak). When the background field gets large
enough, it starts to oscillate around the true equilibrium position. The quantum
field then becomes a periodically driven field and, as we have seen, parametric
amplification results in copious particle production from the background field.

4.7 Particle creation as squeezing

In this section we will use the language of squeezed states [CavSch85, Sch86]
to treat a neutral scalar field in a dynamic background field or spacetime. This
approach will shed a clearer light on two interrelated issues:
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132 Quantum fields on time-dependent backgrounds: Particle creation

(a) Dependence of particle creation on the initial state. We consider in particular
the number state, the coherent and the squeezed state.

(b) The relation of spontaneous and stimulated particle creation and their depen-
dence on the initial state.

We also derive the result for the fluctuations in particle number in anticipation
of its relevance to defining noise in quantum fields. Our presentation here follows
[HuKaMa94].

Since the concept of squeezed state was introduced to quantum optics in the
1970s [CavSch85, Sch86, Gla05], there has been much progress in seeking its
experimental realizations and theoretical implications. The language of squeezed
states as a way to describe cosmological particle creation was introduced by
Grishchuk and Sidorov [GriSid90]. Although the physics is not new (this was
also pointed out by Albrecht et al. [AFJP94] in the inflationary cosmology con-
text) and the results are largely known, the use of rotation and squeeze oper-
ators gives an alternative description which allows one to explore new avenues
based on interesting ideas developed in quantum optics. Work on entropy genera-
tion in cosmological perturbations by Brandenberger and coworkers [BrMuPr92,
BrMuPr93] and Gasperini and Giovannini [GasGio93, GasGioVen93] make use of
coarse graining via a random phase approximation. Matacz [Mat94, LafMat93]
has used the squeezed state formalism as a starting point for the study of deco-
herence of cosmological inhomogeneities in the coherent-state representation.

The issues of initial states and entropy generation have been discussed in
restricted conditions, and the issue of spontaneous and stimulated production
has only been touched upon before. For the sake of completeness, we will address
these issues under a common framework, using the language of squeezed states,
and present the results for different initial states (the number state, the coherent
state and the squeezed state).

4.7.1 Evolutionary operator, squeezing and rotation

We now present a description of particle creation by means of the evolutionary
operator U defined by

ã±k(t) = U(t)a±kU
†(t) (4.194)

where UU† = 1. The form of U was deduced by Parker [Park69] following Kame-
fuchi and Umezawa [KamUme64]. In the modern language of squeezed states
[CavSch85, Sch86], one can write U = RS as a product of two unitary operators,
the rotation operator

R(θ) = exp[−iθ(a†+a+ + a†a )] (4.195)

and the two-mode squeeze operator

S2(r, φ) = exp[r(a+a e−2iφ − a†+a
†
−e

2iφ)] (4.196)
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4.7 Particle creation as squeezing 133

where r is the squeeze parameter with range 0 ≤ r < ∞ and φ, θ are the rotation
parameters with ranges −π/2 < φ ≤ π/2, 0 ≤ θ < 4π. (These parameters and U,

R and S should all carry the label k. The ± on a refer to the ±k modes.) Note
that

S†
2(r, φ) = S−1

2 (r, φ) = S2(r, φ + π/2) (4.197)

The three real functions (θk, φk, rk) are related to the two complex functions
(αk, βk) by

αk = eiθk cosh rk, βk = ei(θk−2φk) sinh rk (4.198)

For mode decompositions in spatially homogeneous spacetimes leading to no
mode couplings, the Bogoliubov transformation connecting the ak and the ãk

operators is given by equation (4.28) (for more general situations, see [Hu72]). We
see that because of the linear dependence of ã+k on a+k and a†−k (but not a†+k)
a two-mode squeeze operator is needed to describe particle pairs in states ±k.

The physical meaning of rotation and squeezing can be seen from the result
of applying these operators for a single-mode harmonic oscillator as follows: (the
kth mode label is omitted below unless needed explicitly).

The Hamiltonian is

H0 = �Ω
(
a†a +

1
2

)
(4.199)

Under rotation,

R|0〉 = |0〉, RaR† = eiθa (4.200)

Also,

R(θ)R(θ′) = R(θ + θ′) (4.201)

This implies that

Rx̂R† = (cos θ) x̂− (sin θ) p̂ (4.202)

Rp̂R† = (sin θ) x̂ + (cos θ) p̂ (4.203)

where

a =
1√
2�

(√
MΩx̂ + i

p̂√
MΩ

)
(4.204)

Thus the name rotation. Let δa = a− 〈a〉 (where 〈 〉 denotes the expectation
value with respect to any state); then the second-order noise moments of a are
defined as [CavSch85, Sch86]:

〈(δa)2〉 = 〈a2〉 − 〈a〉2 = 〈(δa†)2〉∗

=
1
2�

[MΩ〈(δx)2〉 − (MΩ)−1〈(δp)2〉] + i〈(δxδp)sym〉 (4.205)

〈|δa|2〉 =
1
2
〈δaδa† + δa†δa〉 =

1
2�

[MΩ〈(δx)2〉 + (MΩ)−1〈(δp)2〉] (4.206)
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134 Quantum fields on time-dependent backgrounds: Particle creation

The first quantity is the variance of a, a complex second moment, while the
second is the correlation, a real second moment, which, as seen in the more
familiar x, p representation, measures the mean-square uncertainty (called total
noise in [CavSch85, Sch86]). Rotation preserves the number operator

Ra†aR† = a†a (4.207)

It rotates the moment

〈R(δa)2R†〉 = e2iθ〈(δa)2〉 (4.208)

corresponding to a redistribution between x̂, p̂, but preserves the uncertainty

〈R|δa|2R†〉 = 〈|δa|2〉 (4.209)

One can define a displacement operator as

D(μ) = exp[μa† − μ∗a] (4.210)

Note that D−1(μ) = D†(μ) = D(−μ). The coherent state can be defined as

|μ〉 = D(μ)|0〉 (4.211)

Thus

a|μ〉 = μ|μ〉 (4.212)

and

Da†aD† = a†a− (μa† + μ∗a) + |μ|2 (4.213)

Under displacement,

D(μ)aD†(μ) = a− μ (4.214)

The displacement operation also preserves the uncertainty

〈D|δa|2D†〉 = 〈|δa|2〉 (4.215)

The single-mode squeeze operator is defined as

S1(r, φ) = exp
[r
2
(a2e−2iφ − a†2e2iφ)

]
(4.216)

If we construct a Gaussian state in the position basis, with initially the same
width σ0 as that of the ground state of such an ordinary harmonic oscillator,
displaced by some arbitrary amount and with a phase proportional to x, we
find this to be an eigenstate of the lowering operator, and is called a coherent
state. Suppose we locate the point (x, p) in phase space and draw an ellipse
about this point, the lengths of whose axes are the uncertainties Δx2,Δp2. Then
as the oscillator evolves this uncertainty ellipse revolves about the origin with
angular speed Ω. A squeezed state is again such a state, but with an arbitrary
initial width σ. We find that as the oscillator evolves the uncertainty ellipse again
revolves about the origin, but its axes change length and it can also rotate about
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4.7 Particle creation as squeezing 135

its own center. It turns out that the squeeze parameter r is related to the width
of such a state:

r = ln
σ0

σ
, σ0 ≡

√
�

2MΩ
(4.217)

Hence a coherent state has r = 0, or zero squeezing. A Gaussian that initially
has a width smaller than σ0 will evolve to a squeezed state with some r > 0. A
squeezed state is formed by squeezing a coherent state,

|σ〉μ = S1(r, φ)|μ〉 (4.218)

or,

|σ〉μ = |r, φ, μ〉 = S1(r, φ)D(μ)|0〉 (4.219)

Call aS1 = S1aS
†
1. Then

aS1|σ〉 = μ|σ〉 (4.220)

and

aS1 = S1aS
†
1 = a cosh r + e2iφa† sinh r (4.221)

Thus a squeezed state in the Fock space of a becomes a coherent state in the
Fock space of aS1with the same eigenvalue. From this we see the result of S1

acting on x̂ and p̂:

S1x̂S
†
1 = (cosh r + cos 2φ sinh r)x̂ + (sin 2φ sinh r) (p̂/(MΩ)) (4.222)

S1p̂S
†
1 = (cosh r − cos 2φ sinh r)p̂ + (sin 2φ sinh r)(MΩ)x̂ (4.223)

For φ = π/2, these give

S1x̂S
†
1 = e−rx̂, S1p̂S

†
1 = erp̂ (4.224)

Hence the name squeezing. Two successive squeezes with the same rotation
parameter result in one squeeze with the squeeze parameter as the sum of the
two parameters:

S1(r, φ)S1(r′, φ) = S1(r + r′, φ) (4.225)

The expectation value of squeezing the number operator is

〈S†
1a

†aS1〉 = sinh2 r + (1 + 2 sinh2 r)〈a†a〉 + sinh 2rRe[e−2iφ〈a2〉] (4.226)

and that of the correlation is

〈S†
1|δa|2S1〉 = cosh 2r〈|δa|2〉 + sinh 2rRe[e−2iφ〈(δa)2〉] (4.227)

which for the vacuum and coherent states is always greater than or equal to the
original value.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


136 Quantum fields on time-dependent backgrounds: Particle creation

The two-mode squeeze operator S2 defined in (4.196) is more suitable for the
description of cosmological particle creation. One can show that the out state is
generated from the in state by including contributions from all k modes,

|out〉 = RS|in〉 (4.228)

where

S = Π∞
k=0S2(rk, φk) (4.229)

In general

〈out|F (ã±, ã
†
±)|out〉 = 〈in|F (a±, a

†
±)|in〉 (4.230)

where F is an arbitrary analytic function. The |in〉 state can be a number state,
a coherent state or a squeezed state. If the initial state is a vacuum state, |in〉 =
|0in〉, then

|0out〉 = S(r, φ− θ

2
)|0in〉 (4.231)

where

S(r, φ− θ) = exp{Σkrk[e−2i(φk−θk)aka−k − e2i(φk−θk)a†ka
†
−k]} (4.232)

The squeeze parameter sinh2 rk = |βk|2 measures the number of particles cre-
ated. Rotation does not play a role. Thus, as observed by Grishchuk and Sidorov
[GriSid90], cosmological particle creation amounts to squeezing the vacuum. The
same can be said about Hawking radiation [Haw75]. See [HuKaMa94].

4.7.2 Dynamics of the squeezing parameters

So far we have used the language of squeezed states to describe the integrated
effect of the dynamics, as in equation (4.194). We will show now that for a linear
system the dynamics itself may be described in terms of the evolution of the
squeezing parameters r, φ and θ as functions of time.

Let us begin with a general quadratic Lagrangian. This Lagrangian has time-
dependent mass and frequency, and we will also allow it to have a time-dependent
cross-term, denoted 2E(t):

L =
M(t)

2
[
ẋ2 + 2E(t)ẋx− Ω2(t)x2

]
(4.233)

We perform a Legendre transformation to obtain the Hamiltonian, and switch
to creation–destruction operators

a =
1√
2�

(√
κx̂ + i

p̂√
κ

)
(4.234)
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4.7 Particle creation as squeezing 137

where κ is an arbitrary positive constant related to the frequency. The result is
[HuMat94]

�
−1H(t) = g(t)

a2

2
+ g∗(t)

a†2

2
+ h(t)(a†a + 1/2) (4.235)

g =
1
2

[
M

κ
(Ω2 + E2) − κ

M
+ 2iE

]

h =
1
2

[
M

κ
(Ω2 + E2) +

κ

M

]
(4.236)

The value of κ can be chosen so that at the initial time g(ti) = 0. Thus if E = 0
we will usually have κ = M(ti)Ω(ti).

The evolution operator U = SR may be written as the product of a single-
mode squeeze operator S and a rotation operator R, which in turn are param-
eterized in terms of a squeeze parameter r and angles θ and φ as in equations
(4.195) and (4.216). Acting on the destruction operator, U induces a Bogoli-
ubov transformation as in equation (4.194), with Bogoliubov coefficients given
in equation (4.198). Their equations of motion are

α̇ = −ihα− ig∗β

β̇ = igα + ihβ

α(ti) = 1, β(ti) = 0 (4.237)

with g, h as defined in equation (4.236).
A quantity of much importance turns out to be the sum of the Bogoliubov

coefficients, χ ≡ α + β. It follows from equations (4.237) that χ satisfies the
classical equation of motion for the system:

χ̈ +
Ṁ

M
χ̇ +

(
Ω2 + Ė +

ṀE
M

)
χ = 0 (4.238)

with initial conditions

χ(ti) = 1; χ̇(ti) =
−iκ

M(ti)
− E(ti) (4.239)

With this result, the usual task of finding the Bogoliubov coefficients α, β from
two coupled first-order differential equations is reduced to that of solving one
second-order equation for χ. We have two equations

χ = α + β

χ̇ = i(g − h)α + i(h− g∗)β (4.240)

so, solving for α, β using equation (4.236):{
α

β

}
=

1
2

(
1 ± iEM

κ

)
χ± iM

2κ
χ̇ (4.241)
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138 Quantum fields on time-dependent backgrounds: Particle creation

Equivalently, we can follow the behavior of r, φ, θ by writing equation (4.237) in
terms of the squeeze parameter, with g ≡ |g|eiδ:

ṙ = |g| sin(2φ + δ)

φ̇ = −h + |g| coth 2r cos(2φ + δ)

θ̇ = h− |g| tanh r cos(2φ + δ) (4.242)

As an example, consider an inverted oscillator, where the coefficients in the
Lagrangean are time-independent and Ω2 < 0. The variable χ blows up, and so
does the squeeze parameter r → ln(2|α|). If we set r → ∞ then the equations for
φ, θ become

θ̇ = −φ̇ = h− |g| cos(2φ + δ) (4.243)

or

t =
∫ φ

φ0

dϕ

|g| cos(2ϕ + δ) − h
(4.244)

The integral may be solved analytically but we do not need the result in
what follows. Simply observe that Ω2 < 0 implies |g| > h, and so as t → ∞, φ
must approach a zero of |g| cos(2ϕ + δ) − h, so that the integral increases without
bound. This makes θ̇ → 0 too. Therefore for late times φ and θ approach constant
values, while r increases.

4.7.3 Number, coherence and initial states

We will show in this section that the number of particles produced depends very
much on the initial state chosen. The number operator for a particle pair in mode
k is given by

N = a†+a+ + a†a (4.245)

Note that the subscripts ± here denote a particle pair in states ±k whereas in
the charged particle case +,− denote particle and antiparticle states respectively.
For the charged particle case since at the end we assume the number of positive
and negative charged particles is the same, it gives the same expression as a
neutral particle there. However, here since we count the two states as distinct,
we should have twice the amount for vacuum particle production.

The expectation value of the number operator with respect to the |out〉 vacuum
for a general initial state is

Ñ = 〈N〉t = 〈S†
2R

†NRS2〉 = 2|β|2 + (1 + 2|β|2)〈N〉
−2|α||β|(e2iφ〈a†+a†〉 + e−2iφ〈a+a 〉) (4.246)

Comparing this expression with (4.103) or (4.108), the only difference of a factor
of 2 for the first |β|2 term comes from the spontaneous creation of particles in
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4.7 Particle creation as squeezing 139

the ±k modes. The net change in the particle number from the initial to the
final state is

δN ≡ 〈N〉t − 〈N〉 = 2|β|2[1 + 〈N〉] − 2|β||α|{e2iφ〈a†+a†〉 + e−2iφ〈a+a 〉}
(4.247)

Here, the first two terms in the square brackets are respectively the sponta-
neous and stimulated emissions and the last term in the curly brackets is the
interference term. The difference between spontaneous and stimulated creation
of particles in cosmology was explained first by Parker [Park69] and explored in
more detail by Hu and Kandrup [HuKan87]. Note that since there is no θ depen-
dence, rotation has no effect. If rk �= 0 for some k both spontaneous and stimu-
lated contributions are positive. The interference term can be negative for states
which give nonzero 〈a+a−〉. Only when this term is non-zero can δN be negative.

We will calculate the change in particle number for some specific initial
states.

(a) Number state
For an initial number state |n〉 = |n+, n 〉

δN = 2|β|2(1 + n+ + n ) (4.248)

We see that the number of particles will always increase.
(b) Coherent state

For an initial coherent state

|μ〉 = D(μ+)D(μ )|0, 0〉 (4.249)

we find that

δN = 2|β|2[1 + 〈N+〉 + 〈N 〉] − 4|β||α|
√
〈N+〉〈N 〉 cos(2φ− ζ+ − ζ )

(4.250)

where

μ+ =
√
〈N+〉eiζ+ , μ =

√
〈N 〉eiζ (4.251)

Note the existence of the interference term which can give a negative con-
tribution. It depends not only on the squeeze parameters |β| and φ, but
also on the particles present and the phase of the initial coherent state.
Conditions favorable to a decrease in δN are cos(2φ− ζ+ − ζ ) = 1 and
〈N+〉 = 〈N 〉 = 〈N〉/2. In this case we find δN is negative if

〈N〉 > |β|
|α| − |β| (4.252)

(c) Single-mode squeezed vacuum state
For an initial one-mode squeezed state

|σ〉1 = S1+(r+, φ+)S1−(r−, φ−)|0, 0〉 (4.253)
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140 Quantum fields on time-dependent backgrounds: Particle creation

generated by squeezing the vacuum with S1± for the ±k modes, we get

δN = 2|β|2(1 + 〈N+〉 + 〈N 〉) (4.254)

Once again particle number will always increase.
(d) Two-mode squeezed vacuum state

For an initial two-mode squeezed vacuum

|σ〉2 = S2(r0, φ0)|0, 0〉 (4.255)

where S2 is defined earlier,

δN = 2|β|2[1 + 〈N〉] + 2|β||α|
√
〈N〉(2 + 〈N〉) cos 2(φ− φ0) (4.256)

The cosine factor shows that particle number can decrease given the right
phase relations. It can be shown that for cos 2(φ− φ0) = −1 particle number
would decrease (δN ≤ 0) if r0 ≥ r/2. If the phase information is randomized
the cosine factor averages to zero and there is a net increase in particle
number. Since a squeezed state is the end result of squeezing a vacuum via
particle creation, one might naively expect to see a monotonic increase in
number. Our result shows that this is true only if the phase information is
lost in the squeezed state to begin with.

In summary we can make the following observations:

(a) Rotation R in the evolution operator U = RS does not influence particle
creation.

(b) For an initial number state or single-mode squeezed vacuum we find a net
increase in the number of particles.

(c) For an initial coherent state and two-mode squeezed vacuum, particle number
can increase or decrease. A net increase can nevertheless be obtained by
suitable choices of S2(r, φ) and S2(r0, φ0).

(d) If random phase is assumed for the initial state the interference term can be
averaged out to zero and there will be a net increase in number of particles.

Coherence can persist

A measure of the coherence of the system is given by the uncertainty (called
variance in [Hu72, Mol67, BroCar79, HuPav86])

|δa|2 =
1
2
(δaδa† + δa†δa) (4.257)

where δa = a− 〈a〉. The expectation value of the uncertainty with respect to a
state |ψ〉 is thus,

〈ψ||δa|2|ψ〉 = 〈ψ|a†a|ψ〉 − |〈ψ|a|ψ〉|2 +
1
2

(4.258)
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4.7 Particle creation as squeezing 141

The expectation value of the uncertainty with respect to a transformed state
|ψ〉t ≡ RS|ψ〉 is given by

〈ψ||δa|2|ψ〉t = cosh 2r〈ψ||δa|2|ψ〉 − 2 sinh 2rRe[e−2iφ〈ψ|δa+δa−|ψ〉] (4.259)

where |δa|2 ≡ |δa+|2 + |δa−|2. For an initial number state, |ψ〉 = |n〉,

〈n||δa|2|n〉t = 2
(

1
2

+ |β|2
)
〈n||δa|2|n〉 ≥ 〈n||δa|2|n〉 (4.260)

For a coherent state, |ψ〉 = |μ〉

〈μ||δa|2|μ〉t = 2
(

1
2

+ |β|2
)
〈μ||δa|2|μ〉 ≥ 〈μ||δa|2|μ〉 (4.261)

where the first term corresponds to the vacuum fluctuation and the second term
(whose sum over all modes is equivalent to Tr(v†kvk) in [Hu72, HuPav86]) mea-
sures the mixing of the positive and negative frequency components of differ-
ent modes. This result was first derived in [Hu72], and discussed further in
[HuPav86]. Notice that it is always greater than the original value 〈|δa|2〉μ.

For a squeezed state, |ψ〉 = |σ〉 = S2(r0, φ0)|μ〉

〈σ||δa|2|σ〉t = cosh 2r〈σ||δa|2|σ〉 − 2 sinh 2rRe[e−2iφ〈σ|δa+δa−|σ〉] (4.262)

which can be smaller than the initial value.
Notice that of the three states we discussed, only the squeezed state can allow

for a decrease in the uncertainty, i.e. an increase in the coherence as the system
evolves. In addition, even though the total number and the total uncertainty of
the initial state of the two modes change with particle creation, their difference
remains a constant. This is because cosmological particle creation is described
by the two-mode squeezed operator which satisfies the relations: 〈ψ|S†(a†+a+ −
a†−a−)S|ψ〉 = 〈ψ|a†+a+ − a†−a−|ψ〉,

〈ψ|S†(|δa+|2 − |δa−|2)S|ψ〉 = 〈ψ|(|δa+|2 − |δa−|2)|ψ〉 (4.263)

4.7.4 Fluctuations in number

Spontaneous particle creation can be viewed as the parametric amplification of
vacuum fluctuations (or squeezing the vacuum). Particle number is an inter-
esting quantity as it measures the degree to which the vacuum is excited. The
fluctuation in particle number is another interesting quantity, as it can be related
to the noise of the quantum field and the susceptibility of the vacuum. This is
similar in nature to the energy fluctuation (measured by the heat capacity at
constant volume) of a system being related to the thermodynamic stability of a
canonical system, or the number fluctuation (measured by the compressibility at
constant pressure) of a system being related to the thermodynamic stability of
a grand canonical system. In gravity, we know that the number fluctuation of a
self-gravitating system can be used as a measure of its heat capacity (negative)
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142 Quantum fields on time-dependent backgrounds: Particle creation

[LynBel77]; and those associated with particle creation from a black hole can be
used in a linear-response theory description as a measure of the susceptibility
of spacetime [CanSci77, Mot86]. We expect that this quantity associated with
cosmological particle creation may provide some important information about
quantum noise and vacuum instability.

Define δiO ≡ [〈O2〉 − 〈O〉2] as the variance or mean-square fluctuations of the
variable O with respect to the initial state | 〉, and the corresponding quantity
δfO as that with respect to the final state | ). Consider the difference between
the final and the initial number fluctuation of both the ± kinds,

δN = (δfN+ + δfN−) − (δiN+ + δiN−) (4.264)

Using the expressions given above, we obtain

δN = 2|α|2|β|2[δN+ + δN− + δL + ∂(N+N−)]i
−(|α|3|β| + |α||β|3)[∂(N+L) + ∂(N−L)]i (4.265)

where the subscript i refers to expectation values with respect to the initial states
| 〉, the symbol ∂ denotes

∂(PQ) ≡ [〈PQ〉 + 〈QP 〉 − 2〈P 〉〈Q〉] (4.266)

and

L = e2iφa†+a
†
− + e−2iφa−a+ (4.267)

Now for an initial number state |n〉 = |n+, n−〉,

δN = 2|α|2|β|2(1 + n+ + n + 2n+n ) (4.268)

we see that the number fluctuations will always increase. For an initial coherent
state |μ〉 = D(μ+)D(μ )|0, 0〉, where μ± =

√
〈N±〉eiζ± ,

δN = 2|α|2|β|2[1 + 2(〈N+〉 + 〈N 〉)]
− 4
√
〈N+〉〈N 〉(|α|3|β| + |α||β|3) cos(2φ− ζ+ − ζ ) (4.269)

We find that under the conditions cos(2φ− ζ+ − ζ ) = 1 and 〈N+〉 = 〈N−〉 =
〈N〉/2

〈N〉 > |β||α|
|α|2 + |β|2 − |β||α| (4.270)

δN can be negative. In the weak particle creation limit |β| → 0, |α| → 1 we find
that this expression is equivalent to (4.252). In the strong particle creation limit
we see that (4.252) diverges but in (4.270) 〈N〉 → 1. Clearly conditions for a
decrease in number fluctuations are not the same as those for a decrease in the
number.

For a single-mode squeezed state |σ〉1 = S1+(r+, φ+)S1−(r−, φ−)|0, 0〉

δN = 2|α|2|β|2[(1 + 〈N+〉 + 〈N−〉)2 + 〈N+〉(1 + 〈N+〉) + 〈N−〉(1 + 〈N−〉)
− 2
√
〈N+〉(1 + 〈N+〉)〈N−〉(1 + 〈N−〉) cos 2(2φ− φ+ − φ−)] (4.271)
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4.8 Squeezed quantum open systems 143

From this it can be shown that, like the change in number, the change in the
number fluctuations will always be positive for an initial single-mode squeezed
vacuum.

For a two-mode squeezed state |σ〉2 = S2(r0, φ0)|0, 0〉

δN = |α|2|β|2{2(1 + 〈N〉)2 + 〈N〉(2 + 〈N〉)[1 + cos 4(φ− φ0)]} (4.272)

+ 2(|α|3|β| + |β|3|α|)(1 + 〈N〉)
√
〈N〉(2 + 〈N〉) cos 2(φ− φ0) (4.273)

Note that there is no definite relation between N and δN . For large N � 1 or
small |β| � 1, δN ≤ 0. The result obtained here for particle number fluctuations
is relevant to issues of noise and fluctuation of quantum fields, and in turn,
the dissipation and instability of condensates, background fields and spacetimes
[HuSin95, HuMat96, HuMat95].

4.8 Squeezed quantum open systems

In this last section we discuss a squeezed quantum system interacting with an
environment. From the examples given in this chapter we see that this encom-
passes a rather broad spectrum of systems with time-dependent background
fields or spacetimes.

This theory was developed in the influence functional formalism by Hu and
Matacz [HuMat94] extending the work on quantum Brownian motion by Hu,
Paz and Zhang [HuPaZh92, HuPaZh93a], and Caldeira and Leggett [CalLeg83a]
to oscillators with time-dependent frequencies. From this oscillator model it is
an easy step to extend to quantum fields, which was done in [Zha90, Hu94b]. We
shall treat open systems of quantum fields in the next chapter.

Our discussion here follows Koks et al. [KoMaHu97] based on the work of
[HuMat94] which considers a squeezed (time-dependent, parametric) quantum
open system coupled to a bath at temperature T with a time-dependent coupling
constant. The results here are useful for calculating the entropy and uncertainty
functions as well as for fluctuations and coherence, a topic to be discussed in
Chapter 9.

4.8.1 Dissipation and noise kernels

For a parametric oscillator system interacting with a bath of many paramet-
ric oscillators at temperature T described by the Lagrangian given by equation
(3.133) in Chapter 3 one can calculate the dissipation and noise kernels in closed
forms ((equation (2.19) of [HuMat94]) in terms of the squeezed state parameteri-
zation (r, θ, φ) introduced in the previous section and the Bogoliubov coefficients
(α, β) representation of the mode functions. In the case of a squeezed bath when
the cross-term (εn = 0) is absent and the mass of the bath oscillator is a constant
(mn = 1) these expressions are in a manageable form. Note that the functions
χn(t) = αn(t) + βn(t) obey the equations (cf. equation (4.238)):

χ̈n(t) + ω2
n(t)χn(t) = 0 (4.274)
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144 Quantum fields on time-dependent backgrounds: Particle creation

with initial conditions (compare to (4.239))

χn(ti) = 1; χ̇n(ti) = −iκn (4.275)

The bath canonical variables then admit a simple representation

qn(s) =
1
2

{
[χn(s) + χ∗

n(s)] qn(ti) +
i

κn
[χn(s) − χ∗

n(s)] q̇n(ti)
}

(4.276)

The initial state of the bath is a squeezed thermal state. It has the form

ρ̂b(ti) =
∏
n

Ŝn(r(n), φ(n))ρ̂thŜ
†
n(r(n), φ(n)) (4.277)

where ρ̂th is a thermal density matrix of temperature T and Ŝ(r, φ) is a squeeze
operator defined in equation (4.216).

In this still rather general class of problems, the noise and dissipation kernels
can be found from equations (3.62), where the relevant expectation values are
computed with the help of (4.223)

D(s, s′) = 2
∫ ∞

0

dω I(ω, s, s′)Im[χω(s)χ∗
ω(s′)] (4.278)

N(s, s′) =
∫ ∞

0

dω I(ω, s, s′) coth
(

�ω(ti)
2kBT

){
cosh 2r(ω)Re[χω(s)χ∗

ω(s′)]

−1
2

sinh 2r(ω)
[
e−2iφ(ω)χ∗

ω(s)χ∗
ω(s′) + e2iφ(ω)χω(s)χω(s′)

]}
(4.279)

We have adopted the convention that if fn is a quantity defined for each mode
of the bath, then we call f(ω) = fω ≡ fn evaluated at the mode that satisfies
ω = ωn(ti). I(ω, s, s′) is the spectral density defined by

I(ω, s, s′) =
∑
n

δ(ω − ωn(ti))
cn(s)cn(s′)

2κn
(4.280)

It contains information about the environmental mode density and coupling
strength as a function of frequency. Different environments are classified accord-
ing to the functional form of the spectral density I(ω). On physical grounds,
one expects the spectral density to go to zero for very high frequencies. Let us
introduce a certain cut-off frequency Λ (a property of the environment) such
that I(ω) → 0 for ω > Λ. The environment is classified as ohmic if in the phys-
ical range of frequencies (ω < Λ) the spectral density is such that I(ω) ∼ ω,
as supra-ohmic if I(ω) ∼ ωn, n > 1 or as sub-ohmic if n < 1. The most studied
ohmic case corresponds to an environment which induces a dissipative force lin-
ear in the velocity of the system. Also, by considering the continuum limit of the
coupling constant, it can be shown that this constant’s independence of n also
leads to an ohmic environment.

Note that the dissipation kernel is independent of the bath’s initial state.
More generally, the noise and dissipation kernels are built out of symmetric and
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4.8 Squeezed quantum open systems 145

antisymmetric combinations of identical Bogoliubov factors. Thus the two kernels
are intimately linked. For the case when the bath is a standard harmonic oscilla-
tor this inter-relationship can be written as a generalized fluctuation–dissipation
relation [HuPaZh93a].

4.8.2 u1 → v2 functions

In these last two subsections we present the explicit forms of the u, v and a, b func-
tions for this squeezed quantum system. Recall that these are the functions first
appearing in Chapter 3 in the derivation of the propagator for the reduced density
matrix which determine the coefficients of the master equation. First consider
equation (3.138). We treat the integral of a delta function and its derivative in the
following way: use a smooth step function (i.e. θ(0) ≡ 1/2) to write (x1 > x0)1∫ x1

x0

f(x)δ(x− a) dx ≡ f(a) θ(x1 − a) θ(a− x0) (4.281)∫ x1

x0

f(x)δ′(x− a) dx ≡ −f ′(a) θ(x1 − a) θ(a− x0) (4.282)

Hence equation (3.138) together with equation (3.142) becomes (with u being
either u1 or u2)

ü(s) +

(
Ṁ

M
+

2γ0c
2

M

)
u̇ +

(
Ω2 +

ṀE
M

+ Ė +
2γ0cċ

M

)
u = 0 (4.283)

Now define ũ by

ũ ≡ u exp
[
γ0

∫ s

ti

c2(s′)
M(s′)

ds′
]

(4.284)

in which case it follows that

¨̃u +
Ṁ

M
˙̃u +

(
Ω2 +

ṀE
M

+ Ė − γ2
0c

4

M2

)
ũ = 0 (4.285)

Comparing with (4.238), we recognize this as just the equation of motion of an
oscillator with mass M , cross-term E and an effective frequency

Ω2
eff ≡ Ω2 − γ2

0c
4

M2
(4.286)

Hence we know a solution for ũ(s) – it is the sum χ of the Bogoliubov coefficients
for this new system. So we write (with g1, g2 constants to be determined)

u(s) = exp
[
−γ0

∫ s

ti

c2

M
ds′
]

[g1χ(s) + g2χ
∗(s)] (4.287)

1 These relations can easily be proved by checking the five cases individually, of a < x0,
a = x0, x0 < a < x1, etc. Note that treating the delta function in this “smoothed” way
eliminates the need for the frequency renormalization in [PaHaZu93]. This smoothing

essentially just defines
∫∞
0

δ(x)dx = 1/2 (see, e.g. [NeuHil27] for a discussion of this).
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146 Quantum fields on time-dependent backgrounds: Particle creation

By including the boundary conditions for u1 and u2 we obtain

u1(s) = exp
[
−γ0

∫ s

ti

c2

M
ds′
]

Im[χ(t)χ∗(s)]
Imχ(t)

u2(s) = exp
[
γ0

∫ t

s

c2

M
ds′
]

Imχ(s)
Imχ(t)

(4.288)

Using the propagator formalism in the language of squeezed states with the
Bogoliubov coefficients will be very useful for relating the entropy of a field
mode to its squeeze parameter r.

Proceeding in the same way, equation (3.139) and (3.39) becomes

v̈(s) +

(
Ṁ

M
− 2γ0c

2

M

)
v̇ +

(
Ω2 +

ṀE
M

+ Ė − 2γ0cċ

M

)
v = 0 (4.289)

Now write

ṽ ≡ v exp
[
−γ0

∫ s

ti

c2

M
ds′
]

(4.290)

and just as for the case of u we have

¨̃v +
Ṁ

M
˙̃v +

(
Ω2 +

ṀE
M

+ Ė − γ2
0c

4

M2

)
ṽ = 0 (4.291)

So now v1 and v2 can also be written as combinations of χ and χ∗. Including the
boundary conditions we eventually obtain

v1(s) = exp
[
γ0

∫ s

ti

c2

M
ds′
]

Im[χ(t)χ∗(s)]
Imχ(t)

v2(s) = exp
[
−γ0

∫ t

s

c2

M
ds′
]

Imχ(s)
Imχ(t)

(4.292)

4.8.3 a11 → b4 functions

To facilitate our calculations we introduce dimensionless parameters for time

z ≡ κt, σ ≡ κs

χ(τ) ≡ χ(t), etc. (4.293)

and a carat will denote division by κ, e.g. γ̂0 = γ0/κ. Note that t is the Lagrangian
time.
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4.8 Squeezed quantum open systems 147

Now we have all the necessary ingredients to calculate the propagator. Making
use of equation (3.136) and equation (3.137) we obtain

a11(z, zi) =
1

2κ2

∫ z

zi

dσ

∫ z

zi

dσ′ exp
(
γ̂0

∫ σ

zi

c2

M
dσ′′
)

Im[χ(z)χ∗(σ)]
Imχ(z)

N(σ, σ′)

× exp

(
γ̂0

∫ σ′

zi

c2

M
dσ′′
)

Im[χ(z)χ∗(σ′)]
Imχ(z)

a12 =
1
κ2

∫ z

zi

dσ

∫ z

zi

dσ′ exp
(
γ̂0

∫ σ

zi

c2

M
dσ′′
)

Im[χ(z)χ∗(σ)]
Imχ(z)

N(σ, σ′)

× exp
(
−γ̂0

∫ z

σ′

c2

M
dσ′′
)

Imχ(σ′)
Imχ(z)

a22 =
1

2κ2

∫ z

zi

dσ

∫ z

zi

dσ′ exp
(
−γ̂0

∫ z

σ

c2

M
dσ′′
)

Imχ(σ)
Imχ(z)

N(σ, σ′)

× exp
(
−γ̂0

∫ z

σ′

c2

M
dσ′′
)

Imχ(σ′)
Imχ(z)

b1(z, zi) = −γ̂0 κc
2(z) + κM(z)

Imχ′(z)
Imχ(z)

+ M(z)E(z)

b{2
3} =

∓κ

Imχ(z)
exp
(
±γ̂0

∫ z

zi

c2

M
dσ

)

b4 = −γ̂0 κc
2(zi) + κ

Reχ(z)
Imχ(z)

+ M(zi)E(zi) (4.294)

These coefficients will be useful for calculating the entropy generation in a
squeezed open quantum system in Chapter 9.
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5

Open systems of interacting quantum fields

As introduced in Chapter 1, for many problems in statistical mechanics one is
interested in the detailed behavior of only a part of the overall system (call it
the system) interacting with its surrounding (call it the environment). In field
theory one can accordingly decompose the field describing the overall system
φ = φS + φE into a sum of the system field φS and the environment field φE.
This decomposition is always possible formally but only when there is a clear
physical discrepancy between the two sectors will it be physically meaningful and
technically implementable. The division could be made between slow and fast
variables, low and high frequencies or light and heavy mass sectors. Drawing
examples from cosmology, in the stochastic inflation scenario one regards the
system field as containing only the lower modes and the environmental field as
containing the higher modes with the division provided by the event horizon in
de Sitter spacetime. A similar problem in quark–gluon plasma is to ascertain the
effect of the hard thermal loops on the soft gluon modes. Another is the effect of
the atoms in the noncondensate on the Bose–Einstein condensate (BEC). These
cases will be discussed in later chapters.

Usually the reason for performing such a decomposition is because one is inter-
ested more in the details of the system (the “relevant” variables or the “distin-
guished” sector), and less in that of the environment (the “irrelevant” variables).
Since the environment often contains many more degrees of freedom than the
system the details of which are not of particular interest to us, introducing some
way of coarse graining them and extracting their overall influence on the sys-
tem is desirable. This procedure renders the original system an open system,
and its behavior would then be describable by the open system conceptual and
technical framework we introduced in Chapter 3. In particular, the quantity of
special interest is the influence action obtained from the integration over the
environment field in a CTP path integral.

We recall that when the time limits in this path integral are taken to infin-
ity, the influence action turns into the so-called closed time path (CTP) coarse-
grained effective action (CGEA). The idea behind this quantity which originated
from studies in dynamical critical phenomena (“coarse-grained” free energy den-
sity) was transplanted to nonequilibrium quantum field theory by Hu and Zhang
[Hu91, Zha90] first in the “in–out” (Schwinger–Dewitt) formulation and then
by Sinha and Hu [SinHu91] in the “in–in” (Schwinger–Keldysh) formulation. A
clear presentation of the CTP CGEA can be found in Lombardo and Mazzitelli
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5.1 Influence functional 149

[LomMaz96]. (See also [CaHuMa01] for a review.) We shall restrict usage of the
term effective action (EA) to the particular case in which φS is the c-number
part of the field operator. The so-called background field decomposition in quan-
tum field theory, Φ = φc + φq, on an interacting field Φ is a special case of this
open system method, where the discrepancy parameter is the Planck constant
�, separating and systemizing the quantum contributions from the classical. The
familiar loop expansion (in orders of �) of the effective action is an example of
the CGEA, with the special feature that the equations of motion it yields do not
contain any dissipation (unless some causal condition like the factorizable initial
state similar to the Boltzmann molecular chaos assumption is introduced). We
will introduce the CTP CGEA in the language of influence functionals in this
chapter and introduce more formal techniques for its development in the next
chapter. The IF formalism and the CTP CGEA will be our main workhorse for
the rest of the book.

Our goal in this chapter is to derive the influence action and the CGEA and the
stochastic equations for two simple but fundamental quantum field scenarios. We
treat first the case of two interacting scalar fields, one of which is chosen as the
system and the other as its environment. This case is technically easier than the
second case, that of a single quantum field split into two by separating the long
and short wavelength sectors (to be defined precisely below), even though the
CGEA was introduced historically for the latter situation, which exemplifies a
broader class of statistical mechanical problems [Hu91]. For pedagogical reasons,
we will stay within the technically simplest approach in quantum field theory
familiar to the reader, using a straightforward perturbative expansion in powers
of the coupling constants. More powerful methods will be introduced later in the
book.

5.1 Influence functional: Two interacting quantum fields

In this section we study the problem of two quantum self-interacting scalar
fields (one the system field, the other the environment field) interacting with
each other in Minkowski spacetime. To do so we only need to generalize to
quantum field theory the results for the quantum mechanical Brownian model
based on the influence functional method introduced in Chapter 3. We first
derive the influence functional, from which we identify the dissipation and noise
kernels. We then derive a Langevin equation for the dissipative dynamics of the
system field. The nonlinear mode–mode coupling between the system field and
the environment field induces a nonlinear nonlocal dissipation and a coupled
multiplicative colored noise source for the system field. Finally we write down
the functional quantum master equation for the system field. Our presentation
in this section follows [Hu94b, Zha90].

Consider two independent self-interacting scalar fields in Minkowski spacetime:
φ(x) depicting the system, and ψ(x) depicting the environment. The classical
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150 Open systems of interacting quantum fields

actions for these two fields are given respectively by:

S[φ] =
∫

d4x

(
−1

2
∂νφ(x)∂νφ(x) − V (φ)

)
= S0[φ] + SI [φ] (5.1)

S[ψ] =
∫

d4x

(
−1

2
∂μψ(x)∂μψ(x) − V (ψ)

)
= S0[ψ] + SI [ψ] (5.2)

where V [φ], V [ψ] are the self-interaction potentials. For a φ4 interaction,

V [φ] =
1
2
m2

φφ
2(x) +

1
4!
λφφ

4(x), (5.3)

and similarly for V [ψ]. Here, mφ and mψ are the bare masses and λφ and λψ

are the bare self-coupling constants for the φ(x) and ψ(x) fields respectively. In
equation (5.2) we have written S[ψ] in terms of a free part S0 and an inter-
acting part SI which contains λψ. Assume these two scalar fields interact via a
polynomial coupling of the form

Sint =
∫

d4xVφψ[φ(x)]ψk(x) (5.4)

where Vφψ[φ(x)] ≡ −λφψf [φ(x)] is the vertex function with coupling constant
λφψ, which we assume to be small and of the same order as λφ, λψ.

The total classical action of the combined system is

S[φ, ψ] = S[φ] + S[ψ] + Sint[φ, ψ] (5.5)

The total density matrix of the combined system plus environment field is defined
by

ρ[φ1, ψ1, φ2, ψ2, t] = 〈φ1, ψ1| ρ̂(t) |φ2, ψ2〉 (5.6)

where the superscripts 1, 2 are the closed time path branches to integrate over as
will be described in more detail in Chapter 6, and |φ〉 and |ψ〉 are the eigenstates
of the field operators φ̂(x) and ψ̂(x), namely,

φ̂(x)|φ〉 = φ(x)|φ〉, ψ̂(x)|ψ〉 = ψ(x)|ψ〉 (5.7)

Since we are primarily interested in the behavior of the system, and of the
environment only to the extent in how it influences the system, the object of
interest is the reduced density matrix defined by

ρr[φ1, φ2, t] =
∫

dψ ρ[φ1, ψ1, φ2, ψ1, t] (5.8)

For technical convenience, let us assume that the total density matrix at an
initial time is factorized, i.e. that the system and environment are statistically
independent,

ρ̂(ti) = ρ̂φ(ti) × ρ̂ψ(ti) (5.9)

where ρ̂φ(ti) and ρ̂ψ(ti) are the initial density matrix operator of the φ and ψ

field respectively, the former being equal to the reduced density matrix ρ̂r at ti
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5.1 Influence functional 151

by this assumption. The reduced density matrix of the system field φ(x) evolves
in time following

ρr[φ1
f , φ

2
f , t] =

∫
dφ1

i

∫
dφ2

i Jr

[
φ1
f , φ

2
f , t | φ1

i , φ
2
i , ti
]
ρr[φ1

i , φ
2
i , ti] (5.10)

As in Chapter 3, the propagator Jr[φ1
f , φ

2
f , t | φ1

i , φ
2
i , ti] is given by a CTP Feyn-

man integral of the exponent of the influence action

Jr[φ1
f , φ

2
f , t | φ1

i , φ
2
i , ti] =

φ1
f (x)∫

φ1
i (x)

Dφ1

φ2
f (x)∫

φ2
i (x)

Dφ2 exp
i

�
Seff [φ1, φ2] (5.11)

where

Seff [φ1, φ2] ≡ S[φ1] − S[φ2] + SIF[φ1, φ2] (5.12)

is the full influence functional (IF) effective action and SIF is the influence action.
The Feynman–Vernon influence functional F [φ1, φ2] is defined as

F [φ1, φ2] = e
i
�
SIF[φ1,φ2]

=
∫

dψ1
f (x)

∫
dψ1

i (x)
∫

dψ2
i (x) ρψ[ψ1

i , ψ
2
i , ti]

ψ1
f (x)∫

ψ1
i (x)

Dψ1

ψ1
f (x)∫

ψ2
i (x)

Dψ2

× exp
i

�

{
S[ψ1] + Sint[φ1, ψ1] − S[ψ2] − Sint[φ2, ψ2]

}
(5.13)

which summarizes the averaged effect of the bath on the system. For a zero-
temperature bath (i.e. the environment field ψ is in a vacuum state, ρ̂b(ti) =
|0〉〈0|), the influence functional F is formally equivalent to the CTP vacuum
generating functional, and the influence action SIF in equation (5.12) is the
usual CTP vacuum effective action, to be discussed in the next chapter.

5.1.1 Perturbation theory

The above formal framework is nice but often difficult to tackle. To evaluate
the influence action we need to develop a perturbation theory. If λφψ and λψ

are assumed to be small parameters, the influence functional can be calculated
perturbatively by making a power expansion of exp i

�
[Sint + SI ]. In this section,

we set λψ = 0 for simplicity. Up to second order in λφψ, and first order in �

(one-loop), the influence action is given by

SIF[φ1, φ2] = 〈Sint[φ1, ψ1]〉0 − 〈Sint[φ2, ψ2]〉0
+

i

2�

{
〈Sint[φ1, ψ1]2〉0 − 〈Sint[φ1, ψ1]〉0

2
}

− i

�

{
〈Sint[φ1, ψ1]Sint[φ2, ψ2]〉0 − 〈Sint[φ1, ψ1]〉0〈Sint[φ2, ψ2]〉0

}
+

i

2�

{
〈Sint[φ2, ψ2]2〉0 − 〈Sint[φ2, ψ2]〉0

2
}

(5.14)
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152 Open systems of interacting quantum fields

where the quantum average of a physical variable Q[ψ1, ψ2] over the unperturbed
action S0[ψ] is defined by

〈Q[ψ1, ψ2]〉0 =
∫

dψ1
f (x)

∫
dψ1

i (x)
∫

dψ2
i (x) ρψ[ψ1

i , ψ
2
i , ti]

×
ψ1

f (x)∫
ψ1

i (x)

Dψ1

ψ1
f (x)∫

ψ2
i (x)

Dψ2 exp
i

�
{S0[ψ1] − S0[ψ2]} × Q[ψ1, ψ2]

≡ Q
[

�δ

iδJ1(x)
,− �δ

iδJ2(x)

]
F (0)[J1, J2]

∣∣∣∣ J1=J2=0 (5.15)

Here, F (0)[J1, J2] is the influence functional of the free environment field, assum-
ing a linear coupling with external sources J1 and J2:

F (0)[J1, J2]

=
∫

dψ1
f (x)

∫
dψ1

i (x)
∫

dψ2
i (x) ρψ[ψ1

i , ψ
2
i , ti]

ψ1
f (x)∫

ψ1
i (x)

Dψ1

ψ1
f (x)∫

ψ2
i (x)

Dψ2

× exp
i

�

{
S0[ψ1] +

∫
d4xJ1(x)ψ1(x) − S0[ψ2] −

∫
d4xJ2(x)ψ2(x)

}
(5.16)

Let us define the following free propagators of the ψ field

〈Tψ1(x)ψ1(y)〉0 = ΔF (x, y) (5.17)

〈ψ1(x)ψ2(y)〉0 = Δ−(x, y) (5.18)

〈T̃ψ2(x)ψ2(y)〉0 = ΔD(x, y) (5.19)

As we have seen in Chapter 3, the CTP path integral time-orders fields in the
first branch, anti-time-orders fields in the second branch, and puts fields on the
second branch to the left of fields on the first branch. Therefore these are just
the familiar Feynman, Dyson and negative-frequency Wightman propagators of
a free scalar field given respectively by

ΔF,D (x, x′) = ∓i�

∫
d4k

(2π)4
eik(x−x′)

k2 + m2
ψ ∓ iε

(5.20)

Δ− (x, x′) =
∫

d4k

(2π)4
eik(x−x′)θ

(
−k0

)
2π�δ

(
k2 + m2

ψ

)
(5.21)

The perturbation calculation by means of Feynman diagrams for the λφ4 the-
ory in the CTP formalism has been worked out before for quantum fluctua-
tions [CalHu87, CalHu89] and for coarse-grained fields [Hu91, SinHu91]. For
biquadratic coupling,

Sint[φ, ψ] = −
∫

d4xλφψφ
2(x)ψ2(x) (5.22)
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5.1 Influence functional 153

the influence action up to the second order in λ is given by (cf. [HuPaZh93a])

SIF[φ, φ′] = −
∫

d4xλφψ ΔF (x, x)
[
(φ1(x))2 − (φ2(x))2

]
+ i�−1

∫
d4x

∫
d4y λ2

φψ (φ1(x))2 [ΔF (x, y)]2 (φ1(y))2

− 2i�−1

∫
d4x

∫
d4y λ2

φψ (φ1(x))2 [Δ−(x, y)]2 (φ2(y))2

+ i�−1

∫
d4x

∫
d4y λ2

φψ (φ2(x))2 [ΔD(x, y)]2 (φ2(y))2 (5.23)

We now evaluate each term in the perturbation expansion. It is well known
that all one-loop diagrams in equation (5.23) contain ultraviolet divergences in
spacetime dimension d = 4 − ε. By dimensional regularization, one can show that
the first one-loop bubble diagram for the ψ1 field is

ΔF (x, x) = �

∫
ddp

(2π)d
(−i)

p2 + m2
ψ − iε

= −
�m2

ψ

8π2

[
1
ε

+ constant − 1
2

ln

(
m2

ψ

4πμ2

)]
(5.24)

where μ2 is the renormalization energy scale. The first term on the right-hand
side is a singular part and must be canceled by mass renormalization. The counter
action for this singular mass term is

δSr1[φ1] =
∫

d4x
�

8π2ε
m2

ψλφψ(φ1(x))2 (5.25)

The second term on the right-hand side is the one-loop finite mass renormaliza-
tion term, which can be absorbed into the definition of the physical mass of the
φ field.

For the one-loop bubble diagram for the ψ2 field, since

〈(ψ2(x))2〉0 = 〈(ψ1(x))2〉0 (5.26)

the mass renormalization counter-action for the φ2(x) field is the same as equa-
tion (5.25), so is the finite mass renormalization.

Next, for the “fish” diagram of the ψ1 field, it also can be shown by dimensional
regularization that

i�−2Δ2
F (x− y) =

∫
d4p

(2π)4
eip(x−y) 1

8π2

×
[

1
ε

+ constant − 1
2

∫ 1

0

dα ln

(
m2

ψ + α (1 − α)
(
p2 − iε

)
4πμ2

)]

=
1

8π2ε
δ4(x− y) +

1
16π2

(
2 + ψ(1) − ln

m2
ψ

4πμ2

)
δ4(x− y)

+
1
2
U(x− y) + i

1
2
ν(x− y) (5.27)
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154 Open systems of interacting quantum fields

with the following two real nonlocal kernels

U(x− y) = − 2
16π2

∫
d4p

(2π)4
eip(x−y)

1∫
0

dα ln

∣∣∣∣∣1 − iε + α(1 − α)
p2

m2
ψ

∣∣∣∣∣ (5.28)

ν(x− y) =
2

16π2

∫
d4p

(2π)4
eip(x−y) π

√
1 −

4m2
ψ

(−p2)
θ(−p2 − 4m2

ψ) (5.29)

The first term on the right-hand side of equation (5.27) is another singular term.
Its counter-action is

δS2[ψ1] =
∫

d4xλ2
φψ

�

16π2ε
(φ1(x))4 (5.30)

The second term on the right-hand side of equation (5.27) represents a finite
coupling constant renormalization, which can be absorbed into a redefinition of
the physical coupling constant of the φ1 field. The contribution from the fish
diagram for the ψ2 field is obtained from the above by changing the sign of the
ν kernel; it can be renormalized with a counter-action similar to equation (5.30).

For the mixed “fish” diagram, we find

i�−2(Δ−(x, y))2 = −μ(x− y) +
i

2
ν(x− y) (5.31)

where Cutkowsky rules have been used. The kernel μ in equation (5.31)

μ(x− y) =
i

16π2

∫
d4p

(2π)4
eip(x−y) π

√
1 −

4m2
ψ

(−p2)
θ(−p2 − 4m2

ψ) sgn(p0) (5.32)

is real.
Substituting equations (5.24), (5.27) and (5.31) into the influence action and

adding the counter-action equations (5.25) and (5.30), finally we obtain the
effective action for this biquadratically coupled system–environment scalar field
model as follows

Seff [φ1, φ2] = Sren[φ1] + �

∫
d4x

∫
d4y

1
2
λ2
φψ (φ1(x))2 Vφψ(x− y) (φ1(y))2

−Sren[φ2] − �

∫
d4x

∫
d4y

1
2
λ2
φψ (φ2(x))2 Vφψ(x− y) (φ2(y))2

− �

∫
d4x

∫ x0

d4y λ2
φψ

[
(φ1(x))2 − (φ2(x))2

]
×μ(x− y)

[
(φ1(y))2 + (φ2(y))2

]
+

i�

2

∫
d4x

∫
d4y λ2

φψ

[
(φ1(x))2 − (φ2(x))2

]
× ν(x− y)

[
(φ1(y))2 − (φ2(y))2

]
(5.33)
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5.1 Influence functional 155

where Sren[φ1,2] is the renormalized action of the φ1,2 field (with physical mass
m2

φr and physical coupling constant λφr),

Sren[φa] =
∫

d4x

(
−1

2
∂μφ

a∂μφa − 1
2
m2

φr(φ
a)2 − 1

4!
λφr(φa)4

)
(5.34)

where a = 1, 2. The kernel for the nonlocal potential in equation (5.33)

Vφψ(x− y) = U(x− y) − sgn(x0 − y0)μ(x− y) (5.35)

is symmetric.
For the biquadratic interaction case analyzed here, the potential renormaliza-

tion is thus

ΔV (2)(x− y) = U (2)(x− y) − sgn(x0 − y0)μ(2)(x− y) (5.36)

which is symmetric; and μ(2), ν(2) and U (2) are real nonlocal kernels

μ(2)(x− y) =
1

16π2

∫
d4p

(2π)4
eip(x−y) π

√
1 −

4m2
ψ

(−p2)
θ(−p2 − 4m2

ψ) sgn(p0)

(5.37)

ν(2)(x− y) =
2

16π2

∫
d4p

(2π)4
eip(x−y) π

√
1 −

4m2
ψ

(−p2)
θ(−p2 − 4m2

ψ) (5.38)

U (2)(x− y) = − 2
16π2

∫
d4p

(2π)4
eip(x−y)

1∫
0

dα ln

∣∣∣∣∣1 − iε− α(1 − α)

(
−p2
)

m2
ψ

∣∣∣∣∣
(5.39)

For a general polynomial-type coupling with Sint given by equation (5.4), the
renormalized full effective action has the same form as that derived above for
biquadratic coupling, except that (φa(x))2 would be replaced by f [φa(x)], etc.
(and the kernels would carry superscripts indicating the proper order k instead
of (2)). To second order in λ the renormalized full effective action is given by
[Zha90, HuPaZh93a]

Seff [φ1, φ2]

= Sren[φ1] + �
k−1

∫
d4x

∫
d4y

1
2
λ2
φψf [φ1(x)]ΔV (k)(x− y)f [φ1(y)]

−Sren[φ2] − �
k−1

∫
d4x

∫
d4y

1
2
λ2
φψf [φ2(x)]ΔV (k)(x− y)f [φ2(y)]

− �
k−1

∫
d4x

∫ x0

d4y λ2
φψ

×
{(

f [φ1(x)] − f [φ2(x)]
)
μ(k)(x− y)

(
f [φ1(y)] + f [φ2(y)]

)
− i�k−1

(
f [φ1(x)] − f [φ2(x)]

)
ν(k)(x− y)

(
f [φ1(y)] − f [φ2(y)]

)}
(5.40)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


156 Open systems of interacting quantum fields

Renormalization of the potential which arises from the contribution of the
environment appears only for even order k couplings. This is a generalization of
the result obtained in [Zha90, HuPaZh93a] where it was shown that the nonlocal
kernel μ(k)(s1 − s2) is associated with the nonlocal dissipation (or the generalized
viscosity) function that appears in the corresponding Langevin equation and
ν(k)(s1 − s2) is associated with the time–time autocorrelation function of the
stochastic forcing (noise) term. In general ν is nonlocal, which gives rise to colored
noises. Only at high temperatures would the noise kernel become a delta function,
which corresponds to a white noise source. Let us examine more closely the
meaning of the noise kernel.

5.1.2 Noise and fluctuations

The real part of the influence functional comes from the imaginary part of the
influence action which contains the noise kernel. This term can be rewritten using
a functional Gaussian identity introduced by Feynman and Vernon [FeyVer63]
and discussed in Chapter 3. Thus introducing a stochastic forcing term ξ(k)

coupled to the field:

−
∫

d4x ξ(k)(x) {f [φ1(x)] − f [φ(x2)] }/� (5.41)

we can view ξ(k)(x) as a classical nonlinear noise source external to the system
arising from the environment. The reduced density matrix is calculated by tak-
ing a stochastic average over the distribution P[ξ(k)] of this source. Since the
expansion of the action is to quadratic order, the associated noise is Gaussian.
It is completely characterized by

〈ξ(k)(x)〉ξ = 0 (5.42)

〈ξ(k)(x)ξ(k)(y)〉ξ = �
kν(k)(x− y) (5.43)

where ν(k) is redefined by absorbing the λ2
φψ. We see that the nonlocal ker-

nel �
kν(k)(x− y) is just the two-point autocorrelation function of the external

stochastic source ξ(k)(x) called colored noise.
In this framework, the expectation value of any functional operator Q[φ] of

the field φ is then given by

〈Q[φ]〉 =
∫

Dξ(k)(x)P[ξ(k)]
∫

dφ ρr(φ, φ, [ξ(k)])Q[φ] (5.44)

=
〈
〈Q[φ]〉quantum

〉
noise

(5.45)

This provides the physical interpretation of ν(k)(x− y) as a noise or fluctuation
kernel of the quantum field.
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5.1 Influence functional 157

5.1.3 Langevin equation and fluctuation–dissipation relation

We will now derive the semiclassical equation of motion generated by the influ-
ence action SIF. Define a “center-of-mass” function φ+ and a “relative” function
φ− as follows

φ+(x) =
1
2
[φ1(x) + φ2(x)] (5.46)

φ−(x) = φ1(x) − φ2(x) (5.47)

The equation of motion for φ is derived by demanding (cf. [CalHu87])

δSeff

δφ−

∣∣∣∣
φ−=0

= 0 (5.48)

which gives

−∂Lr

∂φ
+

d

dt

∂Lr

∂φ̇
+ 2

∂f(φ)
∂φ

x∫
0

d4y γ(k)(x− y)
∂f(φ(y))

∂y0
= F

(k)
ξ (x) (5.49)

We see that this is in the form of a Langevin equation with a nonlinear stochastic
force

F
(k)
ξ (x) = ξ(k)(s)

∂f(φ)
∂φ

(5.50)

This corresponds to a multiplicative noise arising from a nonlinear field coupling
(additive if f(φ) = φ). Lr is the renormalized effective Lagrangian of the system
action Seff . The nonlocal kernel γ(k)(t− s) defined by

∂

∂(x0 − y0)
γ(k)(x− y) = �

k−1μ(k)(x− y) (5.51)

is responsible for nonlocal dissipation. Interaction with the environment field
imparts a dissipative force in the effective dynamics of the system field given
by

F (k)
γ (x) = 2

∫
d4y γ(k)(x− y)

∂f(φ(y))
∂y0

∂f(φ(x))
∂φ

(5.52)

Only in special cases like a high temperature ohmic environment will the dissi-
pation become local.

In the biquadratic coupling example the corresponding stochastic force is

F
(2)
ξ (x) ∼ ξ(2)(x)φ(x) (5.53)

The γ(2) kernel is

γ(2)(x− y) =
�

16π2

∫
d4p

(2π)4
eip(x−y)π

√
1 −

4m2
ψ

(−p2)
θ(−p2 − 4m2

ψ)
1

|p0|
(5.54)
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158 Open systems of interacting quantum fields

and the dissipative force is

F (2)
γ (x) ∼ �

∫
d4y μ(x− y)φ2(y)φ(x) (5.55)

As discussed in [HuPaZh93a], we can show that a general fluctuation–
dissipation relation exists between the dissipation and the noise kernels in the
form

�
k−1ν(k)(x) =

∫
d4y K(k)(x− y)γ(k)(y) (5.56)

Apart from a delta function δ3(x − x′), the fluctuation–dissipation kernel Kk for
quantum fields has exactly the same form as for the quantum Brownian harmonic
oscillator. In general it is a rather complicated expression [HuPaZh93a], but
simplifies at high and zero temperatures. At high temperatures,

K(k)(s) =
2kBT

�
δ(s) (s ≡ x− y) (5.57)

which gives back the famous Einstein relation. At zero temperature,

K(k)(s) =
∫ +∞

0

dω

π
ω cosωs (5.58)

which is the same as in the linear coupling case. Both limiting forms are inde-
pendent of k. In other words, at both high and zero temperatures, the FDT is
insensitive to the way the system is coupled to the environment.

Our derivation of the fluctuation–dissipation relation shows that it has a more
general meaning than the more restrictive conditions where it is usually pre-
sented, e.g. in the near-equilibrium or the linear response regimes. It should be
viewed as a categorical relation depicting the stochastic stimulation of the system
and the averaged response of the environment.

5.2 Quantum functional master equation

We now turn to a derivation of the functional master equation for the system
field with the interaction described in the last section. The full equation is quite
involved because it contains nonlinear nonlocal dissipation and multiplicative
colored noise plus a nonlocal potential term. Just to see the qualitative features
let us first examine the simplified case under a local truncation to the dissipation
kernel and the noise kernel (i.e. white noise) and omitting the nonlocal potential
term. Namely, we set

γ(x− x′) = γ0δ
4(x− x′) (5.59)

�
k−1ν(x− x′) = ν0δ

4(x− x′) (5.60)

Vφψ(x− x′) = 0 (5.61)
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5.2 Quantum functional master equation 159

Under this approximation the quantum master equation derived from the influ-
ence functional is much simpler. However, we need to emphasize that this approx-
imation violates the fluctuation–dissipation relation at zero temperature. The
effective action equation (5.33) simplifies to

Seff [φ1, φ2] =
∫

d4x

{
− 1

2
∂μφ

1∂μφ1 − 1
2
m2

φr(φ
1)2 − 1

4!
λφr(φ1)4

+
1
2
∂μφ

2∂μφ2 +
1
2
m2

φr(φ
2)2 +

1
4!
λφr(φ2)4

− 2λ2
φψγ0

(
(φ1)2 − (φ2)2

)(
φ1 ∂φ

1

∂s
+ φ2 ∂φ

2

∂s

)

+ (i/2)λ2
φψν0

(
(φ1)2 − (φ2)2

)2}
(5.62)

We can now write down a “Hamiltonian” which corresponds to equation (5.62)
as

Ĥρ[φ1, φ2, t]

=
∫
d3x
{
−�

2

2
δ2

δ(φ1(x))2
+

1
2
(∇φ1(x))2 +

1
2
m2

φr(φ
1(x))2 +

1
4!
λφr(φ1(x))4

+
�

2

2
δ2

δ(φ2(x))2
− 1

2
(∇φ2(x))2 − 1

2
m2

φr(φ
2(x))2 − 1

4!
λφr(φ2(x))4

− 2i�λ2
φψγ0

[
(φ1(x))2 − (φ2(x))2

] [
φ1(x)

δ

δφ1(x)
− φ2(x)

δ

δφ2(x)

]

− (i/2)λ2
φψν0

[
(φ1(x))2 − (φ2(x))2

]2}
(5.63)

which also is correct up to order of λ2
φψ. Therefore the quantum functional master

equation is given by the following functional “Schrödinger” equation

i�
∂

∂t
ρr[φ1, φ2, t] = Ĥρ[φ1, φ2, t] ρr[φ1, φ2, t] (5.64)

This quantum functional master equation for the system field is very similar
to the quantum master equation for the anharmonic oscillator with nonlinear
dissipation and nonlinear coupled noise in the Brownian particle model treated
in [HuPaZh93a].
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160 Open systems of interacting quantum fields

Let us define the Wigner functional for the quantum field as follows

W [φ, π, t] =
∫

dψ(x) exp
{
i�−1

∫
d3xπ(x)ψ(x)

}
× ρr

[
φ− 1

2
ψ, φ +

1
2
ψ, t

]

(5.65)

Applying equation (5.65) to both sides of the above functional master equation,
we can obtain the following Wigner functional equation

∂

∂t
W [φ, π, t]

=
∫

d3x
{
−π(x)

δ

δφ(x)
− [∇φ(x) · ∇ + m2

φrφ(x) +
1
6
λφrφ

3(x)]
δ

δπ(x)

+ 4λ2
φψγ0φ

2(x)
δ

δπ(x)
π(x) + 2�λ2

φψν0φ
2(x)

δ2

δπ2(x)

+ �
2λφrφ(x)

δ3

δφ3(x)
+ 2λ2

φψ�
2γ0φ(x)

δ3

δφ(x)δπ2(x)

}
W [φ, π, t] (5.66)

It is clear that the last two terms on the right-hand side of equation (5.66) which
contain third-order derivatives are the quantum corrections. In the classical limit
they go to zero, and equation (5.66) becomes the functional Fokker–Planck equa-
tion. We also know that the Wigner functional (5.65) becomes the classical phase
space distribution functional in the classical limit.

The quantum Wigner function contains just as much information as the wave-
function so it oscillates and can assume negative values. In particular it does not
exhibit a peak along the classical trajectory in phase space except at high tem-
perature or for harmonic oscillators. Thus viewing the quantum Wigner func-
tion as possessing the equivalent traits of a classical one-particle phase space
distribution function is untenable except under special conditions. This has spe-
cial significance in quantum–classical correspondence issues. See discussions in
[Hab90, HabLaf90].

One can also show that the following “equilibrium” state distribution

W [φ, π] ∼ exp−β̄

∫
d3x
{

1
2
π2(x) +

1
2
(∇φ(x))2 +

1
2
m2

φrφ
2(x) +

1
4!
λφrφ

4(x)
}

(5.67)

is the asymptotic solution of the above functional Wigner equation in the classical
limit, provided that β̄−1 = �ν0/γ0. Thus the above functional Wigner equation
can describe the process of relaxation to equilibrium state.

We are now ready to present the functional master equation. The calculation
closely parallels that of the QBM case studied in Chapter 3 [HuPaZh92, Paz94].
The quantum functional master equation for the case of nonlocal dissipation,
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5.2 Quantum functional master equation 161

colored noise and nonlocal potential is given by

i�
∂

∂t
ρr[φ1, φ2, t]

=
∫

d3x
{
− �

2

2
δ2

δ(φ1(x))2
+

1
2
(∇φ1(x))2 +

1
2
m2

φr(φ
1(x))2 +

1
4!
λφr(φ1(x))4

+
�

2

2
δ2

δ(φ2(x))2
− 1

2
(∇φ2(x))2 − 1

2
m2

φr(φ
2(x))2 − 1

4!
λφr(φ2(x))4

− iλ2
φψa1(x, s)

[
(φ1(x))2 + (φ2(x))2

]
+ 2λ2

φψa2(x, t)
[
(φ1(x))2 + (φ2(x))2

]
−λ2

φψ (φ1(x))2 {v ∗ Ô2
+}(x, t) + λ2

φψ(φ2(x))2 {v ∗ Ô2
−}(x, t)

−λ2
φψ

[
(φ1(x))2 − (φ2(x))2

]
{μ ∗ (Ô2

+ + Ô2
−)}(x, t)

− (i/2)λ2
φψ

[
(φ1(x))2 − (φ2(x))2

]
{ν ∗ (Ô2

+ − Ô2
−)}(x, t)

}
ρr[φ, φ′, t]

(5.68)

where ∗ denotes convolution, namely

{v ∗ φ2}(x, t) =

t∫
t0

ds

∫
d3x′ v(x − x′, t− s)φ2(x′, s) (5.69)

The time-dependent coefficients in equation (5.68) are as follows

a1(x, t) =

t∫
t0

ds

∫
d3x′ v(x − x′, t− s)Q(s) = {v ∗Q}(x, t) (5.70)

a2(x, t) =

t∫
t0

ds

∫
d3x′ ν(x − x′, t− s)Q(s) = {ν ∗Q}(x, t) (5.71)

where

Q(s) =
∫

d3k
(2π)

sinω(k)(s− t0) sinω(k)(t− s)
ω(k) sinω(k)(t− t0)

(5.72)

and the operators

Ô+(x, s) ≡ {α(t− s) ∗ φ1
f}(x) −

{
β(t− s) ∗ i �δ

δφ1
f

}
(x) (5.73)

Ô−(x, s) ≡ {α(t− s) ∗ φ2
f}(x) +

{
β(t− s) ∗ i �δ

δφ2
f

}
(x) (5.74)

with

α(x, s) =
∫

d3k
(2π)3

eik·x cosω(k)s (5.75)

β(x, s) =
∫

d3k
(2π)3

eik·x
sinω(k)s
ω(k)

(5.76)
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162 Open systems of interacting quantum fields

This is a nonstationary quantum functional master equation. In spite of its
complicated appearance (convolution products appearing in the equation), it is
not difficult to see that the structure of the equation is similar to the nonsta-
tionary quantum master equation for a Brownian anharmonic oscillator with
nonlinear dissipation and multiplicative colored noise. Actually, in momentum
space, the convolution product becomes a direct product, so the above equation
in momentum space will become the quantum master equation for one particular
mode (harmonic oscillator). However, the different modes will still be coupled
together in the quantum master equation because of mode–mode coupling in
the system field via the nonlinear potential. We now turn to the case of one
interacting field divided into two sectors.

5.3 The closed time path coarse-grained effective action

To add some physical flavor to our derivation and in anticipation of applications
to problems in cosmology, we consider the action of a massless scalar field with
λφ4 self-interaction coupled conformally to a spatially-flat Friedmann–Lemaitre–
Robertson–Walker universe. The conformal-related field χ (introduced in
Chapter 4) is related to φ by χ = a(t)φ and the conformal time η is related
to the cosmic time t by η =

∫
dt/a(t). We shall use d4x to denote d3x dη in

the remainder of this chapter. Since our purpose here is more to illustrate the
coarse-graining idea in the construction of a CGEA than to discuss cosmolog-
ical applications (see Chapter 15), we can just view the scale factor a(t) = eα

as a scaling parameter rather than a dynamical function determined from Ein-
stein’s equations. The content of this section can thus be used without reference
to cosmology by treating a as a constant, e.g. setting a = 1 would keep us in
a Minkowski spacetime with the conformal time η acting as the global time t.
However we wish to tag along the scale factor a so that later we can view the
inflationary cosmology in the light of scaling [Hu91] without added effort.

We begin by separating the quantum field χ(x, η) into two parts, χ = χ< + χ>,
where χ< contains the lower k wave modes and χ> the higher k modes. We can
refer to these two sectors as the system and the environment respectively. Two
useful physical examples are

Case A (critical phenomena)

χ< :| k |< Λ/s, χ> : Λ/s <| k |< Λ (5.77)

where Λ is the ultraviolet cut-off and s > 1 is the coarse-graining parameter
which gives the fraction of total k modes counted in the environment.

Case B (stochastic inflation)

χ< :| k |< εHa, χ> :| k |> ε Ha, ε ≈ 1 (5.78)
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5.3 The closed time path coarse-grained effective action 163

where the Hubble constant H(t) ≡ ȧ/a (the event horizon in the de Sitter uni-
verse) serves to divide the physical wavelength p ≡ k/a into two sectors, with a
window function measuring how sharp the division is. We will have more to say
about this point in Chapter 15. For now, we can build up our intuition for the
coarse-graining ideas using Case A as an illustrative example. The separation
of χ can also be made in other manners, depending on the physical set-up of
the problem and the questions one asks. The formalism we present here is quite
general. Our presentation for this model follows [LomMaz96].

Explicitly, we define the system by

χ<(x, η) =
∫
|k|<Λc

d3k
(2π)3

χ(k, η)eik·x (5.79)

and the environment by

χ>(x, η) =
∫
|k|>Λc

d3k
(2π)3

χ(k, η)eik·x (5.80)

The system field contains the modes with wavelengths longer than the critical
value Λ−1

c , while the environment field contains wavelengths shorter than Λ−1
c .

Λc corresponds to s−1Λ. After the splitting, the total action can be written as

S[a, χ] = S[χ<] + S0[χ>] + Sint[a, χ<, χ>] (5.81)

where S0 denotes the kinetic term

S0[χ] = −1
2

∫
dη

∫
d3k

(2π)3

{
χ(k, η)

[
∂2

∂η2
+ k2

]
χ(k, η)

}
(5.82)

S[χ<] is the system action,

S[χ<] = S0[χ<] −
∫

d4x

{
1
2
M2χ2

< +
λ

4!
χ4
<

}
(5.83)

and the interaction part is given by

Sint[a,χ<,χ>] = −
∫

d4x

{[
1
2
M2 +

λ

4
χ2
<(x)

]
χ2
> +

λ

4!
χ4
> +

λ

6
χ3
<χ> +

λ

6
χ<χ

3
>

}

(5.84)

with

M2 =
[
m2 +

(
ξ − 1

6

)
R

]
a2 (5.85)

We are interested in the influence of the environment on the evolution of
the system. To this end, we seek to construct the Feynman–Vernon influence
functional, following the methods of Chapter 3. This is obtained by integrating
over the environment field configurations between an initial time η = −ηi and
a final time η = ηf . When ηi, ηf are larger than any other characteristic time
and the environment field is initially in the vacuum state, the Feynman–Vernon
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164 Open systems of interacting quantum fields

influence action turns into the so-called closed time path (CTP) coarse-grained
effective action (CGEA) SΛ[a1, χ1

<, a
2, χ2

<], which is defined by

exp
{
i�−1SΛc

[a1, χ1
<, a

2, χ2
<]
}

= exp i�−1
{
S[χ1

<] − S[χ2
<]
}∫

dχ>f

∫ χ>f

Dχ1
>

∫ χ>f

Dχ2
> exp i�−1

×
{
S0[χ1

>] + Sint[a1, χ1
<, χ

1
>] − S0[χ2

>] − Sint[a2, χ2
<, χ

2
>]
}

(5.86)

The integration here is performed over all fields χ1
> ( χ2

>) with positive (negative)
frequency modes in the remote past that coincide at the final time χ1

> = χ2
> =

χ>f . More general initial conditions will be discussed in later chapters.
We now derive the CTP CGEA perturbatively in λ and M2, up to quadratic

order in both quantities. A simple calculation leads to

SΛc
[a1, χ1

<, a
2, χ2

<] = S[χ1
<] − S[χ2

<] + 〈Sint[a1, χ1
<, χ

1
>]〉0 − 〈Sint[a2, χ2

<, χ
2
>]〉0

+
i

2�

{
〈Sint[a1, χ1

<, χ
1
>]2〉0 − 〈Sint[a1, χ1

<, χ
1
>]〉0

2
}

− i�−1
{
〈Sint[a1, χ1

<, χ
1
>]Sint[a2, χ2

<, χ
2
>]〉0

−〈Sint[a1, χ1
<, χ

1
>]〉0〈Sint[a2, χ2

<, χ
2
>]〉0

}
+

i

2�

{
〈Sint[a2, χ2

<, χ
2
>]2〉0 − 〈Sint[a2, χ2

<, χ
2
>]〉0

2
}

(5.87)

where the quantum average of a functional of the fields Q is defined with respect
to the kinetic action S0

〈Q[χ1
>, χ

2
>]〉0 =

∫
dχ>f

∫ χ>f

Dχ1
>

∫ χ>f

Dχ2
> exp i�−1

{
S0[χ1

>] − S0[χ2
>]
}
Q

(5.88)
Equation (5.87) is the in–in version of the Dyson–Feynman series.

We define the propagators of the environment field as

〈Tχ1
>(x)χ1

>(y)〉0 = GΛc

F (x− y), (5.89)

〈χ1
>(x)χ2

>(y)〉0 = GΛc
− (x− y), (5.90)

〈T̃ χ2
>(x)χ2

>(y)〉0 = GΛc

D (x− y). (5.91)

where T, T̃ denote time- and reversed-time ordering respectively.
Despite their appearance these propagators are not the usual Feynman,

negative-frequency Wightman and Dyson propagators of the scalar field since, in
this case, the momentum integration is restricted by the presence of the (infrared)
cut-off Λc. The explicit expressions are

GΛc

F (x− y) = −i�

∫
|p|>Λc

d4p

(2π)4
eip(x−y) 1

p2 − iε
(5.92)

GΛc
− (x− y) =

∫
|p|>Λc

d4p

(2π)4
eip(x−y)2π�δ(p2)Θ(−p0) (5.93)

GΛc

D (x− y) = i�

∫
|p|>Λc

d4p

(2π)4
eip(x−y) 1

p2 + iε
(5.94)
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5.3 The closed time path coarse-grained effective action 165

As an example, we show the expression for the propagator GΛc

F . The usual mass-
less Feynman propagator is

�
−1ΔF (x) =

1
8π2

1
σ

+
i

8π
δ(σ) (5.95)

while

�
−1GΛc

F (x) =
(−1)
8π2

[
cos[Λc(r − x0)]

r(r − x0)
+

cos[Λc(r + x0)]
r(r + x0)

]

+
i

8π2

[
sin[Λc(r − x0)]

r(r − x0)
− sin[Λc(r + x0)]

r(r + x0)

]

GΛc

F (x) ≡ ΔF (x) −G
|p|<Λc

F (x) (5.96)

where σ = − 1
2x

2 and r = |x|.
The CTP CGEA can be computed from equations (5.87)–(5.91) using standard

techniques [GreMul97]. Defining(
M̃1,2

)2

= M2 +
λ

2

(
χ1,2
<

)2

(5.97)

χ
(n)
− = (χ1

<)n − (χ2
<)n, χ

(n)
+ =

1
2
[
(χ1

<)n + (χ2
<)n
]

λQ− = (M̃1)2 − (M̃2)2, λQ+ =
1
2

[
(M̃1)2 + (M̃2)2

] (5.98)

and using simple identities for the propagators, the CTP CGEA can be written
as

SΛc=S(χ1
<) − S(χ2

<) +
λ

4

∫
d4xGΛc

F (0)Q−(x)

+�
−1λ2

∫
d4x

∫
d4yΘ(y0 − x0)

{
1
18

χ
(3)
+ (x) ImGΛc

F (x− y)χ(3)
− (y)

− 1
4
Q+(x) Im

[
GΛc

F (x− y)
]2

Q−(y)− 1
3
χ

(1)
+ (x) Im

[
GΛc

F (x− y)
]3

χ
(1)
− (y)

}

+
iλ2

4�

∫
d4x

∫
d4yΘ(y0 − x0)

{
1
18

χ
(3)
− (x) ReGΛc

F (x− y)χ(3)
− (y)

+
1
4
Q−(x) Re

[
GΛc

F (x− y)
]2

Q−(y)

− 1
3
χ

(1)
− (x) Re

[
GΛc

F (x− y)
]3

χ
(1)
− (y)

}
(5.99)

The real part of the CTP CGEA in equation (5.99) contains divergences and
must be renormalized. As the propagators in equations (5.89)–(5.91) differ from
the usual ones only by the presence of the infrared cut-off, the ultraviolet diver-
gences coincide with those of the usual λχ4 theory. The effective action can
therefore be renormalized using the standard procedure. (For the renormal-
ization of quantum fields in curved spacetimes, it is necessary to add to the
Einstein–Hilbert term in the gravitational action a cosmological constant, and
terms quadratic in the curvature tensor. See, e.g. [BirDav82].)
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166 Open systems of interacting quantum fields

Consider the square of the Feynman propagator. Using dimensional regular-
ization we find

[GΛc

F (x)]2 = [ΔF (x)]2 + [G(|p|<Λc)
F (x)]2 − 2ΔF (x)G(|p|<Λc)

F (x) (5.100)

where

�
−2Δ2

F (x) =
1

16π2

[
i

n− 4
+ iψ(1) − 4πi + ln(4πμ2)

]
δ4(x) + iR1(x) + R2(x)

(5.101)

R1(x) =
1

(2π)4

∫
d4p eipx ln |p2|

R2(x) =
π

(2π)4

∫
d4p eipxΘ(−p2)

Note that the divergence is the usual one, i.e. proportional to δ4(x− y) and
independent of Λc. Consequently, the term Re[GΛ

F (x− y)]2Q+(x)Q−(y) in equa-
tion (5.99) is divergent and renormalizes the coupling constant λ and the con-
stants that appear in the gravitational action. The other divergences can be
treated in a similar way. One can also check that the imaginary part of the
effective action does not contain divergences. Of course, a successful ultraviolet
renormalization does not guarantee that an approximation scheme such as RG-
improved perturbation theory will be well behaved. An example is in the RG
equations for λφ4 fields [Hu91] where loops depend on a factor eH(t−t0) which
would invalidate perturbation theory. Further “infrared” H-dependent (envi-
ronmentally friendly) renormalization of λ is needed [OCoSte94a, OCoSte94b,
EiOCSt95, Ste98, FEOS96].

As we have seen in Chapter 3, the (nonlocal) real and imaginary parts of SΛc

can be associated with the dissipation and noise respectively, which are related
by an integral equation known as the fluctuation–dissipation relation.

5.3.1 Stochastic equations

The Langevin equation

We now show how to derive a Langevin equation for the system field from the
CTP CGEA. This equation takes into account the three fundamental effects of
the environment on the system: renormalization, dissipation and noise.

The CTP CGEA for our model is given in equation (5.99). Since the imaginary
part is quadratic in the system field, we can invoke the Gaussian identity used
by Feynman and Vernon [FeyVer63], as discussed in Chapter 3. The CTP CGEA
can thus be rewritten as

SΛc [χ
1
<, χ

2
<] = −i� ln

∫
Dξ1P [ξ1]

∫
Dξ2P [ξ2]

×
∫

Dξ3P [ξ3] exp
{
i�−1Seff [χ1

<, χ
2
<, ξ1, ξ2, ξ3]

}
(5.102)
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where

Seff [χ1
<, χ

2
<, ξ1, ξ2, ξ3]

= ReSΛc
[χ1

<, χ
2
<] −

∫
d4x
[
χ

(3)
− (x)ξ1(x) + Q−(x)ξ2(x) + χ

(1)
− (x)ξ3(x)

]
(5.103)

and ξ1(x), ξ2(x), and ξ3(x) are Gaussian stochastic sources with zero mean and
auto-correlations

〈ξ1(x)ξ1(y)〉 =
λ2

9
ReGΛc

F (x− y) (5.104)

〈ξ2(x)ξ2(y)〉 =
λ2

2
Re
[
GΛc

F (x− y)
]2

(5.105)

〈ξ3(x)ξ3(y)〉 =
2λ2

3
Re
[
GΛc

F (x− y)
]3

(5.106)

From this effective action it is easy to derive the stochastic field equation for
the system

∂Seff [χ1
<, χ

2
<, ξ1, ξ2, ξ3]

∂χ1
<

∣∣∣∣
χ1
<=χ2

<

= 0 (5.107)

It is given by (
∂2

∂ξ2
3

−∇2

)
χ< +

[
M2 +

λ

2
GΛc

F (0)
]
χ< +

λ

6
χ3
<

+
λ2

6
χ2
<(x)

∫
d4y θ(x0 − y0)ImGΛc

F (x, y)χ3
<(y)

− λ2

2
χ<(x)

∫
d4y θ(x0 − y0)Re[GΛc

F (x, y)]2χ2
<(y)

− λ2

3

∫
d4y θ(x0 − y0)Im[GΛc

F (x, y)]3χ<(y)

= 3ξ1(x)χ2
<(x) + 2ξ2(x)χ<(x) + ξ3(x) (5.108)

This is the functional Langevin equation derived from the variation of the
CTP CGEA. By construction, it is real and causal. We see that it contains mul-
tiplicative and additive colored noise. The nonlinear coupling between modes
adds complexity to the Langevin equation. This class of equations was first
derived by Sinha and Hu [SinHu91] for considerations of the validity of minisuper-
space approximations in quantum cosmology, and by Lombardo and Mazzitelli
in [LomMaz96], whose treatment we follow here. Greiner and Müller [GreMul97]
obtained a similar stochastic equation in flat spacetime, for a thermal environ-
ment. They found explicit expressions for the momentum-dependent dissipation
function in the Langevin equation using a Markovian approximation for the soft
modes.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


168 Open systems of interacting quantum fields

The master equation (for one-mode system)

As we have seen in Chapter 3, an equivalent depiction of the dynamics of the open
system is obtained from the master equation for the reduced density matrix. A
functional master equation for the long-wavelength modes may be derived along
similar lines [LomMaz96], but in general it is very complicated. A tractable result
can be obtained when the system field contains only one mode k = k0. This is a
sort of “minisuperspace” (the space of modes in this case) approximation. Also
we keep terms only up to O

(
λ2
)
. Under these approximations the general form

of the master equation is given by

i�∂hρr[χ1
<f , χ

2
<f , η] = 〈χ1

<f |
[
Ĥren, ρ̂r

]
|χ2

<f 〉

− iλ2

[
−

[(χ1
<f )3 − (χ2

<f )3]2V
1152

D3(k0; η)

+
[(χ1

<f )2 − (χ2
<f )2]2V

32
D2(k0; η)

−
(χ1

<f − χ2
<f )2V

6
D1(k0; η)

]
ρr[χ1

<f , χ
2
<f , η] + . . . (5.109)

Due to the complexity of the equation, we only show the correction to the usual
unitary evolution term coming from the noise kernels. The full expression can
be found in [LomMaz96]. This equation contains three time-dependent diffusion
coefficients Di(η). (The subscripts 3, 2, 1 refer to the order of the system field
φ<f .) Up to one loop, only D3 and D2 survive and are given by

D3(k0; η) =
∫ t

0

ds cos3(k0s) ImGΛc

F (3k0; η − s)

≈ 1
6k0

∫ t

0

ds cos3(k0s) cos(3k0s) θ(3k0 − Λc)

=
2k0η + 3 sin(2k0η) + 3

2 sin(4k0η) + 1
3 sin(6k0η)

576 k2
0

for
Λc

3
< k0 < Λc (k0 ≡ |k0|) (5.110)

D2(k0; η) =
∫ h

0

ds cos2(k0s)
{

Re[GΛc

F (2k0; η − s)]2 + 2Re[GΛc

F (0; η − s)]2
}

(5.111)
Using the expressions

Re[GΛc

F (2k0; η − s)]2 =
π�

2

k0

{∫ 2k0+Λc

Λc

dp

∫ 2k0+p

Λc

dz cos[(p + z)s]

+
∫ ∞

2k0+Λc

dp

∫ p+2k0

p−2k0

dz cos[(p + z)s]

}
(5.112)

Re[GΛc

F (0; η − s)]2 = π�
2

{
2πδ(s) − 2

sin(2Λcs)
s

}
(5.113)
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the D2 diffusion coefficient can be written as

�
−2D2(k0; η) =

π

4

{
3π −

(
3
2
− Λc

2k0

)
Si[2η(Λc − k0)]

−
(

2 − Λc

2k0

)
Si[2Λcη] −

(
3
2

+
Λc

2k0

)
Si[2η(Λc + k0)]

− (1 +
Λc

2k0
)Si[2η(2k0 + Λc)]

+
1

4k0η
(cos[2Λcη] − cos[2η(Λc + k0)]

+ cos[2η(Λc − k0)] − cos[2η(2k0 + Λc)])
}

(5.114)

where Si[z] denotes the sine-integral function [AbrSte72].
Equation (5.109) is the field-theoretical version of the QBM master equation

we were looking for, except that the system here has nonlinear coupling. Owing
to the existence of three interaction terms (χ3

<χ>, χ2
<χ

2
>, and χ<χ

3
>) there are

three diffusion coefficients in the master equation. The form of the coefficients
is fixed by these couplings and by the particular choice of the quantum state of
the environment.

Note that these results are valid in the single-mode approximation. In this
approximation one obtains a reduced density matrix for each mode k0, and
neglects the interaction between different system modes. Due to this interaction,
ρr will be different from

∏
k0

ρr(k0) in the general case. These results will be
applied to the consideration of decoherence of quantum fields in Chapter 9 and
cosmological structure formation in Chapter 15.
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6

Functional methods in nonequilibrium QFT

One of the major goals in the establishment of a quantum field theory for
nonequilibrium systems is to study dynamical problems, following the evolution
of the expectation value of a physical variable with respect to an in state. This
is different from a scattering problem characterized by the transition amplitude
between the in and out states, as is treated in every textbook on quantum field
theory. This problem is usually coupled with how one could identify a relevant
sector of the theory as the system (light fields vs. heavy fields, slow modes vs.
fast modes, long wavelength modes vs. short ones, etc.) and determine the effect
of its other sectors as the environment on this system, as we have discussed in
the last chapter.

Given a classical nonequilibrium system, described, for example, by a Langevin
equation, there are essentially three possible strategies to follow. One may
attempt to solve it, usually numerically. In the quantum field case, this gets diffi-
cult beyond the linear case. Second, one may try to transform it into an equation
for the evolution of a probability distribution function in the system’s configura-
tion space. In the quantum field case the relevant object is the reduced density
matrix, and the relevant equation is the Liouville–von Neumann equation. This
is also infeasible beyond the linear case, unless under restrictive approximations
(such as Gaussianity) which in fact reduce this approach to the third and coars-
est. The third approach is to use the Langevin equation to obtain equations of
motion for the expectation value 〈x〉 of the system variable x and its correla-
tions. In the linear case, the relevant equation of motion is Heisenberg’s equation
(Ehrenfest’s theorem). In the nonlinear case, the equation of motion for 〈x〉 will
necessarily couple to higher correlation functions 〈xn〉, and we will have a hier-
archy of equations, just as in the BBGKY–Boltzmann paradigm. Then we will
have to truncate the hierarchy, slave the higher correlations, etc., according to
the particular set-up of the problem to extract the information accessible to a
particular class of observers. We have given an introductory discussion of these
issues in the context of the Boltzmann equation in Chapters 1 and 2.

The third approach is the one we will follow in the bulk of the book. Our
immediate concern is to show that the (truncated) equations of motion may
be obtained from variational principles of increasing complexity. At the simplest
level, where we only seek an equation of motion for the expectation value φ of the
Heisenberg picture field operator Φ, this equation follows from the variation of
the Schwinger–Keldysh (CTP) effective action (EA). At the next level of a more
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6.1 Propagators 171

comprehensive approach we seek coupled equations for φ and the “propagators”
G ∼ 〈(Φ − φ)2〉. The relevant action functional is the two-particle irreducible
(2PI) effective action. Each higher order truncation of the hierarchy has its proper
action functional, which are particular cases of the so-called “master” effective
action (MEA).

Therefore the task at hand is to develop the techniques to compute these
objects, and to learn to read the physics coded into their structure. In particular,
we shall see that the CTPEA has the structure of a Feynman–Vernon influence
action, and we shall simply borrow the physical insight gained from the study of
quantum open systems. The analogy is less straightforward for the higher order
truncations, but this approach remains essentially applicable.

Since field expectation values and propagators are going to be the main sub-
jects of our discussion, it is appropriate that we start by gaining some insight
into the different two-point functions and the information they contain. Thus, let
us begin our discussion with a review of some basic scalar quantum field theory.

6.1 Propagators

A good deal of our discussion will revolve around the different properties of the
propagators of the theory, that is, the expectation values of binary products of
field operators with respect to the initial state. Since field operators at differ-
ent locations do not generally commute, we have several different propagators
according to the ordering of the field operators within the expectation value. In
particular, we shall consider eight different propagators, namely:

The four basic propagators

Feynman

GF ≡ 〈T (Φ (x) Φ (x′))〉 (6.1)

Dyson

GD ≡ 〈T̃ (Φ (x) Φ (x′))〉 (6.2)

positive frequency

G+ ≡ 〈Φ (x) Φ (x′)〉 (6.3)

and negative frequency

G− ≡ 〈Φ (x′) Φ (x)〉 (6.4)

where T stands for time ordering and T̃ stands for anti-time ordering:

T [F (t)G (t′)] = F (t)G (t′) θ (t− t′) + G (t′)F (t) θ (t′ − t)

T̃ [F (t)G (t′)] = G (t′)F (t) θ (t− t′) + F (t)G (t′) θ (t′ − t) (6.5)
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172 Functional methods in nonequilibrium QFT

The Feynman and Dyson propagators are even. We also have GF = G∗
D; G− =

G+∗; G− (x, x′) = G+ (x′, x). Finally we have the identity GF + GD = G+ + G−,
which follows from the time ordering constraints.

Hadamard and Jordan propagators

The Hadamard propagator

G1 = G+ + G− ≡ 〈{Φ (x) ,Φ (x′)}〉 (6.6)

is real and even. The Jordan propagator

G = G+ −G− ≡ 〈[Φ (x) ,Φ (x′)]〉 (6.7)

is imaginary and odd.

Advanced and retarded propagators

The advanced and retarded propagators are the fundamental solutions for the
equations of motion for linear fluctuations in the field.

Each propagator conveys some specific information. For example, for the free
scalar field G, G1, G+ and G− are solutions to the homogeneous Klein–Gordon
equation, while GF, GD, Gret and Gadv are fundamental solutions. The retarded
and advanced propagators may be obtained from consideration of the dynamics
alone; they have no information on the state. The same can be said of the Jordan
propagator, since for linear fields the commutator is a c-number. Indeed, con-
sideration of the respective Cauchy data shows that we must have the identities
(the Cauchy data for the Jordan propagator are prescribed by the equal time
canonical commutation relations)

Gadv (x, x′) = − i

�
G (x, x′) θ (t′ − t)

Gret (x, x′) = Gadv (x′, x) =
i

�
G (x, x′) θ (t− t′)

G (x, x′) = (−i�) [Gret (x, x′) −Gadv (x, x′)] (6.8)

or else

Gret =
i

�

(
GF −G−) (6.9)

Gadv =
−i

�

(
GD −G−) (6.10)

Therefore the state information is coded primarily in the remaining propagators,
most of all in Hadamard’s. Knowledge of the Hadamard and Jordan propagators
determines all others

G± (x, x′) =
1
2

[G1 (x, x′) ±G (x, x′)] (6.11)

GF,D (x, x′) =
1
2

[G1 (x, x′) ±G (x, x′) sign (t− t′)]

=
1
2

[G1 (x, x′) ∓ i� (Gret (x, x′) + Gret (x′, x))] (6.12)
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6.1 Propagators 173

As a warm up, we shall compute the propagators (that is, the expectation
values of products of fields) in the Minkowski vacuum |0〉. Let us begin with the
positive and negative frequency propagators. The negative frequency propagator
Δ− (x, x′) is given in Chapter 5, equation (5.21), and

Δ+ (x, x′) = Δ− (x′, x) (6.13)

All other propagators may be found as linear combinations of these. For example,
their difference gives the commutator or Jordan propagator, which for free fields
is both independent of the state and of the particle model

Δ (x, x′) = 〈[Φ (x) ,Φ (x′)]〉 =
∫

d4k

(2π)4
eik(x−x′)sign

(
k0
)
2π�δ

(
k2 + m2

)
(6.14)

The sum of the positive and negative frequency propagators gives the anticom-
mutator or Hadamard propagator

Δ1 (x, x′) = 〈{Φ (x) ,Φ (x′)}〉 =
∫

d4k

(2π)4
eik(x−x′)2π�δ

(
k2 + m2

)
(6.15)

The four propagators introduced so far are homogeneous solutions of the
Klein–Gordon equation. The retarded propagator

Δret (x, x′) =
i

�
Δ (x, x′) θ (t− t′) =

∫
d4k

(2π)4
eik(x−x′)

(k + iε)2 + m2
(6.16)

(k + iε)2 = −
(
k0 + iε

)2
+ k2 (6.17)

is the (only) solution to the equation[
∇2 −m2

]
Δret (x, x′) = −δ (x, x′) (6.18)

with causal boundary conditions. We also have the advanced propagator

Δadv (x, x′) = Δret (x′, x) = − i

�
Δ (x, x′) θ (t′ − t) =

∫
d4k

(2π)4
eik(x−x′)

(k − iε)2 + m2

(6.19)

which is the fundamental solution with advanced boundary conditions. Finally,
there are the Feynman and Dyson propagators, given in Chapter 5, equa-
tion (5.20).

6.1.1 Interacting fields

The basic property of the full propagators for an interacting field, that is, the
expectation values of binary products of field operators with respect to the vac-
uum state, is Poincaré invariance. In particular, these propagators are translation
invariant, which allows us to describe them in terms of their Fourier transforms,
namely, any propagator G may be represented as

G (x, x′) =
∫

d4p

(2π)4
eipuG (p) (6.20)
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174 Functional methods in nonequilibrium QFT

with u = x− x′. Some important properties of the propagators actually follow
from their definition as time-ordered products of field operators. For example,
since the Feynman and Dyson propagators are even and GF = G∗

D, G
− = G+∗

and G− (x, x′) = G+ (x′, x), GF and GD (p) are even functions of momentum,
while G− (p) = G+ (−p) . Moreover, G− and G+ (p) are real, and GD (p)∗ = GF.

The Hadamard propagator G1 is real and even and therefore also is G1 (p).
The Jordan propagator G is imaginary and odd, and so G (p) is odd but real.
The Jordan and retarded propagators are related through equation (6.8)

G (p) = (−i�) [Gret (p) −Gret (−p)] = 2�Im Gret (p) (6.21)

where we have used the fact that Gadv (p) = Gret (p)∗ . Also observe that
Gret (x, x′) is real, so Gret (−p) = Gret (p)∗.

Since the retarded propagator is causal, it satisfies the equation Gret =
θ (t− t′)Gret, and the real and imaginary parts of its transform are Hilbert
transforms of each other

Gret (p) =
i

2π

∫
dω

p0 − ω + iε
Gret (ω,p)

=
1
2
Gret (p) +

i

2π
PV

∫
dω

p0 − ω
Gret (ω,p) (6.22)

ReGret (p) =
1
π
PV

∫
dω

ω − p0
ImGret (ω,p) (6.23)

These are the so-called Kramers–Kronig relations.
For further properties of the propagators, such as their Lehmann represen-

tation, we refer the reader to the literature on QFT; some classic textbooks
are listed [Rom69, LanLif72, BjoDre64, BjoDre65, ItzZub80, Ram80, Hua98,
PesSch95, LeB91, Zin93, Wei95, GrReBr96].

6.2 Functional methods

Before we confront the full nonequilibrium problem, it is instructive to review the
more familiar case of finding the expectation values under equilibrium conditions.
We will then be in a better position to judge whether a nonequilibrium formalism
is a straightforward generalization of the equilibrium one, or where some new
insights are required.

So let us begin by asking what is the expectation value of the field operator
at a given spacetime event. In a theory such as λΦ4, which is symmetric under
the inversion Φ → −Φ, one is tempted to say that the expectation value must
vanish, by symmetry. However, this is not necessarily so; the quantum state
of the field may have a lesser symmetry than the Hamiltonian, supporting a
nonzero expectation value or condensate. In this case we say the symmetry is
spontaneously broken. This is even more so if the theory is not even invariant
under inversion, for example, for a potential V [Φ] = gΦ3/6.
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6.2 Functional methods 175

The problem is enormously simplified if we still assume that Poincaré invari-
ance will not be even spontaneously broken. In this case, the expectation value
φ of the field operator Φ (x) will be Poincaré invariant; in particular, it will be
space and time independent.

In order to find the equilibrium value of the expectation value, it is convenient
to work in two stages. First we assume that the system is constrained, by some
external means, to a state where the expectation value of the field operator takes
a preassigned value φ; we then pick the value of φ leading to greatest stability.
To solve the first half of the problem, we must find the (properly normalized)
state which minimizes the energy while having the correct expectation value of
the field operators. To enforce these constraints (there is one at every event) we
introduce a Lagrange multiplier J. Thus the object to be minimized is

〈 |HJ +
∫

d3x Jφ | 〉 (6.24)

where

HJ = H − J

∫
d3x Φ (x) (6.25)

Let |J〉 be the state that minimizes this operator. It will be a proper vector of
the operator HJ with proper value EJ

HJ |J〉 = EJ |J〉 (6.26)

Because the state is assumed to be homogeneous and energy is an extensive
quantity, the energy EJ will be proportional to the “volume” V of space, with a
finite energy density EJ/V. First-order perturbation theory shows that

δ

δJ

(
EJ

V

)
= − 1

V

〈
J

∣∣∣∣
∫

d3x Φ (x)
∣∣∣∣ J
〉

= −φ (6.27)

If we introduce the Legendre transform of EJ/V , the so-called “effective poten-
tial” V [φ] ,

V [φ] =
EJ

V
+

1
V

∫
d3x Jφ. (6.28)

then
d

dφ
V [φ] = J (6.29)

This equation determines φ if J is known. The most stable state is the one which
does not require external intervention (J = 0); the true equilibrium expectation
values are the extrema of the effective potential.

By the way, we see what is effective in the effective potential: it is not really
the value of the energy density, but rather a Legendre transform thereof. The
external source J and the expectation value φ are analogous, respectively, to
the applied magnetic field B and the magnetization M in a model for ferro-
magnetism. Also keep in mind that we are describing equilibria at a prescribed
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176 Functional methods in nonequilibrium QFT

temperature (prescribed to be zero). We may think of the effective potential as
the thermodynamic potential whose critical points are the equilibria at constant
temperature and φ, and therefore as a free energy (as opposed to the internal
energy). However, so far we have not said how we intend to compute the effec-
tive potential, so that the full approach takes on meaning. We turn now to this
important issue.

6.2.1 The generating functional and the effective action

We shall begin from the observation that the state |J〉 minimizes the operator
HJ . Let |α〉 be any state, and let it evolve from Euclidean time τ = −tE to τ = tE
(subscript E under t denotes Euclidean time) adopting HJ as the Hamiltonian.
Then |α〉 evolves into

|α, tE〉 = e−2�
−1HJ tE |α〉 = e−2�

−1EJ tE |J〉 〈J |α〉 + δ |α, tE〉 (6.30)

where δ |α, tE〉 decays faster than e−2�
−1EJ tE . It follows that, given any other

state |β〉 , and as long as 〈J |α〉 �= 0 and 〈J |β〉 �= 0, then

EJ = − lim
tE→∞

�

2tE
ln 〈β| e−2�

−1HJ tE |α〉 (6.31)

Using a path integral representation for the evolution operator, we find

EJ = − lim
tE→∞

�

2tE
ln
∫

Dϕ e�
−1[−SE+

∫
d4x Jϕ(x)] (6.32)

where SE stands for the Euclidean action

SE =
∫

d4x

{
1
2

(
∂ϕ

∂τ

)2

+
1
2

(∇ϕ)2 + V [ϕ]

}
(6.33)

This path integral representation displays the close connection between EJ

and the Euclidean generating functional for connected Green functions WE [J ]

e�
−1WE[J] =

∫
Dϕ e�

−1[−S+
∫
d4x J(x)ϕ(x)] (6.34)

If the source J is spacetime independent, then

WE [J ] ∼ −2tEEJ (6.35)

The Legendre transform of WE [J ] is the Euclidean effective action (EA) ΓE [φ] .
As we all know, if we Taylor expand the EA in powers of the background field
φ, the coefficients are given by the sum of all one-particle irreducible Feynman
graphs. These are the graphs that are connected, and remain so if any internal
line is cut. This method is not efficient as a practical tool, but the observation
that the EA could be computed this way is at the base of a much better strategy,
the loop expansion, which we shall discuss below. For the time being, simply
recall that

ΓE [φ] = WE [J ] −
∫

d4x J (x)φ (x) (6.36)
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6.2 Functional methods 177

So, if the background field φ (x) is constant, then

ΓE [φ] = − (2tEV )V [φ] (6.37)

and the relationship between mean fields and sources is
δΓE [φ]
δφ (x)

= −J (x) (6.38)

In particular, the true equilibria are the Poincaré invariant extrema of the effec-
tive action. For further discussion, we refer the reader to Coleman’s Lectures
[Col85]; see also [JacKer79].

6.2.2 Not quite beyond equilibrium

Although only Poincaré invariant extrema are meaningful, the effective action
may be constructed for arbitrary field configurations. However, equation (6.38)
does not provide an off-equilibrium equation of motion for the mean field. This
is an important point, and we must be sure we understand it before we carry on.

There is of course the observation that equation (6.38) applies to Euclidean
field configurations. However, this difficulty is easily overcome. Define the
Lorentzian or in-out generating functional Win-out [J ]

ei�
−1Win-out[J] =

∫
Dϕ ei�

−1[S+
∫
d4x J(x)ϕ(x)] (6.39)

where S is the physical action. Then define
δWin-out [J ]

δJ
= φ̃ (x) (6.40)

Performing the Legendre transform

Γin-out

[
φ̃
]

= Win-out [J ] −
∫

d4x J (x) φ̃ (x) (6.41)

Win-out [J ] is the generating functional for connected graphs, and Γin-out gener-
ates one-particle irreducible graphs. Moreover, φ̃ satisfies

δΓin-out

[
φ̃
]

δφ̃ (x)
= −J (x) (6.42)

However, in a truly off-equilibrium situation it is impossible to identify φ̃ (x)
with the expectation value of the field operator, and in any case equation (6.42)
is unsuitable as an equation of motion. This important point is best appreciated
with a concrete example, to which we turn [HarHu79, DeW67].

6.2.3 Trouble in the gφ3 theory

To be concrete, let us assume the potential

V [ϕ] =
1
2
m2ϕ2 − 1

6
gϕ3 − hϕ (6.43)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


178 Functional methods in nonequilibrium QFT

The linear term is included to enforce the constraint∫
Dϕ eiSϕ (x) = 0 (6.44)

In spite of some formal drawbacks (for example, equation (6.43) cannot really
hold for all values of the field operator, as the theory would have no stable ground
state if it did), this model is appealing because of its simplicity, and it is actually
a useful model for unstable quantum systems (such as a strongly underdamped
Josephson junction).

We shall be concerned only with the small oscillations of the mean field around
φ = 0, which, given equation (6.44), is a solution of equation (6.42) by design
when J = 0. To find the linearized “equations of motion,” we need the effective
action to quadratic order, which requires knowledge of the quadratic part of the
generating functional only. From the definition

Win-out [J ] ∼ i

2�

∫
d4xd4y J (x) 〈ϕ (x)ϕ (y)〉c J (y) (6.45)

where 〈ϕ (x)ϕ (y)〉c is the sum of all connected Feynman graphs ending in two
external legs as shown. If we further expand in powers of g, keeping the constraint
equation (6.44), we may appeal to Wick’s theorem to write

〈ϕ (x)ϕ (y)〉c = Δ (x− y) − i

∫
d4zd4z′ Δ (x− z) Σ (z − z′) Δ (z′ − y) (6.46)

where

iΣ (z − z′) =
g2

2�2
[Δ (z − z′)]2 (6.47)

The important issue is which propagator is exactly Δ (x− y) . It is given by

Δ (x− y) =
∫
Dϕ ei�

−1Sfϕ (x)ϕ (y)∫
Dϕ ei�−1Sf

(6.48)

where Sf means the free action, that is, the action with g = h = 0. Since the
path integral time orders whatever is inside, Δ must correspond to the Feynman
propagator ΔF for the free theory. We then have

φ̃ (x) =
δWin-out [J ]

δJ (x)

= i�−1

∫
d4y K (x− y)J (y) (6.49)

where

K (x− y) = ΔF (x− y) − i

∫
d4zd4z′ ΔF (x− z) ΣF (z − z′) ΔF (z′ − y)

(6.50)
Since [

∇2 −m2
]
ΔF (x, x′) = i�δ (x, x′) (6.51)
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6.2 Functional methods 179

we get the “equation of motion”

[
∇2 −m2

]
φ̃ (x) − �

∫
d4z ΣF (x− z) φ̃ (z) = −J (x) + O

(
g4
)

(6.52)

To appreciate the content of this equation, let us compute the kernel Σ explic-
itly, using the results from Chapter 5. The infinite and constant terms may be
absorbed into a redefinition of m2 and do not concern us now. For the remain-
der, we may already be able to make a crucial observation: since ΣF (p) is an
even function of p0, ΣF will be an even function of x0 − z0. Therefore, equation
(6.52) cannot possibly yield a causal dynamics: the behavior of φ̃ at any given
event will depend on the whole future, and not only on the past of that event.
This is clear also if we seek the response of φ̃ to an impulse by setting J to be
a delta function in equation (6.49): far from turning on when the source does, φ̃
is nonzero everywhere.

Compared to this, the fact that equation (6.52) will generally predict a complex
φ̃ even for real sources is a lesser sin. This follows from the fact that the argument
of the logarithm in the fish may be negative if −p2 > 4m2. Thus ΣF (p) develops
an even imaginary part, which passes on to ΣF (x− z), Chapter 5, equation
(5.27). Since the field operator is Hermitian, its expectation value must be real;
we conclude that φ̃ cannot possibly be that expectation value.

In summary, we find that the generating functional Win-out [J ] is not generating
expectation values of observables – it is generating something else, see below.
Neither is it useful as a way to derive equation (6.52) because this equation is
not admissible as a true dynamical law, since it is not causal.

In order to proceed, we must understand why an approach which worked fine
in equilibrium situations fares so badly off-equilibrium. The key is in the bound-
ary conditions which are conspicuously absent from the Euclidean path integral
(6.34). The reason why we do not need to introduce explicit boundary condi-
tions in equation (6.34) is that only the vacuum-to-vacuum amplitude survives
the limiting procedure of taking the time interval tE to infinity. Anything else
becomes negligible against the vacuum-to-vacuum contribution.

This is not true of the Lorentzian path integral, and in fact equation (6.39)
is meaningless unless the boundary conditions on the path of integration are
specified. We implicitly assumed that the Lorentzian path integral was defined
as the analytic continuation of the Euclidean path integral. This is implemented
by replacing m2 by m2 − iε in the classical action. Therefore the path inte-
gral came to represent a vacuum-to-vacuum transition amplitude. While in a
truly Poincaré-invariant situation there is only one vacuum (up to a phase), off-
equilibrium the vacuum |0in〉 in the distant past may be very different from the
vacuum |0out〉 in the far future.

Let us describe the situation in canonical terms. We have a physical idea of
what the vacuum is, both in the distant past and future (for example, we have a
particle detector we trust, and we know it is in the vacuum if the detector does
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180 Functional methods in nonequilibrium QFT

not click). There is a state |0in〉 which corresponds to the vacuum at time t = −tL
(subscript L under t denotes Lorentzian time). If we adopt the Schrödinger pic-
ture, at time t = tL this state has evolved into e−2itLH |0in〉, which does not

correspond to the physical vacuum. On the other hand, there is a different state
|0out〉 (which we may regard as a state either in the Heisenberg picture or a
Schrödinger picture at time t = −tL) evolving into |0out , tL〉 ≡ e−2iHtL |0out〉,
which corresponds to the vacuum in the far future. We obtain the in–out gener-
ating functional by forcing |0in〉 to evolve not only under its own dynamics, but
also under an external time dependent source J (x, t), and comparing the result
to |0out , tL〉

ei�
−1Win-out[J] = 〈0out , tL|T

[
e
−i
∫ tL
−tL

�
−1dt(H−

∫
d3xJΦS)

]
|0in〉

= 〈0out | e2i�−1tLHT
[
e
−i
∫ tL
−tL

�
−1dt(H−

∫
d3xJΦS)

]
|0in〉 (6.53)

where H, ΦS (x) are Schrödinger picture operators. Therefore

φ̃ (x) =
δWin-out [J ]

δJ (x)

∣∣∣∣
J=0

=
〈0out |Φ (x) |0in〉

〈0out |0in〉 (6.54)

where Φ (x, t) is the Heisenberg picture operator. This is a very different object
from the true expectation value

φ (x) = 〈0in|Φ (x) |0in〉 (6.55)

In particular, being a nondiagonal matrix element, φ̃ (x) will be generally com-
plex, and since it carries the information that the state must evolve into the
vacuum in the far future, it is not surprising that its dynamics is acausal.

The true expectation value φ (x) must be real and evolve causally. We should
therefore forget about φ̃ but concentrate on finding the right equations of motion
for φ. We want to make the same overall strategy work: we shall find the correct
generating functional, and obtain an effective action as a Legendre transform of
it based on the demand that the variation of this effective action will yield real
and causal equations of motion. The correct generating functional and effective
action will have to be different from their counterparts above. These are the
necessary requirements for a consistent nonequilibrium functional formalism.

6.3 The closed time path effective action

As mentioned earlier, we shall study nonequilibrium dynamics through the evo-
lution of expectation values of field operators and their correlation functions. To
study this evolution, we shall derive equations of motion which represent suc-
cessive truncations of the Schwinger–Dyson hierarchy (this being the quantum
equivalent of the BBGKY hierarchy in classical statistical mechanics). The rea-
son why we concentrate on the equations of motion rather than the propagators
themselves is because it is more efficient: an approximation to the equation may
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6.3 The closed time path effective action 181

be equivalent to summing an infinite set of graphs in the solution. A dramatic
example of this improved efficiency is the hard thermal loop resummation scheme
which we will discuss at length in Chapter 10.

In the simplest approach, we choose a single indicator, namely, the expecta-
tion value of the field operator. Allowing for a mixed initial state rather than the
vacuum initial conditions assumed so far, we have φ (x) = Tr [Φ (x) ρ]. Introduc-
ing the Heisenberg dynamical law for the field operator, this expectation value
admits a representation as a CTP path integral

φ (x) =
∫

Dϕ1Dϕ2 ρ
[
ϕ1 (0,x) , ϕ2 (0,x)

]
exp
{
(i/�)S

[
ϕ1, ϕ2

]}
ϕ1 (x) (6.56)

where

S
[
ϕ1, ϕ2

]
= S

[
ϕ1
]
− S

[
ϕ2
]∗

(6.57)

This suggests considering two mean fields φa to be derived from the closed time
path (CTP) generating functional W

[
J1, J2

]
e(i/�)W [J] =

∫
Dϕ1Dϕ2 ρ

[
ϕ1 (0,x) , ϕ2 (0,x)

]
exp
{

(i/�)
[
S
[
ϕ1, ϕ2

]
+
∫

d4x
[
J1ϕ1 − J2ϕ2

]]}
(6.58)

through the variational formula

φa (x) =
δ

δJa (x)
W [J, J ′] (6.59)

If after the variation we set Ja = 0, then φ1 = φ2 = 〈Φ (x)〉 . Here a = 1, 2 denotes
the branch within the time path. Also there is a “metric” cab = diag (1,−1), so
that J1 (x) = J1 (x) and J2 (x) = −J2 (x) .

To obtain the equation of motion for these mean fields, we introduce the CTP
effective action (EA) as the Legendre transform of the generating functional
Γ [φ] = W [J ] − JAφ

A. The dynamical equations for the mean fields read
δΓ
δφA

= −JA (6.60)

The index A is (x, a), where x is a spacetime event, and a = 1, 2 denotes the
branch within the time path. We apply a generalized Einstein convention
whereby repeated indices are summed if they are discrete, or integrated if con-
tinuous. For example

Jφ = JAφ
A =

∫
d4x Jaφ

a =
∫

d4x
[
J1φ

1 + J2φ
2
]

=
∫

d4x
[
J1φ1 − J2φ2

]
(6.61)

To obtain the equation of motion for the physical expectation value, we set J = 0
in equation (6.60), in which case, as we shall see below, the two equations (6.60)
are actually equivalent.
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182 Functional methods in nonequilibrium QFT

Given the flourishing of applications of the CTPEA, it would be impossible
to give a complete set of references. Some papers which were influential in the
development of the subject are [Sch60, Sch61, BakMah63, Kel64, ChoSuHa80,
CSHY85, SCYC88, DeW86, Jor86, CalHu87, CalHu88, CalHu89].

6.3.1 An example

Before we proceed further with the formalism it is useful to show an example.
We continue with the gΦ3 theory we introduced in (6.43).

Let us assume that the initial conditions are set in the distant past, where the
initial state is the in vacuum. This is implemented, as above, by shifting m2 to
m2 − iε. Therefore

e(i/�)W [J] =
∫
Dϕ1Dϕ2 exp

{
(i/�)

[
S
[
ϕ1
]
− S

[
ϕ2
]∗

+
∫

d4x
[
J1ϕ1 − J2ϕ2

]]}
(6.62)

In the second branch the mass is shifted to m2 + iε. Observe that the two branch
integrations are not independent, as they couple through the “CTP boundary
condition” ϕ1 (T,x) = ϕ2 (T,x) for all x at some very large time T. In canonical
terms, this expression is equivalent to

e(i/�)W [J] = 〈0in|UJ2 (−T, T )UJ1 (T,−T ) |0in〉|T→∞ (6.63)

where UJ is the evolution operator for the field interacting with the external
c-number source J

UJ (t, t′) = T

[
exp
{(

− i

�

)∫ t

t′
dt

∫
d3x (H − JΦ)

}]
(6.64)

The CTP boundary condition arises from inserting a complete set of states at
time T between the two evolution operators. It is interesting to compare the
CTP generating functional (6.63) to its “open path” or in-out counterpart (6.53).
Observe that the out vacuum plays no role in the CTP expression.

As in our earlier example, we shall compute only the quadratic part of the
generating functional. Since we enforce

δW

δJ1,2 (x)

∣∣∣∣
J=0

= 0 (6.65)

by conveniently tuning the linear term h in equation (6.43), the quadratic part
is

W [J ] =
i

2�
GABJAJB (6.66)

From equation (6.62)

GAB =
∫

Dϕ1Dϕ2 exp
{

(i/�)
[
S
[
ϕ1
]
− S

[
ϕ2
]∗]}

ϕAϕB (6.67)
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6.3 The closed time path effective action 183

From equation (6.63)

G11 (x, y) = GF (x, y) (6.68)

G22 (x, y) = GD (x, y) (6.69)

G21 (x, y) = G+ (x, y) (6.70)

G12 (x, y) = G− (x, y) (6.71)

So GAB are the “path-ordered” propagators: Path-ordering is equivalent to time-
ordering for points on the first time branch, anti-time ordering on the second time
branch, and placing points on the second branch to the left of points on the first
branch.

Formally, the mean fields are given by

φA = i�−1GABJB (6.72)

which is inverted to

−JA = i�
[
G−1

]
AB

φB (6.73)

Comparing with equation (6.60) we find

Γ =
i�

2
[
G−1

]
AB

φAφB (6.74)

The actual equation of motion is obtained when φ1 = φ2. Thus the equation
of motion is

i�

∫
d4y

[[
G−1

]
11

(x, y) +
[
G−1

]
12

(x, y)
]
φ (y) = −J (x) (6.75)

This equation is real and causal as we shall soon prove.
For free fields, the Klein–Gordon equations for the fundamental propagators[

∇2 −m2
]
ΔF (x, x′) = −

[
∇2 −m2

]
ΔD (x, x′) = i�δ (x, x′) (6.76)[

∇2 −m2
]
Δ+ (x, x′) =

[
∇2 −m2

]
Δ− (x, x′) = 0 (6.77)

may be summarized as

cAB

[
∇2 −m2

]
ΔBC = i�δCA (6.78)

So [
Δ−1

]
AB

=
(
−i�−1

) [
∇2 −m2

]
cAB (6.79)

where cAB = cabδ (x, x′) . Never mind for now that we are claiming
[
Δ−1

]
AB

is
diagonal, while ΔAB is conspicuously not. The nondiagonal elements of ΔAB are
retrieved by inverting

[
Δ−1

]
AB

under the CTP constraints

Δ11 (x, y) = θ
(
x0 − y0

)
Δ21 (x, y) + θ

(
y0 − x0

)
Δ12 (x, y) (6.80)

Δ22 (x, y) = θ
(
x0 − y0

)
Δ12 (x, y) + θ

(
y0 − x0

)
Δ21 (x, y) (6.81)
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184 Functional methods in nonequilibrium QFT

Figure 6.1 The tadpole graph; there are no propagators on the external lines.

With this form for the inverse propagators, the equation of motion is just the
Klein–Gordon equation, which is correct but not very illuminating.

For interacting fields, define the self-energies ΣAB from[
G−1

]
AB

=
[
Δ−1

]
AB

+ iΣAB (6.82)

leading to the perturbative development

GAB = ΔAB − iΔACΣCDΔDB + . . . (6.83)

Meanwhile the expansion of the propagators in powers of the coupling constant
g reads

Gab (x, y) = ΔAB − 1
2

( g

6�

)2
∫

d4zd4z′
〈
ϕa (x)

[(
ϕ1
)3 − (ϕ2

)3]
(z)

×
[(
ϕ1
)3 − (ϕ2

)3]
(z′)ϕb (y)

〉
f
+ . . . (6.84)

where 〈 〉f denotes a path ordered expectation value computed for free fields,
enforcing the constraint of vanishing “tadpoles.” These expectation values are
reduced to products of propagators applying Wick’s theorem. Comparing both
expansions, we conclude

iΣ11 (x, y) =
g2

2�2
[ΔF (x, y)]2 (6.85)

iΣ12 (x, y) = − g2

2�2

[
Δ− (x, y)

]2 (6.86)

iΣ21 (x, y) = − g2

2�2

[
Δ+ (x, y)

]2 (6.87)

iΣ22 (x, y) =
g2

2�2
[ΔD (x, y)]2 (6.88)

We may now write the equation of motion to order g2

[
∇2 −m2

]
φ (x) + i

g2

2�

∫
d4y

[
[ΔF (x, y)]2 −

[
Δ− (x, y)

]2]
φ (y) = −J (x)

(6.89)
Comparing with equation (6.52), we see that there is an extra contribution to
the nonlocal part. By simple inspection, we see that this new term makes the
equation causal, since ΔF (x, y) = Δ− (x, y) when y0 > x0. From the results in
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6.3 The closed time path effective action 185

Chapter 5, we see that the equation is also real, as required by the physical
meaning of φ as the expectation value of a Hermitian operator.

6.3.2 The structure of the closed time path effective action

The example above already shows several generic features of the CTPEA. We
wish now to highlight these features which are general and exact (i.e. not depen-
dent on the model or the order of coupling).

In the above example, we assumed vacuum initial conditions set up in the
distant past. In general, we deal with an arbitrary initial state set up at some
definite time, which we may take as t = 0. Then the CTP generating functional
admits the representation

e(i/�)W [J] = Tr [UJ2 (0, T )UJ1 (T, 0) ρ]|T→∞ (6.90)

where, as before, UJ is the evolution operator for the field interacting with the
external c-number source J as in equation (6.64). Variation yields, in the coin-
cidence limit

φ (x) =
δ

δJ (x)
W [J, J ′]

∣∣∣∣
J′→J

= Tr [Φ (x)UJ (t, 0) ρUJ (0, t)] (6.91)

φ is the expectation value of the field operator with respect to the state which
evolves from ρ under the influence of the source J .

The first property of the CTPEA we wish to discuss is its “Hermiticity,”
namely, for Hermitian field operators, Γ

[
φ2, φ1

]
= −Γ

[
φ1∗, φ2∗]∗ (since the field

operators are Hermitian, we assume they couple to real c-number sources; how-
ever, we may be sure that the mean fields φa are real in the coincidence limit
J1 = J2 only). To see this “Hermiticity,” observe that, provided the density
matrix ρ in equation (6.90) is itself Hermitian, then a similar property holds
for the CTP generating functional, namely W

[
J2, J1

]
= −W

[
J1, J2

]∗. Taking
variations, we get

φ1

[
J2, J1

]
= −φ2

[
J1, J2

]∗
; φ2

[
J2, J1

]
= −φ1

[
J1, J2

]∗
(6.92)

In other words, if the external sources necessary to sustain the given back-
ground fields

(
φ1, φ2

)
are
(
J1, J2

)
, then the sources necessary to sustain the

mean fields
(
φ2∗, φ1∗) are

(
J2, J1

)
(note the position of the indices). Thus

Γ
[
φ2∗, φ1∗] = W

[
J2, J1

]
−
(
J2φ2∗ − J1φ1∗) = −Γ

[
φ1, φ2

]∗
(6.93)

QED. An equivalent formulation is that, if the background fields
(
φ1, φ2

)
are

real, then

ReΓ
[
φ1, φ2

]
= −ReΓ

[
φ2, φ1

]
; ImΓ

[
φ1, φ2

]
= ImΓ

[
φ2, φ1

]
(6.94)

If ρ is trace-class (Tr [ρ] = 1) and the evolution operator is unitary, then
the CTP generating functional vanishes on the diagonal (W [J, J ] = 0). In the
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186 Functional methods in nonequilibrium QFT

coincidence limit, therefore, there is a single mean field, since φ1 = φ2 ≡ φ (again,
the position of the indices matters). Equation (6.92) shows that φ must be real
(this can also be seen directly from equation (6.91)). We then find that the
CTPEA is also trivial along the diagonal Γ [φ, φ] ≡ 0. This dispels the appar-
ent mystery of having two equations for a single mean field φ: they are linearly
dependent. The single equation reads

δΓ
δφ1

∣∣∣∣
φ2=φ1=φ

= − δΓ
δφ2

∣∣∣∣
φ2=φ1=φ

= −J (6.95)

where J is the common value of J1 and J2. Observe that although Γ is generally
complex, when φ is real the variation of the imaginary part must vanish in
the coincidence limit (this follows from equations (6.94)), and so the physical
equation (6.95) is explicitly a real equation.

The other fundamental property of equation (6.95) is that it is causal (we
may say that doubling the degrees of freedom is the minimum price to pay to
get a causal, real equation of motion for the mean field within a variational
approach). Indeed, the solution to the physical equation (6.95) is given by the
formal expression (6.91), which is obviously causal.

We may disclose further properties of the CTPEA by writing it as a function of
new field variables φ− = φ1 − φ2 and φ+ =

(
φ1 + φ2

)
/2. Observe that Γ [φ, φ] ≡

0 implies

Γ [φ− = 0, φ+] ≡ 0 (6.96)

Therefore the Taylor development of Γ reads

Γ [φ−, φ+] =
∫
d4x φ− (x)Dfull

x [φ+] +
i

2

∫
d4xd4x′ φ− (x)N (x, x′)φ− (x′) + . . .

(6.97)
To find the equations of motion, we first take its variation with respect to φ1

and then set φ− = 0. Only the first term contributes, and the equations read

Dfull
x [φ] = −J (x) (6.98)

If the theory is set up so that Dfull
x [0] = 0, then Dfull

x will have its own Taylor
development

Dfull
x [φ+] =

∫
d4x′ Dfull (x, x′)φ+ (x′) + . . . (6.99)

So the linearized equation of motion is∫
d4x′ Dfull (x, x′)φ (x′) = −J (x) (6.100)

The Hermiticity conditions (6.94) and the causality of the equations of motion
(6.95) imply that the kernels Dfull and N are real, and Dfull is causal.

The appearance of the kernel N may seem redundant, since it does not con-
tribute to the mean field equations of motion. However, equation (6.97) also
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6.4 Computing the closed time path effective action 187

suggests another way of looking at the CTPEA which discloses a surprising role
for N. Let us observe that the quadratic CTPEA has the same structure as an
influence functional, and if we regard it this way, then N corresponds to the
noise kernel. According to the theory of quantum open systems, we ought to
replace the mean field equation by a Langevin equation Dfullφ = −J − ξ, where
J is the external source, if any, and ξ is a stochastic, c-number source with
autocorrelation

〈ξ (x) ξ (x′)〉 = �N (x, x′) (6.101)

In attention to this role for N, we shall henceforth refer to it as the noise kernel .
In general N (x, x′) will be a functional of φ+, leading to colored and multiplica-
tive noise in the dynamical equations. A large part of the remainder of this book
may be seen as the development of this theme.

6.4 Computing the closed time path effective action

6.4.1 The background field method

So far we have formally introduced the CTPEA and investigated some of its
properties. Now we show how to actually compute it. As a start, let us observe
that it is possible to give a definition of the CTPEA as the solution of a particular
integral equation. To this end, we recall the definition of the generating functional
(in condensed notation)

e(i/�)W [J] =
∫

DΦ exp {(i/�) [S [Φ] + JΦ]} (6.102)

(observe that we do not write explicitly the initial density matrix; the mystery
will be revealed below). The CTPEA is introduced as the Legendre transform
Γ[φ] = W [J ] − JAφ

A. Note that, after all, J = −Γ,φ, and so we may write

e(i/�)W [φ] =
∫

DΦ exp
{

(i/�)
[
S [Φ] − δΓ

δφ
Φ
]}

(6.103)

which is the self-contained equation for the CTPEA.
Let us begin by rewriting it as

Γ
[
φA
]

= (−i�) ln
∫

DΦA exp
{

(i/�)
[
S
[
ΦA
]
− δΓ

δφA

(
ΦA − φA

)]}
(6.104)

Shift the integration variables by the mean fields ΦA = φA + ϕA and expand the
classical action

S
[
φA + ϕA

]
= S

[
φA
]
+ S,Aϕ

A + Sr

[
ϕA
]

(6.105)

For example, for a λΦ4 theory with classical action

S [φa] =
∫

d4x

{
cab
2
[
−∂φa∂φb −m2φaφb

]
− λ

4
cabcdφ

aφbφcφd

}
(6.106)
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188 Functional methods in nonequilibrium QFT

where cab is the CTP metric tensor and cabcd is 1 if a = b = c = d = 1, −1 if all
indices are equal to 2, and vanishes otherwise, we obtain

Sr [ϕa] =
∫

d4x

{
cab
2
[
−∂ϕa∂ϕb −m2ϕaϕb

]
− λ

4
cabcdφ

aφbϕcϕd

− λ

6
cabcdφ

aϕbϕcϕd − λ

24
cabcdϕ

aϕbϕcϕd

}
(6.107)

Then

Γ
[
φA
]

= S
[
φA
]
− i� ln

∫
DϕA exp

{
(i/�)

[
Sr

[
ϕA
]
+ (S,A − Γ,A)ϕA

]}
(6.108)

Next write

Γ
[
φA
]

= S
[
φA
]
+ Γ1

[
φA
]

(6.109)

Γ1

[
φA
]

= −i� ln
∫

DϕA exp
{
(i/�)

[
Sr

[
ϕA
]
− Γ1,Aϕ

A
]}

(6.110)

The quantum correction Γ1 has the form of a generating functional for a new
theory, whose classical action is obtained from the original one by shifting the
fields as in equation (6.105) and discarding constant and linear terms. This new
generating functional must be evaluated at a particular value of the external
source.

By performing the Legendre transform in reverse, we could write this generat-
ing functional in terms of the effective action for the ϕ field. We stress that the
ϕ field represents a different field theory than the original one; for example, the
action Sr for the ϕ field contains cubic interactions, which the action S for
the φ field does not. In any case, to compute the generating functional, we must
be able to compute the corresponding effective action at a mean field doublet
ϕ̄ equal to the expectation value 〈ϕ〉J of the Heisenberg operator ϕ = Φ − φ.

Generally the new action Sr is not invariant under sign reversal (cf. equation
(6.107)), and so there is no reason for this to vanish. However, the value Γ1,A

is precisely the external force necessary to kill this expectation value. The con-
clusion is that we may ignore the external source, and compute the generating
functional Γ1 as the sum of all 1PI vacuum Feynman graphs: vacuum because we
compute the effective action at ϕ̄ = 0, and 1PI because, after all, it is an effective
action.

To show that 〈ϕ〉 = 0, let us take the variational derivative of equation (6.110)
with respect to the background field to obtain∫

DϕA
[
Sr,A [ϕ] − Γ1,A [φ] − Γ1,ABϕ

B
]
exp
{
(i/�)

[
Sr [ϕ] − Γ1,Cϕ

C
]}

≡ 0

(6.111)
and observe that

δSr

δφA
=

δS [φ + ϕ]
δφA

− δS [φ]
δφA

− δS [φ]
δφAδφB

ϕB =
δSr

δϕA
− δS [φ]

δφAδφB
ϕB (6.112)
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6.4 Computing the closed time path effective action 189

The product[
δSr

δϕA
− Γ1,A

]
e{(i/�)[Sr[ψ]−Γ1,BϕB]} = −i�

δ

δϕA
e{(i/�)[Sr[ϕ]−Γ1,AϕA]} (6.113)

integrates to zero, and so we are left with the identity Γ,AB

〈
ϕB
〉

= 0. But the
Hessian operator Γ,AB must be nonsingular, since it follows from the properties
of Legendre transformation that

Γ,AB
δ2W

δJBδJC
= −δCA (6.114)

and this establishes the vanishing of
〈
ϕb
〉
, as desired. To summarize, Γ, the

(vacuum) CTPEA consists of the classical action S plus a quantum correction
Γ1 (thereby the label effective action). This quantum correction is the sum of
all one-particle irreducible (1PI) (that is, containing no one-particle insertions)
vacuum bubbles (that is, containing no external vertices). This recipe will be the
start of all computations based on the CTPEA.

For an exposition of the background field method, read, e.g. the classic papers
by Jackiw and Iliopoulos, Itzykson and Martin [Jac74, IlItMa75].

6.4.2 The loop expansion

Having reduced the problem of computing the CTPEA in the theory with clas-
sical action S to the calculation of vacuum bubbles in the theory with classical
action Sr, we proceed, as in the general case, to split the new action into its free
and interacting components

Sr =
1
2
δ2S

δφ2
ϕ2 + SQ (6.115)

For example, for a λΦ4 theory the free and interacting parts correspond to the
first and second lines in equation (6.107), respectively.

We generate the Feynman graphs by expanding the exponential of SQ. The
different vertices shall be connected through lines, and associated with each line
there is a propagator

〈
ϕAϕB

〉
=
∫

DϕC
[
ϕAϕB

]
exp
{

i

2�

δ2S

δφ2
ϕ2

}
≡ i�

[
δ2S

δφAδφB

]−1

(6.116)

To make this formula well defined, we assume the usual Gell-Mann–Low bound-
ary condition which states that interactions are adiabatically switched off in the
distant past, so the in vacuum for the ϕ field is the same as for the Φ field.
Moreover, we assume this state to be properly normalized, so it is not necessary
to normalize explicitly the expectation value (6.116).

The neat split of Γ into a classical and a quantum part can be continued by
analyzing further its development in powers of �. The idea is that each vertex
contributes one inverse power of � to the amplitude of the graph, while each
line contributes �. So the overall power of �, including the one in the beginning
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190 Functional methods in nonequilibrium QFT

of equation (6.110), is L = I − V + 1, where I is the number of lines, and V

of vertices. This is also the number of independent loops in the graph, and so
the expansion of Γ in powers of � is equivalent to a topological classification of
graphs according to the number of loops.

Note that I and V also satisfy the constraint 2I − 3V3 − 4V4 = 0, where V3

(V4) is the number of cubic (quartic) vertices in the graph. Solving for the number
of vertices of each type, we find V3 = 2I − 4 (L− 1) and V4 = 3 (L− 1) − I. Since
each of the numbers I, V3, V4 must be nonnegative, we conclude that for each
value of L only a finite number of graphs are allowed. For example, for L = 2 we
must have either I = 2, V3 = 0, V4 = 1 or I = 3, V3 = 2, V4 = 0, etc.

If L = 1, then we must have V4 = V3 = 0. In this limit, the integral in equation
(6.110) is Gaussian and we may write

Γ1

[
φA
]

= −i� ln Det [S′′]−1/2 + O
(
�

2
)

(6.117)

Of course, since the propagators themselves depend on the background fields,
we do not mean that individual graphs are easy to compute. The loop expan-
sion, however, provides us with a classification scheme to consider the different
processes contributing to a given amplitude in order of increasing complexity.

6.4.3 The one-loop closed time path effective action

for the gΦ3 theory

As an example, let us compute the one-loop approximation to the CTPEA in
the familiar scalar field theory with cubic self-interaction.

We assume the simplest case of vacuum initial conditions specified in the dis-
tant past. The classical potential is given in equation (6.43), where m2 is shifted
to m2 − iε. The CTP action is given by equation (6.57) and the CTPEA by
equation (6.109). To construct the new action Sr which appears in this equa-
tion, we write the old action in terms of a displaced field variable φ + ϕ, and
then discard constant and linear terms in ϕ. Therefore, splitting Sr into a free
part and an interaction part as in equation (6.115),

1
2
δ2S

δφ2
ϕ2 =

∫
d4x

{cab
2
[
−∂ϕa∂ϕb −m2ϕaϕb

]
− g

2
cabcφ

aϕbϕc
}

(6.118)

SQ [ϕ] =
∫

d4x
{
−g

6
cabcϕ

aϕbϕc
}

(6.119)

where c111 = −c222 = 1, all other components being zero. In principle, Γ1

[
φA
]

is the sum of all 1PI vacuum graphs for this new theory. The one-loop approxi-
mation consists of discarding SQ, so that Γ1

[
φA
]

reduces to

Γ1

[
φA
]

= −i� ln
∫

DϕA exp
{

(i/�)
∫

d4x ϕa
{cab

2
[
∇2 −m2

]
− g

2
cabcφ

c
}
ϕb

}
(6.120)

with the formal solution (6.117).
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6.4 Computing the closed time path effective action 191

We shall have more to say about the full one-loop approximation later in the
book, but for now let us simply use equation (6.120) to recover the quadratic
part of the CTPEA.

Expanding equation (6.120) to quadratic order we get

Γ1

[
φA
]
∼
∫

d4x
(
−g

2

)
cabcφ

c
〈
ϕaϕb

〉
c

+
i

2�

(g
2

)2
∫

d4xd4x′ cabccdefφ
c (x)φf (x′)

〈(
ϕaϕb

)
(x)
(
ϕdϕe

)
(x′)
〉
c

(6.121)

where 〈 〉c denotes the expectation value of path-ordered products of free field
operators, keeping only the connected contributions. The first-order term will be
canceled by the h term in the classical action, so we only need to worry about
the second, which reads

Γ1

[
φA
]
∼ i

2�

(g
2

)2
∫

d4xd4x′
{
φ1 (x)φ1 (x′)

〈
T
[
ϕ2 (x)ϕ2 (x′)

]〉
c

−φ2 (x)φ1 (x′)
〈
ϕ2 (x)ϕ2 (x′)

〉
c
− φ1 (x)φ2 (x′)

〈
ϕ2 (x′)ϕ2 (x)

〉
c

+φ2 (x)φ2 (x′)
〈
T̃
[
ϕ2 (x)ϕ2 (x′)

]〉
c

}
(6.122)

Now write

φ1,2 = φ+ ± 1
2
φ− (6.123)

to get

Γ1

[
φA
]
∼ i

2�

(g
2

)2
∫

d4xd4x′
{
φ− (x)φ+ (x′)

[〈
T
[
ϕ2 (x)ϕ2 (x′)

]〉
c

+
〈
ϕ2 (x)ϕ2 (x′)

〉
c
−
〈
ϕ2 (x′)ϕ2 (x)

〉
c
−
〈
T̃
[
ϕ2 (x)ϕ2 (x′)

]〉
c

]
+

1
2
φ− (x)φ− (x′)

〈{
ϕ2 (x) , ϕ2 (x′)

}〉
c

}
(6.124)

which, under the definitions (6.5) for temporal and anti-temporal order, yields

Γ1

[
φA
]
∼ i

4�

(g
2

)2
∫

d4xd4x′ {4φ− (x)φ+ (x′)
〈[
ϕ2 (x) , ϕ2 (x′)

]〉
c
θ
(
x0 − x′0)

+φ− (x)φ− (x′)
〈{

ϕ2 (x) , ϕ2 (x′)
}〉

c

}
(6.125)

Comparing with equations (6.97) and (6.99), we identify

Dfull (x, x′) =
[
∇2 −m2

]
δ (x, x′) − Σret (x, x′) (6.126)

iΣret (x, x′) =
1
�

(g
2

)2 〈[
ϕ2 (x) , ϕ2 (x′)

]〉
c
θ
(
x0 − x′0) (6.127)

N (x, x′) =
1
2�

(g
2

)2 〈{
ϕ2 (x) , ϕ2 (x′)

}〉
c

(6.128)
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192 Functional methods in nonequilibrium QFT

so the CTPEA takes the influence functional structure, as expected. Observe
that Dfull is real, and obviously causal. Expanding the expectation value using
Wick’s theorem, the dynamical equation (6.100) gives back equation (6.89).

Although we still found no use for the noise kernel (see Chapter 8), it is
undeniably nonzero. To lowest order, we find

iΣret (x, x′) =
g2

2�

[
[ΔF (x, x′)]2 −

[
Δ− (x, x′)

]2] (6.129)

N (x, x′) =
g2

4�

[(
Δ+ (x, x′)

)2 +
(
Δ− (x, x′)

)2] (6.130)

They can be expressed in terms of the U , ν and μ kernels introduced in Chapter 5

−Σret =
g2

�

2

[
U

2
+ μ

]
(6.131)

N =
g2

�

4
ν (6.132)

It is interesting to observe a relationship between the Fourier transforms of these
kernels. Since Σret is causal it satisfies the Kramers–Kronig relations (6.23),

Σret (p) =
1
π

∫
dω

ω − p0 − iε
Im Σret (ω,p) + local terms (6.133)

The imaginary part comes from the Fourier transform of the μ kernel

Im Σret (ω,p) = sign (ω) Π
(
ω2 − p2

)
θ
(
ω2 − p2 − 4m2

)
(6.134)

where

Π
(
σ2
)

=
g2

�

32π

√
1 − 4m2

σ2
(6.135)

Also
1

ω − p0 − iε
+

1
ω + p0 + iε

=
2ω

ω2 − (p0 + iε)2
(6.136)

Writing ω2 − p2 = σ2 we have

Σret (p) =
1
π

∫ ∞

4m2

dσ2

(p + iε)2 + σ2
Π
(
σ2
)

+ local terms (6.137)

The Fourier transform of N comes from the ν kernel

N (p) =
g2

�

32π

√
1 − 4m2

(−p2)
θ
(
−p2 − 4m2

)
(6.138)

Comparing with equation (6.135), we see that the noise kernel coincides up to
a sign with the imaginary part (in frequency domain) of the dissipation ker-
nel. We shall see in Chapter 8 that the imaginary part of the dissipation kernel
describes the dissipation of the mean field by its interaction with quantum fluctu-
ations. The relationship between the noise and dissipation kernels in this simple
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6.4 Computing the closed time path effective action 193

example is just a basic manifestation of the fluctuation–dissipation theorem at
zero temperature.

6.4.4 The large N expansion

Computing Feynman graphs is easy. The harder question is how many Feynman
graphs must be computed to achieve a prescribed accuracy.

The number N of replicas of essentially identical fields (like the N scalar fields
in an O(N) invariant theory, or the N2 − 1 gauge fields in a SU(N) invariant non-
abelian gauge theory) suggests using 1/N as a natural small parameter, with a
well-defined physical meaning. Unlike coupling constants, this is not subjected to
renormalization or radiative corrections. By ordering the perturbative expansion
in powers of this small parameter, several nonperturbative effects (in terms of
coupling constants) may be systematically investigated.

The ability of the 1/N framework to address the nonperturbative aspects of
quantum field dynamics has motivated a detailed study of the properties of these
systems [CoJaPo74, Roo74]. In nonequilibrium situations, this formalism has
been applied to the dynamics of symmetry breaking [HKMP96, CHKMPA94,
CKMP95, BBHKP98, BVHS99a, LoMaRi03] and self-consistent semiclassical
cosmological models (see Chapter 15).

In the case of the O(N) invariant theory, in the presence of a nonzero back-
ground field (or an external gravitational or electromagnetic field interacting
with the scalar field) we may distinguish the longitudinal quantum fluctuations
in the direction of the background field, in field space, from the N − 1 trans-
verse (Goldstone or pion) fluctuations perpendicular to it. To first order in 1/N ,
the longitudinal fluctuations drop out of the formalism, so we effectively are
treating the background field as classical. Likewise, quantum fluctuations of the
external field are overpowered by the fluctuations of the N scalar fields. In this
way, the 1/N framework provides a systematic and quantitative measure of the
semiclassical approximation [HarHor81].

To leading order (LO), the theory reduces to N − 1 linear fields with a time-
dependent mass, which depends on the background field and on the linear fields
themselves through a gap equation local in time. This depiction of the dynamics
agrees both with the Gaussian approximation for the density matrix [EbJaPi88,
MazPaz89] and with the Hartree approximation [HKMP96].

For example, let us consider an O(N) invariant scalar field theory, in the limit
N → ∞. The action is

S =
∫

d4x

{−1
2

∂μΨα∂μΨα − 1
2
M2ΨαΨα − λ

8N
(ΨαΨα)2

}
(6.139)

or by a rescaling Ψα =
√
NΦα,

S = N

∫
d4x

{−1
2

∂μΦα∂μΦα − 1
2
M2ΦαΦα − λ

8
(ΦαΦα)2

}
(6.140)
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194 Functional methods in nonequilibrium QFT

whereby the classical equations are

∇2φα −
[
M2 +

λ

2
(
φβφβ

)]
φα = 0 (6.141)

To compute the 1PIEA we shift the field Φ → φ + ϕ and discard linear terms
to get

Sr [ϕ] = N

∫
d4x

{−1
2

∂μϕ
α∂μϕα − 1

2
M2

αβϕ
αϕβ − λ

2
φβϕβϕαϕα − λ

8
(ϕαϕα)2

}

(6.142)

where

M2
αβ =

[
M2 +

λ

2
φγφγ

]
δαβ + λφαφβ (6.143)

We see that the fluctuation field in the direction of φα has a different propagator
than the “pions,” namely the fluctuations orthogonal to the mean field. However,
since there are N − 1 pions, they dominate the perturbative expansion, and we
may think only of them (or even simpler, let us consider the loop expansion at
φ = 0).

In this theory, propagators carry a weight of N−1 and vertices a weight N .
Therefore, an individual vacuum Feynman graph carries a weight NC , where
C = 1 − L is the number of vertices minus the number of internal lines (L is
the number of loops in the graph). However, when we sum over internal indices,
it acquires an additional power of N for each independent choice of the O(N)
index α. For this reason, adding a tadpole to an internal line does not affect
the overall power of N in the graph: although there are two more lines after the
insertion, there is also one more vertex and one more O(N) index to sum over.
In particular, the “double-bubble” graph has an overall power of N (that is, the
same scaling as the classical action itself) coming from two internal lines, one
vertex, and two possible choices of the internal indices. By adding tadpoles to
the double-bubble in all possible ways, we obtain an infinite family of graphs of
weight N , the so-called “daisy” graphs.

If we wish to say something about the large N limit of the theory, we must be
able to add up the daisy graphs. This will be achieved by a more powerful formal-
ism, the so-called two-particle irreducible (2PI) or Cornwall–Jackiw–Tomboulis
(CJT) effective action, to which we now turn.

Figure 6.2 The “double-bubble” graph.
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6.5 The two-particle irreducible effective action 195

Figure 6.3 A “daisy” graph.

6.5 The two-particle irreducible (2PI) effective action

One clear advantage of working with the CTPEA rather than with the CTP
generating functional is that the perturbative expansion is simpler: all connected
graphs contribute to the latter, while only one-particle irreducible graphs con-
tribute to the former. It is possible to simplify the perturbative expansion even
more by writing Feynman graphs where internal lines represent the full propa-
gators Gab, rather than free propagators Δab or some intermediate object. This
means that graphs which just dress some internal line of some simpler graph must
be disregarded, since all possible corrections are already taken into account in
Gab; the remaining graphs are those where no nontrivial subgraph can be iso-
lated by cutting two internal lines, the so-called two-particle irreducible (2PI)
graphs.

The basic idea is that, when computing the CTP generating functional, we
want to constrain the deviations ϕA from the mean field φA so that not only their
expectation value vanishes but also their fluctuations are known. We achieve this
by adding suitable Lagrange multipliers: our already familiar source JA, associ-
ated with the first constraint, and four new two-point sources KAB = Kab (x, x′)
to enforce the second. The 2PI generating functional then reads, written as a path
integral over full field Φ configurations

e(i/�)W [J,K] =
∫

DΦA exp
{

(i/�)
[
S
[
ΦA
]
+ JAΦA +

1
2
KABΦAΦB

]}
(6.144)

The sources are connected to the mean fields and propagators through

δW

δJA
= φA;

δW

δKAB
=

1
2
[
φAφB + GAB

]
(6.145)

The 2PI CTP EA is the full Legendre transform

Γ2 [φ,G] = W [J,K] − JAφ
A − 1

2
KAB

[
φAφB + GAB

]
(6.146)
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196 Functional methods in nonequilibrium QFT

The equations of motion for mean fields and propagators are then
δΓ2

δφA
= −JA −KABφ

B ;
δΓ2

δGAB
= −1

2
KAB (6.147)

To implement the background field method, write

eiΓ2/� =
∫

DΦA e(i/�)[S[ΦA]+JA(ΦA−φA)+ 1
2KAB(ΦAΦB−φAφB−GAB)] (6.148)

The exponent becomes

S
[
ΦA
]
− δΓ2

δφA

(
ΦA − φA

)
− δΓ2

δGAB

[(
ΦA − φA

) (
ΦB − φB

)
−GAB

]
(6.149)

Write Φ = φ + ϕ and expand the classical action as before,

S
[
φA + ϕA

]
= S

[
φA
]
+ S,Aϕ

A +
1
2
S,ABϕ

AϕB + SQ (6.150)

From our previous experience with the 1PI CTPEA, we know that the effective
action will be equal to the classical action plus O(�) corrections, which will be
given in terms of a Feynman path integral over the ϕ field. At the lowest order,
this integral will be Gaussian, and will yield a term like − (i�/2) ln Det

〈
ϕAϕB

〉
.

On the other hand, the formalism is set up so that
〈
ϕAϕB

〉
≡ GAB , thus we

expect Γ2 = S[φ] − (i�/2) ln DetGAB + . . .. This effective action should generate
the equations of motion for both the mean field and the propagators. To lowest
order in �, the Schwinger–Dyson equation for the propagators may be written as
(i/�)S,AB = −G−1

AB (this is the statement that the Hessian of the effective action
is the inverse of the propagators, specialized to lowest order). Since the variation
of −i� ln DetGAB with respect to GAB yields −i�G−1

AB/2, we get the right equa-
tion by adding a term whose variation is S,AB/2. With these considerations in
mind, we make the ansatz

Γ2

[
φA, GAB

]
= S

[
φA
]
+

1
2
S,ABG

AB − 1
2
i�Tr lnG + ΓQ − 1

2
i�δAA (6.151)

(the final term does not affect the equations of motion and may be disregarded
in practice) to get

eiΓQ/� = [Det G]−1/2
∫

DϕA

× exp
{−1

2
G−1

ABϕ
AϕB + (i/�)

[
SQ − J̃Aϕ

A − K̃AB

(
ϕAϕB −GAB

)]}
(6.152)

where

J̃A =
1
2
S,ABCG

BC +
δΓQ

δφA
; K̃AB =

δΓQ

δGAB
(6.153)

We see that the 2PI effective action is given, besides the terms already explicit
in equation (6.151), by the sum of all two-particle irreducible vacuum graphs in
a theory with action (i/2)G−1

ABϕ
AϕB + SQ. They are vacuum because there is
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6.5 The two-particle irreducible effective action 197

Figure 6.4 The setting sun graph.

Figure 6.5 Two tadpoles joined by one line.

Figure 6.6 The “horn” graph.

Figure 6.7 The fish graph.

Figure 6.8 Two fishes joined by two lines.
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198 Functional methods in nonequilibrium QFT

no ϕ mean field, and 2PI because the nonlocal source K̃AB ensures that GAB

is the full propagator (we shall show this explicitly right away). The reduction
from connected to 1PI to 2PI graphs entails a substantial increase in efficiency.

For example, for a λΦ4 theory, SQ contains both cubic and quartic vertices.
The simplest Feynman graphs are the “double-bubble” and the “setting sun,”
both of which are of order �

2. We may discard a graph consisting of two tadpoles
joined by an internal line, since this is not 1PI. At the following order we may
also discard graphs like the “horn,” and two fishes joined by two internal lines,
which are 1PI but not 2PI.

To conclude, let us verify that the sources enforce the proper constraints. As in
our earlier discussion of the loop expansion in the 1PI CTPEA, this will follow
from the invertibility of the relationship of sources to fields, namely, that the
operator ⎛

⎜⎜⎝
δJA
δφC

δJA
δGCD

δKAB

δφC

δKAB

δGCD

⎞
⎟⎟⎠ (6.154)

is nonsingular. In terms of derivatives of the 2PIEA, this becomes (minus)⎛
⎜⎜⎝

δ2Γ2

δφAδφC
− 2

δΓ2

δGAC
− 2

δ2Γ2

δGABδφC
φC δ2Γ2

δφAδGCD
− 2

δ2Γ2

δGABδGCD
φB

2
δ2Γ2

δGABδφC
2

δ2Γ2

δGABδGCD

⎞
⎟⎟⎠

(6.155)
It is clear that this operator will be nonsingular if and only if the simpler matrix⎛

⎜⎜⎝
δ2Γ2

δφAδφC
− 2

δΓ2

δGAC

δ2Γ2

δφAδGCD

2
δ2Γ2

δGABδφC
2

δ2Γ2

δGABδGCD

⎞
⎟⎟⎠ (6.156)

also is. By taking variations of equation (6.152) with respect to φA and GAB ,
and after some algebra, we obtain the set of equations⎛

⎜⎜⎝
δ2Γ2

δφAδφC
− 2

δΓ2

δGAC

δ2Γ2

δφAδGCD

2
δ2Γ2

δGABδφC
2

δ2Γ2

δGABδGCD

⎞
⎟⎟⎠
( 〈

ϕC
〉

〈
ϕCϕD

〉
−GCD

)
= 0 (6.157)

and so the constraints are enforced. In practice, this means that we can forget
about J̃ and K̃ when computing the nonlinear correction ΓQ to the 2PIEA,
provided that we omit all one- and two-particle reducible graphs, and use the
full propagator GAB in internal lines. The vertices, of course, are those contained
in SQ, and will generally depend on the mean fields.

As for the CTP method more generally, it is impossible to give a com-
plete list of references for the 2PIEA. For some of the pioneering papers, see
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6.5 The two-particle irreducible effective action 199

[LutWar60, DomMar64a, DomMar64b, DahLas67, CoJaTo74]. This method has
been generalized and applied to the establishment of a quantum kinetic field the-
ory (Chapter 11). It has been applied to problems in gravitation and cosmology
(Chapter 15), particles and fields (Chapter 14), Bose–Einstein condensates and
condensed matter systems (Chapter 13) as well as to address the issues of ther-
malization and quantum phase transitions (Chapters 9 and 12). More generally,
we may regard the 2PIEA as an implementation of the Φ-derivable approach to
be discussed in Chapter 13.

6.5.1 The 2PI effective action in the gΦ3 theory

Let us test our understanding of this new object by applying it to the gΦ3

field theory. The 2PI CTPEA is given by equation (6.151), where, as before, the
classical potential is given in equation (6.43), and m2 is shifted to m2 − iε on the
first branch, m2 + iε on the second. The second derivatives of the classical action
may be read off from equation (6.118). We do not need an explicit knowledge of
lnG, other than the formal property

δ lnG

δGAB
=
[
G−1

]
AB

(6.158)

ΓQ is the sum of all 2PI vacuum bubbles with vertices from equation (6.119)
and full propagators GAB in internal lines. Observe that in this model, ΓQ is
independent of the background fields, which is rather exceptional. The lowest
order contribution to ΓQ has two loops

ΓQ ∼ i

2�

(
g2

6

)
cabccdef

∫
d4xd4x′ Gad (x, x′)Gbe (x, x′)Gcf (x, x′) (6.159)

The equations of motion are derived from the variations with respect to φA

and GAB . In the physical case where there are no external sources, we get

S,A +
1
2
S,ABCG

BC = 0 (6.160)

1
2
S,AB − 1

2
i�
[
G−1

]
AB

+
δΓQ

δGAB
= 0 (6.161)

The equation for the propagators reduces to equation (6.82) after we identify
δΓQ

δGAB
= −�

2
ΣAB (6.162)

It is customary to rewrite it as

S,ABG
BC − �ΣABG

BC = i�δCA (6.163)

More explicitly (we write the equation for φ1, after setting φ1 = φ2 = φ)

∇2φ (x) −m2φ (x) +
1
2
g
[
φ2 (x) + G11 (x, x)

]
= −h (6.164)

[
∇2 −m2

]
Gac (x, y) + gcagcgdbφ

d (x)Gbc (x, y)

− �cag
∫

d4z Σgb (x, z)Gbc (z, y) = i�cacδ (x, y) (6.165)
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200 Functional methods in nonequilibrium QFT

where

iΣgb (x, z) =
g2

2�2
cgdecfhb G

df (x, z)Geh (x, z) (6.166)

We may begin to see the power of the 2PIEA. Our linearized one-loop equa-
tion derived above from the 1PIEA is equivalent to neglecting the Σ kernels. In
this case, the propagators decouple, and solving for the Feynman propagator in
powers of φ, we recover the known results. Using the 2PIEA, although we are
also doing a one-loop approximation to the Schwinger–Dyson equations, we have
a much more complete description of the physics, including some of the nonlinear
interactions between fluctuations (we shall return to this in Chapter 11).

The propagator equations are more transparent if we choose Gret and G1 as
independent variables, rather than the four fundamental propagators. Recalling
equation (6.9), we get[

∇2 −m2 + gφ (x)
]
Gret (x, y) −

∫
d4z Σret (x, z)Gret (z, y) = −δ (x, y)

(6.167)
where

Σret (x, z) = � [Σ11 (x, z) + Σ12 (x, z)] (6.168)

and we have used that G11 + G22 = G12 + G21. Observe that the kernel Σret is
causal. For the Hadamard propagator, we get[

∇2 −m2 + gφ (x)
]
G1 (x, y)

−
∫

d4z Σret (x, z)G1 (z, y) = −i�

∫
d4z Σ1 (x, z)Gadv (z, y) (6.169)

Σ1 (x, z) = � [Σ11 (x, z) + Σ22 (x, z)]

= −� [Σ12 (x, z) + Σ21 (x, z)] (6.170)

We shall discuss further this equation in Chapter 8. For the time being, we
remark that to lowest order in perturbation theory, iΣ1 is just (twice) the noise
kernel from the 1PIEA (cf. equation (6.130)).

6.5.2 Large N expansion (suite)

Let us return to the O(N) invariant scalar field theory from the last section.
After rescaling, the action is given by equation (6.140). We recall there was an
infinite family of Feynman graphs all scaling as N in the large N limit, for which
reason the 1PIEA was not easy to compute. As we shall see presently, the 2PI
approach cures this problem. The reason is that all but one of the offending
graphs are two-particle reducible, and therefore drop out of the effective action.

It follows that if we are satisfied with the leading order (LO) theory, we may
simply write down the 2PIEA for the theory as given, and obtain a closed form
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6.5 The two-particle irreducible effective action 201

expression. For simplicity, let us consider the unbroken symmetry case, φA = 0.
Therefore

ΓLO =
N

2
{[
∇2 −M2

]
GAα,Aα

}
− i�

2
Tr lnG + ΓLO

Q + const. (6.171)

ΓLO
Q =−N

λabcd

8

∫
d4x
{
Gaα,bα (x, x)Gcβ,dβ (x, x) + 2Gaα,bβ (x, x)Gcα,dβ (x, x)

}
(6.172)

Of course, only the first term is truly LO. Discarding the terms which are not
strictly LO we get

cac

[
∇2 −M2 − λ

2
Gγγ

F (x, x)
]
Gcα,bβ (x, x′) =

i�

N
δαβδ

b
aδ (x− x′) (6.173)

These equations are all there is to leading order. Observe that the only differ-
ence with the equations for a free theory is the mass shift: the real mass of the
theory is not M2 but rather M2

phys = M2 + (λ/2)Gγγ
F (x, x) . Since we may also

solve the equation to obtain

Gαβ
F (x, x′) =

−i�

N
δαβ

∫
d4k

(2π)4
eik(x−x′)

k2 + M2
phys − iε

(6.174)

this results in a nonlinear (gap) equation for the physical mass

M2
phys = M2 − i�λ

2

∫
d4k

(2π)4
1

k2 + M2
phys − iε

(6.175)

The name “gap equation” is adopted from condensed matter physics, to the fact
that M here is the energy of an excitation with zero momentum.

To the next order, we find that strings of fish graphs are all of order N0, since
there are l − 1 fishes in the graph, and each may carry an independent index. So
to get a closed expression to NLO, we must use the Coleman–Jackiw–Politzer
trick [CoJaPo74] of including an auxiliary field χ, by adding a term to the action,
which now reads

S = N

∫
d4x

{
−1
2

∂μΦα∂μΦα − 1
2
M2ΦαΦα − λ

8
(ΦαΦα)2

+
1
2

( χ√
λ
−

√
λ

2
(ΦαΦα)

)2
}

(6.176)

Figure 6.9 A string of three fishes.
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202 Functional methods in nonequilibrium QFT

Figure 6.10 The three-pointed star graph.

Expanding this, we get

S = N

∫
d4x

{−1
2

∂μΦα∂μΦα − 1
2
M2ΦαΦα +

χ2

2λ
− χ

2
(ΦαΦα)

}
(6.177)

The new classical equations of motion are

∇2φα −
[
M2 + χ

]
φα = 0 (6.178)

χ =
λ

2
φβφβ (6.179)

which are seen to be identical to the old ones.
In this new action, strings of fish graphs beyond two loops are no longer 2PI.

The next nontrivial graph is the three-pointed star, which scales as N−1. Thus,
once again, we obtain a closed form for NLO large N .

To obtain this explicit expression, we begin by shifting the field Φ → φ + ϕ,
χ → χ̄ + δκ. As usual, we discard linear terms, so

δS = N

∫
d4x

{−1
2

∂μϕ
α∂μϕα − 1

2
(
M2 + χ̄

)
ϕαϕα

+
δκ2

2λ
− δκ (φαϕα) − δκ

2
(ϕαϕα)

}
(6.180)

It is convenient to eliminate the quadratic cross-term, shifting δκ = δχ + λφαϕα.
We get

δS =
N

2

∫
d4x

{
− (∂ϕ)2 −M2

αβϕ
αϕβ +

δχ2

λ
− δχ (ϕαϕα) − λφαϕαϕβϕβ

}

(6.181)

M2
αβ =

(
M2 + χ̄

)
δαβ + λφαφβ , whereby the 2PIEA,

ΓNLO = S [φ, χ̄] +
N

2

{[
∇2δαβ −M2

αβ

]
Gαβ +

H

λ

}

− i�

2
{Tr lnH + Tr lnG} + ΓNLO

Q + const. (6.182)

ΓNLO
Q =

iN2

4�

∫
d4xd4x′

{
H (x, x′)Gγδ (x, x′)2 + λ2φα (x)φβ (x′) Δαβ (x, x′)

}
(6.183)

Δαβ (x, x′) = Gαβ (x, x′)Gγδ (x, x′)2 + 2Gαδ (x, x′)Gγδ (x, x′)Gγβ (x, x′)
(6.184)
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6.6 Handling divergences 203

Let us write the equations of motion for unbroken symmetry, leaving the CTP
indices implicit[
∇2 −M2 − χ

]
δαβ − i�

N
G−1

αβ +
iN

�
H (x, x′)Gαβ (x, x′) = 0 (6.185)

χ− λ

2
Gαα (x, x) = 0 (6.186)

1 − iλ�

N
H−1 +

iλN

2�
Gγδ (x, x′)2 = 0 (6.187)

6.6 Handling divergences

As is well-known, the field theory of point particles is riddled with divergences.
One needs to identify and remove them before one can begin to deal with physical
applications. In this section we shall briefly summarize the most common types
of divergences to be expected. By no means is this a complete treatment. As an
example, we continue to use the gϕ3 theory to discuss its divergences.

6.6.1 Ultraviolet divergences

In field theories defined on flat spacetime and where the in and out vacuum
agree to zeroth order in perturbation theory, to any finite order the 1PIEA is
rendered free of ultraviolet divergences by renormalizing the parameters in the
bare action in the same way one does for the in–out EA. This follows from the
observation that a primitively divergent graph must have all its vertices on the
same branch of the closed time path, and therefore, if we use free propagators
in the internal lines, it is either equivalent to an in–out graph (all propagators
are Feynman) or to its conjugate (all propagators are Dyson). By the assumed
equivalence of the vacuum states, these are the same graphs appearing in the
in–out EA.

If a graph does not have all vertices in the same branch, it cannot be primi-
tively divergent. We say that a graph is primitively divergent when it diverges,
and every subgraph is also divergent. Take a one-particle irreducible graph with
vertices on both branches. Take one vertex, say, on the first branch, and consider
the maximal set of vertices on the same branch which are connected to it. This
set is not all the graph, because the graph has also second branch vertices. The
maximal set is connected to the rest of the graph by at least two lines, because
the graph is one-particle irreducible. These lines have mixed vertices at their
ends, since otherwise they would be internal to the maximal set. When writing
the corresponding amplitude, these lines will go on-shell, because both Δ21 and
Δ12 are proportional to δ

(
p2 + m2

)
. Now consider a loop including these two

lines: it has to be finite, because there are two on-shell lines. Therefore the graph
is not primitively divergent.
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204 Functional methods in nonequilibrium QFT

When working with the 2PIEA, one does not aim to make the effective action
finite, but rather to show that the equations of motion admit finite solutions. To
be ready for renormalization, we build the 2PIEA on the bare action

Sbare [Φ] =
∫

ddx

[
−1

2
Zϕ (∂Φ)2 − 1

2
m2

bΦ
2 +

1
6
ZggΦ3 + hBΦ

]
(6.188)

leading to the equations of motion

Zϕ∇2φ (x) −m2
bφ (x) +

1
2
Zgg

[
φ2 (x) +

1
2
G11 (x, x)

]
= −hB (6.189)

[
Zϕ∇2 −m2

b + Zggφ (x)
]
Gret (x, y) − Z2

g

∫
d4z Σret (x, z)Gret (z, y) = −δ (x, y)

(6.190)[
Zϕ∇2 −m2

b + Zggφ (x)
]
G1 (x, y) − Z2

g

∫
d4z Σret (x, z)G1 (z, y) = −K (x, y)

(6.191)

K (x, y) = iZ2
g�

∫
d4z Σ1 (x, z)Gadv (z, y) (6.192)

(The Σ’s are defined by equations (6.166), (6.168) and (6.170).) In order to
analyze the possible divergences in these equations, we adopt some kind of per-
turbative approach. Let us assume that φ is constant, and that in the Σ kernels
we may approximate the propagators by free propagators, corresponding to a
yet unknown mass M2. The propagators will then be translation invariant, and
we may Fourier transform all equations to get

m2
bφ (x) − 1

2
Zgg

[
φ2 +

1
2

∫
ddp

(2π)d
G11 (p)

]
= −hB (6.193)

[
−Zϕp

2 −m2
b + Zggφ− Z2

gΣret (p)
]
Gret (p) = −1 (6.194)

[
−Zϕp

2 −m2
b + Zggφ− Z2

gΣret (p)
]
G1 (p) = −iZ2

gΣ1 (p)Gadv (p) (6.195)

Since Σ1 (p) is finite and Z2
g = 1 to lowest order, the third equation will be well

defined if we can control the second.
At this point we need to relate the effective mass M2 to the propagators. Two

common choices are to define M2 as the value of the inverse retarded propagator
at p = 0, or else as the position of the pole of the retarded propagator as a
function of −p2. This second choice has a greater physical appeal, but it is
harder to implement in practice.

Let us therefore define M2 as the value of the inverse retarded propagator
at p = 0. Recall that Σret (p) can be obtained from the results in Chapter 5,
provided the Feynman prescription p2 → p2 − iε = −p02 + p2 − iε is replaced by
the causal prescription p2 → (p + iε)2 = −p02 + p2 − iε sign p0. It is convenient
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6.6 Handling divergences 205

to parametrize m2
b in terms of the value M2

0 of M2 at φ = 0 (which is always a
solution of the equations of motion, by construction)

m2
b = M2

0 +
Z2
gg

2
�

16π2

[
1
ε

+ constant − 1
2

ln
(

M2
0

4πμ2

)]
(6.196)

The gap equation reads

M2 −M2
0 + Zggφ +

Z2
gg

2
�

32π2
ln
(
M2

M2
0

)
= 0 (6.197)

In this model, the gap equation is explicitly finite, so we may simply set Zg = 1.
Otherwise, we may use this further degree of freedom to control any remaining
divergence.

The wavefunction renormalization Zϕ may be determined, for example, by
requiring that

∂G−1
ret

∂ (−p2)

∣∣∣∣
p2=0

= −1 (6.198)

We get

1 = Zϕ +
g2

�

192π2M2

which is finite.
After these choices, we have exhausted our freedom to redefine the parameters

in the classical action, so the mean field equation ought to be explicitly finite. The
mean field equation reads (recall the tadpole from Chapter 5, equation (5.24))

hB =
{
M2

0 +
g2

�

16π2

[
1
ε

+ constant − 1
2

ln
(

M2
0

4πμ2

)]}
φ (x)

− 1
2
g

{
φ2 − �M2

8π2

[
1
ε

+ constant′ − 1
2

ln
(

M2

4πμ2

)]}
(6.199)

Setting φ = 0 we get

hB =
g�M2

0

16π2

[
1
ε

+ constant′ − 1
2

ln
(

M2
0

4πμ2

)]
(6.200)

so the coefficient of ε−1 is

g�

16π2

[
gφ + M2 −M2

0

]
(6.201)

which vanishes to lowest order by virtue of the gap equation.
For further discussion, we refer the reader to the literature [HeeKno02a,

HeeKno02b, HeeKno02c, BlIaRe03].
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206 Functional methods in nonequilibrium QFT

6.6.2 Initial time singularities

As we have seen in the last subsection, the handling of ultraviolet singulari-
ties in the nonequilibrium formalism is not really different from the usual field
theory methods. We shall now discuss a new class of singularities which are
specific to nonequilibrium problems [Lin87, CooMot87, Baa98, Baa00a, Baa00b,
HaMoMo99, BaBoVe01].

These singularities arise when one attempts to solve the mean field equations
of motion with Cauchy data at some initial time (which we may choose as t = 0
without any loss of generality). In a perturbative scheme, it seems “natural,”
to lowest order, to use free propagators to compute the Feynman graphs in
the effective action, and to assume an initial state uncorrelated with the ini-
tial conditions for the mean fields. But actually this is wrong: the switching
on of the mean field (or equivalently, of the coupling constant) in an arbitrarily
short time-scale always has an impact on the initial state of the quantum fluctua-
tions. Neglect of this effect introduces an inconsistency in the theory, thereby the
divergences.

Let us consider the mean field equations for the gϕ3 model, as derived above
from the one-loop 1PIEA, equation (6.89). We are interested in finding the free
evolution of the mean field, from given initial conditions at t = 0. We shall assume
the local terms (including the ultraviolet singularities) in the quantum correction
have been absorbed in the parameters of the equation. We also assume the mean
field is spatially homogeneous, so we may write

[
∇2 −m2

]
φ (t) +

g2
�

32π2

∫
dω

2π

∫ t

0

du e−iω(t−u)

∫ ∞

4m2

dσ2
√

1 − 4m2

σ2

− (ω + iε)2 + σ2
φ (u) = 0

(6.202)

Perform the integral over ω∫
dω

2π
e−iω(t−u)

− (ω + iε)2 + σ2
=

sin [σ (t− u)]
σ

(6.203)

[
∇2 −m2

]
φ (t) +

g2
�

16π2

∫ ∞

4m2
dσ

√
1 − 4m2

σ2

∫ t

0

du sin [σ (t− u)] φ (u) = 0

(6.204)

We improve the convergence of the σ integral with an integration by parts

0=
[
∇2 −m2

]
φ (t) +

g2
�

16π2

∫ ∞

4m2

dσ

σ

√
1 − 4m2

σ2

∫ t

0

du

(
d

du
cos [σ (t− u)]

)
φ (u)

=
[
∇2 −m2

]
φ (t) − g2

�

16π2

∫ ∞

4m2

dσ

σ

√
1 − 4m2

σ2

∫ t

0

du cos [σ (t− u)]
dφ

du

+ δm2φ (t) − χ (t)φ (0) (6.205)
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where

δm2 =
g2

�

16π2

[∫ ∞

4m2

dσ

σ

√
1 − 4m2

σ2

]
(6.206)

χ (t) =
g2

�

16π2

[∫ ∞

4m2

dσ

σ

√
1 − 4m2

σ2
cos [σt]

]
(6.207)

The logarithmically divergent term δm2 may be absorbed in m2. At issue is
the “source term” χ (t)φ (0) . At finite times, we may expect that the oscillatory
behavior of the cosine will be enough to make the integral convergent. However,
at t = 0 this improved convergence is lost, and χ (0) is ill defined. This is the
initial time singularity.

In physical terms, it is as though we set g = 0 for t < 0, thereby allowing the
quantum fluctuations to reach equilibrium as a free field (in this case, at zero
temperature, but allowing for equilibrium at a finite temperature only makes the
problem worse), and then suddenly we switch the interaction and the mean field
on. This sudden transition will necessarily create particles, so it is inconsistent to
assume that the state of the quantum fluctuations is the vacuum at any positive
time, no matter how short.

The problem may be cured by adopting a more physical initial condition; we
refer the reader to the literature for details [Lin87, CooMot87, Baa98, Baa00a,
Baa00b, HaMoMo99, BaBoVe01].

6.6.3 Other divergences

Unfortunately, ultraviolet and initial time singularities are not the only problems
to watch out for [CarKob98, CaKoPe98, Bed, Dad99, BoVeWa00, GeScSe01].
Among other common complications, we may mention infrared singularities,
which appear when some quantum fluctuations are massless. Massless fields are
rather common: they appear in problems related to unbroken gauge symme-
tries, at critical points in models of phase transitions, and as Goldstone bosons
when a global symmetry is broken. For example, an O(N) model in the broken
symmetry phase has N − 1 massless fields in its spectrum. The spectrum of exci-
tations above a homogeneous Bose–Einstein condensate also generally contains
one massless mode, which arises from the breaking of global U(1) invariance.

Although we shall connect with finite temperature field theory in a later chap-
ter it is timely to mention that real time perturbation theory at finite temper-
ature also has its peculiar kind of divergences. The free thermal propagators
contain terms proportional to mass-shell delta functions δ

(
−p2 −m2

)
, and so

they produce singularities whenever two propagators are evaluated at collinear
momenta in the same graph.

It is important to beware of singularities arising from a nonjudicious applica-
tion of perturbation theory. Regardless of the formal order in g, � or N−1, large
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208 Functional methods in nonequilibrium QFT

corrections must be included to get consistent results. For example, weak damp-
ing of fluctuations due to higher order processes modifies the behavior of the
propagators near the mass shell, and may cure some singularities. Judging the
situation by the right physics is often the best way to handle the unfamiliar
pathologies.
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Part III

Gauge invariance, dissipation, entropy,

noise and decoherence
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7

Closed time path effective action for
gauge theories

In this chapter we treat out-of-equilibrium behavior of gauge fields, particularly
of the nonabelian kind. This is a broad topic, so we will only discuss some specific
points.

Overall, we may distinguish two sets of features that make problems involv-
ing gauge fields different from those where only “matter” fields are present. On
the one hand, there are “technical” differences associated with the fact that
problems involving gauge fields usually abound with massless degrees of free-
dom. An important example is the so-called “hard thermal loop” problem, which
is discussed in Chapter 10. We also consider “technical” difficulties associated
with a particular symmetry breaking pattern or with the property of confine-
ment, which clearly has a strong impact on the nonequilibrium phenomenology
of QCD. Because of the rich variety of behavior, these problems are best treated
on a case by case basis. In Chapter 14, for example, we give a brief account of
nonequilibrium phenomena in relativistic heavy ion collisions.

On the other hand, there is an intrinsic difference between gauge and nongauge
theories, coming from the fact that the “natural” description of the former in
terms of spacetime fields is redundant. For example, the most efficient descrip-
tion of the Maxwell field is in terms of the potential 4-vector, but many different
4-vectors describe the same physical electromagnetic field. There is an intrin-
sic ambiguity in the equations of motion of the theory, which do not determine
the evolution completely. At the same time there are restrictions on our free-
dom to choose Cauchy data for the physical fields; we say that the theory is
“constrained.”

In the quantum theory, the redundancy in the field variables is reflected in the
fact that the “naive” Hilbert space of the theory is overlarge. The constraints
of the classical theory become restrictions that the physical states must satisfy;
these restrictions ensure that physical states respond to the physical part of the
redundant field operators, but are impervious to the gauge part.

However, to get rid of ambiguities and constraints by reducing the theory to
operators associated with measurable observables acting on physical states is, if
at all possible, overwhelmingly inconvenient. These difficulties can be dealt with
by formulating the theory in terms of the redundant, but natural, field variables.
The subject of this chapter is to explore how nonequilibrium gauge theories are
different from nongauge ones, because of this fundamental ambiguity.
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212 Closed time path effective action for gauge theories

The description of a gauge-invariant theory within quantum field theory tech-
niques usually involves eliminating the gauge freedom by imposing “gauge fix-
ing” conditions. These conditions are associated with new parameters, whose
choice is arbitrary. To ensure the equivalence between the “gauge fixed” and
the original theory, new fields (the so-called “ghost” fields) must be included,
sometimes even with the wrong spin/statistics connection. It is expected that
the predictions of the theory with respect to physical observables are inde-
pendent of these manipulations: they do not change either if the fields are
subject to a gauge transformation (gauge invariance) or if we change the cho-
sen gauge fixing conditions (gauge independence). Nevertheless, oftentimes one
is interested in computing objects that are not quite observable, such as a
gluon correlation function. Then neither gauge invariance nor independence are
guaranteed, and it becomes an important issue to decide which parts of the
result really say something about the theory, and which are merely artifacts
[Nie75, KobKun89, Bai92, KoKuRe91, GerReb03, ArrSmi02].

Our most important tool to investigate this issue is the observation that the
constraints of the theory result in a number of restrictions on the structure of
the Green functions such as vertices and propagators. These restrictions take
the form of identities linking Green functions of different orders, the so-called
Takahashi–Ward and Slavnov–Taylor identities. As it is often the case, there
are two possible ways of looking at these identities. On the one hand, they
are a check on the quality of a given approach to the problem: if important
identities are violated (e.g. a field which ought to be massless is assigned a
mass) then the approach is no good. On the other hand, these identities say
things about the structure of the theory which may be used to motivate or to
improve on a given approach (for example, by using an ansatz for the vertex func-
tions which guarantees that the identities hold to a given order in perturbation
theory).

The subject of gauge theory quantization is extremely rich and varied
[HenTei92], and the addition of the nonequilibrium dimension only makes it even
more so. Within the bounds of a single chapter, only a few of its avenues may
be explored. Following the perspective developed in the early chapters, we shall
adhere to the approach whereby nonequilibrium dynamics is followed through
the evolution of the low-order Green functions. As in Chapter 6, we shall derive
the dynamics of these Green functions self-consistently from a suitable closed
time path action functional. As a matter of fact, if one is content to make a
gauge choice from the start (e.g. to work within the “longitudinal” gauge), then
the theory ceases to be “gauge” and the formalism from the earlier chapters
may be applied straightforwardly [Gei96, Gei97, Gei99, Son97]. The problem is
then whether any given result is valid generally, or limited to the given gauge
choice. Our perspective in this chapter shall be the opposite, namely, leaving
gauge choices as open and explicit as possible, and trying to learn about the
deep structure of the theory from this very same freedom.
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More concretely, our goal is to develop the 2PI approach to nonequilibrium
gauge theories, as typical of approaches based on the evaluation of Green func-
tions [Mot03, CaKuZa03, KraReb04]. We shall not discuss higher nPI effective
actions, for which we refer the reader to the literature [Ber04a].

To set the stage for a discussion of the 2PIEA, we must begin by considering
the essentials of the path integral quantization of gauge theories, and in particular
how we set the initial conditions for gauge fields in a statistical state (such as a
finite temperature one). For reasons of space and clarity we will restrict ourselves
to Yang–Mills and to nonlinear abelian theories such as QED and SQED. We
shall make no explicit attempt to discuss gravity, form fields or string theories
[Wei00].

These self-imposed limitations in our aims here are correlated with some nec-
essary technical choices. We shall discuss only the path integral Fadeev–Popov
quantization of gauge theories. Although we shall use Becchi–Rouet–Stora–
Tyutin (BRST) invariance at several stages, we shall not apply methods such as
BRST or Batalin–Vilkovisky quantization, which really come on their own only
in more demanding applications [Wei96]. We are deeply indebted to DeWitt’s
insights [DeW64, DeW79] and shall use his notation, but we shall not use the
gauge-independent formulation of DeWitt and Vilkovisky [Vil84, DeW87] (on
this subject, see the discussion in [Reb87]), nor more recent developments by
DeWitt and collaborators [DeWMol98].

When gauge symmetries are unbroken, there are no preferred directions in
gauge space, and all background fields will vanish identically. Therefore, the
only degrees of freedom in the 2PI formalism shall be the propagators or two-
point functions. Also, there will be no need to distinguish between the usual
and the DeWitt–Abbott gauge invariant EA [DeW81, Abb81, Hart93, Alx99],
nor to introduce gauge fixing conditions appropriate to the study of broken gauge
theories [Wei96]. We shall only assume that the gauge fixing condition is linear on
the quantum fields. On the other hand, we shall be completely general regarding
group structure, matter content, (linear) gauge fixing condition and gauge fixing
parameter.

As a word of caution, let us observe that symmetries that hold for the exact
theory may be broken when the exact 2PI effective action is replaced by an
approximated functional. In our case, this will manifest in violations of the
Takahashi–Ward or Slavnov–Taylor identities. Usually this problem may be kept
under control by working to a high enough order, by going over to a nPI approach
with a large enough n, or simply by being careful about the approximations one
uses. This problem is not actually exclusive of gauge theories; we will find it
again when we attempt to make a consistent field theory of Bose–Einstein con-
densates, where the symmetry in question is the possibility of adding a phase
to the condensate wavefunction. We shall discuss it in more detail in that sim-
pler context, and refer the reader to the literature regarding gauge field theories
[ReiSer06].
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214 Closed time path effective action for gauge theories

This chapter contains three sections besides this introduction. Section 7.1 sum-
marizes the main results concerning the path integral quantization of gauge the-
ories to be used in the following, including BRST invariance, the characterization
of physical states and how to deal with nonvacuum initial conditions. We shall
adopt the Kugo–Hata formalism, where ghost propagators acquire statistical
corrections proper of a Bose field. Section 7.2 introduces the 2PIEA for gauge
theories. Section 7.3 investigates the two main features of gauge theories which
have no equivalent in their “normal” counterparts, namely, the issue of gauge
dependence and the possibility of using gauge invariance arguments to investigate
the structure of the theory. To develop our arguments, we shall introduce first
the powerful tool of the Zinn-Justin identity, and then proceed to discuss these
two problems in turn. The results we shall derive are well known in equilibrium
settings; our goal is to express them in a way that holds even off-equilibrium.

We assume some familiarity with Grassmann calculus. For more details, we
refer the reader to the monographs by Berezin [Ber66], DeWitt [DeW84] and
Negele and Orland [NegOrl98].

7.1 Path integral quantization of gauge theories – an overview

7.1.1 Gauge theories

Due to the complexity of the subject, it becomes necessary to adopt a highly
compressed notation. For starters, we shall do without explicit spacetime depen-
dence. They may be thought of as so many “continuous” indices to be added to
the string of discrete indices identifying each field within the theory.

A gauge theory contains “matter” fields ψ such that there are local (unitary)
transformations g which are symmetries of the theory. The g’s form a nonabelian
(simple) group. Infinitesimal transformations may be written as g = exp [iε],
where the Hermitian matrix ε may be expanded as a linear combination of “gen-
erators” ε = εATA. The generators form a closed algebra under commutation

[TA, TB ] = iCC
ABTC (7.1)

The structure constants CC
AB are antisymmetric on A,B and satisfy the Jacobi

identity.
Gauge invariance of kinetic terms within the Lagrangian means that deriva-

tives are written in terms of the gauge covariant derivative operator Dμ =
∂μ − iAμ. The connection Aμ = AμAT

A transforms upon an infinitesimal gauge
transformation as

Aμ → Aμ + Dμε (7.2)

where

Dμε = ∂με− i [Aμ, ε] (7.3)
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7.1 Path integral quantization of gauge theories – an overview 215

Covariant derivatives do not commute, but their commutator contains no
derivatives

[Dμ, Dν ] = −iFμν (7.4)

where F is the field tensor

Fμν = ∂μAν − ∂νAμ − i [Aμ, Aν ] (7.5)

Upon a gauge transformation

Fμν → Fμν + i [ε, Fμν ] (7.6)

therefore the object

L =
−1
4g2

TrFμνFμν (7.7)

is gauge invariant. This is the classical Lagrangian density for the gauge fields,
g being the coupling constant. The total action is S = S0 + Sm, where

S0 =
∫

ddx

(−1
4g2

)
TrFμνFμν (7.8)

and Sm is the gauge-invariant action for the matter fields.
We may drop the distinction between gauge and matter fields, and consider a

theory described by a string of fields φα invariant under infinitesimal transfor-
mations

δφα = Tα
A [φ] εA (7.9)

The commutation rules are the statement that the commutator of two gauge
transforms is also a gauge transform, namely

δTα
A [φ]
δφβ

T β
B [φ] − δTα

B [φ]
δφβ

T β
A [φ] = Tα

C [φ]CC
AB (7.10)

The classical equations of motion read

δS

δφα
= 0 (7.11)

and because of gauge invariance we must have the identity

δS

δφα
Tα
A [φ] = 0 (7.12)

7.1.2 Gauge symmetries and constraints

One important point regarding gauge theories is that a gauge theory is necessarily
a constrained theory, and to a large extent vice versa [Dir50, Dir58b, BesKur90,
Sun82].
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216 Closed time path effective action for gauge theories

To understand the reason why a gauge theory must have constraints, we
observe that the dynamical information on the theory is carried by the canoni-
cal variables φα and their canonical momenta πα. The information necessary to
evolve these degrees of freedom in time are again the φα and their time derivatives
φ̇α. Now the existence of gauge freedom means that knowledge of the canonical
variables does not determine the evolution (the φ̇α are determined only up to a
gauge transformation). Therefore the relationship of the φ̇α to the πα is many-
to-one. This relationship is usually given through a Lagrangian density L (for
example, as in equation (7.7)). In the simplest case the Lagrangian is quadratic
in the velocities, and

πα =
∂2L

∂φ̇α∂φ̇β
φ̇β (7.13)

The ambiguity in the φ̇α means that the operator at the left must have null
directions

∂2L
∂φ̇α∂φ̇β

T β
A [φ] = 0 (7.14)

We must therefore have a primary constraint

T β
A [φ]πβ = 0 (7.15)

and since the primary constraint must hold over time we must also have the
secondary constraint

d

dt

[
T β
A [φ]πβ

]
= 0 (7.16)

Observe that each gauge freedom engenders two constraints.
Vice versa, assume a theory with fields φ and π and Hamiltonian H subject to

a constraint N = 0. To enforce this constraint introduce a Lagrange multiplier
λ and a new Hamiltonian H + λN . The momentum Π conjugate to λ vanishes,
which is our primary constraint. The secondary constraint is N = 0. The canon-
ical equations of motion do not determine the evolution of (φ, λ) uniquely; the
remaining freedom may be understood as resulting from gauge transformations
generated by εN + ε̇Π, where ε is the gauge parameter.

7.1.3 The measure of integration

The main point in the path integral approach to the quantization of gauge the-
ories is that the measure of integration is highly nontrivial, since it must count
only physical histories of the field, each one being represented by many histories
within the path integral. To motivate the measure of integration which does the
trick let us look into the computation of the vacuum-to-vacuum amplitude.

In the quantum theory, we expect the vacuum-to-vacuum amplitude to be
given by the in–out path integral

Z =
∫

Dφ eiS (7.17)
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7.1 Path integral quantization of gauge theories – an overview 217

However this integral counts every history, and that means that each physical

history is counted many times over. Not surprisingly, it is generally ill defined.
To cure this problem, let fA be functionals in history space which are not

gauge invariant. This means that if we begin from a history φα confined to the
surface fA [φα] = 0, then any infinitesimal gauge transform will take us out of
that surface, unless the gauge transform is the trivial one εA = 0. In other words,

δfA

δφα
Tα
B [φ] εB = 0 ⇒ εA = 0 (7.18)

which requires

Det
[
δfA

δφα
Tα
B [φ]

]
�= 0 (7.19)

Now let us call φ [ε] the result of applying a gauge transform parameterized by
ε to the field configuration φ. Then we have the identity (which is an elaborate
way of saying that a Dirac delta integrates to 1)∫

Dε Det
[
δfA

δφα
[φ [ε]]Tα

B [φ [ε]]
]
δ
[
fA [φ [ε]] − CA

]
= 1 (7.20)

where CA may be anything, and by inserting this representation of the identity
in the vacuum persistence amplitude we can write

Z =
∫

Dε

∫
Dφ Det

[
δfA

δφα
[φ [ε]]Tα

B [φ [ε]]
]
δ
[
fA [φ [ε]] − CA

]
eiS[φ] (7.21)

Of course, S [φ] = S [φ [ε]], and

Dφ [ε] = Dφ

{
1 + εATr

δTα
A [φ]
δφβ

}
(7.22)

so, provided

Tr
δTα

A [φ]
δφβ

= 0 (7.23)

we find, up to a constant

Z =
∫

Dφ Det
[
δfA

δφα
[φ]Tα

B [φ]
]
δ
[
fA [φ] − CA

]
eiS[φ] (7.24)

Since the CA are arbitrary, any average over different choices will do too. For
example, given a suitable metric we may take the Gaussian average∫

DCA e−(i/2ξ)CACA (7.25)

Integrating over CA and after a Fourier transform we find

Z =
∫

DφDhA Det
[
δfA

δφα
[φ]Tα

B [φ]
]

exp
{
i

[
S [φ] + hAf

A [φ] +
ξ

2
hAhA

]}
(7.26)
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where hA is the Nakanishi–Lautrup (N-L) field [Nak66] and ξ is the gauge fixing
parameter.

We may write the determinant as a functional integral

Z =
∫

DωBDχADφDhA exp
{
i

[
S [φ] + hAf

A [φ] +
ξ

2
hAhA + iχAΔA

]}
(7.27)

ΔA =
δfA

δφα
[φ]Tα

B [φ]ωB (7.28)

The ωB , χA are independent c-number Grassmann variables, namely the
ghost and anti-ghost fields, respectively. Following Kugo and Ojima [KugOji79,
HatKug80, Oji81], and unlike Weinberg [Wei96], we have included a factor of i
in the ghost Lagrangian, which is consistent with taking the ghosts as formally
“Hermitian” and demanding the action to be “real.” We assign“ghost number”
1 to ωB , and −1 to χA.

7.1.4 BRST invariance

Our goal is to investigate how to formulate a path integral when the initial state
is not a vacuum. An important resource in this discussion is the observation that,
after breaking the original gauge symmetry by adding gauge fixing conditions
and ghosts, the resulting theory has a higher symmetry, the so-called BRST
invariance.

We may regard the functional

Seff = S [φ] + hAf
A [φ] +

ξ

2
hAhA + iχAΔA (7.29)

as the action of a new theory, built from the original by adding the N-L, ghost
and anti-ghost fields. By construction, this action is not gauge invariant in the
original sense. However, let us consider a gauge transform parameterized by θωB ,
where θ is an anticommuting “constant,” namely

δφα = θTα
A [φ]ωA (7.30)

Observe that, keeping the other fields invariant for the time being

δfA [φ] = θΔA (7.31)

δΔA = θfA
,αβT

α
B [φ]T β

C [φ]ωBωC + θfA
,αT

α
B [φ],β T

β
C [φ]ωCωB (7.32)

Since the ghosts are Grassmann, the first term vanishes, and the second may be
written in terms of the commutation relations (7.10), whereby this becomes

δΔA =
−1
2

θfA
,αT

α
D [φ]CD

BCω
BωC (7.33)
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These results suggest extending the definition of the transformation to

δhA = 0 (7.34)

δχA = iθhA (7.35)

δωD =
1
2
θCD

BCω
BωC (7.36)

Then Seff is invariant under this “BRST” transformation. Let us define the
operator Ω

Ω [X] =
d

dθ
δX (7.37)

The operator Ω increases the “ghost number” by one. It is nilpotent (Ω2 = 0,
see [Wei96]). Also, observe that

Seff = S0 + Ω [F ] (7.38)

where

S0 = S [φ] (7.39)

is BRST invariant, and F is the so-called “gauge fixing fermion”

F = −iχA

{
fA [φ] +

1
2
ξhA

}
(7.40)

Recall that

Ω [F ] = −i

(
Ω [χA]

{
fA [φ] +

1
2
ξhA

}
− χAΩ

[
fA [φ]

])
(7.41)

Also, observe that, provided CA
AB ≡ 0 the functional volume element is also

BRST invariant.
It follows from the above that any gauge fixing dependence (that is, depen-

dence on the choice of the gauge fixing condition fA, gauge fixing parameter
ξ or the metric used to raise indices in the N-L field) may only come from
a dependence upon changes in the functional F . Any such change induces a
perturbation

δZ = i

∫
DωBDχADφDhA Ω [δF ] exp {iSeff} (7.42)

Now, call Xr the different fields in the theory. Then

Ω [δF ] = (−1)gr+1
δF,rΩ [Xr] (7.43)

where gr is the corresponding ghost number. Integrating by parts (see
[GoPaSa95]), and provided the surface term vanishes, we get

δZ = i

∫
DωBDχADφDhA δF

{
δ

δXr
exp {iSeff}Ω [Xr]

}
(7.44)
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220 Closed time path effective action for gauge theories

But the brackets vanish, because of BRST invariance of Seff and because Ω [Xr]
is divergence-free. Therefore the physicality condition is that the flux of any
vector pointing in the direction of Ω [Xr] over the boundary of the space of field
configurations must vanish.

This shows by the way that F could be any expression of ghost number −1,
since Seff must have ghost number zero.

7.1.5 Physical states

BRST invariance allows us to give a simple criterion for physical states. In this
section, we shall consider the concrete case where φα = AA

μ , fA
,α = δAB∂μ and

Tα
B = δAB∂μ + CA

CBA
C
μ . We can write Seff explicitly:

Seff =
∫

d4x

{−1
4g2

FAμνFAμν − ∂μhAA
μA +

ξ

2
hAhA

− i∂μχA

[
δAB∂μ + iCA

CBA
C
μ

]
ωB

}
(7.45)

If we take AAa (a = 1, 2, 3), hA, χA and ωA as canonical variables, then we may
identify the corresponding momenta [KugOji79, HatKug80, Oji81]

pAa
φ =

1
g2

FAa0

pAh = −AA0

pAχ = −i
[
δAB∂0 + CA

CBA
C
0

]
ωB

pωA = i∂0χA (7.46)

and impose the ETCCRs

[pXr, X
s]∓ = −iδrs (7.47)

where we use anticommutators for ghost fields and momenta, and commutators
for all other cases.

The BRST invariance of Seff implies the conservation of the Noether current

jμ = Ω [Xr]
δLeff

δ∂μXr
(7.48)

We define the BRST charge as

Ω =
∫

d3x Ω [Xr] pXr (7.49)

This is the generator of BRST transforms, since

δXr = θΩ [Xr] = i [θΩ, Xr] (7.50)

(Since θ is Grassmann, we use commutators throughout.) Then Ω2 = 0.
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Seff is also invariant upon the scale transformation

ωB → eλωB , χB → e−λχB (7.51)

The corresponding generator

Q =
∫

d3x
{
ωBpωB − χAp

A
χ

}
(7.52)

is the ghost charge. Ghost charge is bosonic, so [Q,Q] = 0. On the other hand,
Ω has ghost charge 1, so

i [Q,Ω] = Ω (7.53)

Both Q and θΩ commute with the effective Hamiltonian.
We say that a state |α〉 is BRST closed if Ω |α〉 = 0 and BRST exact if there is

a |β〉 such that |α〉 = Ω |β〉. Since Ω2 = 0, an exact state is necessarily closed but
there may be closed states that are not exact. Observables are BRST invariant,
and so they commute with θΩ. Physical states are also BRST invariant, therefore
annihilated by Ω. Physical states differing by a BRST transform are physically
indistinguishable, in the sense that they lead to the same matrix elements for
all observables. We therefore introduce an equivalence relation among states,
|α〉 ≈ |β〉 if |α〉 − |β〉 is BRST exact. A physical state is a representative of an
equivalence class of states which are closed but not exact.

7.1.6 Initial conditions for nonvacuum states

We shall now use the above characterization of physical states to introduce a sim-
ple way (due to Hata and Kugo) of introducing initial conditions for nonvacuum
states in the path integral.

We need one more result from BRST theory, namely, there is an operator R

such that

(a) if |α〉 is exact, |α〉 = Ω |θ〉, then R |α〉 ≈ |θ〉;
(b) if |α〉 is not exact, then R |α〉 ≈ 0.

Given such an operator, then the projector P ′ orthogonal to the space of
physical states has the form P ′ = {Ω, R}. Indeed, if |α〉 is physical, then it is
closed (so RΩ |α〉 = 0) but not exact (so ΩR |α〉 = 0). On the other hand, if |α〉
is not physical, it is either exact or not closed. If |α〉 is exact, then RΩ |α〉 = 0
but ΩR |α〉 ≈ |α〉 . If |α〉 is not closed, then ΩR |α〉 = 0 but RΩ |α〉 ≈ |α〉 .

We may now deal with the construction of statistical operators in gauge the-
ories. In principle, a physical statistical operator should shield nonzero proba-
bilities only for physical states, and so it should satisfy ρ = Pρ = ρP, where P

projects over the space of physical states, P = 1 − P ′. This is a much stronger
requirement than BRST invariance [Ω, ρ] = 0. So, given a BRST invariant density
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222 Closed time path effective action for gauge theories

matrix ρ, we ought to define the physical expectation value of any (BRST invari-
ant) observable C as

〈C〉phys = Tr [PρC] (7.54)

However, Kugo and Hata [KugOji79, HatKug80, Oji81] (KH) have shown that
the same expectation values may be obtained by using the statistical operator
e−πQρ. The key to the argument is that the commutation relation [iQ,Ω] = Ω
implies that, if |N〉 is an eigenstate of iQ with eigenvalue N , then Ω |N〉 has
eigenvalue N + 1. It follows that

{
e−πQ,Ω

}
= 0, since e−πQ = eiπ(iQ). We then

find that, for any BRST invariant observable C

〈C〉phys = Tr [PρC] = Tr
[
Pe−πQρC

]
= Tr

[
e−πQρC

]
− Tr

[
{Ω, R} e−πQρC

]
(7.55)

We must show that the second term vanishes, and this follows from
{
e−πQ,Ω

}
=

0 and [Ω, ρC] = 0.
This suggests we define the expectation value 〈C〉 of any observable as 〈C〉 =

Tr
[
e−πQρC

]
. Of course, this agrees with the physical expectation value only if

C is BRST invariant. For example, the partition function computed from e−πQρ

agrees with the partition function defined by tracing only over physical states,
but the generating functionals obtained by adding sources coupled to non-BRST
invariant operators will in general be different.

The advantages of the Kugo–Hata ansatz are clearly seen by considering the
form of the KMS theorem appropriate to the ghost propagator. Let us define

Gab
AB (x, x′) =

〈
P
[
χa
A (x)ωb

B (x′)
]〉

(7.56)

where P is the usual (CTP)-ordering operator. Then

G21
AB (x, x′) = 〈χA (x)ωB (x′)〉 (7.57)

G12
AB (x, x′) = −〈ωB (x′)χA (x)〉 (7.58)

(observe the sign change, owing to the anticommuting character of the ghost
fields). The Jordan propagator is defined as G = G21 −G12.

Had we omitted the KH e−πQ factor, we would reason, given ρ = e−βH ,

G21
AB (x, x′) ≈ Tr

[
e−βHχA (x)ωB (x′)

]
= Tr

[
χA (x + iβ) e−βHωB (x′)

]
= −G12

AB (x + iβ, x′) (7.59)

Therefore G21
AB (ω) = −eβωG12

AB (ω) , leading to a Fermi–Dirac form of the ther-
mal propagators. This reasoning is incorrect. The proper way is

G21
AB (x, x′) = Tr

[
e−πQχA (x + iβ) e−βHωB (x′)

]
= G12

AB (x + iβ, x′) (7.60)

So G21
AB (ω) = eβωG12

AB (ω), which leads to the Bose–Einstein form.
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The KH factor does not appear explicitly in the path integral representation;
it only changes the boundary conditions on ghost fields from anti-periodic to
periodic.

We conclude that in this formalism, unphysical degrees of freedom and ghosts
get statistical corrections, both being of the Bose–Einstein form, in spite of the
ghosts being fermions (for which reason ghost loops do get a minus sign). For an
alternative formulation, see [LanReb92, LanReb93].

7.2 The 2PI formalism applied to gauge theories

7.2.1 The 2PI effective action

We can now move towards our real goal, namely, the application of the 2PI
CTP formalism to gauge theories. We shall proceed with a fair amount of gen-
erality, only assuming that the gauge condition is linear, and that the gauge
generators satisfy Tα

A [φ] = Tα
0A + Tα

1Aβφ
β . We shall develop the basic formulae

in some detail, emphasizing the subtleties associated with having both normal
and Grassmann degrees of freedom in the same theory.

The classical action is given by equation (7.29). To this we add sources coupled
to the individual degrees of freedom and also to their products

XrJr +
1
2
XrKrsX

s = jαx
α + θuλu +

1
2
καβx

αxβ +
1
2
σuvθ

uθv + θuψuαx
α

(7.61)
where xα represents the bosonic degrees of freedom (φ, h) and θ the Grassmann
ones (ω, χ), and we introduce the definition Kαu = −Kuα. Observe that j, κ
and σ are normal, while λ and ψ are Grassmann; σ is antisymmetric.

We therefore define the generating functional

eiW =
∫

DXr exp
{
i

[
Seff + XrJr +

1
2
XrKrsX

s

]}
(7.62)

The information about the initial state is implicit in the integration measure and
will reappear only as an initial condition on the equations of motion. We find

W

←−−
δ

δJr
= X̄r (7.63)

W

←−−−
δ

δKrs
=

θsrθs

2
[
X̄rX̄s + Grs

]
(7.64)

where we introduce the bookkeeping device θr = (−1)qr , where qr is the ghost
charge of the corresponding field, and θrs = (−1)qrqs .

We define the Legendre transform

Γ = W − X̄rJr −
1
2
X̄rKrsX̄

s − θsrθs

2
GrsKrs (7.65)
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whereby

δ

δXr
Γ = −Jr −

1
2
KrsX̄

s − 1
2
θrX̄sKsr (7.66)

Now observe that Ksr = θrθsθrsKrs. In the end

δ

δXr
Γ = −Jr − KrsX̄

s (7.67)

δ

δGrs
Γ = −θsrθs

2
Krs (7.68)

In order to evaluate the 2PIEA, we make the ansatz

Γ = S̄
[
X̄r
]
+

1
2
θsrθsGrsSrs −

i

2
ln sdet [Grs] + Γ2 −

i

2
θsGrsG−1

Rsr (7.69)

where

Srs =

[−−→
δ

δX̄r
S̄

]←−−
δ

δX̄s
(7.70)

and S̄ is the classical action (7.29), evaluated at the background fields. The
generating functional Γ2 is the sum of 2PI vacuum bubbles in a theory with free
action iG−1

Lrs and interacting terms coming from the cubic and quartic terms in
the development of S̄ around the mean fields. In spite of appearances, the new
term θsGrsG−1

Rsr is a constant. It may therefore be discarded.

7.2.2 The 2PI Schwinger–Dyson equations

Let us now investigate the 2PI Schwinger–Dyson equations

δ

δXr
Γ = 0

δ

δGrs
Γ = 0 (7.71)

From equation (7.69) we get

δ

δXr
S̄
[
X̄r
]
+

1
2
θpqθqθrpθrqGpq δ

δXr
Spq +

δ

δXr
Γ2 = 0

θsrθsSrs − iθrθrs
(
G−1

R

)
rs

+ 2
δ

δGrs
Γ2 = 0 (7.72)

The second set of equations may be rewritten as

θsrθsSrs − iθr
(
G−1

L

)
sr

+ 2
δ

δGrs
Γ2 = 0 (7.73)

and finally as

Srs − i
(
G−1

L

)
rs

+ 2θsrθs
δ

δGrs
Γ2 = 0 (7.74)
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The classical action is given by equation (7.29). If we expand Xr = X̄r + δXr,
then the quadratic terms are

S̄(2) = S
(2)
0

[
φ̄, δφ

]
+ δhAf

A
α δφα +

ξ

2
δhAδhA + iδχAf

A
α Tα

B

[
φ̄
]
δωB

+ iχ̄Af
A
α Tα

1Bβδφ
βδωB + iδχAf

A
α Tα

1Bβδφ
βω̄B (7.75)

The cubic and quartic terms are

S̄(3+) = S
(3+)
0

[
φ̄, δφ

]
+ iδχAf

A
α Tα

1Bβδφ
βδωB (7.76)

7.2.3 The reduced 2PI effective action

The introduction of the Nakanishi–Lautrup (N-L) field h has been useful to
obtain a simple definition of the BRST transformation, but since it only appears
quadratically in the action, there are no h field lines in Γ2. To take advantage of
this fact, it is convenient not to couple sources to the h field. In this way, Γ2 is
independent of the h field, and the respective variations are exact, namely

fA
α φ̄α + ξh̄A = 0

ξδAB − i
[
G−1

L

]
hhAB

= 0

fA
α − i

[
G−1

L

]A
hφα

= 0[
G−1

L

]A
hωB

=
[
G−1

L

]A
hχB

= 0 (7.77)

where a L(R) superscript denotes a left (right) inverse. Moreover, from the N-L
field being Gaussian

GAr
hX =

−1
ξ

fA
β Gβr

φX , X = φ, χ, ω (7.78)

and

GC
hhA =

1
ξ

[
−fAβG

βC
φh + iδCA

]
=

1
ξ

[
1
ξ
fAβf

C
γ Gβγ

φφ + iδCA

]
(7.79)

We could use these formulae to actually eliminate the N-L field from the 2PIEA,
thus obtaining a reduced effective action.

Let us explore the solutions to the equations of motion where all fields with
nonzero ghost number vanish, i.e.

ω̄ = χ̄ = Gωω = Gχχ = Gωφ = Gωh = Gχφ = Gχh = 0 (7.80)

Since the effective action itself has zero ghost number, it cannot contain terms
linear on any of the above, and therefore this condition is consistent with the
equations of motion.
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226 Closed time path effective action for gauge theories

Given these conditions, we have, besides the equations determining the h prop-
agators, the further equations[

G−1
]
φφαβ

Gβγ
φφ +

[
G−1

]
φhαB

GBγ
hφ = δγα

[
G−1

]
φφαβ

GβC
φh +

[
G−1

]
φhαB

GBC
hh = 0 (7.81)

The inverse propagators may be read off the variation of the 2PIEA, leading to
the equation for the gluon propagator

Sc,αβ − 1
ξ
fBαf

B
β − i

[
G−1

φφ

]
αβ

+ 2
δΓ2

δGαβ
φφ

= 0 (7.82)

The other nontrivial equation is

−ifA′

α Tα
B

[
φ̄
]
+ i
[
G−1

L

]A′

ωχB
+ 2

δΓ2

δGB
χωA

= 0 (7.83)

In deriving this equation we must consider GB
χωA and GB

ωχA as independent
quantities.

7.3 Gauge dependence and propagator structure

7.3.1 The Zinn-Justin equation

As we have noted in the introduction to this chapter, the most distinctive feature
of gauge theories as opposed to “normal” ones is the existence of relationships
among propagators of different orders, the so-called Takahashi–Ward or Slavnov–
Taylor identities. The powerful BRST formulation allows us to derive them all
from a single master identity, the so-called Zinn-Justin (Z-J) equation, which we
shall now present.

The key observation is that under a BRST transform within the path integral
which defines the generating functional (7.62), only the source terms are really
transformed. Therefore

〈Ω [Xr]〉 Jr +
1
2
θrsθs 〈Ω [XrXs]〉Krs = 0 (7.84)

The sources are eliminated in terms of derivatives of the 2PIEA (cf. equation
(7.68)), leading to

0 = 〈Ω [Xr]〉 δΓ
δX̄r

+
[
〈Ω [XrXs]〉 − 2 〈Ω [Xr]〉 X̄s

] [ δ

δGrs
Γ
]

(7.85)

Taking derivatives of this identity we obtain the desired relationships.
In the remainder of this section we shall give a simple example of how a

concrete identity may be derived from equation (7.85).
For simplicity, we shall assume that all background fields vanish. Since the Z-J

operator has ghost number 1, it makes no sense to assume that all quantities
with nonzero ghost number vanish, as we have done in the previous section.
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7.3 Gauge dependence and propagator structure 227

However, we may still “turn on” these quantities one by one, and thus obtain
partial Z-J identities. For example, we get three identities relating quantities
with zero ghost number by requiring that the coefficients of ω̄ and Gωφ vanish
(we shall not investigate the first, as we are assuming no nonzero backgrounds,
and we are working throughout with the reduced 2PIEA). This means that we
may still set

ω̄ = χ̄ = Gωω = Gχχ = Gχφ = Gχh = 0 (7.86)

and retain only terms linear in Gωφ and Gωh. In this approximation, terms with
ghost number neither 0 or 1 must vanish identically, so〈

Ω
[
ωD
]〉

=
〈
Ω
[
ωDωE

]〉
=
〈
Ω
[
hAω

D
]〉

=
〈
Ω
[
φαωD

]〉
= 〈Ω [χAχB ]〉 = 0

(7.87)
and

δΓ
δωD

=
δΓ

δGαD
φω

=
δΓ

δGD
hωA

=
δΓ

δGDE
ωω

=
δΓ

δGχχAB
= 0 (7.88)

Also, since there are no preferred directions in gauge space, objects with a single
gauge index must vanish out of symmetry, and therefore

〈Ω [φα]〉 =
〈
Ω
[
hA
]〉

= 〈Ω [χA]〉 =
δΓ
δφ̄α

[0] = 0 (7.89)

Finally, observe that at zero external sources,

δΓ
δhA

=
δΓ

δGα
φhB

=
δΓ

δGhχAB
=

δΓ
δGhhAB

≡ 0 (7.90)

In other words, from the terms in equation (7.85) we keep the terms in φφ, φχ,

and χω only.
Equation (7.85) must vanish at the physical point, since each coefficient van-

ishes. What is remarkable is that it vanishes identically, even if GαA
φω �= 0. Now

δΓ/δGαβ
φφ and δΓ/δGB

ωχA have ghost number zero, and therefore contain no terms
linear in GαA

φω . We conclude that, to linear order in GαA
φω , we may write

〈Ω [φαχA]〉 δΓ
δGαA

φχ

≈ 0 (7.91)

Here ≈ means up to terms proportional to the equations of motion. Now

δΓ
δGαA

φχ

=
−i

2
[
G−1

L

]
φχαA

(7.92)

Expanding the identity [
G−1

L

]
φXαr

Gr
XωB = 0 (7.93)
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228 Closed time path effective action for gauge theories

and using equations (7.77), (7.78), (7.79) and (7.81)[
G−1

L

]
φχαA

= −
[[

G−1
L

]
φφαβ

+
i

ξ
fαCf

C
β

]
GBβ

ωφ

[
G−1

R

]
χωAB

≈ −
[
G−1

φφ

]
αβ

GCβ
ωφ

[
G−1

R

]
χωAC

(7.94)

Since GCβ
ωφ can be anything and

[
G−1

φφ

]
αβ

and
[
G−1

R

]
χωAC

are regular, 〈Ω [φαχA]〉
must vanish:

〈Ω [φαχA]〉 = −〈χAΩ [φα]〉 − i

ξ
fA
β Gβα

φφ = 0 (7.95)

The point is that this identity links the gluon and ghost propagators to a gluon–
ghost–ghost vertex. To see this, observe that

Ω [φαχA] = Tα
B [φ]ωBχA + iφαhA (7.96)

involves cubic terms so the missing expectation value may be written as

〈Ω [φαχA]〉 = GB
ωχAT

α
B [0] − i

ξ
Gαβ

φφfAβ + Tα
B,γ [0]

〈
φγωBχA

〉
(7.97)

Below we shall use equation (7.95) to investigate the gauge dependence and
structure of the propagators.

7.3.2 Gauge dependence of the propagators

There are two issues central to gauge theories with no analog in “normal” theo-
ries, namely, to what extent the results of the theory depend on all the machin-
ery associated with the gauge fixing procedure, and second, how the Zinn-Justin
identity may be exploited to glean certain facts about the theory over and beyond
actual computation. We shall begin by discussing the first issue, taking as case
in point how the propagators depend on the gauge fixing conditions.

To investigate the gauge dependence of the 2PIEA, recall equations (7.38),
(7.39) and (7.40). Consider a change δF in the gauge fermion F (cf. equation
(7.40))

δF = −iχA

{
δfA [φ] +

1
2
δξhA

}
(7.98)

Holding the background fields constant, we get

δΓ|X̄r,Grs = δW |Jr,Krs
(7.99)

The variation of the generating functional is computed as in equations (7.42),
(7.43) and (7.44). However, now the “action” is not BRST invariant, because it
includes the source terms, and we get a nontrivial result

δΓ|X̄r,Grs = i

{
〈δFΩ [Xr]〉Jr +

1
2
θrsθs 〈δFΩ [XrXs]〉Krs

}
(7.100)
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7.3 Gauge dependence and propagator structure 229

Again we use equation (7.68) to get

δΓ|X̄r,Grs = (−i)
{
〈δFΩ [Xr]〉 δΓ

δX̄r

+
[
〈δFΩ [XrXs]〉 − 2 〈δFΩ [Xr]〉 X̄s

] [ δ

δGrs
Γ
]}

(7.101)

As before, we shall assume that all background fields vanish and that at such a
point Γ,r vanishes identically, so the above expression simplifies to

δΓ|X̄r,Grs = −Y rs δ

δGrs
Γ; Y rs = i 〈δFΩ [XrXs]〉 (7.102)

At the physical point, the Schwinger–Dyson equations now read

δ

δGtu
Γ − Y rs δ2

δGtuδGrs
Γ = 0 (7.103)

Of course, the solution is now Gtu + δGtu, so(
δ2

δGtuδGrs
Γ
)

[δGrs − Y rs] = 0 (7.104)

Since the Hessian is supposed to be invertible, we must have δGrs = Y rs.
Let us also assume that all propagators with nonzero ghost number vanish.

Then

δGαβ
φφ = i

〈
δFΩ

[
φαφβ

]〉
=
〈
χA

{
δfA [φ] +

1
2
δξhA

}(
Tα
C [φ]ωCφβ + (α ↔ β)

)〉
(7.105)

Assume δfA is also linear and use the Gaussianity of hA to get

δGαβ
φφ =

[
δfA

γ − δξ

2ξ
fA
γ

] 〈
χAφ

γ
(
Tα
C [φ]ωCφβ + (α ↔ β)

)〉
(7.106)

To lowest order, we find〈
χAφ

γ
(
Tα
C [φ]ωCφβ + (α ↔ β)

)〉
∼ Gβγ

φφ 〈χAΩ [φα]〉 + (α ↔ β) (7.107)

Now recall equation (7.95)

δGαβ
φφ =

(−i)
ξ

[
δfA

γ − δξ

2ξ
fA
γ

]
fA
δ Gδα

φφG
βγ
φφ + (α ↔ β) (7.108)

or else

δG−1
φφαβ =

i

ξ
fA
α

[
δfA

β − δξ

2ξ
fA
β

]
+ (α ↔ β) (7.109)

This is the result we wanted to show. We will use it below to analyze the structure
of the propagators.
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230 Closed time path effective action for gauge theories

7.3.3 Transverse and longitudinal gluon propagators

We now turn to the second issue outlined above, namely, how we can turn the
gauge dependence identities around to investigate the structure of the theory.
For simplicity, we shall consider only a pure (nonabelian) Yang–Mills theory to
two-loop accuracy.

To this order, variation of the 2PIEA yields the equation for the ghost prop-
agator [

G−1
L

]A
ωχB

= fA
α

[
Tα
B

[
φ̄
]
− fC

α′Tα′

1BβT
α
1B′β′G

ββ′

φφ GB′

ωχC

]
(7.110)

Multiplying on the right by GB
ωχC we get

fA
α Lα

B = δAB (7.111)

where

Lλ
C =

[
Tλ
B

[
φ̄
]
− fA

α′Tα′

1BγT
λ
1B′β′G

γβ′

φφ GB′

ωχA

]
GB

ωχC (7.112)

This suggests defining

Pα
Lβ = Lα

Cf
C
β (7.113)

which is a projection operator

Pα
LβP

β
Lγ = Pα

Lγ (7.114)

Now let us return to equation (7.95), which is a consequence of the Z-J identity
(7.85). An explicit calculation to two-loop accuracy yields

Lα
C = −〈χCΩ [φα]〉 =

i

ξ
fCβG

βα
φφ (7.115)

Multiply again by LC
δ to get

PLδβG
βα
φφ = −iξLC

δ L
α
C (7.116)

Therefore we have a decomposition of the gluon propagators into “transverse”
and “longitudinal” parts

Gλβ
φφ = Gλβ

Tφφ − iξLλ
CL

Cβ , P γ
LλG

λβ
Tφφ = 0 (7.117)

The corresponding decomposition for the inverse propagators is[
G−1

φφ

]
αλ

=
[
G−1

Tφφ

]
αλ

+
i

ξ
fA
λ fAα (7.118)

Comparing with equation (7.109) we see that the transverse part
[
G−1

Tφφ

]
γλ

is
gauge-fixing independent to two-loop order. This is the desired result, laying out
the gauge dependence of the propagators in its most explicit form. Of course, the
projector Pα

Lβ is just the generalization of the usual kμkν/k2 to a nonequilibrium
setting.
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8

Dissipation and noise in mean field dynamics

In Chapter 6 we presented the main computational schemes to derive the dynam-
ical laws for the mean field, including the back-reaction from quantum fluctua-
tions. These equations may be derived from the variation of the CTPEA. The
result of this approach is a semiclassical theory of a c-number condensate inter-
acting with a quantized fluctuation field.

This approach developed at this level of sophistication is limited as it offers no
description of the fluctuations themselves. In most applications the magnitude
of the fluctuations can be comparable and at times dominates the effects of the
mean field in the semiclassical description. One possible way to incorporate fluc-
tuations is to use the 2PI formalism, where the propagators describing the fluctu-
ations are considered as dynamical variables evolving along with the mean fields.

In this chapter we shall explore a different strategy, which is to allow for a
stochastic component in the mean field. This component arises from both the
uncertainty of the initial configuration of the mean field, and from the fluc-
tuations in the back-reaction from the quantized excitations. Both sources of
randomness combine so that stochastic averages in the noisy theory reproduce
suitable quantum averages in the underlying quantum field theory.

Formally, this approach lifts the seemingly overladen CTPEA. So far in this
generally complex object, only the real part is enlisted in the derivation of the
relevant equations of motion of the mean field. By regarding the CTPEA as a
kind of influence functional, we shall see that the imaginary part contains the
information about the stochastic sources.

The material in this chapter also clarifies the relationship between the CTP
and the influence functional approaches. This issue has been addressed by Su et
al. [SCYC88] and the authors [CalHu94]. In Chapter 5, we derived a Langevin
equation for the long-wavelength modes of a quantum field, viewed as an open
system interacting with the environment made up of short-wavelength modes.
The system–environment divide we shall assume in this chapter is more elusive,
since it depends on the c vs. q-number nature rather than on the value of a
“hard” observable such as wavelength. In the end, as we shall discuss in detail,
the physics is very much the same in one or the other approach. The stochastic
mean field approach we shall discuss in this chapter has the redeeming feature
that it does not force us to choose an a priori separation between modes which
go into the system and which are relegated to the environment. In this sense,
it is more pliable to the demands of a particular application: for example, if
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232 Dissipation and noise in mean field dynamics

higher modes are generated through nonlinear effects, we run no risk of them
crossing into the environment. This versatility will allow the stochastic mean
field approach to retain full information about certain quantum correlations, as
opposed to only their long-wavelength components.

An equivalent approach is to write down a Fokker–Planck equation describing
the probability density function for the stochastic mean field. We will discuss
only the Langevin equation approach; the translation to other formalisms is
straightforward with the tools presented in the early chapters of this book.

Also, to facilitate comparison with the illustrated groundwork laid down in
Chapter 6, we shall continue with the example of a gΦ3 relativistic quantum
theory at zero temperature. The addition of statistical fluctuations over and
above the quantum ones, as well as applications to more realistic theories, will
be discussed in the forthcoming chapters.

The themes we shall develop in this chapter are:

(a) The complex terms in the retarded propagator in frequency domain Gret (ω)
imply dissipation.

(b) Underlying the dissipation of the mean field is the effect of particle cre-
ation arising from the amplification of quantum fluctuations by the time-
dependent mean field. Dissipation results from the back-reaction of particle
creation on the mean field. We shall see this to order g2 by a direct derivation
of the number of created particles.

(c) There are fluctuations in the number of created particles, which brings forth
fluctuations in the back-reaction effect. These fluctuations may be incorpo-
rated into the dynamics of the mean field or condensate by introducing a
stochastic source in the right-hand side of the equation of motion. We shall
show that the noise autocorrelation is given precisely by the noise kernel in
the 1PI CTPEA. The stochastic c-number field φ (t) does not represent the
expectation value of the Heisenberg field anymore; we shall refer to it as
the stochastic condensate. In the linearized theory, the stochastic average of
the condensate gives back the quantum average which is the mean field.

(d) The resulting stochastic theory is a nontrivial extension of mean field dynam-
ics, in the sense that, at least for linear theories, the stochastic formulation
reproduces some quantum correlation functions of the full theory. This result,
which is similar to one already proven for quantum open systems, shows that
the identification of the CTPEA as an influence functional – and therefore of
the condensate as an effectively open system – is not merely a formal device.

(e) It is clear from their perturbative expressions that the noise and dissipation
kernels are closely related to each other. We may now show that, if we allow
the condensate to equilibrate under the effect of the noise, then the rela-
tionship between the noise and dissipation kernels becomes the fluctuation–
dissipation theorem. Alternatively, one may use the fluctuation–dissipation
relation to find the noise kernel given the dissipation kernel, and vice versa.
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Dissipation and noise in mean field dynamics 233

(f) While one can envisage many situations where a quantum field may be split
into a system field and an environment, it is not obvious that it is justified
to treat the former as classical. We will show that particle creation is also
central to this issue, by deriving an expression for the decoherence functional
between two system histories in terms of the Bogoliubov coefficients describ-
ing particle creation in the environment. In short, system and environment
get entangled through particle creation, and decoherence occurs when it is
efficient.

(g) From the linear theory results it may seem that these effects are restricted to
high frequencies ω > 2m. We shall see that this limitation is lifted by non-
linear effects. In particular, we shall show that a coherent condensate oscil-
lation will create particles even if the frequency is below threshold, through
the process of parametric amplification. The difference is that parametric
amplification is an essentially nonperturbative phenomenon, and it is expo-
nentially suppressed as we move away from the threshold. So dissipation and
fluctuation are generic properties of condensate dynamics.

Of course, a simple oscillation will not in general be a solution of the free equa-
tions of motion, precisely because it will dissipate through particle creation. The
problem of evolution under back-reaction from quantum fluctuations is rather
complex. It involves not only finding long-time solutions to the equations, but
also the harder problem of making sure that the equations contain the relevant
physics in the different time ranges. For example, fluctuation–fluctuation inter-
actions, which are totally ignored in the one-loop or leading order 1/N approx-
imations, are crucial on scales of the order of the thermalization time. We shall
discuss these issues in later chapters.

Since dissipation and noise are central elements in nonequilibrium evolutions,
a complete set of references for this chapter would be coextensive with the lit-
erature on nonequilibrium field theory itself. Our discussion will loosely follow
[CalHu89, CalHu94, CalHu95, CalHu97]. See also [Hu89, HuSin95, CamVer96].
The latter two papers, when read as a sequel to [CalHu87] give a clear example
of how dissipation and noise can be identified from the CTPEA with the help
of the influence action, and Langevin equations (in that context, the Einstein–
Langevin equations) can be derived for the stochastic mean field (semiclassical)
dynamics. Stochastic equations for classical systems arising from the decoherence
functional formalism have been discussed by Gell-Mann and Hartle [HarGel93].
The formal analysis of the Einstein–Langevin equations developed by Hu and
Matacz [HuMat95], Lombardo and Mazzitelli [LomMaz97], Martin and Verda-
guer [MarVer99a, MarVer99b, MarVer99c, MarVer00] and Roura and Verdaguer
[RouVer99, Rou02] (see reviews [HuVer02, HuVer03, HuVer04]) could be adapted
(or rather, simplified) to provide a foundation for the stochastic equations of
scalar field theory below. The computation of full quantum correlations from
the stochastic formulation is elaborated by Calzetta et al. [CaRoVe03].
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234 Dissipation and noise in mean field dynamics

A partial list of references for further reading on this subject is [Law89, Law92,
Law99, LawKer00, BerRam01, RamNav00, BeGlRa98, HosSak84, MorSas84,
Mor86, Mor90, Paz90a, Paz90b, Bet01, GleRam94, GreMul97, ABBCFJ99,
LeeBoy93, Mos02]. See also those mentioned in the chapters on applications
to atom–optical physics (13), nuclear–particle physics (14) and gravitation–
cosmology (15).

8.1 Preliminaries

We return to the gϕ3 theory to illustrate the ideas highlighted above. The clas-
sical action with a cubic potential as in Chapter 6, equation (6.43) is

S [Φ] =
∫

d4x

{
−1

2
(∂Φ)2 − V [Φ (x)]

}
(8.1)

We shall begin by considering the regression of the mean field towards its equi-
librium value. To this end it is enough to consider the linearized equations of
motion. The quadratic effective action is given in Chapter 6; see Sections 6.3.1
and 6.4.3 there. We have already seen that, after ultraviolet singularities have
been disposed of, and assuming the initial conditions are laid out in the distant
past to avoid initial time singularities, the free linearized evolution of the mean
field is described by an equation of the form[

− d

dt2

2

−m2

]
φ (t) +

∫ t

ds− Σret (t− s)φ (s) = 0 (8.2)

where we are assuming a spatially homogeneous mean field, and

Σret (t) =
∫

d3x Σret (t,x) =
∫

dω

2π
e−iωtΣret (ω,p = 0) (8.3)

From now on, we shall omit writing the p argument when it is zero.
The fundamental solution of the equation of motion is the (space averaged)

retarded propagator

Gret (t) =
∫

dω

2π
e−iωtGret (ω) (8.4)

Gret (ω) = (−1)
[
(ω + iε)2 −m2 + −Σret (ω)

]−1

(8.5)

The physical mass M2 is defined by the requirement that the retarded propagator
has a simple pole at ω = ±M,

M2 −m2 +
1
π

∫ ∞

4m2

dσ2

σ2 −M2
Π
(
σ2
)

= 0 (8.6)

The function Π
(
σ2
)

was introduced in Chapter 6, equation (6.135). We shall
assume M2 is positive. The retarded propagator has a branch cut for ω2 > 4m2.
If M2 exists, it must be less than 4m2; otherwise the retarded propagator has
no first sheet poles.
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8.2 Dissipation in the mean field dynamics 235

8.2 Dissipation in the mean field dynamics

Let us begin by showing that the existence of an imaginary component in Gret (ω)
implies that the dynamics of mean fields is dissipative.

The simplest way to show this is by looking at the response of the mean field
to an impulse, that is, adding a source −δ (t) to the right-hand side of equation
(8.2). The solution is

φ (t) = Gret (t) =
∫

dω

2π
e−iωtGret (ω) (8.7)

As we know, the integrand has poles at ω = ±M and branch cuts for |ω| > 2m.
Separating these contributions, we get

φ (t) =
1

ZM
sinMt +

1
π

∫ ∞

4m2
dσ2 sinσt

σ
Π
(
σ2
)
|Gret (σ)|2 (8.8)

where Z comes from the residue at the pole. Since the integrand in the second
term is regular, this term goes to zero as t → ∞.

A less rigorous argument is based on a Breit–Wigner approximation for
Gret (ω) . We simply approximate ReG−1

ret (ω) ∼ ω2 −M2; for the imaginary part,
we write

ImG−1
ret (ω) = Π

(
ω2
)

sign (ω) ∼ 2γω (8.9)

γ ∼ g2
�

128πm
(8.10)

Therefore

φ (t) =
1
M

sinMt e−γt (8.11)

This approximation, which amounts to writing Π
(
ω2
)
∼ constant, sign (ω) ∼

ω/2m, cannot be valid at very short times t−1 � m, nor at very late times
t−1 ≤ m, but it does show that there is an approximately exponential decay in
between. The decay turns to a power law at later times.

As a final argument, let us regard the nonlocal term in the equation of motion
as a friction force acting on the mean field. Suppose we act on the mean field with
an external source j (t) such that it follows a given trajectory φ (t) vanishing both
in the distant past and future. Therefore the total energy exchanged with the
mean field vanishes. The instantaneous power is of course (minus) the product
of force times velocity. The total power extracted from the mean field is

0 =
∫ ∞

−∞
dt

{
m2φ (t) −

∫ t

ds− Σret (t− s)φ (s) − j (t)
}

dφ

dt
(8.12)

so we must have

Q = −
∫ ∞

−∞
dt

∫ t

ds− Σret (t− s)φ (s)
dφ

dt
(8.13)

where Q is the work extracted from the source. In terms of Fourier transforms

Q =
∫

dω

2π
− Σret (ω) (−iω)φ (ω)φ (−ω) (8.14)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


236 Dissipation and noise in mean field dynamics

It is clear that φ (ω)φ (−ω) = |φ (ω)|2 is an even function of ω, so only the odd
part of Σret (ω) may contribute to Q. Since the real part of Σret is even, we are
left with

Q =
1
π

∫ ∞

2m

ωdω Π
(
ω2
)
|φ (ω)|2 (8.15)

which is clearly positive. We may think of this as work which is transferred from
the external source to the mean field and then transformed into “heat,” since it
is not returned to the source nor stored in the mean field. We shall show in the
next section that this work was transferred to the quantum fluctuations above
the condensate.

8.3 Dissipation and particle creation

We have seen in the last section that along its evolution the mean field dissipates
an amount of heat Q given by equation (8.15). We shall now show that this energy
is actually spent in creating particles in the quantum field above the condensate.

Let us consider the Heisenberg equation of motion as given in Section 4.1.2
of Chapter 4. Split the quantum field Φ into a (c-number) mean field φ and a
quantum fluctuation field ϕ

Φ = φ + ϕ (8.16)

where

〈ϕ〉 = 0 (8.17)

The expectation value of the Heisenberg equation yields

∂2φ−m2φ +
1
2
gφ2 +

1
2
g
[〈
ϕ2
〉
φ
−
〈
ϕ2
〉
φ=0

]
= 0 (8.18)

where
〈
ϕ2
〉
φ

denotes the expectation value computed in the presence of the
mean field. A linear expansion of (8.18) around φ = 0 takes us back to (8.2).
Subtracting (8.18) from the Heisenberg equation we find the equation for the
fluctuations

∂2ϕ−m2ϕ + gφϕ +
1
2
g
[
ϕ2 −

〈
ϕ2
〉
φ

]
= 0 (8.19)

The one-loop approximation amounts to leaving out the last term

∂2ϕ−m2ϕ + gφϕ = 0 (8.20)

We see that, in this model, the one-loop approximation reduces to the Hartree
approximation. If the mean field is spatially independent, we may expand the
fluctuation field in modes as in Chapter 4

ϕ (t,x) =
∫

d3k

(2π)3/2
eikxϕk (t) (8.21)

Each mode is a harmonic oscillator with a time-dependent natural frequency
d2ϕk

dt2
+ ω2

kϕk − gφ (t)ϕk = 0; ω2
k = k2 + m2 (8.22)
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8.3 Dissipation and particle creation 237

Given two complex independent solutions fk, f∗
k of equation (8.22), we may write

ϕk (t) = fk (t) ak + f∗
k (t) a†−k (8.23)

where ak is the usual destruction operator. Let us solve for the modes in powers
of g. To zeroth order in g the Minkowski modes fk (t) introduced in Chapter 4
are the single global positive frequency solution. To first order in g we have a
choice: either the in positive frequency solution

f in
k (t) = fk (t) + g

∫ t

−∞
ds

sinωk (t− s)
ωk

φ (s) fk (s) (8.24)

or the out positive frequency wave

fout
k (t) = fk (t) + g

∫ ∞

t

ds
sinωk (s− t)

ωk
φ (s) fk (s) (8.25)

If the mean field is well behaved, then at very late times we have fout
k (t) ∼

fk (t) whereas f in
k (t) is obtained through a Bogoliubov transformation

f in
k (t) = αkf

out
k (t) + βk

[
fout
k (t)

]∗ (8.26)

Conversely, the destruction operators in the distant past and future are related
through

aoutk = αka
in
k + β∗

ka
in†
−k (8.27)

As we saw in Chapter 4, if the initial state is the in vacuum, at late times we
find a nonzero population density of created particles |βk|2. From the explicit
expression, we find

βk =
(−ig)
2ωk

∫ ∞

−∞
ds φ (s) e−2iωks =

(−ig)
2ωk

[φ (2ωk)]
∗ (8.28)

Since each particle carries an energy �ωk, the total energy density in the fluctu-
ations is

ρ =
∫

d3k

(2π)3
g2

�

4ωk
|φ (2ωk)|2

=
g2

�

4π

∫ ∞

2m

ωdω ν (ω) |φ (ω)|2

= Q (8.29)

where

ν (ω) =
1
8π

√
1 − 4m2

ω2
θ
(
ω2 − 4m2

)
(8.30)

was already introduced in Chapter 5. We see that the energy extracted from the
source is being transferred to the fluctuations. For completeness, we observe that
the kernel ν in (8.30) is related to the kernel Π in (8.6) through

Π
(
ω2
)

=
g2

�

4
ν (ω) (8.31)
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238 Dissipation and noise in mean field dynamics

8.4 Particle creation and noise

We have seen in the last section that the mean field loses energy which is spent
in exciting the quantum fluctuations of the vacuum into particles. The back-
reaction from this process is experienced by the mean field as dissipation. We
now observe that particle creation from the vacuum has an intrinsic stochastic
character: there are always fluctuations in the number of created particles. These
fluctuations affect the mean field through its back-reaction. The dynamics of the
mean field thus acquires a stochastic element. Of course, at this point it ceases
to be the “mean” field: it is a c-number field which represents the evolution of
the condensate component of the full Heisenberg field.

To obtain a measure of the fluctuations in particle creation, let us consider
the correlations between particles created in different modes

〈NpNq〉 =
〈
0in
∣∣aout†p aoutp aout†q aoutq

∣∣ 0in〉
= V 2 |βp|2 |βq|2 + V |βp|2 |αp|2 [δ (p − q) + δ (p + q)] (8.32)

It follows that the fluctuations in the energy density are〈
δρ2
〉

=
〈
ρ2
〉
− 〈ρ〉2

=
2�

2

V

∫
d3p

(2π)3
ω2
p |βp|2 |αp|2 (8.33)

To lowest order we may approximate |αp|2 = 1. Using the explicit expression for
the Bogoliubov coefficients, we get,〈

δρ2
〉

=
g2

�
2

2V

∫
d3k

(2π)3
|φ (2ωk)|2

=
g2

�
2

4πV

∫ ∞

2m

ω2dω ν (ω) |φ (ω)|2

= δQ2 (8.34)

We may account for these fluctuations by adding a stochastic term ζ (t,x) to
the right-hand side of the mean field equations of motion. For a homogeneous
condensate, they reduce to[

− d

dt2

2

−m2

]
φ (t) +

∫ t

ds− Σret (t− s)φ (s) = −g

2
Ξ (t) (8.35)

where

φ (t) =
1
V

∫
d3x φ (t,x) (8.36)

Ξ (t) =
1
V

∫
d3x ζ (t,x) (8.37)

We assume ζ is a Gaussian noise with zero average 〈ζ (t,x)〉s = 0, where,
hereafter, the subscript s will denote stochastic averages over the noise
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8.4 Particle creation and noise 239

distribution function, and (possibly colored) autocorrelation 〈ζ (t,x) ζ (s,y)〉s =
νs (t− s,x − y) . For a prescribed trajectory φ (t) , the work done by the random
source is

Qs =
g

2

∫
dt Ξ (t)

d

dt
φ (t) (8.38)

Assuming independence of φ (t) and Ξ (t), 〈Qs〉s = 0 and〈
Q2

s

〉
s

=
g2

4V

∫
dtds

d

dt
φ (t)

d

ds
φ (s)

∫
d3x νs (t− s,x) (8.39)

Introducing the Fourier transform

νs (t,x) =
∫

d4k

(2π)4
eikxνs (k) (8.40)

〈
Q2

s

〉
s

=
g2

4V

∫ ∞

−∞

dω

2π
ω2 |φ (ω)|2 νs (ω) =

g2

4V

∫ ∞

0

dω

π
ω2 |φ (ω)|2 νs (ω) (8.41)

where as usual we write νs (ω) = νs (ω,p = 0) and we have used the obvious
symmetry condition that νs is even. If we request that

〈
Q2

s

〉
s

accounts for the
fluctuations δQ2, equation (8.34), then νs = �

2ν.
Since we are discussing a Lorentz invariant theory, this result determines ν (k)

everywhere. We of course recognize the noise kernel introduced in Chapters 5 and
6. In other words, we could arrive at the same Langevin type equation for the
mean field simply by arguing that the CTPEA may be regarded as a Feynman–
Vernon influence functional for an open system (the condensate) interacting with
an environment (the quantum fluctuations) and adopting the usual interpretation
that the imaginary part of the influence action (IA) describes noise.

This point of view is validated by the fact that the stochastic formulation
allows us to compute certain quantum expectation values in the original theory.
Before developing this point further, let us show briefly yet another way to arrive
at the same stochastic equation. If we consider the full Heisenberg equation and
subtract the equation for the fluctuations we see that the Langevin equation
(8.35) amounts to the replacement[

ϕ2 −
〈
ϕ2
〉
φ

]
↔ ζ (8.42)

Of course we cannot simply interpose an identity, because we have on the left a
Heisenberg quantum operator, and on the right a c-number stochastic field. To
give meaning to the connection between the two, we adopt the Landau prescrip-
tion that the symmetric quantum expectation value of the left-hand side equals
(twice) the stochastic expectation value of the right-hand side, or

νs (t− s,x − y) =
1
2

[〈{
ϕ2 (t,x) , ϕ2 (s,y)

}〉
φ
− 2
〈
ϕ2 (t,x)

〉
φ

〈
ϕ2 (s,y)

〉
φ

]
(8.43)

An explicit evaluation at φ = 0 gives again the noise kernel from the CTPEA,
as we have seen in Chapter 6. We see how this approach leading to a Langevin
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240 Dissipation and noise in mean field dynamics

equation is an improvement over the usual mean field theory, which simply dis-
regards ϕ2 −

〈
ϕ2
〉
φ

entirely.

8.5 Full quantum correlations from the Langevin approach

As a simple application of the Langevin approach, we shall show how it may be
used to compute the Hadamard propagator for the underlying field theory. This
is the field theory counterpart of a method applicable more generally to quantum
open systems, and therefore reinforces the view of the CTPEA as the IA for the
mean field.

Let us begin by connecting the propagators of the theory to the CTPEA. In
the condensed notation from Chapter 6, the full propagators GAB =

〈
ϕAϕB

〉
in

the equilibrium state are given by

GAB = −i�
δ2W

δJAδJB

∣∣∣∣
J=0

(8.44)

where W is the CTP generating functional. As usual we identify G11 = GF,

G12 = G−, G21 = G+ and G22 = GD. On the other hand, W ,AB = δφA/δJB =
− (Γ,AB)−1, so we obtain an equation relating the propagators to the second
variation of the CTPEA

Γ,ABG
BC = i�δCA (8.45)

Observe that if the field theory is defined only for t > t0, rather than on the
whole Minkowski space, then the intermediate integral is equally restricted:

φBψ
B ≡

∫
d3x
∫ ∞

t0

dt φb (t,x)ψb (t,x) (8.46)

We have seen in Chapter 6 that the quadratic part of the CTPEA must have
the structure of equation (6.97), where the kernels Dfull and N are real, and
Dfull is causal. We may further split Dfull into its symmetric and antisymmetric
parts, Dfull = Dfull

s + Γ, respectively. The Hessian Γ,AB becomes

Γ,AB =
(
Dfull

s + iN Γ − iN
−Γ − iN −Dfull

s + iN

)
(8.47)

Since the equilibrium state is translation invariant, the propagators (as well as
the Dfull

s , Γ and N kernels) are functions of the difference variable x− x′ alone,
and equations (8.45) are algebraic equations for their Fourier transforms. Setting
a = 1 in equations (8.45) and using the matrix form (8.47), we obtain(

Dfull
s + iN

)
G11 + (Γ − iN)G21 = i� (8.48)(

Dfull
s + iN

)
G12 + (Γ − iN)G22 = 0 (8.49)

Subtracting these two equations, and writing the fundamental propagators in
terms of Gret, Gadv and G1, we get DfullGret = −1. This is just the statement that
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8.5 Full quantum correlations from the Langevin approach 241

the retarded propagator is the fundamental solution to the linearized equations
of motion for the mean field, Dfullφ = −J .

Let us go back to equation (8.48) to get

DfullG1 + 2�NGadv = 0 (8.50)

Since the equation Dfullφ = 0 admits plane waves of momentum p as homoge-
neous solutions, provided

(
−p2
)

= M2, the solution to this equation reads

G1 = Cδ
(
−p2 −M2

)
+ 2�GretNGadv (8.51)

We are using the fact that G1 must be Lorentz invariant, so C must be a simple
constant.

In the Langevin approach we postulate an equation for the stochastic conden-
sate (absorbing coupling constants into the stochastic source, i.e. ξ = gζ/2)

Dfullφ = −ξ (8.52)

where

〈ξ (x) ξ (y)〉s = �N (x, y) (8.53)

Suppose we set the initial conditions for this equation at some time t0. Then

φ (x) = φhom (x) +
∫
y0>t0

d4y Gret (x, y) ξ (y) (8.54)

where φhom (x) is determined by the Cauchy data at t0

φhom (t,x) =
∫

d3y
{
Gret (t− t0,x − y)

d

dt0
φ (t0,y)

+
d

dt
Gret (t− t0,x − y)φ (t0,y)

}
(8.55)

The stochastic average, assuming independence between the initial conditions
and the noise sources, becomes

〈φ (x)φ (y)〉s = 〈φhom (x)φhom (y)〉s
+ �

∫
z0,z′0>t0,

d4zd4z′ Gret (x, z)N (z, z′)Gadv (z′, y) (8.56)

Twice this is a solution of equation (8.50), and therefore if the Cauchy data for
2 〈φ (x)φ (y)〉s and G1 (x, y) are chosen to be the same, they will remain equal
everywhere.

This shows that the stochastic approach may reproduce the Hadamard prop-
agator of the underlying quantum theory. Observe that both random initial
conditions and noise sources are required.
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242 Dissipation and noise in mean field dynamics

8.6 The fluctuation–dissipation theorem

Before we show how the above analysis may be generalized to the nonlinear
regime, it is interesting to pause for the following observation. We have just shown
that the Hadamard propagator for quantum fluctuations may be obtained as a
stochastic average over a random c-number field. This field may be decomposed
into a homogeneous solution of the linearized mean field equations of motion
plus an extra term, induced by the effect of a particular Gaussian noise.

We have seen at the beginning of this chapter that solutions of the mean field
equations are partially dissipated away as they evolve. But the Hadamard prop-
agator is time-translation invariant. So the noise sources must be injecting the
precise amount of fluctuations necessary to compensate for the dissipation of the
free part. The quantitative statement of this observation is the (zero tempera-
ture) fluctuation dissipation relation [CalWel51, LaLiPi80a, Ma76, BooYip91].
This is a simple application of a deeper, generic relationship between noise and
dissipation in the CTPEA, whose origin is that both arise from particle creation
in the fluctuation field. Here we are using the term “particle creation” also to
denote such phenomena as the transfer of atoms from a condensate to higher
modes, as in the Bose–Nova experiment [Don01].

To quantify this statement, let us return to the expression for the heat dissi-
pated during the whole evolution of the field

Q =
∫

d4x

{[
−∇2 + m2

]
φ (x) −

∫
y0<x0

d4y − Σret (x, y)φ (y) − ξ (x)
}

dφ

dt
(x)

(8.57)

Since the spectrum of fluctuations is stationary, we must have 〈Q〉s = 0. The
first terms have been analyzed in the beginning of this chapter, with the only
difference that now we do not assume a homogeneous condensate. Using the
results of the last section to replace field averages by the Hadamard propagator,
we get∫

d4x

〈
ξ (x)

dφ

dt
(x)
〉

s

= V T

∫
d4k

(2π)4
k0Π

(
−k2

)
G1 (k) θ

(
k0
)

(8.58)

where V T is the 4-volume of spacetime. Since we are assuming a Gaussian noise
and a linearized equation of motion,∫

d4x

〈
ξ (x)

dφ

dt
(x)
〉

s

=
∫

d4xd4y 〈ξ (x) ξ (y)〉s
d

dt

δφ (x)
δj (y)

= −iV T�

∫
d4k

(2π)4
k0N (k)Gret (k) (8.59)

Since N (k) is even, this becomes

−i
V T�

2

∫
d4k

(2π)4
∣∣k0
∣∣N (k) [Gret (k) −Gret (−k)] θ

(
k0
)

(8.60)
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8.7 Particle creation and decoherence 243

But Gret (k) −Gret (−k) = iG (k) , where G is the Jordan propagator. Therefore,
defining

G1 (k) = ρ (k)G (k) sign
(
k0
)

(8.61)

then

�N (k) = 2Π
(
−k2

)
ρ (k) (8.62)

This is the fluctuation–dissipation theorem at zero temperature (cf. Einstein’s
relation from Chapter 2). By the way, for free fields ρ = 1, as we saw in Chapter 6.

8.7 Particle creation and decoherence

At this point it is interesting to go back to the beginning and question whether
it is consistent to treat the system field φ as classical. One possible answer is
to consider two different histories for the φ field, leaving the environment field
ϕ unspecified, and to compute their decoherence functional D (introduced in
Chapter 3). If |D| � 1, the classical approximation is warranted.

The basic observation is that to compute the decoherence functional we must
perform a CTP path integral over all histories of the field ϕa, adding in each
branch an external source to enforce the constraint that 〈ϕa〉 = 0. The result is
that the path integral defining D is identical to the one defining the CTPEA,
and we find the relationship

D
[
φ1, φ2

]
= exp

{
iΓ
[
φ1, φ2

]
�

}
(8.63)

It is clear that the classical part of the CTPEA does not contribute to decoher-
ence. Let us consider the one-loop term Γ1 (cf. Chapter 6). In canonical terms, Γ1

measures the overlap between the state which evolves from the in vacuum under
the influence of the external field φ1 (x) and the state which evolves under φ2(x),
as measured in the far future. For simplicity, let us assume that the background
fields are homogeneous, in which case we may decompose the fluctuation fields
in plane waves, to find

Γ1

[
φA
]

=
∑
k0>0

Γ1k

[
φA
]

Γ1k

[
φA
]

= −i� ln
∫

Dϕa
kDϕa

−k

× exp
{
− i

�

∫
dt ϕa

−k

[
cab

(
d2

dt2
+ ω2

k

)
+ g cabcφ

c

]
ϕb
k

}
(8.64)

Interposing a complete set of out modes, we may write

Γ1k

[
φA
]

= −i� ln
∑
n

〈
0in
∣∣nk, n−k, out

〉
φ2

〈
nk, n−k, out

∣∣ 0in〉
φ1 (8.65)
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244 Dissipation and noise in mean field dynamics

where we are using the fact that particles may be created in pairs only; the
subscript φ indicates the external field under which the quantum field evolves.
Since the quantum field on each branch is a free Klein–Gordon field with a time-
dependent frequency, the in and out destruction operators are related through
a Bogoliubov transform. The relevant brackets are given in Chapter 4, and after
a simple summation, we arrive at

Γ1k

[
φA
]

= i� ln
[
α2
kα

1∗
k − β2

kβ
1∗
k

]
(8.66)

where αi
k, β

i
k denote the Bogoliubov coefficients for the corresponding branch.

One can check that this expression complies with the basic expectations
regarding the CTPEA. It is clear that Γ1k vanishes if φ1 = φ2. If the two fields
are exchanged, the real part changes sign, while the imaginary part is unchanged.

To clarify the meaning of equation (8.66) let us observe that it is invariant if
we subject both pairs of Bogoliubov coefficients to the same Bogoliubov trans-
formation. In other words, the effective action is independent of the choice of
out particle model in equation (8.65). Therefore we may assume without loss of
generality that β2

k = 0. This implies
∣∣α2

k

∣∣ = 1, and so, in this representation,

|D| =
1

|α1
k|

=
1√

1 + |β1
k|

2
(8.67)

As expected, particle creation is necessary to suppress coherence. Of course, the
physical mechanism behind this result is the entanglement of the system and
environment fields through the particle creation process.

The relation between particle creation and decoherence was given in
[CalMaz90]. The expression of the CTP effective action or the influence func-
tional in terms of the Bogoliubov coefficients was given in [CalHu94, HKMP96,
RaStHu98].

8.8 The nonlinear regime

So far we have demonstrated the presence of noise and dissipation for far off-shell
modes (−p2 > 4M2). We shall now see that particle creation, and therefore dissi-
pation and noise, is restricted by a lower threshold only in the linearized theory.
In the nonlinear regime, the possibilities are much richer: Schwinger proved the
existence of particle creation from static electric fields, shown as an example in
Chapter 4. So dissipation and noise in particle creation are the rule rather than
the exception.

Let us attempt a nonperturbative evaluation of the one-loop effective action
as given in Chapter 6, equation (6.120). Observe that

φ1
(
ϕ1
)2 − φ2

(
ϕ2
)2

= φ+

((
ϕ1
)2 − (ϕ2

)2)
+

φ−
2

((
ϕ1
)2

+
(
ϕ2
)2)

(8.68)

This suggests expanding

Γ1 =
(
−g

2

)∫
d4x〈ϕ2〉φ+(x)φ− + ΔS [φ+, φ−] (8.69)
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where ΔS [φ+, φ−] ∼ O
(
φ2
−
)
. To compute 〈ϕ2〉φ+(x) we consider the fluctuation

field ϕ as a free quantum field with the equation of motion[
∂2 −m2 − gφ+

]
ϕ = 0 (8.70)

In other words, ϕ is a quantum field propagating on the dynamic background
φ+, a situation we have already analyzed in Chapter 4.

To see the effect of ΔS on the equation of motion for φ, we perform a functional
Fourier transform

exp {iΔS [φ+, φ−] /�} =
∫

Dξ ei�
−1 ∫ ξφ−P [ξ, φ+] (8.71)

Calling 〈. . .〉s =
∫
Dξ . . . P [ξ, φ+], we find

〈ξ(x)〉s =
δΔS

δφ−

∣∣∣∣
φ−=0

= 0 (8.72)

〈ξ(x)ξ(x′)〉s ≡ �N(x, x′)

=
(
g2

8

)[〈{
ϕ2(x), ϕ2(x′)

}〉
φ+

− 2〈ϕ2〉φ+(x)〈ϕ2〉φ+(x′)
]

(8.73)

This is to be contrasted with the result in the perturbative treatment.
The functional P [ξ, φ+] must be real (as follows from ΔS [φ+,−φ−] =

−ΔS [φ+, φ−]∗) and it is nonnegative to the one-loop approximation. We may
think of it as a functional Wigner transform of the effective action [Hab92], and
thereby as a probability density “for all practical purposes.” Observe that P will
not be Gaussian in general.

In the limit φ− → 0, φ+ → φ, we obtain the equation of motion for the
mean field(

−∂2 + m2
)
φ(x) +

1
2
gφ2 +

(g
2

) [
〈ϕ2〉φ − 〈ϕ2〉0

]
(x) = ξ(x) (8.74)

A linear expansion of (8.74) around φ = 0 and the assumption of a homogeneous
condensate give back (8.35). Our goal is to show that the noise ξ(x) is not
restricted to modes above threshold. To this end, we shall assume a simple mean
field configuration, homogeneous in space and harmonic in time, i.e.

φ(t) = φ0 cos γt (8.75)

where γ ≤ 2M , so we are below threshold. We shall see that in spite of this the
noise is nonzero. Moreover, the noise itself is not restricted to the high-frequency
domain, but it has low-frequency components as well.

To compute the nonperturbative noise kernel, we expand the quantum field
ϕ in normal modes. The amplitude functions of the normal modes are complex,
with

ϕ−k = ϕ†
k (8.76)

They obey a mode equation where the time-dependent natural frequency of the
kth mode is

ω2
k = k2 + m2 − gφ(t) (8.77)
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246 Dissipation and noise in mean field dynamics

Here we shall disregard the possibility of ω becoming imaginary through a large
negative light field, i.e. we assume gφ0 ≤ m2. We assume the fluctuation field is
in the vacuum state at some initial time t = 0 (we assume the coupling constant
g is switched on adiabatically, so initial time singularities do not arise). Since ϕ

is a free field, Wick’s theorem holds, and our problem is to relate the field at
arbitrary times to the initial creation and destruction operators.

The general relationship we seek is

ϕk(t) = fk(t)ak(0) + f∗
k (t)a†−k(0) (8.78)

where fk is the positive frequency mode associated with the in particle model.
For the given mean field evolution (8.75) the mode equation is in the form of
Mathieu’s equation, with a periodically driven field in the narrow resonance
regime. The results of Chapter 4 will apply here if we identify ω2

k0 = k2 + m2 −
gφ0, ω2

1 = gφ0. The mode function fk may be written as a linear combination of
WKB solutions.

fk(t) = αk (t) f+
k (t) + βk (t) f−

k (t) (8.79)

Let us consider the case where we are in the neighborhood of the �th resonance
band, namely ωk0 = γ (� + δk) (remember in Chapter 4 we set γ = 1, so now we
must re-insert γ in all the equations). Then

αk (t) =
[
α

(+)
k0 eμkγt + α

(−)
k0 e−μkγt

]
eiσkγt

βk (t) =
[
β

(+)
k0 eμkγt + β

(−)
k0 e−μkγt

]
e−iσkγt (8.80)

where

σk =
ω2

1

2γω0k
+ δk

κk ∼ 1
(2�− 1)!

γ

4ωk0

(
ω2

1

2γω0k

)2�

μk =
√
κ2
k − σ2

k

β
(±)
k0 =

1
κk

[σk ∓ iμk]α
(±)
k0 (8.81)

We are particularly interested in the case where μk is real. Let us write
σk + iμk

κk
= eiϑk (8.82)

(outside of the resonant region, ϑk becomes imaginary). Imposing the boundary
conditions αk (0) = 1, βk (0) = 0, we find

αk (t) =
sinh [μkγt + iϑk]

i sinϑk
eiσkγt

βk (t) =
sinh [μkγt]
i sinϑk

e−iσkγt (8.83)
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Finally, let us define

f+
k (t)eiσkγt = �

1/2 e
−i�γt

√
2�γ

gk (t) (8.84)

where gk (t) ∼ 1 with great accuracy. We can now write the mode functions as

fk(t) = �
1/2

{
sinh [μkγt + iϑk]

i sinϑk

e−i�γt

√
2�γ

gk (t) +
sinh [μkγt]
i sinϑk

ei�γt√
2�γ

g∗k (t)
}

(8.85)

Three features stand out, namely (1) the generation of the negative frequency
components, which is the physical basis for vacuum particle creation; (2) the
exponential amplification due to ongoing particle creation; and (3) the phase-
locking of a whole range of wavelengths at the resonance frequency �γ. As we
shall now see, phase locking allows the generation of a low-frequency, inhomo-
geneus stochastic field. This is the main physical indication of the new features
of dissipation and fluctuation below threshold we want to highlight.

In order to find the noise kernel, let us decompose the Heisenberg operator ϕ2

into a c-number, a diagonal (D) and a nondiagonal (ND) (in the particle number
basis) part

ϕ2 =
〈
ϕ2
〉
φ

+ ϕ2
D + ϕ2

ND (8.86)

where

〈
ϕ2
〉
φ

=
∫

d3k

(2π)3
|fk(t)|2 (8.87)

and the (D) and (ND) components are

ϕ2
D =

∫
d3k

(2π)3
d3k′

(2π)3
ei(k+k′)x

{
fk(t)f∗

k′(t)a†−k′ak + f∗
k (t)fk′(t)a†−kak′

}
(8.88)

ϕ2
ND =

∫
d3k

(2π)3
d3k′

(2π)3
ei(k+k′)x

{
fk(t)fk′(t)akak′ + f∗

k (t)f∗
k′(t)a†−ka

†
−k′

}
(8.89)

Observe that, assuming vacuum initial conditions,〈
ϕ2

D

〉
φ

=
〈
ϕ2

ND

〉
φ

=
〈
ϕ2

Dϕ
2
ND

〉
φ

=
〈
ϕ2

NDϕ
2
D

〉
φ

=
〈
ϕ2

Dϕ
2
D

〉
φ
≡ 0 (8.90)

Therefore

�N(x, x′) =
(
g2

8

)〈{
ϕ2

ND(x), ϕ2
ND(x′)

}〉
φ+

=
(
g2

2

)∫
d3k

(2π)3
d3k′

(2π)3
ei(k+k′)(x−x′)Re {fk(t)fk′(t)f∗

k (t′)f∗
k′(t′)}

(8.91)

If no particle creation occurred, the noise kernel would contain frequencies above
threshold only. However, in the presence of frequency-locking and a negative
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248 Dissipation and noise in mean field dynamics

frequency part of the mode functions f , the noise kernel also contains a steady
component

�NS(x, x′) =
(

g2
�

2

8�2γ2

)∫ ′ d3k

(2π)3
d3k′

(2π)3
ei(k+k′)(x−x′)Fkk′(t, t′) (8.92)

where the integral is restricted to those modes where μk is real, and

Fkk′(t, t′) = Re {Fkk′ (t)F ∗
kk′ (t′)} (8.93)

Fkk′ (t) =
1

sinϑk sinϑk′
[sinh [μkγt + iϑk] sinh [μk′γt] gk (t) g∗k′ (t) + (k ↔ k′)]

(8.94)

It is important to notice that F is slowly varying not only with respect to
the frequency �γ, but also with respect to the background frequency γ itself. Of
course we do not observe the noise kernel directly, but only through its effect on
the mean field. However, since the steady part of the stochastic source is slowly
varying in space and time, to a first approximation it induces a stochastic mean
field φS which is simply proportional to it:

φS ∼
(

1
m2

)
ξS; 〈φSφS〉 ∼

(
1
m2

)2

�NS (8.95)

One can deduce the noise and its auto-correlation in this way.
Since κk decays exponentially with l, it is clear that only the lowest possible

resonance band makes a meaningful contribution. So we may assume that k2 �
m2 and approximate ωk0 = ω00 +

(
k2/2ω00

)
, where ω2

00 = m2 − gφ0. Therefore

δk = δ0 +
k2

2γω00

σk ∼ σ0 +
k2

2γω00

κk ∼ κ0e
−�k2/γω00 (8.96)

The limit of the resonance band is reached at some wavenumber k0, and we
may approximate

μk = μ0

(
1 − k2

k2
0

)
(8.97)

If �κ2
0 � 1, k2

0 ∼ 2γω00κ0 � 2γ2. At short times, we may approximate

sinh [μkγt]
sinϑk

∼ μkγt

sinϑk
= κkγt (8.98)

Fkk′ (t) = γt [κk + κk′ ] (8.99)

Initially the stochastic source grows linearly in time and is coherent over distances
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of order k−1
0 . At late times

Fkk′ (t) =
e(μk+μk′ )γt

2 sinϑk sinϑk′

(
eiϑk + eiϑk′

)
∼ F00e

2μ0γt exp
[
−μ0γt

k2
0

(
k2 + k′2)]

(8.100)

so not only the strength of the stochastic source grows exponentially, with a
time constant defined by the Floquet exponent, but also the size of the coherent
domains grows as a power of time (in this simple model, t1/2).

8.9 Final remarks

In this chapter, we have analyzed dissipation and fluctuations in the mean field
by viewing it as an effectively open system, interacting with the environment
provided by the quantum fluctuations of the same fundamental field. We shall
conclude by mentioning some concrete problems where this way of thinking is
fruitful in understanding their behaviors.

Physically, a quantum field develops a nontrivial expectation value through
the process of condensation. By including fluctuations in its dynamics, we see
the distinction between a condensate field and a mean field. The condensate is
now regarded as a classical subsystem, interacting with a quantum environment
and acquiring a stochastic component as a consequence.

Since in practice only long-wavelength–low-frequency modes condensate, one
may attempt to draw a sharp distinction between condensate and fluctuations
by defining an a priori separation between a long-wavelength condensate band,
and a short-wavelength fluctuation band. Then the former may be described
as a quantum open system. Eventually, if it actually condensates, the quantum
fluctuations in the condensate band may be neglected. This kind of approach to
condensate dynamics has been proposed by Gardiner and Anglin [GaAnFu01],
Gardiner and Davis [GarDav03], and by Stoof [Sto99] in the context of Bose–
Einstein condensates (BEC) (Chapter 13). Another example is in nuclear-particle
physics. The effect of high-frequency modes in the quark–gluon plasma (QGP)
on the (soft) gluon dynamics can be described by a Langevin equation, the so-
called “Boedeker equation” of a similar construct (Chapter 10). Both the BEC
and the QGP problems can be described by the coarse-grained effective action
(or its equivalent) discussed in Chapter 5, with better built-in self-consistency.

In a truly dynamical setting, any a priori separation between a condensate
and a fluctuations band may turn out to be artificial. Nonlinear effects in the
condensate will tend to create short-wavelength features even out of smooth ini-
tial conditions, as shown dramatically in the phenomena of condensate collapse.
Therefore it is better to avoid such a rigid distinction, but stress instead the
difference between a c-number (albeit stochastic) component and the environ-
ment provided by the remnant q-number fluctuations. This is the approach taken
in this chapter. An example we mentioned at the beginning of this chapter is
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250 Dissipation and noise in mean field dynamics

stochastic semiclassical gravity [HuVer03, HuVer04] the arena where many of
these ideas were developed and advanced. There, the Einstein–Langevin equa-
tion arises from incorporating the fluctuations of the quantum field as a noise
term in the semiclassical Einstein equation. By implication this views Einstein’s
theory as a mean-field theory, a novel conception which can shed some new light
on a radically different approach towards quantum gravity, via kinetic theory
and stochastic dynamics. For further exposition of these ideas, see [Hu99, Hu02,
Hu05].

Although the c-number part is not quite an open system – since no a priori
criteria for separation between system and environment have been established –
in practice it amounts to very much the same thing. Formally this is reflected by
the close analogy between the CTPEA and an influence functional. We therefore
say that, by adopting a description based on the fluctuating condensate, we turn
the original problem into an effectively open system.

More generally, the fact that the Langevin approach allows us to reproduce
the correct quantum Hadamard propagator makes this kind of approach useful in
any situation where the amplitudes of fluctuations, rather than their coherence
properties, are the main concern. In this light, the decoherence of the mean field
is both a subject of theoretical and practical interest – theoretical for reasons
stated above, practical because many physical phenomena originate from such
processes. Examples are cosmological structure formation and quantum phase
transitions. These topics will be treated in later chapters.
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9

Entropy generation and decoherence
of quantum fields

In Chapter 4 we studied particle creation in an external field, building from the
basic concepts and techniques of quantum field theory in a dynamical background
field or spacetime to the point where we can recognize that particle creation is in
general a non-Markovian process. We derived a quantum Vlasov equation for the
rate of particle creation in a changing electric field, and discussed cosmological
particle creation from a changing background spacetime. In these processes we
pointed out an intrinsic relation between the number and phase of a system in a
particular quantum state. We presented a squeezed-state description of particle
creation and discussed the conditions under which particle number may increase
and others when it may decrease. These discussions bring out some basic issues
in the statistical mechanics of quantum fields. In this chapter we will discuss two
of these, entropy generation from particle creation and decoherence of quantum
fields in the transition from quantum to classical. We will show that dissipation
and fluctuations (or noise) in quantum field systems are the primary causes
responsible in each of these processes.

In this chapter we shall adopt natural units � = c = kB = 1.

9.1 Entropy generation from particle creation

In discussing the problem of entropy generation from cosmological particle cre-
ation [Park69, Zel70, Hu82] we are confronted by the following apparent para-
dox: on the one hand textbook formulae suggest that entropy (S) is propor-
tional to the number (N) of particles produced (e.g. S ∝ N for photons). On the
other hand, from quantum field theory, particle pairs created in the vacuum will
remain in a pure state and one should not expect any entropy generation. Inquiry
into this paradox led to serious subsequent investigations into the statistical
properties of particles and fields [Hu84, HuKan87, HuPav86, Kan88a, Kan88b].
These early inquiries in the 1980s of the theoretical meaning of entropy of quan-
tum fields were conducive to gaining a better understanding of the statistical
mechanical properties of quantum fields and useful for practical calculations
such as for a relativistic plasma of particles and fields in heavy ion experi-
ments, or in finding the entropy content of primordial gravitons in the early
universe.
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252 Entropy generation and decoherence of quantum fields

9.1.1 Choice of representations and initial conditions

Many different schemes were proposed in the 1990s for entropy generation
from particle production. Brandenberger, Mukhanov and Prokopec [BrMuPr92,
BrMuPr93] suggested a coarse graining of the field by integrating out the
rotation angles in the probability functional, while Gasperini and Giovannini
[GasGio93, GasGioVen93] considered a squeezed vacuum in terms of new vari-
ables which give the maximum and minimum fluctuations, and suggested a coarse
graining by neglecting information about the subfluctuant variable (defined in
Section 4.2). Keski-Vakkuri [Kes94] studied entropy generation from particle
creation with many particle mixed initial states. Matacz [Mat94] considered a
squeezed vacuum of a harmonic oscillator system with time-dependent frequency,
and, motivated by the special role of coherent states, modeled the effect of the
environment by decohering the squeezed vacuum in the coherent state repre-
sentation. Kruczenski, Oxman and Zaldarriaga [KrOxZa94] used a procedure of
setting the off-diagonal elements in the density matrix to zero before calculating
the entropy. Despite the variety of coarse-graining measures used, in the large
squeezing limit (late times) these approaches all give an entropy of S = 2r per
mode, where r is the squeezing parameter. This result which gives the number
of particles created at late times agrees with that obtained earlier by Hu and
Pavon [HuPav86].

Noteworthy in this group of work is that the representation of the state of the
quantum field and the coarse graining in the field are stipulated, not derived.
What is implicitly assumed or glossed over in these approaches is the important
process of decoherence – the suppression of the off-diagonal components of a
reduced density matrix in a certain basis. It is a necessary condition for real-
izing the quantum-to-classical transition, see [Zur81, Zur82, Zur91, JooZeh85,
CalLeg85, UnrZur89, HuPaZh92, Zur93]. The deeper issues are to show explic-
itly how the entropy of particle creation depends on the choice of specific ini-
tial state and/or particular ways of coarse graining, and to understand how
natural or how plausible these choices of the initial state representation or the
coarse-graining measure are in different realistic physical conditions [Hu94a].1 To
answer these questions, one needs to work with a more basic theoretical frame-
work incorporating statistical mechanics and quantum fields. We shall treat the
decoherence and entropy/uncertainty issues with the quantum open system con-
cept [Davies76, LinWes90, Wei93] and the influence functional formalism intro-
duced in Chapters 3 and 5. Our discussion of the different ways of defining the
entropy of quantum fields is adapted from [CaHuRa00], while our open systems

1 This includes conditions when, for example, the quantum field is at a finite temperature or
is out of equilibrium, interacting with other fields, or that its vacuum state is dictated by
some natural choice, for example, in the earlier quantum cosmology regime such as the
Hartle–Hawking boundary condition leading to the Bunch–Davies vacuum in de Sitter
spacetime.
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9.1 Entropy generation from particle creation 253

treatment of entropy generation follows that of Koks et al. [Kok96, KoMaHu97].
Notable later work on related subjects includes that of Kiefer et al. [KiPoSt00]
and Campo and Parentani [CamPar04].

9.1.2 Coarse graining the environment in an open system

In the quantum Brownian motion paradigm the role of the Brownian particle
can be played by a detector, a designated mode of a quantum field, such as the
homogeneous inflaton field, or the scale factor of the background spacetime (as
in minisuperspace quantum cosmology), while the bath could be a set of coupled
oscillators, a quantum field, or just the high-frequency sector of the field, as
in stochastic inflation. The statistical properties of the system are depicted by
the reduced density matrix (rdm) formed by integrating out the details of the
bath. One can use the rdm or the associated Wigner function to calculate the
statistical average of physical observables of the system, such as the uncertainty
or the entropy functions. The von Neumann entropy of an open system is given
by

SCG = −Tr[ρR(t) ln ρR(t)], (9.1)

The entropy function constructed from the reduced density matrix (or the
reduced Wigner function) of a particular state measures the information
loss of the system in that state to the environment (or, in the phraseology
of [ZuHaPa03], the “stability” characterized by the loss of predictive power rela-
tive to the classical description). One can study the entropy increase for a specific
state, or compare the entropy at each time for a variety of states characterized by
the squeeze parameter. Interaction with the environment changes the system’s
dynamics from unitary to dissipative, the energy loss being measured by the
viscosity function, which governs the relaxation of the system into equilibrium
with the environment. The entropy function for such open systems can also be
used [AndHal93, Hal93, AnaHal95, HuZha93b, HuZha95, ZuHaPa03] as a mea-
sure of how close different quantum states can lead to a classical dynamics. For
example, the coherent state being the state of minimal uncertainty has the small-
est entropy function [ZuHaPa03] and a squeezed state in general has a greater
uncertainty function [HuZha93b, HuZha95]. One can thus use the uncertainty to
measure how classical or “nonclassical” a quantum state is.

With regard to the issue of entropy of quantum fields raised at the beginning,
we can ask, what is the difference of this more rigorous definition based on open-
system dynamics and those obtained with more ad hoc prescriptions?

9.1.3 Differences in various definitions of entropy

Consider, for example a representative list of papers on the entropy of quan-
tum fields, such as [Hu84, HuPav86, HuKan87, Kan88a, Kan88b, BrMuPr92,
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254 Entropy generation and decoherence of quantum fields

BrMuPr93, GasGio93, GasGioVen93]. We see that in some cases the entropy
refers to that of the field, and is obtained by coarse graining some informa-
tion of the field itself, such as making a random phase approximation, adopt-
ing the number basis, or integrating over the rotation angles. The entropy
of [HuZha93b, HuZha95, AndHal93, Hal93, AnaHal95, ZuHaPa03], on the other
hand, refers to that of the open system and is obtained by coarse graining the
environment. Why is it that for certain generic models in some common limit
(late time, high squeezing), both groups of work obtain the same result? Under
what conditions would they differ? Understanding this relation could provide a
more solid theoretical foundation for the intuitively argued definitions of field
entropy.

At the formal level, supposing we have some system which has been decom-
posed into two subsystems, it is well known (e.g. [Pag93]) that between the
entropies S1, S2 of the two subsystems, and that of the total system, S12, a
triangle inequality holds:

|S1 − S2| ≤ S12 ≤ S1 + S2 (9.2)

In particular, if the total system is closed and so in a pure state, then it has zero
entropy, so that the two subsystems necessarily have equal entropies.2 Hence,
asking for the entropy change of a system is equivalent to asking for the entropy
change of the environment it couples to, if the overall closed system is in a pure
state. Now consider the case of the system as a detector (or a single mode of a
field) and the environment as the field. The information lost in coarse graining the
field which was used to define the field entropy in the above examples is precisely
the information lost as registered in the particle detector, which shows up in the
calculation of entropy from the reduced density matrix. The bilinear coupling
between the system and the bath as used in the simple quantum Brownian motion
models also ensures that the information registered in both sectors is directly
commutable. This explains the commonalities. However, not all coarse graining
and coupling will lead to the same results, as we shall explicitly demonstrate in
some examples below.

Another important feature of the entropy function obtained in this more rig-
orous open-systems definition which is not obvious in other ad hoc approaches is
that it depends nonlocally on the entire history of the squeezing parameter. This
can be seen from the fact that the rate of particle creation varies in time and its
effect is history dependent [HarHu79, CalHu87]. We have seen this behavior in
Chapter 4. Existing methods of calculating the entropy generation give results
which only depend on the squeezing parameter at the time when a particular

2 This could be the reason why the derivation of black hole entropy (e.g. [Bek94]) can be
obtained equivalently by computing the entropy of the radiation (e.g. [FroNov93]) emitted
by the black hole, or by counting the internal states (if one knows how) of the black hole
(e.g. [ZurTho85, Bek83, BekMuk95, StrVaf96]). Physically one can view what happens to
the particle as a probe into the state of the field.
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9.2 Entropy of quantum fields 255

coarse graining (or dropping the off-diagonal components of the density matrix)
is implemented.

In Chapter 3 we introduced open quantum systems in terms of influence
functionals, following the treatment of [HuPaZh92, HuMat94]. In Chapter 4
we introduced squeezed quantum system, using a general oscillator Hamilto-
nian as an example, following the treatment of [HuKaMa94, HuMat94]. Here
we apply these methods to calculate the entropy and uncertainty functions
and then specialize to an oscillator system, recovering en route the results of
[HuZha93b, HuZha95, AndHal93, Hal93, AnaHal95, HuZha93b, HuZha95] for
the uncertainty function at finite temperature, and of [ZuHaPa03] on the entropy
of coherent states. These results are also useful for the consideration of entropy
of particles created in the early universe (see, e.g. [KoMaHu97] for a minimally
coupled scalar field mimicking a graviton field in a de Sitter universe).

9.2 Entropy of quantum fields

Our discussion in this chapter started with the posing of a deceptively simple
question: Is there entropy generation in particle creation? Attempting to answer
this question uncovers a host of basic issues in the statistical mechanics of quan-
tum fields. Here we briefly describe the entropy functions obtained from two
different types of considerations and operations: The first type is for particle
creation in free quantum fields. The main point is the choice of representations
and the specification of the initial state. The second type is for particle creation
in interacting quantum fields.

To begin with, we note that for a closed system with a unitarily evolving
quantum field its dynamics is governed by the quantum Liouville equation, and
the von Neumann entropy constructed from the density matrix of the closed
system,

SVN = −Tr[ρ(t) ln ρ(t)], (9.3)

is exactly conserved. One can introduce approximations or assumptions to ren-
der a closed system open or effectively open (see Chapter 1). We distinguish
two situations: If there is a justifiable separation of macroscopic and microscopic
time-scales, one can adopt the theoretical framework of quantum kinetic field
theory. If one assumes an initial factorization condition for the density matrix
(as in the “molecular chaos” assumption), one obtains a relativistic Boltzmann
equation. The Boltzmann entropy SB defined in terms of the phase space distri-
bution f(k,X) for quasiparticles can in this case be shown to satisfy a relativistic
H-theorem [GrLeWe80, CalHu88]. We want to generalize this to a correlation
entropy for interacting quantum fields.

However, in the case where there does not exist such a separation of time-
scales, how does one define the entropy of a quantum field? For nonperturbative
truncations of the dynamics of interacting quantum fields, this is a nontrivial
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256 Entropy generation and decoherence of quantum fields

question [HuKan87]. Intuitively, one expects that any coarse graining which leads
to an effectively open system with irreversible dynamics will also lead to the
growth of entropy. These operations can be systematically carried out by way
of the projection operator techniques. A projection operator P projects out the
irrelevant degrees of freedom from the total system described by the density
operator ρ, yielding the reduced density matrix ρR

ρR(t) = Pρ(t) (9.4)

There exists a well-developed formalism for deriving the equation of motion of
the relevant degrees of freedom, and in terms of it, the behavior of the coarse-
grained entropy (9.1), which will in general not be conserved [Nak58, Zwa60,
Zwa61, Mor65, WilPic74, Gra82, Kam85, GoKaZi04, GorKar04, Bal75]. The
projection operator formalism can be used to express the slaving of higher cor-
relation functions in the correlation hierarchy. From it one can define an entropy
in effectively open systems (see, e.g. [Ana97a, Ana97b]). (So far it has only been
implemented within the framework of perturbation theory.) Another powerful
method adept to field theory is the Feynman–Vernon influence functional for-
malism developed in Chapter 5. We shall use it to illustrate how to define the
entropy functions for quantum open systems [KoMaHu97].

9.2.1 Entropy special to choice of representation

and initial conditions

We begin with the simpler yet more subtle case of a free quantum field. Take for
example particle creation in a time-varying background field or in an expand-
ing universe studied in Chapter 4. Entropy is generated in the particle pro-
duction process from the parametric amplification of vacuum fluctuations. The
focal point is a wave equation with a time-dependent natural frequency for
the amplitude function of a normal mode. (The same condition arises for an
interacting field, such as the λΦ4 theory in the Hartree–Fock approximation
or the O(N) field theory at leading order in the large-N expansion.) Since
the underlying dynamics is clearly unitary and time-reversal invariant in this
case, a suitable coarse graining leading to entropy growth is not trivially evi-
dent. Hu and Pavon [HuPav86] made the observation that a coarse graining is
implicitly incorporated when one chooses to depict particle numbers in the n-
particle Fock (or “N”) representation or to depict the phase coherence in the
phase (or “P”) representation. This idea has been further developed and clari-
fied [Kan88a, Kan88b, KoMaHu97, KlMoEi98]. The source of entropy generation
for free fields is very different from that of interacting fields (e.g. the growth of
correlational entropy, described below) in that particle creation from parametric
amplification depends sensitively on the choice of representation for the state
space of the parametric oscillators, and the specificity of the initial conditions.
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9.2 Entropy of quantum fields 257

9.2.2 Entropy from projecting out irrelevant variables

In contrast to entropy growth resulting from parametric particle creation from
the vacuum, entropy growth due to particle interactions in quantum field theory
has a very different physical origin. A coarse graining scheme was proposed by Hu
and Kandrup [HuKan87] for these processes. Expressing an interacting quantum
field in terms of a collection of coupled parametric oscillators, their proposal is
to define a reduced density matrix by projecting the full density operator onto
each oscillator’s single-oscillator Hilbert space in turn,

�(k) ≡ Trk′ �=kρ (9.5)

and defining the reduced density operator as the tensor product Π of the pro-
jected single-oscillator density operators �(k),

ρR ≡ Πk�(k) (9.6)

The coarse-grained (Hu–Kandrup) entropy by projection is then just given by
equation (9.1), from which we obtain

SHK = −
∑
k

Tr[�(k) ln �(k)] (9.7)

It is interesting to observe that for a spatially translation-invariant density matrix
for a quantum field theory which is Gaussian in the position basis, this entropy
is just the von Neumann entropy of the full density matrix, because the spa-
tially translation-invariant Gaussian density matrix separates into a product over
density submatrices for each k oscillator. This projection (Hu–Kandrup) coarse
graining, like the correlation-hierarchy (Calzetta–Hu) coarse-graining scheme
described below, does not choose or depend on a particular representation for the
single-oscillator Hilbert space. It is sensitive to the establishment of correlations
through the explicit couplings.

9.2.3 Entropy from slaving of higher correlations

We presented in Chapter 6 a general procedure for obtaining coupled equa-
tions for the correlation functions at any order l in the correlation hierarchy,
which involves a truncation of the master effective action at a finite order in
the loop expansion [NorCor75, CalHu95a, CalHu00, Ber04a]. By working with
an l loop-order truncation of the master effective action, one obtains a closed,
time-reversal invariant set of coupled equations for the first l + 1 correlation
functions, φ̂, G,C3, . . . , Cl+1. In general, the equation of motion for the highest
order correlation function will be linear, and thus can be formally solved using
Green’s function methods. The existence of a unique solution depends on sup-
planting this with some causal boundary conditions. When the resulting solution
for the highest correlation function is back-substituted into the evolution equa-
tions for the other lower-order correlation functions, the resulting dynamics is
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258 Entropy generation and decoherence of quantum fields

not time-reversal invariant, but generically dissipative, as measured by the cor-
relation entropy. Thus, as was described before, with the slaving of the higher-
order correlation functions we have rendered a closed system (the truncated
equations for correlation functions) into an effectively open system. This coarse-
graining scheme and the associated correlation entropy defined for an interacting
quantum field has the benefit that it can be implemented in a nonperturbative
manner. In addition to dissipation, one expects that an effectively open sys-
tem will manifest noise/fluctuations [NorCor75, CalHu95a, CalHu00, Ber04a]
arising from the slaving of the four-point function to the two-point function in
the symmetry-unbroken λΦ4 field theory. Thus a framework exists for exploring
the irreversibility and fluctuations within the context of a unitary quantum field
theory, using the truncation and slaving of the correlation hierarchy. The effec-
tively open system framework is useful for precisely those situations, where a
separation of macroscopic and microscopic time-scales (which would permit an
effective kinetic theory description) does not exist, such as is encountered in the
thermalization issue.

9.3 Entropy from the (apparent) damping of the mean field

We shall discuss these two situations in more detail with examples in the following
two sections. In the first case we consider entropy generation in a closed system
of a free quantum field, following the treatment of [HKMP96, KlMoEi98]. In the
next section we consider entropy generation in an open system interacting with
an environment.

Consider the dynamics of a closed system comprising of a mean field and the
fluctuation fields. The time evolution of a closed system is Hamiltonian. The gen-
eral time-dependent Gaussian density matrix of the system may be parameter-
ized by the canonical variables, as we have seen in Chapter 4. Yet, the evolution
in some circumstances can manifest apparent irreversible energy flow from the
coherent mean fields to the fluctuating quantum modes and give the appearance
of quantum decoherence of the mean field.

So what causes the appearance of damping in the dynamics of the mean field
of such systems? To highlight the essential physics we note that this process is
analogous to the Landau damping of collective modes in a collisionless electro-
magnetic plasma described by the Vlasov equation. One can understand this
damping and decoherence as the result of dephasing of the rapidly varying fluc-
tuations and particle production in the time-varying mean field, as shown in
Chapter 4. There, when we show the derivation of the quantum Vlasov equation
for the semiclassical scalar QED following [KlMoEi98], we encounter a typical
situation in nonequilibrium statistical mechanics, namely, if there is a clear sep-
aration of time-scales amongst various processes going on in a system, we can
seek an effective description of a particular subsystem by coarse graining or
“projecting-out” the other subsystems. In the example at hand if we are only
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9.3 Entropy from the (apparent) damping of the mean field 259

interested in the behavior of the slowly varying particle number Nk, the fast
changing correlations Ck can be projected out.3 The effect of the environment on
the open system is calculated through its back-action on the subsystem of inter-
est. Here we focus on the statistical mechanics of particle creation, highlighting
the non-Markovian nature of these processes, and seek a physical definition of
entropy for such quantum field systems.

9.3.1 Time-scales

The essential physical ingredient in passing from the quantum evolution of the
particle-field system to the kinetic description by the quantum Vlasov equation is
the dephasing phenomenon, i.e. the near exact cancellation of the rapidly varying
phases of the quantum mode functions contributing to the mean electric current
of the created pairs. This cancellation depends in turn upon a clean separation
of the following time-scales (refer to Chapter 4 for notation): [KlMoEi98]

(1) τqu, the inverse of the natural frequency of a normal mode, rapidly oscillating.
It is the shortest time-scale reflecting the microscopic quantum theory.

(2) τcl, the inverse of Ṅk, measures the slowly varying mean number of particles
in the adiabatic number basis.

(3) τpl, of the collective plasma oscillations of the electric current and mean
electric field produced by those particles.

In the limit τqu � τcl quantum coherence (reflected in the phase or correlations)
between the created pairs can be neglected because of efficient dephasing and
a (semi)classical local kinetic approximation to the underlying quantum the-
ory becomes possible. In the limit τcl � τpl the electric field may be treated as
approximately constant over the interval of particle creation. Thus when both
inequalities apply we can replace the true nonlocal source term which describes
particle creation in field theory by one that depends only on the instantaneous
value of the quasi-stationary electric field, at least over very long intervals of
time.

3 Note that projecting out or coarse graining does not mean elimination or truncation.
The information of the “irrelevant” variables in the other subsystems (constituting the
environment) is retained fully in the integro-differential equation for the subsystem of
special interest to us (the “relevant” variable), where the nonlocal kernels retain all the
information about the subsystem and the environment. One can attempt to solve it, but
because of the memory functions, it requires complicated and elaborate integration
procedures. Depending on what specific physical information is targeted, one can devise
coarse-graining measures to describe the effect of the environment on the system thus
leading to a simplification of this integro-differential equation. One extreme yet familiar
example is a heat bath where the environment is so grossly coarse grained that only
temperature enters into the overall effect on the system (thus making it possible to use the
canonical ensemble in equilibrium statistical mechanics, and linear response theory in
near-equilibrium conditions).
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260 Entropy generation and decoherence of quantum fields

Making use of these local approximations, one can find [KlMoEi98] an exact
analytic expression for the spontaneous pair creation rate d

dtNk(t) for a constant
electric field in real time, in agreement with the Schwinger result [Sch51] in both
its exponential and nonexponential factors. Then by making use of an asymp-
totic expansion of the exact analytic result for constant fields, uniformly valid
everywhere on the real time axis, one obtains a useful local approximation to the
spontaneous pair creation rate for the slowly varying electric fields. A numerical
comparison [KlMoEi98] between the quantum and local kinetic approaches to
the dynamical back-reaction problem shows remarkably good agreement, even
in quite strong electric fields, eE � m2c3/�, over a large range of times.

9.3.2 Density matrix

After the elimination of the rapid variables Ck defined in (4.113) in favor of the
slow variables Nk one can construct the density matrix in the adiabatic number
basis easily [KlMoEi98]. In a pure state (setting ζ = 1 in equation (4.48)) the
only nonvanishing matrix elements of ρ are in uncharged pair states with equal
numbers of positive and negative charges, �k = n

(+)
k = n

(−)
k , with �k the number

of pairs in the mode k, viz.

〈2�′k|ρ|2�k〉pure = ei(�k
′−�k)ϑk(t) sech2rk(t) (tanh rk(t))�k

′+�k (9.8)

where the magnitude of the Bogoliubov transformation, rk(t), is defined in equa-
tion (4.27) and its phase, ϑk(t), is determined by

αkβ
∗
ke

−2iΘk = −sinh rk cosh rk eiϑk (9.9)

Hence the off-diagonal matrix elements �′ �= � of ρ are rapidly varying on the
time-scale τqu of the quantum mode functions, while the diagonal matrix ele-
ments �′ = � depend only on the adiabatic invariant average particle number
via

〈2�k|ρ|2�k〉pure≡ρ2�k =sech2rktanh2�krk =
|βk|2�k

(1 + |βk|2)�k+1
=

N �k
k

(1 + Nk)�k+1

∣∣∣∣
(9.10)

and are therefore much more slowly varying functions of time. The average num-
ber of positively charged particles (or negatively charged antiparticles) in this
basis is given by

∞∑
�k=0

�kρ2�k = Nk (9.11)

Thus the diagonal and off-diagonal elements of the density matrix in the adia-
batic particle number basis stand in precisely the same relationship to each other
and contain the same information as the particle number Nk and pair correlation
Ck respectively.
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9.3 Entropy from the (apparent) damping of the mean field 261

9.3.3 Entropy generation

In the density matrix (9.10) the diagonal elements ρ2�k may be interpreted (for
a pure state) as the independent probabilities of creating �k pairs of charged
particles with canonical momentum k from the vacuum. This corresponds to
disregarding the intricate quantum phase correlations between the created pairs
in the unitary Hamiltonian evolution. When physics is expressed in the adiabatic
particle number basis (the Fock or N representation) the phase information is
ignored. The quantum density matrix in this representation produces an entropy
function which reflects that associated with particle creation but says nothing
about the evolution of the quantum phase or correlation. This illustrates the
crucial role played by the choice of representations in the definition of entropy
associated with particle creation [HuPav86].

Results obtained from neglecting quantum phase are known to be quite accu-
rate for long intervals of time in the back-reaction of the current on the electric
field producing the pairs, because when the current is summed over all the k
modes, the phase information in the pair correlations cancels very efficiently.
Thus for practical purposes one can approximate the full Gaussian density matrix
over large time intervals by its diagonal elements only, in this basis.

Let us examine the reduced von Neumann entropy constructed from the diag-
onal density matrix (9.10)

SN (t) = −
∑
k

∞∑
�k=0

ρ2�k ln ρ2�k (9.12)

Upon substituting (9.10) into this, the sums over �k are geometric series which
are easily performed. The von Neumann entropy of this reduced density matrix

SN (t) =
∑
k

{(1 + Nk) ln(1 + Nk) −Nk lnNk} (9.13)

is precisely equal to the Boltzmann entropy of the single particle distribution
function Nk(t). Hence

d

dt
SN =

∑
k

ln
(

1 + Nk

Nk

)
d

dt
Nk (9.14)

increases if the mean particle number increases. This is always the case on average
for bosons if one starts with vacuum initial conditions, since |βk|2 is necessarily
nonnegative and can only increase if it is zero initially [Kan88a, Kan88b]. Locally,
or once particles are present in the initial state, particle number or the entropy
(9.14) does not necessarily increase monotonically in time.

Hence the notion of entropy associated with particle creation, and the lore that
it increases in time, is only valid for spontaneous production of bosons from an
initial vacuum state. This function associated with fermions, and that associated
with stimulated production of both boson and fermions, can decrease in time.
This we have remarked in Chapter 4.
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262 Entropy generation and decoherence of quantum fields

9.3.4 Decoherence functional

Decoherence is also addressable within the same framework. Consider the case,
where ω(t) is a function of one external degree of freedom, the mean field A(t).
If only the evolution of A is of interest, then the fluctuating modes described
by f(t) may be treated as the “environment.” To solve for the evolution of
the reduced density matrix of A, we compute the influence functional of two
trajectories A1(t) and A2(t) corresponding to two different evolution operators
U1(t) and U2(t) defined by

F12(t) ≡ exp(iΓ12(t)) ≡ Tr
(
U1(t)ρ(0)U†

2 (t)
)

(9.15)

Explicit evaluation may be carried out using (4.1.53). Restricting again to pure
states with vanishing q̄ mean fields we find

Γ12

∣∣∣∣
ζ=1

q̄=p̄=0

=
−i

2
ln

{
i�

|f1f2|

(
f1f

∗
2

f1ḟ∗
2 − ḟ1f∗

2

)}
(9.16)

in terms of the two sets of mode functions f1(t) and f2(t) which satisfy (4.54)
and (4.17). This Γ12 is precisely the closed time path (CTP) effective action
functional which generates the connected real time n-point vertices in the
quantum theory [CHKMPA94]. For a pure initial state, the absolute value
of F12 measures the overlap of the two different evolutions at some time t,
beginning with the same initial |ψ(0)〉. In mean field theory, instead of eval-
uating Γ12 for two arbitrary trajectories, the evaluation is over trajectories
determined by the self-consistent evolution of the closed system, beginning
with two different initial mean fields. The intimate relation between the CTP
effective action functional and the decoherence functional was pointed out by
[CalHu93, CalHu95a, CalHu94, HuMat94, Ana97a, Ana97b].

9.4 Entropy of squeezed quantum open systems

In Chapter 3 we studied quantum open systems with the harmonic oscillator
Brownian motion model (QBM). In Chapter 4 we studied squeezed quantum
systems as exemplified by particle creation in a dynamical background (with
a Lagrangian (4.233)) and squeezed quantum open system exemplified by a
parametric oscillator QBM (with Lagrangian (3.133)). Now we inquire about
the entropy of squeezed quantum open systems. We seek a definition of the
entropy S and the uncertainty function of a squeezed system interacting with
a thermal bath, and study how they change in time by following the evolu-
tion of the reduced density matrix in the influence functional formalism. As
examples, we calculate the entropy of two exactly solvable squeezed systems: an
inverted harmonic oscillator and a scalar field mode evolving in an inflationary
universe. For the inverted oscillator with weak coupling to the bath, at both
high and low temperatures, S → r, where r is the squeeze parameter defined in
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9.4 Entropy of squeezed quantum open systems 263

equation (4.217). For a massless minimally coupled scalar field in the de Sitter
universe, S → (1 − c)r at high temperatures where c = γ0/H, γ0 is the coupling
to the bath and H the Hubble constant. These two cases confirm previous results
based on more ad hoc prescriptions for calculating entropy. But for such a scalar
field at low temperatures, the de Sitter entropy S → (1/2 − c)r is noticeably dif-
ferent. This result, obtained from a more rigorous treatment, shows that factors
usually ignored by the conventional approaches, i.e. the nature of the environ-
ment and the coupling strength between the system and the environment, are
important. Our treatment here is based on the results obtained in Chapter 5, Sec-
tion 5.4, derived from the work of Hu, Koks and Matacz [KoMaHu97, HuMat94].

9.4.1 Entropy from the evolutionary operator

for reduced density matrix

Consider again the quantum Brownian model discussed in Chapter 3. Our system
is modeled by a harmonic oscillator (with coordinate x) with time-dependent
mass (M), cross-term (E) and natural frequency (Ω) coupled bilinearly with an
environment modeled by many oscillators (with coordinates qn) of similar nature
(mn, εn, ωn). The total Lagrangian is given by equation (3.133).

Assume the systems are initially in the vacuum state, so that their density
matrix is Gaussian. Starting with an initial Gaussian reduced density matrix in
the form

ρr(xi x
′
i ti) ∝ e−λx2

i+λ×xix
′
i−λ∗x′2

i (9.17)

it is evolved by action of the evolutionary operator Jr for the reduced density
matrix of the parametric quantum Brownian oscillator defined in (3.49) into

ρr(x, x′, t) = Ne−Au2−2iBXu−4CX2
(9.18)

where x, x′ = X ± (u/2) and the A, B, C functions enter into the evolutionary
operators Jr given by (3.135). They are in turn dependent on the aij , bk coeffi-
cients given by (4.294), which are solutions to the differential equations for the
coefficients of the generalized master equation (3.150) [HuPaZh92, HuPaZh93a].
Here,

N = 2
√
C/π (9.19)

A = a22 +
1
D

{
[(2λr + λ×)/4 + a11] b23 + (2λi + b4) a12 b3 − (2λr − λ×)a2

12

}
(9.20)

B = −b1/2 +
1
D

[(λi + b4/2) b2 b3 − (2λr − λ×)a12 b2] (9.21)

C =
1

4D
(2λr − λ×) b22 (9.22)

D = 4|λ|2 − λ2
× + 4 (2λr − λ×)a11 + 4λi b4 + b24 (9.23)
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264 Entropy generation and decoherence of quantum fields

where λr, λi are the real and imaginary parts of λ. These expressions form the
basis of calculations for squeezed quantum open systems. The reduced density
matrix can be obtained by using the expressions above, which depend on χ =
α + β, the sum of the Bogoliubov coefficients for the effective oscillator. For more
details refer to Chapter 4, Section 4.7 [HuMat94, KoMaHu97].

The entropy of a field mode has been calculated by Joos and Zeh [JooZeh85,
BKLS86] and others. It can be derived from the reduced density matrix at time
t by using the von Neumann entropy (9.3), and is given by

S =
−1
w

[w lnw + (1 − w) ln(1 − w)] � 1 − lnw if w → 0 (9.24)

where

w ≡ 2
√

C/A

1 +
√
C/A

(9.25)

A simpler quantity to use is the linear entropy:

Slin ≡ −Tr ρ2 = −
√
C/A (9.26)

and S = 0 → ∞ is equivalent to Slin = −1 → 0, both strictly increasing. Then if
Slin → 0 we have

S → − ln |Slin| + 1 − ln 2, i.e. Slin → −1
2
(e1−S) (9.27)

As an example, suppose we have a system in an initially pure Gaussian state
(λ× = 0), so that noise and dissipation are absent: γ0 = 0, defined in (3.142). In
this case, we have

a11 = a12 = a22 = 0 (9.28)

so that C/A = 1 and hence S = 0, as expected.

9.4.2 Measures of fluctuations and coherence

At this point it is useful to supplement our presentations of squeezed quantum
open systems in Chapters 3–5 by a discussion of the relation between fluctua-
tions, coherence and entropy. In some cases the description for the dynamics of
a squeezed (closed) quantum system can be simplified by expressing the den-
sity matrix in terms of the so called super- and subfluctuant variables uSF, vSF

obtained as real linear combinations of the canonical variables q, p:

uSF = −κ sinφ q + cosφ p (9.29)

vSF = cosφ q +
sinφ

κ
p (9.30)

This rotation eliminates the cross-terms in the Wigner function. We fix the linear
combinations such that one variable (u, the superfluctuant) grows exponentially
while the other decays exponentially.
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9.4 Entropy of squeezed quantum open systems 265

Writing the density matrix in the uSF basis, e.g. ρ(uSF, u
′
SF), one can then

compute the fluctuations in uSF and vSF as (see Section IIIC of [KoMaHu97] for
details)

Δu2
SF = 〈u2

SF〉 − 〈uSF〉2 =
ς�

2C
Δv2

SF =
ς

2C
(9.31)

where ϕ, ς,� are defined as

ϕ ≡ κ

2
cotφ, ς ≡ sin2 φ

κ2

[
4AC + (B − ϕ)2

]
(9.32)

� ≡ 4AC + (4ϕς + B − ϕ)2

4ς2
(9.33)

As a measure of coherence we note from (9.18) that a large A coefficient means
that the density matrix is strongly peaked along its diagonal, i.e. there is very
little coherence in the system. A measure of coherence was defined in [Mat94]
as a squared coherence length L2, equal to the coefficient of −u2 divided by 8,
so that a large L2 means a high degree of coherence in the system. With this
definition of L2, we have

L2
u =

ς�

2A
, L2

v =
ς

2A
(9.34)

We can thus relate the coherence lengths and fluctuations to the entropy of
the system by

L2
u

Δu2
SF

=
L2
v

Δv2
SF

= S2
lin =

C

A
(9.35)

(Note that linear entropy is negative by definition in order for it to increase with
S. Then as Slin increases, S2

lin will decrease.) Also the uncertainty relation for
uSF, vSF becomes

Δu2
SFΔv2

SF =
1

S2
lin

[
1
4

+
(4ϕς + B − ϕ)2

16AC

]
(9.36)

For the free field the last term in the square brackets is zero while Slin = −1
(since S = 0), so that ΔuSFΔvSF = 1/2.

9.4.3 Entropy and uncertainty functions of an inverted oscillator

We can now demonstrate how the previous results are used. An oscillator with
time-independent frequency Ω coupled to a thermal ohmic bath of like oscillators
has local dissipation (i.e. D ∝ δ′(t− t′)), and at T → ∞ the noise becomes white
(N ∝ δ(t− t′)). The entropy in this simple case is easily compared with known
results in equilibrium statistical mechanics: the entropy at high temperature is

S → 1 + ln
T

Ω
(9.37)

We can also use this entropy expression to investigate the claim by Zurek,
Habib and Paz [ZuHaPa03] (in the small γ0 limit by using a Wigner function
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266 Entropy generation and decoherence of quantum fields

approach) that for large times the state of least entropy for the oscillator (with
a time-independent natural frequency) is the coherent state, at least for white
noise and local dissipation. Since the coherent state is the “most classical-like”
quantum state, this was invoked as an indication of quantum to classical transi-
tion. Equivalently one can use the uncertainty function as a measure. This was
shown by Hu and Zhang [HuZha93b, HuZha95], and Anderson, Anastopoulos
and Halliwell [AndHal93, Hal93, AnaHal95].

The static inverted harmonic oscillator (IHO) is perhaps the simplest squeezed
system. It has been used as a model to study quenching in a quantum phase
transition (see the next section). It also models the zero mode of the inflaton
field in new inflation (see Chapter 15). Its Lagrangian is:

L(t) =
1
2
[ẋ2 + Ω2x2] (9.38)

We touched on this case in Chapter 4, Section 4.7 as an example of a squeezed
quantum system. Suppose this system is coupled to the usual environment of
harmonic oscillators in a thermal state, with coupling constant c(s) = 1. Then
the equivalent oscillator we consider has unit mass, no cross-term and frequency

Ω2
eff = −Ω2 − γ2

0 ≡ −κ2 (9.39)

so that from (4.239) the sum of its Bogoliubov coefficients is (taking ti = 0, recall
z ≡ κt, σ ≡ κs)

χ(t) = cosh z − isinh z (9.40)

Hence we have

α = cosh z, β = −isinh z (9.41)

so that at late times as z → ∞, r → z. To determine the entropy generated we
need to calculate the various quantities in the propagator coefficients. For white
noise these coefficients have analytic solutions, but for zero temperature we need
to calculate them numerically.

The bi’s are independent of the temperature, and are found to be (where here
and elsewhere a carat will denote division by κ)

b{1
4} = κ(± coth z − γ̂0), b{2

3} =
±κe±γ̂0z

sinh z
(9.42)

High temperature

White noise is given by N(s, s′) = 4γ0T δ(s− s′), or N(σ, σ′) = 4γ̂0κ
2Tδ(σ −

σ′). Using these, Kok, Matacz and Hu derived the expressions for the aij coeffi-
cients. Note that γ̂0 = γ0/κ < 1; however if we assume small dissipation (γ̂0 � 1)
we can write down large time limits of these quantities:

a11 → T γ̂0

1 − γ̂0
, a12 → 2Te−(1−γ̂0)z

1 + γ̂0
, a22 → T γ̂0

1 + γ̂0

b{1
4} → κ(±1 − γ̂0), b{2

3} → ±2κ e−(1∓γ̂0)z (9.43)
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9.4 Entropy of squeezed quantum open systems 267

We can then calculate large time limits of the density matrix coefficients
from (9.19):

A → a22, B → −b1/2, C → b22
16a11

(9.44)

These coefficients are independent of the initial conditions, which might be
expected since the dissipation is acting to damp out any late time dependence
on these initial conditions. We have

Slin = −
√

C

A
→ −κ2e−z

2γ0T
(9.45)

From (9.27) and the fact that r → z as z → ∞ we obtain

S → r + 1 + ln
Tγ0

κ2
(9.46)

Zero temperature

At T = 0, the action of the environment is due to quantum effects only. Analytic
expressions for the aij , bk coefficients in this case can be found in [KoMaHu97].

At T = 0, for weak dissipation, γ̂0 � 1 we have at late times,

A → a22, B → −b1/2, C → b22
16a11

(9.47)

Again the coefficients are independent of the initial conditions. Since b2 is
unchanged from the high-temperature case and a11, a22 tend toward constants,
we see that

Slin → −κe−z

2
√
a11a22

(9.48)

and so again from (9.27) and since at late times, r → z,

S → r + 1 + ln
√
a11a22

κ
(9.49)

In conclusion, approaching the problem of entropy and uncertainty from the
open system viewpoint enables one to see explicitly their dependence on the
coarse graining of the environment and the system–environment couplings. It also
exposes the relation between quantum and classical descriptions – it is through
decoherence that the quantum field becomes classical [CalHu94, AngZur96]. This
is the subject of the next section.

9.4.4 Entropy from graviton production in de Sitter spacetime

We now turn to an example in cosmology, that of an inflationary universe (see
Chapter 15). We want to calculate the entropy of a massless scalar field minimally
coupled to gravity in a de Sitter spacetime by examining the evolution of the
density matrix. As we shall see, it is a generally solvable squeezed system.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


268 Entropy generation and decoherence of quantum fields

Consider a massless minimally coupled scalar field in de Sitter space,

Lnew(η) =
∑ 1

2

[
χ′

kχ−k +
2
η
χkχ

′
−k − χkχ−k

(
k2 − 1

η2

)]
(9.50)

We also use a spectral density [Wei93] of the form

I(ω, η, η′) =
2γ0

πH

ω√
ηη′

(9.51)

so that c(η) = 1/
√−Hη. This corresponds to an ohmic bath with a time-

dependent coupling to the system. Since γ0/H is dimensionless we rewrite it
as c, not to be confused with c(η). Incorporating the bath gives the equivalent
oscillator with M = 1, E = 1/η and frequency

Ω2
eff = k2 − 1 + c2

η2
(9.52)

With z = kη, σ = ks we can write the dynamical equation for the quantity χ

introduced in Chapter 4, Section 4.7 as

χ′′(z) +
(

1 − 2 + c2

z2

)
χ = 0

χ(zi) = 1, χ′(zi) = −i− 1/zi (9.53)

where z < 0. The solution of this equation can be constructed using Bessel func-
tions whose index is a function of c; however since we are interested in small c
we take the solution to be approximately that of the same equation but with c

set to zero. This simplifies things greatly:

χ(z) =
(

1 +
i

2zi

)
f(z) +

i

2zi
f∗(z) (9.54)

where

f(z) ≡
(

1 − i

z

)
ei(zi−z) (9.55)

We can further simplify χ by using a very early initial time, setting zi → −∞.
We also disregard the phase in the resulting expression for χ, since this is not
expected to make any difference to physical quantities. In this case we obtain a
new function which we rename χ:

χ(z) →
(

1 − i

z

)
e−iz (9.56)

The Bogoliubov coefficients can now be found from (4.241):

α =
(

1 − i

2z

)
e−iz, β =

−i

2z
e−iz (9.57)

and so at late times

r → − ln |z| (9.58)

This result was also obtained in [Mat94] using a different method.
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9.4 Entropy of squeezed quantum open systems 269

In [KoMaHu97] the expressions for aij , bk were derived to leading order in z,
and from them the authors show that the coefficients A,B,C tend to the same
form as for the static oscillator.

High temperature

We begin by writing

N = 4cc2(s)Tδ(s− s′) (9.59)

=
−4ck2T

σ
δ(σ − σ′) (9.60)

From the expressions given in [KoMaHu97] for aij , bk at high temperature one
can obtain their behavior as z → 0. Since in this case the coefficients A,B,C

tend to the same form as for the static oscillator, thus

Slin → −|b2|
4
√
a11a22

= O|z|1−c. (9.61)

Using (9.27) and (9.58) we obtain

S → (1 − c)r + constant (9.62)

Finite temperature

In this case

A → a22 −
a2
12

4a11
, B → −b1/2, C → b22

16a11
(9.63)

and so

Slin → O|z|1/2−c (9.64)

Then with (9.27) and (9.58) we have

S → (1/2 − c)r + constant (9.65)

9.4.5 Discussion

In the last two sections we calculated the entropy of two physical and exactly
solvable squeezed systems: an inverted harmonic oscillator and a scalar field
mode evolving in a de Sitter inflationary universe. To compare these results with
that obtained from the more ad hoc approaches, we must bear in mind that for
a field mode that could be split into two independent sine and cosine (standing
wave) components, the result will be twice that obtained here, namely, S = 2r
(rather than r in here)

For the inverted oscillator, in both temperature regimes with weak coupling,
we obtained S → r + constant. In the de Sitter case, the high-temperature result
is S → (1 − c)r + constant. In these three examples the results obtained for the
entropy from the more ad hoc approaches comply with the first principles results
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270 Entropy generation and decoherence of quantum fields

presented here. However at lower temperatures the de Sitter entropy is S →
(1/2 − c)r + constant. This last result requires us to look more closely at A and
C which together give the entropy.

From (9.26) and (9.27), and neglecting the added constants which are always
implied, we find that in the high squeezing limit the entropy behaves as S →
1
2 lnA− 1

2 lnC. When the system–environment coupling is weak, all of the above
cases give −1/2 lnC → r, which is the expected result. The dominant contri-
bution to C always comes from b2 in the high squeezing limit. This parameter
is determined by the squeezing of the system and is essentially independent of
the nature of the environment and its coupling to the system. We can therefore
conclude that the lnC contribution to the entropy represents entropy intrinsic
to the squeezed system itself. This should be true quite generally for squeezed
systems. However these results fail to take into account the contributions to the
entropy from the lnA term. This contribution is determined by the aij factors
which strongly depend on the nature of the environment and its coupling to the
system. There is no a priori reason to expect this contribution to be small, as
illustrated by the finite temperature de Sitter example where 1/2 lnA → −r/2.
This highlights the danger in trusting the more ad hoc approaches. The crucial
point is that the entropy of a system depends not only on the system itself but
also on the nature of the environment and how it is coupled to the system.

9.5 Decoherence in a quantum phase transition

Quantum phase transitions [Sac99] refer to phase transitions mediated by quan-
tum fluctuations or parameters of a quantum nature, as opposed to classical
fields or parameters (such as temperature or magnetic fields) in classical phase
transitions. It is an area of active current research in condensed matter physics.
Interestingly enough, this subject has also been the focus of theoretical cosmol-
ogy – the inflationary universe proposal highlights the vital role played by phase
transitions in determining the state and dynamics of the early universe. The
essential quantum nature in these phase transitions comes about because the vac-
uum expectation value of the quantum inflaton field is what drove the universe to
a period of rapid expansion and its quantum fluctuations acted as seeds to struc-
ture formation in the later universe. Topological defects [VilShe00] appearing in
the field configurations, such as magnetic monopoles, cosmic strings and domain
walls, may often be of quantum field origins. Unfortunately the existing theories
for phase transition, structure and defect formation have largely been built on
classical field models. Such existing classical theories may not be naively adapt-
able for the description of these quantum phenomena without careful scrutiny.
Overall, we know that any reliable investigation of these processes should entail
both the quantum field and the nonequilibrium (dynamical) aspects. A number
of basic issues common to them need be addressed from both the conceptual and
the technical levels. Foremost is the question of how the quantum field comes to
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9.5 Decoherence in a quantum phase transition 271

behave like a classical field, and how the quantum fluctuations become classical
stochastic sources. These are the issues of decoherence and noise of quantum
fields respectively. We will discuss in this section the issue of decoherence and
quantum-to-classical transitions in the context of a second-order phase transition
for an interacting quantum field, and revisit both issues in the context of struc-
ture formation from quantum fluctuations in the early universe in Chapter 15.

The key question we wish to seek an answer to is the emergence of a classical
order parameter field after a second-order phase transition described in quantum
field theory language [Cal89]. The system field can be the long-wavelength modes
of a quantum field and the environment field can be its own short-wavelength
modes, or a different set of quantum fields. We have given a thorough treatment
of these two cases in Chapter 5, with a derivation of the influence action, the
master equations, and an analysis of the dissipation and noise kernels. Here
we show how those results can be of use for tackling this problem. The goal
here is to compute the decoherence times for the system-field modes and place
them in relation to the other time-scales in the model. If it is shorter than all
the other relevant physical time-scales then it may provide some justification
for viewing the system quantum field as a classical order parameter field, thus
providing a justification for the common practices in existing theories of classical
phase transitions. If not, then one has to work out the theory of quantum phase
transitions from first principles to highlight the differences from their classical
counterparts.

Criteria for decoherence

Correlations peaking around the classical trajectory in the phase space, as indi-
cated by the Wigner function showing such behavior (for a long time being
perceived as the closest analog to a classical distribution function), were once
believed to be a sufficient criterion of classicality [Hal89], but was shown to be
inadequate by Habib and Laflamme [HabLaf90]. As we mentioned in Chapter 5,
the Wigner function contains just as much information as the density matrix, and
thus one needs to demonstrate by some mechanism the diminishing of the phase
information in the quantum system to begin to possess some classical attributes.
Since a quantum system almost always interacts with its environment, according
to the environment-induced decoherence viewpoint, one can use the diminishing
or vanishing of the off-diagonal elements of the reduced density matrix in a suit-
able basis (such as the “pointer basis” of Zurek) as an indication of, or criterion
for, decoherence and the transition to classicality. Likewise one needs to do this
for the Wigner function.

Models for quench transition

We focus on quenching which is a second-order quantum phase transition. For
a quantum field φ with infinite degrees of freedom undergoing a continuous
transition, the field ordering after the transition begins is due to the growth
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272 Entropy generation and decoherence of quantum fields

in amplitude of its unstable long-wavelength modes. A quench transition can in
general be characterized by the quench transition time-scale tq. Physically this is
the time by which the order parameter field has sampled the degenerate ground
states. One can take the field to be classical by the time it is ordered as such.
This has implications [RiLoMa02] for the formation of the defects that are a
necessary by-product of transitions.

A simple model for quench transition is an inverted harmonic oscillator (IHO)
which we studied in some detail in an earlier section in this chapter. This is
also the simplest model which depicts the evolution of the inflaton field and
the growth of inhomogeneities in the early universe. To see why, recall that
the normal modes of a massless free scalar field propagating in a Friedmann–
Lemaitre–Robertson–Walker universe satisfy the equation

φ′′
k +
(
k2 − a′′

a

)
φk = 0. (9.66)

For sufficiently long wavelengths (k2 � a′′/a), this equation describes an unsta-
ble oscillator.

Guth and Pi [GutPi85] used the IHO model to study the evolution of the
inflaton field. They assumed that at the onset of inflation the universe was in a
Gaussian quantum state centered on the maximum of the potential. It is easy to
show from the solution of the (functional) Schrödinger’s equation that the initial
wave packet spreads quickly in time but maintains its Gaussian shape (due to the
linearity of the model). The initial Gaussian state becomes highly squeezed and
indistinguishable from a classical stochastic process. Since the wavefunction is
Gaussian, the Wigner function is positive for all times and peaks on the classical
trajectories in phase space as the wavefunction spreads. In these situations the
Wigner function can be interpreted as a classical probability distribution for
coordinates and momenta, showing sharp classical correlations at long times. But
the harmonic oscillator is a special case where this condition holds. As remarked
above, this criterion based on correlations in phase space is not sufficient to
prove the transition from quantum to classical. One needs to also show how the
phase information in the quantum system disappears, such as by invoking an
environment-induced decoherence process.

Open systems

Guth and Pi did not expound the decoherence and quantum to classical tran-
sition issues in depth, but simply invoked the uncertainty principle as an indi-
cation of such a transition. Uncertainty principle at a finite temperature was
studied by Hu and Zhang [HuZha93b, HuZha95] (see also Anderson, Anastopou-
los and Halliwell [AndHal93, Hal93, AnaHal95, HuZha93b, HuZha95]) using
a harmonic oscillator bath at finite temperature as the environment. They
showed explicitly how a quantum oscillator system evolves from a quantum- to
a thermal-dominated state which marks such a transition. Independently Zurek,
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9.5 Decoherence in a quantum phase transition 273

Habib and Paz [ZuHaPa03] showed that a quantum system interacting with a
high-temperature ohmic bath will most likely evolve to a coherent state, which is
known as the quantum state with the most classical features. This was invoked
as a criterion for classicality. In an earlier section we have shown how these two
criteria, i.e. uncertainty at finite temperature and a quantum state evolving to a
coherent state, are actually two sides of the same coin in the environment-induced
decoherence perspective.

Interacting fields

The feature of a Gaussian wavefunction maintaining its Gaussian nature in evo-
lution are special to linear systems and the linear instabilities described above are
valid only for free fields. For example in an inverted anharmonic oscillator, it has
been shown [LoMaMo00] by numerically evolving the Schrödinger equation that
an initially Gaussian wavefunction becomes non-Gaussian, the Wigner function
develops negative parts, and its interpretation as a classical probability breaks
down.4 A similar argument for quantum mechanics, but for open systems, was
also presented in [LoMaMo00]. Coupling an inverted oscillator with an anhar-
monic potential to a high-temperature environment, the authors showed that
it becomes classical very quickly, even before the wavefunction probes the non-
linearities of the potential. Being an early time event, the quantum-to-classical
transition can be studied perturbatively. Lombardo, Mazzitelli and Rivers (LMR)
[LoMaRi01] have extended this to field theory by considering a system field com-
prising the long wavelengths of the order parameter interacting with a large num-
ber of environmental fields, including its own short wavelengths. Assuming weak
coupling and high critical temperature, they showed that decoherence is a short
time event, shorter than the quench transition time tsp. As a result, perturbative
calculations are justified. Subsequent dynamics can be described by a stochastic
Langevin equation, the details of which are only known for early times.5

4 In this connection we mention numerical computations of quantum mechanical models and
of different approximations to interacting field theory (see Chapter 12). In such calculations,
classical correlations do appear in some field theory models [CHKMPA94, BoVeHo99].
However, since such decoherence (in a time-averaged sense) takes place at long times after
the transition has been achieved initially, when the mean field approximation has broken
down, this may be an artifact of the Gaussian-like approximations [LoMaMo00].

5 A remark on the relation with thermal field theory is in place here. As pointed out by
[LoMaRi01] there are similarities and differences between this quantum open system
approach and the well-established classical behavior of thermal scalar field theory
[AarBer02, AarSmit98] at high temperature. It is known that at high temperatures, the
behavior of long-wavelength modes is determined by classical statistical field theory. The
effective classical theory is obtained after integrating out the hard modes with k ≥ gT . The
“classical behavior” in this soft thermal mode analysis is defined through the coincidence of
the quantum and the statistical correlation functions. Thermal equilibrium is assumed to
hold at all times and the cut-off that divides system and environment depends on the
temperature, which is externally fixed. In phase transitions, the quantum-to-classical
transition is defined by the effective diagonalization of the reduced density matrix, which is
not assumed to be thermal and the separation between long and short wavelengths is
determined by their stability, which depends on the parameters of the potential.
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274 Entropy generation and decoherence of quantum fields

Using a model with biquadratic coupling between the system and the envi-
ronment, LMR first [LoMaRi01] considered the case of an instantaneous quench,
then a slow quench [RiLoMa02]. The consideration of slow quenches is very
important since the Kibble–Zurek mechanism [Kib80, Kib88, Zur85, Zur96] pre-
dicts the relation between the subsequent domain structure and the quench time
(by indirectly counting defects [LagZur97, LagZur98, YatZur98]). The authors
of [LoMaRi03] worked out the theories for other couplings but show that the
biquadratic coupling is the most relevant for the quantum-to-classical transition.
Also, since all relevant time-scales depend only logarithmically on the parameters
of the theory, they also showed the necessity of keeping track of O(1) prefactors
carefully. In the next section we illustrate a quench quantum transition following
their treatment.

9.6 Spinodal decomposition of an interacting
quantum field

The model we discuss contains a real system field φ, which undergoes a transition,
coupled biquadratically to other scalar fields χa (a = 1, 2, . . . , N), which consti-
tute the external part of the environment (the internal environment is provided
by the short-wavelength modes of the field φ itself). The influence functional
and the master equation obtained from integrating out the environmental fields
have been derived in Chapter 5. We focus on the diffusion coefficients central
to the process of decoherence and evaluate upper bounds on the decoherence
time tD for slow quenches. The general conclusion is that the decoherence time
is typically shorter than the quench transition time.

The model

We consider for the system a self-interacting scalar φ-field which describes the
order parameter, whose Z2 symmetry is broken by a double-well potential, and
an environment comprising N free scalar fields χa with classical action

S[φ, χ] = Ssyst[φ] + Senv[χ] + Sint[χa, φ] (9.67)

where (with μ2, m2 > 0)

Ssyst[φ] =
∫

d4x

{
−1

2
∂μφ∂

μφ +
1
2
μ2φ2 − λ

4!
φ4

}

Senv[χa] =
N∑

a=1

∫
d4x

{
−1

2
∂μχa∂

μχa −
1
2
m2

aχ
2
a

}

The most important interactions will turn out to be of the biquadratic form

Sint[χa, φ] = Squ[φ, χ] = −
N∑

a=1

ga

8

∫
d4x φ2(x)χ2

a(x) (9.68)
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9.6 Spinodal decomposition of an interacting quantum field 275

Physical conditions

To keep our calculations tractable, we need a significant part of the environment
to have a strong impact upon the system field, but not vice versa, from which
we can bound tD. The simplest way to implement this is to take a large number
N � 1 of scalar χa fields with comparable masses ma � μ weakly coupled to the
φ, with λ, ga � 1. Thus, at any step, there are N weakly coupled environmental
fields influencing the system field, but only one weakly self-coupled system field
to back-react upon the explicit environment.

For one-loop consistency at second order in our calculation of the diffusion
coefficient (that enforces classicality) it is sufficient, at order of magnitude level,
to take identical ga = g/

√
N . Further, at the same order of magnitude level, we

take g � λ.6

For small g the model has a continuous transition at a temperature Tc. The
environmental fields χa reduce Tc and, in order that T 2

c /μ
2 = 24/(λ +

∑
ga) �

1, we must take λ +
∑

ga � 1, whereby 1 � 1/
√
N � g. Further, with this

choice the dominant hard loop contribution of the φ-field to the χa thermal
masses (see Chapter 10) is

δm2
T = O(gT 2

c /
√
N) = O(μ2/N) � μ2 (9.69)

Similarly, the two-loop (setting sun) diagram which is the first to contribute to
the discontinuity of the χ-field propagator is of magnitude

g2T 2
c /N = O(gμ2/N3/2) � δm2

T (9.70)

in turn. That is, the effect of the thermal bath on the propagation of the envi-
ronmental χ-fields is ignorable. In particular, the infinite N limit does not exist.
Dependence on N is implicit through Tc as well as through the couplings, for
initial temperatures T0 = O(Tc). η =

√
6μ2/λ determines the position of the

minima of the potential and the final value of the order parameter. As has been
shown in [LoMaRi01] this choice of coupling and environments gives the hierar-
chy of scales necessary for establishing a reliable approximation scheme.

We shall assume that the initial states of the system and environment are both
thermal, at a high temperature T0 > Tc. We then imagine a change in the global
environment (e.g. expansion in the early universe) that can be characterized by
a change in temperature from T0 to Tf < Tc. That is, we do not attribute the
transition to the effects of the environment fields. As initial conditions of the

6 This is very different from the more usual large-N O(N + 1)-invariant theory with one
φ-field and N χa fields, dominated by the O(1/N) (χ2)2 interactions, that has been the
standard way to proceed for a closed system. With our choice there are no direct χ4

interactions, and the indirect ones, mediated by φ loops, are depressed by a factor g/
√
N .

In this way the effect of the external environment qualitatively matches the effect of the
internal environment provided by the short-wavelength modes of the φ-field, but in a more
calculable way.
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276 Entropy generation and decoherence of quantum fields

open system we take a factorized density matrix at temperature T0 of the form
ρ̂[T0] = ρ̂φ[T0] × ρ̂χ[T0].7

Provided the change in temperature is not too slow the exponential instabilities
of the φ-field grow so fast that the field has populated the degenerate vacua well
before the temperature has dropped significantly below Tc. Since the temperature
Tc has no particular significance for the environment fields, for these early times
we can keep the temperature of the environment fixed at Tχ ≈ Tc. For simplicity
the χa masses are fixed at the common value m � μ.

9.6.1 The quench transition time

To describe the physics of the quenching transition we show the estimation of
the quench transition time tsp defined from 〈φ2〉t=tsp ∼ η2. We assume that the
quench begins at t = 0 and ends at time t = 2τq, with τq � tr ∼ μ−1. At the
qualitative level at which we are working it is sufficient to take m2

φ(T0) = μ2

exactly. Most simply, we consider a quench linear in time, with temperature
T (t), for which the mass function is of the following form [BowMom98]8

m2(t) = m2
φ(T (t)) =

⎧⎪⎨
⎪⎩

μ2 for t ≤ 0
μ2 − tμ2

τq
for 0 < t ≤ 2τq

−μ2 for t ≥ 2τq

(9.72)

The field behaves as a free field in an inverted parabolic potential for an interval
of approximately tsp [KarRiv97], where

〈φ2〉tsp ∼ η2 (9.73)

The equation of motion for the mode uk(t), with wavenumber k is, in the quench
period, [

d2

ds2
+ k2 + μ2 − μ2s

τq

]
uk(s) = 0 (9.74)

7 Given our thermal initial conditions it is not the case that the full density matrix has φ and
χ fields uncorrelated initially, since it is the interactions between them that lead to the
restoration of symmetry at high temperatures. Rather, incorporating the hard thermal loop
“tadpole” diagrams of the χ (and φ) fields in the φ mass term leads to the effective action
for φ quasi-particles,

Seff
syst[φ] =

∫
d4x
{
− 1

2∂μφ∂
μφ− 1

2m
2
φ(T0)φ2 − λ

4!φ
4
}

(9.71)

where m2
φ(T ) ∝ (T/Tc − 1) for T ≈ Tc. As a result, we can take an initial factorized density

matrix at temperature T0 of the form ρ̂[T0] = ρ̂φ[T0] × ρ̂χ[T0], where ρ̂φ[T0] is determined

by the quadratic part of Seff
syst[φ] and ρ̂χ[T0] by Senv[χa]. That is, the many χa fields have a

large effect on φ, but the φ-field has negligible effect on the χa.
8 Note that the τq of [LoMaRi03] is the inverse quench rate T−1

c dT/dt|T=Tc , and so differs
from that of [BowMom98] by a factor of 2.
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9.6 Spinodal decomposition of an interacting quantum field 277

subject to the boundary condition uk(t) = e−iωt for t ≤ 0, where ω2 = μ2 + k2.
Instead of the simple exponentials of the instantaneous quench, uk(t) has solution
[BowMom98]

uk(t) = akAi
(

Δk(t)
t̄

)
+ bkBi

(
Δk(t)

t̄

)
(9.75)

with Ai(s), Bi(s) the Airy functions; Δk(t) = t− ω2t̄3 and t̄ = (τq/μ2)1/3. Note
that Δ0(t) = t− τq, the time since the onset of the transition. In the causal
analysis of Kibble [Kib80] t̄ (μ−1 � t̄ � τq) is the time at which the adiabatic
field correlation length collapses at the speed of light, the earliest time in which
domains could have formed. The analysis of [LoMaRi03] suggests that this ear-
liest time is not t̄, but tsp.

It is straightforward to establish a relationship between t̄ and tsp > t̄. The
constants of integration in (9.75) are

ak = π[Bi′(−ω2t̄2) + iωt̄Bi(−ω2t̄2)] (9.76)

bk = −π[Ai′(−ω2t̄2) + iωt̄Ai(−ω2t̄2)]

It follows that, when Δk(t)/t̄ is large, then

|uk(t)|2 ≈ ωt̄

(
t̄

Δk(t)

)1/2

exp
[
4
3

(
Δk(t)

t̄

)3/2]

≈ μt̄

(
t̄

Δ0(t)

)1/2

exp
[
4
3

(
Δ0(t)

t̄

)3/2]
e−k2/k̄2

(9.77)

where k̄2 = t̄−3/2(Δ0(t))−1/2/2.
For large initial temperature T0 = O(Tc), the power spectrum for field fluctu-

ations peaked around k̄, and

〈φ2〉t ≈
T0

2π2μ2

∫
k2 dk |uk(t)|2 ≈ CT0

μt̄2

(
Δ0(t)

t̄

)−5/4

exp
[
4
3

(
Δ0(t)

t̄

)3/2]
(9.78)

The prefactor C is included to show that terms, nominally O(1), can in fact be
large or small (in this case C = (64

√
2π3/2)−1 = O(10−3)). Note that, although

the unstable modes have a limited range of k-values, increasing in time, this is
effectively no restriction when Δ0(t)/t̄ is significantly larger than unity.

Finally, we obtain

η2

C ′ �
Tc

μt̄2
exp
[
4
3

(
Δ0(tsp)

t̄

)3/2]
(9.79)

where C ′ = C[ln(μt̄2η2/CTc)−5/6]. Since the effect on tsp only arises at the level
of “ln ln” terms, C ′ ≈ C is a good estimation in all that follows. (Since this choice
underestimates tsp it only strengthens the claim that tsp > tD.)
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278 Entropy generation and decoherence of quantum fields

9.6.2 Decoherence time

We now turn to the question of whether decoherence proceeds faster than spin-
odal decomposition. Rather than attempt a full estimate of the decoherence time
tD (see [LoMaRi03]), we shall run a simple test.

As we have already remarked, at early times the system field may be described
as an inverted harmonic oscillator. The evolution is then well approximated by
an ensemble of classical trajectories, but there remains the question of whether
two different classical histories are consistent in the Gell-Mann–Hartle sense
[RivLom05, LoRiVi07].

A classical history displays spatial structure as well as time evolution. We are
helped by the observation that the ordering of the field is due to the growth of the
long-wavelength unstable modes. Unstable long-wavelength modes start grow-
ing exponentially as soon as the quench is performed, whereas short-wavelength
modes will oscillate. As a result, the field correlation function rapidly develops a
peak (Bragg peak) at wavenumber k = k̄ � μ. Specifically [KarRiv97], initially
as k̄2 = O(μ/

√
tτq), where τ−1

q is the quench rate. Assuming that a classical
description can be justified post hoc, a domain structure forms quickly with a
characteristic domain size O(k̄), determined from the position of this peak. (As
an example, see the numerical results of [LagZur97, LagZur98, YatZur98], where
this classical behavior has been assumed through the use of stochastic equa-
tions – see later.) With this in mind, we adopt an approximation in which the
system-field contains only one Fourier mode with k = k0 = O(k̄), characteristic
of the domain size. For simplicity, we shall further assume k = k0 = 0 (we refer
the reader to [LoMaRi03] for a more complete analysis).

We may simplify the issue further by considering only trajectories which begin
from φ = 0 at t = τq. Two such trajectories are distinguished by the value of φ̇
at the initial time. We shall ask what is the minimum speed difference at the
initial time that ensures consistency by t = tsp. If this minimum difference is
much smaller than the natural spread ∼ (Tc/V )1/2, then the conclusion that
decoherence is faster than spinodal decomposition is upheld [RivLom05].

We will calculate the decoherence functional to lowest nontrivial order (two
vertices) for large N . Again, we assume weak coupling λ � g � 1, where we
have defined g by the order of magnitude relations ga � g/

√
N . As such we may

expand the logarithm of the decoherence functional up to second nontrivial order
in coupling strengths.

As “trial” classical solutions, we take

φ(x, s) = φ̇ u(s), φ′(x, s) = φ̇′u(s) (9.80)

where u(s) is the solution of the mode equation with boundary conditions u(τq) =
0, u̇(τq) = 1. Since we are neglecting the self-interaction term, our conclusions
are only trustworthy for t ≤ tsp.
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9.6 Spinodal decomposition of an interacting quantum field 279

The solution of the equations of motion for the mode functions is given by

u(t) =
πt̄

32/3Γ(2/3)

[√
3Ai
(
t− τq

t̄

)
+ Bi

(
t− τq

t̄

)]
(9.81)

where Ai(s) and Bi(s) are the Airy functions, and we have used Δ0(t) = t− τq.
The procedure outlined above is quite general and applies to a range of cou-

plings [LoMaRi03]. We now specialize to biquadratic coupling. The modulus of
the decoherence functional is given by

|D[φ1, φ2]|2 ∼ exp
{
−g2

32

∫
d4x

∫
d4y φ

(2)
− (x)Nq(x, y)φ

(2)
− (y)

}
(9.82)

where Nq(x− y) = ReG2
F(x, y) is the noise (diffusion) kernel. GF is the relevant

Feynman propagator of the χ-field at temperature T0. We have defined φ
(2)
− =

(φ1)2 − (φ2)2. For our chosen classical histories, and at times t ∼ tsp it becomes

|D[φ1, φ2]|2 ∼ exp
{
−g2

32

[
(φ̇1)2 − (φ̇2)2

]2
DV

}
(9.83)

where V is the volume of space and

D = 2
∫ tsp

0

dt

∫ t

0

ds u2(t)F (t− s)u2(s) (9.84)

F (t) =
27
512

ReG2
F(0; t) (9.85)

where G2
F(k, t) is the Fourier transform of the square of the Feynman χ propa-

gator. It is only in u(s) that the slow quench is apparent.
In the high-temperature limit (T � μ), LMR obtain the explicit expression

for the kernels

ReG2
F(0; t) =

T 2
c

64π2

∫ ∞

0

dp
p2

(p2 + μ2)2
cos
(
2
√
p2 + μ2 t

)
(9.86)

where μ is the thermal χ-field mass at temperature T ∼ Tc. In this scheme, it is
approximately the cold χ mass. Because the χ-field propagator is unaffected by
the φ-field interactions one can obtain the detail of the expression in (9.86).

We see that, for times μt ≥ 1, the behavior of D is dominated by the exponen-
tial growth of u(s), and the integral in equation (9.84) by the interval s ≈ t. We
will assume large Δ0(t) (and Δ0(s)), which means Δ0(t),Δ0(s) � t̄. This condi-
tion is satisfied provided s is larger than and not too close to ω2

0τq/μ
2, and allows

us to use the asymptotic expansions of the Airy functions and their derivatives
for the evaluation of u(s). This will be justified post hoc. In particular,

u(t) =
( √

πt̄

32/3Γ[2/3]

)(
t̄

t

)1/4

exp

[
2
3

(
(t− τq)

t̄

) 3
2
]

(9.87)
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Keeping only the parametric dependence, we obtain

|D[φ1, φ2]|2 ∼ exp

{
−g2V t̄5

[
(φ̇1)2 − (φ̇2)2

]2 T 2
c t̄

2

μtsp
exp

[
8
3

(
tsp − τq

t̄

)3/2
]}

(9.88)

Now we can use the relations[
(φ̇1)2 − (φ̇2)2

]2
∼ Tc

V
(φ̇1 − φ̇2)2 (9.89)

exp
[
4
3

(
Δ0(tsp)

t̄

)3/2]
∼ μt̄2η2

Tc
, (9.90)

to get

|D[φ1, φ2]|2 ∼ exp
{
−g2Tc

t̄ 11

tsp
μη4(φ̇1 − φ̇2)2

}
(9.91)

Unless the self-coupling is exceedingly small or the space volume too big (in
which case it is not appropriate to disregard the spatial structure of the relevant
classical evolutions), strong enough decoherence follows from the observation
that τq/tsp � 1.

When these bounds are satisfied the minimum wavelength for which the modes
decohere by time tsp can be shown [RiLoMa02] to be shorter than that which
characterizes domain size at that time. Although one can talk loosely, but sensi-
bly, about a classical domain structure at time tsp one cannot yet talk about clas-
sical defects on their boundaries, as the naive picture might suggest. Defects (in
this case, walls) are described by shorter wavelength modes (k ≤ μ). Nonetheless,
the classical domain structure is sufficient to determine their density [RiLoMa02].

The emphasis has been on the many weak environments because of the control
that this gives us on establishing a robust upper bound on tD. However, LMR
noted that their total contribution at one loop was qualitatively that of the
short-wavelength modes of the φ field alone without assuming the action of the
environmental fields. So it seems that rapid decoherence is a general feature.

In Chapter 5 we have also shown how for a general class of system–environment
interactions (such as the φ2χm types studied), the effect of the environment is
largely equivalent to the presence of a stochastic source term in the dynam-
ics of the classical system field, with the correlation functions obeyed by the
noise ξm(x) corresponding to the specific type of couplings. In particular, for
the linear interaction with the environment (to the exclusion of self-interaction)
LMR recovered the additive noise that has been the basis for stochastic equa-
tions in relativistic field theory that confirm the scaling behavior of Kibble’s
and Zurek’s analysis. For times later than tsp, neither perturbation theory nor
more general non-Gaussian methods are valid. Also LMR found that the role
initially attributed by Kibble (and subsequently by others, e.g. [BraMag99]) to
the Ginzburg regime is just not present.
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9.7 Decoherence of the inflaton field 281

9.7 Decoherence of the inflaton field

As another example of the application of the coarse-grained effective action and
the influence functional formalism, we consider the decoherence of the inflaton
field in the early universe. The key ingredient in this consideration is the noise
associated with quantum fluctuations. We have seen how it is defined from the
influence action for an interacting field in Chapter 5. Some background material
on inflationary cosmology can be gleaned from the first part of Chapter 15, which
the uninitiated readers may wish to consult before reading this section.

As noted earlier, an inverted harmonic oscillator model was used by Guth and
Pi [GutPi85] to describe the dynamics of the inflaton field. Though useful for
intuitive reasoning, it is over-simplistic in addressing the quantum-to-classical
transition issue. This model has also been used by many authors to describe
the appearance of classical inhomogeneities from quantum fluctuations in the
inflationary era [PolSta96, LePoSt97]. Due to the linearity of the model and the
Gaussian form of the wavefunction [Hab04] the quantum–classical correspon-
dence is straightforward. In more general circumstances, the Wigner function
can be negative and the simple identification with the one-particle classical dis-
tribution function no longer holds. One needs to consider decoherence of the
(reduced) Wigner function by an environment [Hab90, HabLaf90], just as we
have done for the reduced density matrix in similar considerations.

Turning our attention briefly to cosmology, the proposal to view the long-
wavelength sector quantum field as classical, such as demanded by stochastic
inflation (in fact, commonly assumed in most theories of structure formation),
can only be justified by showing that some decoherence mechanism applies to the
inflaton field. Interaction of a quantum system with an environment may bring
about decoherence, as we have seen in model problems (such as the QBM) dis-
cussed in Chapters 3 and 5. The effectiveness of an environment to bring about
quantum-to-classical transition depends on many factors, such as the type of cou-
pling (bilinear, nonlinear), the nature of the bath (spectral density, temperature)
and how the interaction determines the pointer basis. Quantitatively, decoher-
ence is usually described by the diagonalization of the reduced density matrix,
but this is only meaningful (since a symmetric matrix can always be diagonal-
ized) by specifying or, better yet, showing the likely existence of a pointer basis,
which is a physical rather than a mathematical issue. There is by now a huge lit-
erature on decoherence (see, e.g. the reviews [GKJKSZ96, Paz00, Zur03]), both
in terms of conceptual discussions and model calculations. Here we will limit our
discussion only to some attributes of decoherence, and in the context of quantum
processes in the early universe.

What in a realistic situation could play the role of the environment field?
One can consider either one interacting field partitioned into two sectors, the
low-frequency sector as the system and the high-frequency sector as the environ-
ment, as in the stochastic inflation scheme for the inflaton field; or two separate
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282 Entropy generation and decoherence of quantum fields

self-interacting scalar fields coupled biquadratically, each assuming a full spec-
trum of modes. Both cases have been treated in Chapter 5 using the CTP CGEA
in flat space. The environment field can also be referring to other fields present
besides the inflaton field. Only the quantum fluctuations of such fields need be
present to generate the noise which seeds the galaxies. Even if one assumes noth-
ing, there is always the gravitational field itself which the inflaton field is coupled
to, and the vacuum gravitational fluctuations can also seed the structures in our
universe [MuFeBr92, CalHu95, CalGon97, Mat97a, Mat97b]. (Note that in such
cases the coupling is of a derivative form rather than a polynomial form. Noise
arising from a derivative type of coupling has been studied before in the context
of minisuperspace quantum cosmology [SinHu91].)

We add a cautionary note that the simple criterion of classicality derived from
the study of linear systems (e.g. free fields) fails when interactions are taken
into account. Indeed, as shown in simple quantum mechanical models (e.g. the
anharmonic inverted oscillator [LoMaMo00]), an initially Gaussian wavefunc-
tion becomes non-Gaussian when evolved under the Schrödinger equation. The
Wigner function will develop negative parts, and its interpretation as a classical
probability breaks down.

Assuming weak self-coupling constant (a nearly flat inflaton potential) Lom-
bardo and Nacir [LomNac05] have shown that decoherence is an event shorter
than the time tend, which is a typical time-scale for the duration of inflation.

9.7.1 Noise from interacting quantum fields

From the influence functional for an interacting field in a de Sitter universe given
in Chapter 5 for the Minkowski spacetime, or the conformally related theory in
de Sitter spacetime, we learned how to identify the noise (in both cases our
treatment follows [Zha90, HuPaZh93b, LomMaz96, CaHuMa01]). Now we use it
to consider decoherence and structure formation in stochastic inflation.

For illustrative purposes, in discussing the issue of decoherence, we shall derive
the master equation from this influence functional only for a special case. This
equation and its associated Langevin or Fokker–Planck equation will enable us
later to calculate the fluctuation spectrum as a problem in classical stochastic
dynamics.

Consider a real, gauge singlet, massive, λΦ4 self-interacting scalar field in a
de Sitter spacetime. In the inflationary regime of interest, the scale factor a(t)
expands exponentially in cosmic time t

a(t) = a0 expHt (9.92)

We split the classical action of the inflaton field Φ(x) as

S[Φ] = S0[Φ] + SI [Φ] (9.93)
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9.7 Decoherence of the inflaton field 283

where S0[Φ] is that part of the classical action describing a free, massless, con-
formally coupled scalar field, and

SI [Φ] =
∫

dnx
√
−g(x)

{
−1

2
[
m2Φ2 + (ξn − ξc)R(x)Φ2

]
− 1

4!
λΦ4
}

(9.94)

contains the remaining (interactive) terms with contributions from nonzero mass
m, self-interaction λ, and ξc, the coupling between the field and the spacetime
curvature scalar R. Here, ξc = 1/6 for conformal coupling and ξc = 0 for minimal
coupling in four dimensions, ξn = (n− 2)/4(n− 1) is a constant equal to 1/6 in
four dimensions, and

√
−g(x) = an−1(t) = an(η).

In the stochastic inflation scheme, one makes a system–bath field splitting

Φ(x, t) = φ(x, t) + ψ(x, t) (9.95)

such that the system field is defined by

φ(x, t) =
∫

|k|<Λ

d3k
(2π)3

Φ(k, t) eik·x (9.96)

and the bath field is defined by

ψ(x, t) =
∫

|k|>Λ

d3k
(2π)3

Φ(k, t) eik·x (9.97)

where Λ is the cut-off wavenumber determined by the horizon size. The system
field φ(x) contains the long-wavelength modes, which undergo a slow roll-over
phase transition in the inflation period, while the bath field ψ contains the short-
wavelength modes, which are the quantum fluctuations.

With this splitting, we find the following effective action from expanding the
influence action for χ = φa, χ′ = φ′a to one-loop order in � and second order in
SI . We consider only the biquadratic coupling here, which corresponds to the
limit where the system field is homogeneous.

The computation of the effective action follows the lines of Chapter 5 with
conformal time here replacing cosmic time there. The dissipation is of a nonlinear
nonlocal type, and there is a multiplicative (nonlinearly coupled) colored noise.
The fluctuation–dissipation theorem for this field model in de Sitter space has
the same form as that in Minkowski space.

9.7.2 Decoherence in two interacting fields model

The functional quantum master equation for this field-theoretical model with
general nonlinear nonlocal dissipation and nonlinearly coupled colored noise has
a complicated form in cosmic time t. However, in conformal time η it has the
same form as in Minkowski spacetime, derived in Chapter 5, following the work
of [Zha90, HuPaZh93a, HuPaZh93b, Paz94]. We will consider a simpler case here,
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284 Entropy generation and decoherence of quantum fields

where one can get an explicit form of the functional quantum master equation,
i.e. by making a local truncation in the effective action. Setting

V (x− x′) = v0(η)δ4(x− x′) (9.98)

μ(x− x′) =
∂

∂(η − η′)

{
γ0(η)δ4(x− x′)

}
(9.99)

ν(x− x′) = ν0(η)δ4(x− x′) (9.100)

and using the same procedure as outlined in Chapter 5, we can derive the func-
tional quantum master equation in the local truncation approximation [Zha90]:

i
∂

∂η
ρr[χ1, χ2, η] = Ĥρ[χ1, χ2, η] ρr[χ1, χ2, η] (9.101)

where

Hρ[χ1, χ2, η] =
∫

d3x

{
ĥr(χ1) − ĥr(χ2) + 3λ2γ0(η)

[
(χ1(x))4 − (χ2(x))4

]

+ 2λ2γ0(η)
[
(χ1(x))2 − (χ2(x))2

][
χ1(x)

δ

δχ1(x)
− χ2(x)

δ

δχ2(x)

]

− (i/2)λ2ν0(η)
[
(χ1(x))2 − (χ2(x))2

]}
(9.102)

and

ĥr(φ) = −1
2

δ2

δχ2(x)
+

1
2
[
∇χ(x)

]2 +
1
2
a2(η)

[
m2

r +
1 + ξr

6
R(η)

]
χ2(x)

+
1
4!
λrχ

4(x) + δm2(η)a2(η)χ2(x) − 1
2
λ2v0(η)χ4(x) (9.103)

This functional quantum master equation and its associated Langevin equa-
tion or Fokker–Planck–Wigner equation can be used to analyze the dynamics
of the system field (long-wavelength modes in the stochastic inflation scheme)
for studying the decoherence and structure formation processes in the early uni-
verse [HuPaZh93b]. Instead of solving these equations in detail, we can get some
qualitative information on how the system decoheres by analyzing the behavior
of the diffusion term in the master equation.

Diffusive effects are generated by the last term in the effective action, the
variation of which produces the following contribution on the right-hand side of
the master equation for ρ[χ1, χ2]:

ρ̇[χ1, χ2, η] ∝ −
[
(χ1)2 − (χ2)2

]
∗ ν(η) ∗

[
(χ1)2 − (χ2)2

]
× ρ[χ1, χ2, η] (9.104)

Here the symbol ∗ denotes the convolution product and χ represents a configu-
ration of the scalar field in a surface of constant conformal time. The diffusion
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9.7 Decoherence of the inflaton field 285

“coefficient” ν is therefore a nonlocal kernel that can be written in terms of its
spatial Fourier transform as

ν(x,y, η) =
∫

d3k
(2π)3

νk(η) eik·(x−y) (9.105)

To justify treating the long-wavelength modes classically, a minimal check is
to see if the diffusive effects are stronger for long-wavelength modes than they
are for short ones. To do so, note that [HuPaZh93b] the coefficient in (9.104) can
be written in terms of the product of the Fourier transform (9.105) and that of
the field φ2:[
(φ1)2−(φ2)2

]
∗ ν(t) ∗

[
(φ1)2−(φ2)2

]
=
∫

dk [(φ1)2−(φ2)2]kDk[(φ1)2−(φ2)2]k

(9.106)

We want to examine the dependence on k = |k| of the function Dk entering
in (9.106). This function can be written in terms of the physical wave vector
p = k/a as

Dk(η) =
a3

4π
λ2

[
1 − H

p
f
( p

H

)
+ g
( p

H

)]
(9.107)

where

f(x) =
1
2π

∫ 2x

0

dx[− sinxCi(x) + cosxSi(x)] (9.108)

g(x) =
1
2π

∫ 2x

0

dx [cosxCi(x) + sinxSi(x)] (9.109)

and Si(x), Ci(x) are the usual integral trigonometric functions. A plot of Dk(η)
for a fixed value of the conformal time as a function of p/H, i.e. the ratio between
the horizon size and the physical wavelength can be found in [HuPaZh93b]. The
function has a strong peak in the infrared region of the spectrum suggesting
that diffusion effects (decoherence is one of them) are indeed more pronounced
for long-wavelength modes and weaker for wavelengths shorter than the horizon
size.

We learned from earlier discussions that noise of quantum origin arising from
nonlinear fields is under general circumstances both multiplicative and colored
(see, e.g. [HuPaZh93a]). Noise could generate fluctuations which could give rise
to non-Gaussian galaxy distributions (NGD).9

As for the present scheme, since the value of λ is restricted to be very small
(<10−12) in the standard inflationary models (so that the magnitude of the

9 There are, of course, simpler ways to generate NGD. A changing Hubble rate H = ȧ/a as in
a “slow-roll” transition, or an exponential potential V (φ) [LucMat85] will do. However,
such mechanisms only generate NGD at very long wavelengths, much longer than the
horizon size to be relevant to the observable spectrum. See, e.g. Proceedings of ICTP
meeting, July 2006 [SelCre06].
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286 Entropy generation and decoherence of quantum fields

density contrast is compatible with the observed value δρ/ρ ≈ 10−4 when the
fluctuation mode enters the horizon), the constituency of the colored portion of
the noise is accordingly small. The effect of nonlinear coupling on the generation
of inhomogeneities is an active research topic at the accumulation of increas-
ingly detailed observational data. Details of galaxy formation analysis from the
stochastic equations of motion derived here with different types of colored noise
and realistic physical parameters will come from solutions to these stochastic
equations for galaxy formation considerations. We will have more discussions on
the effect of quantum noise on structure formation in Chapter 15.

9.7.3 Partitioning one interacting field:

noise from high frequency modes

In an earlier section we have discussed the appearance of classical features in a
quantum phase transition. There the separation between long and short wave-
lengths is determined by their stability, which depends on the parameters of
the potential. For our present consideration of quantum-to-classical transition
in inflationary cosmology, this separation is conveniently set by the existence of
the Hubble radius. Modes crossing the horizon during their evolution are usually
treated as classical. The rationale for it can only come from a detailed study of
decoherence, such as identifying the conditions whereby the behavior of a quan-
tum fluctuation field can be adequately described by a classical stochastic field.
We now discuss this issue.

The influence functional and the density matrix

For this case, we consider a massless quantum scalar field minimally coupled to
a de Sitter spacetime. We choose the initial time ηi to be when a(ηi) = 1(ηi =
−H−1). Perform a system–environment field splitting [LomMaz96]

χ = χ< + χ> (9.110)

where the system field χ< contains the modes with wavelength longer than the
partition scale �c ≡ 2π/Λ, while the environment field χ> contains modes with
wavelength shorter than �. As we set a(ηi) = 1, a physical length �phys = a(η)�
coincides with the corresponding comoving length �i at the initial time. There-
fore, the splitting between the system and the environment defines a system
sector containing all the modes with physical wavelengths longer than the par-
tition scale �c at the initial time ηi.

The influence functional for a similar problem has been computed in Chap-
ter 5, Section 5.1, except that here a is a function of time. If there is a natural
separation of the real and imaginary terms in this functional (as illustrated in
the QBM model discussed in Chapter 3) one can then identify a noise and dissi-
pation kernel related by a categorical fluctuation–dissipation relation. Assuming
that the initial state ρ̂>[ηi] is the Bunch–Davies vacuum state, the real and
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imaginary parts of the influence action are given by

ReSIF = −λ

∫
d4x1

{
χ

(4)
− (x1) − 6χ(2)

− (x1)GΛ
F (x1, x1)

}
+λ2

∫
d4x1

∫
d4x2 θ(η1 − η2)

{
32χ(3)

+ (x1)ImGΛ
F (x1, x2)χ

(3)
− (x2)

−144χ(2)
+ (x1)Im[GΛ

F (x1, x2)]2χ
(2)
− (x2)

}
, (9.111)

ImSIF = λ2

∫
d4x1

∫
d4x2

{
8χ(3)

− (x1)ReGΛ
F (x1, x2)χ

(3)
− (x2)

+ 36χ(2)
− (x1)Re[GΛ

F (x1, x2)]2χ
(2)
− (x2)

}
, (9.112)

θ(x) is the Heaviside step function, and the integrations in time run from ηi to
η. GΛ

F(x1, x2) ≡ 〈Tχ1
>(x1)χ1

>(x2)〉0 is the relevant short-wavelength closed time
path correlator (it is proportional to the Feynman propagator of the environment
field, where the integration over momenta is restricted by the presence of the
partition momentum Λ), and we have defined

χ
(n)
− = (χ1

<)n − (χ2
<)n, χ

(n)
+ =

1
2
[(χ1

<)n + (χ2
<)n] (9.113)

with n = 1, 2, 3.

Master equation and diffusion coefficients

As we learned by the QBM model (Chapter 3) and the field theory example
(Chapter 5) once one obtains the evolutionary operator Jr for the reduced den-
sity matrix one can derive the master equation for the reduced density matrix.
These expressions for a quantum scalar field in the de Sitter universe were
obtained by Zhang [Zha90].

To get a qualitative idea of decoherence, as noted earlier, one could just
focus on the behavior of the diffusion “coefficients” (actually nonlocal functions)
related to the noise kernel obtained from the imaginary part of the influence
action. Making the further simplification that the system field contains only one
mode k0, Lombardo and Nacir showed that the terms in the master equation
relevant to decoherence are [LomNac05]

i∂ηρr[φ1
<f |φ2

<f ; η] = 〈φ1
<f |[Ĥren, ρ̂r]|φ2

<f 〉
− i [Γ3D3(k0, η,Λ) + Γ2D2(k0, η,Λ)] ρr[φ1

<f |φ2
<f ; η] + . . .

where Γ2 = λ2V
4 [(φ1

<f )2 − (φ2
<f )2]2 and Γ3 ≡ λ2V

H2 [(φ1
<f )3 − (φ2

<f )3]2. (The sub-
scripts 2, 3 refer to the order of the system field φ<f = χ<f/a(ηf ).) The ellipsis
denotes additional terms coming from the time derivative that do not contribute
to the diffusive effects.

This equation contains time-dependent diffusion coefficients Dj . Up to one
loop, only D2 and D3 survive. Coefficient D2 is related to the interaction term
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288 Entropy generation and decoherence of quantum fields

φ2
<φ

2
> while D3 is related to φ3

<φ>. These coefficients can be (formally) written
as

D2(k0, η,Λ) = 36
∫ η

ηi

dη′ a2(η)a2(η′)F 2
cl(η, η

′, k0) (9.114)

×
{
Re[G>

F (η, η′, 2k0)]2 + 2 Re[G>
F (η, η′, 0)]2

}
,

and

D3(k0, η,Λ) = −H2

2

∫ η

ηi

dη′ a3(η)a3(η′)F 3
cl(η, η

′, k0) (9.115)

×ReG>
F (η, η′, 3k0) θ(3k0 − Λ)

with the function Fcl defined by

Fcl(η, ηi, k0) =
sin[k0(η − ηi)]

k0η
+

ηi cos[k0(η − ηi)]
η

(9.116)

Note that only the effect of normal diffusion terms are included in our consid-
erations here. It is known from QBM studies [Zha90, HuPaZh92, HuPaZh93a,
PaHaZu93, Paz94, HalYu96] that anomalous diffusion terms can also be relevant
at zero temperature.

Using these expressions for the two diffusion functions and placing the phys-
ical parameters relevant to successful inflationary models, Lombardo and Nacir
[LomNac05] calculated the decoherence times td2 and td3 associated with D2 and
D3. They conclude that if one sets Λ ≤ H, the decoherence time-scale for the
system field is shorter than the minimal duration of inflation for all the wavevec-
tors in the system sector. This is by far the most detailed and thorough study
of the decoherence of the inflaton.
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Part IV

Thermal, kinetic and hydrodynamic regimes
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10

Thermal field and linear response theory

Thermal field theory, or finite temperature quantum field theory, deals with
quantum systems in equilibrium. This is likely a familiar subject to the read-
ers. Given the huge literature on this subject (see e.g. [LaLiPi80b, LeB91,
LeB96, Kap89, Par88, AbGoDz75, Mil69, LanWer87, Ber74, DolJac74, Wei74,
KuToHa91]), we will not attempt to give a full treatment of it per se, but rather
emphasize how the CTP approach actually unifies the study of equilibrium and
nonequilibrium systems. We will discuss thermal perturbation theory from a
CTP perspective, including a discussion of screening and damping in quantum
fields at finite temperature. In Chapter 11 we shall consider quantum kinetic field
theory, including a derivation of its centerpiece, the Kadanoff–Baym equations,
and in Chapter 12 the issue of thermalization, namely the processes which bring
about equilibrium to systems out-of-equilibrium.

10.1 The thermal generating functional

A thermal state is a mixed state described by the density matrix

ρ = eβF e−βH (10.1)

where H is the Hamiltonian and F the free energy, defined in terms of the
partition function

e−βF ≡ Z = Tr e−βH (10.2)

We shall assume the trace exists. Hence we are treating systems in equilib-
rium in a canonical ensemble; the generalization to grand canonical ensemble is
straightforward. Observe that the equilibrium state is stationary but not Lorentz
invariant, since the form (10.1) of the density matrix holds only in a preferred
frame, the so-called rest frame of the field.

To investigate the matrix elements of the thermal density matrix, it is natural
to proceed by analogy with the evolution operator U = e−itH/� introduced in
Chapter 4. In general, we may consider an evolution operator in complex time
U (z) = e−izH/�. Given two field eigenvectors the matrix element is〈

ψ
∣∣∣e−izH/�

∣∣∣ϕ〉 =
∑
n

e−izEn/� 〈ψ |n〉 〈n |ϕ〉 (10.3)
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292 Thermal field and linear response theory

Since energies are positive, the sum will converge when Im z ≤ 0 (we are mostly
concerned with z’s of the form −iβ, of course). Also we have the semigroup
property

U (z + z′) = U (z)U (z′) (10.4)

provided all terms exist, namely, that Im z, z′ ≤ 0. In general, given a complex
path γ (u) connecting 0 to z, if the imaginary part of γ (u) is nonincreasing
throughout we may decompose U (z) as a product of infinitesimal evolution oper-
ators, and obtain the path integral representation〈

ψ
∣∣∣e−izH/�

∣∣∣ϕ〉 =
∫
ϕ(0)=ϕ,ϕ(z)=ψ

Dϕ e(i/�)S[ϕ] (10.5)

where the integration is carried over field configurations defined on the complex
path. The fundamental property of the representation (10.5) is path indepen-
dence: the path integral is independent of the choice of γ, as long as the differ-
ence between the endpoints is z, and the imaginary part is nonincreasing [Mil69,
McL72a, McL72b].

In order to obtain the partition function, we set ψ = ϕ and integrate over
all choices. Thus Z is given by a path integral over periodic (for Bose–Einstein
statistics) or antiperiodic (for Fermi–Dirac statistics) [Ber66, NegOrl98]) field
configurations defined on a complex time path going from an arbitrary point z

to z − iβ� with nonincreasing imaginary parts.
In practice, different choices of time path lead to different formulations. If the

main object is the computation of the partition function itself, then possibly
the simplest choice is the so-called Matsubara contour, which goes straight down
from 0 to −iβ� [LaLiPi80b, KuToHa91]. If the goal is to compute real time
correlations, then it is convenient to include (patches of) the real time axis into
the contour. For example, if we choose a time path going along the real axis
from −T to T ′, then down to T ′ − iβ�/2, back on a reverse time line to −T −
iβ�/2, and finally down again to the endpoint −T − iβ�, we get a functional
representation of Umezawa’s thermo field dynamics [UmMaTa82, NieSem84a,
NieSem84b]. Although these different formulations are of course equivalent from
the physical point of view, one or the other could be more adept to particular
perturbative calculations.

From the point of view of making contact with the CTP approach to nonequi-
librium dynamics, the natural choice of contour is from −T to T ′, then immedi-
ately back to −T and straight down to −T − iβ� [CSHY85, LanWer87]. Compar-
ing with the CTP generating functional, we see that this procedure is equivalent
to replacing the density matrix by its path integral representation. The thermal
CTP generating functional is given by

e(i/�)Wβ [J] = eβF
∫

DϕA exp
{
(i/�)

[
S
[
ϕA
]
+ JAϕ

A
]}

(10.6)
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10.2 Linear response theory 293

with the branch index a = 1, 2, 3, with the new value 3 corresponding to the
downward imaginary branch, and we adopt the convention J3 = 0. Observe that
the thermal generating functional shares with the vacuum one the property that
the choice of quantum state has been encoded into the time path. The formal
manipulations leading from the generating functional to the effective action, as
well as the perturbative set-up for the evaluation of this latter object, are the
same as in the zero-temperature theory.

10.2 Linear response theory

A profound property of the thermal state is that the dynamic response of a
system in thermal equilibrium to small external perturbations can be described
rigorously in terms of equilibrium expectation values, by means of the so-called
linear response theory (LRT) [KuToHa91]. We shall describe very briefly the
basics of LRT, and then show how it can be trivially derived from the CTP
generating functional just introduced.

The basic set-up for LRT is a system which at time t = 0 is in equilibrium
(namely, its density matrix is given by equation (10.1)) and is subsequently per-
turbed by an addition of a time-dependent term −σ (t)P (t) to the Hamiltonian,
where σ is a c-number external source, and P some Heisenberg operator acting
on the system. We wish to follow the nonequilibrium, driven evolution of the
field, through the time-dependent expectation value of some other observable
Q (t).

To this end, it is most efficient to adopt an interaction picture approach. The
density matrix at time t then is given by

ρ (t) = T
[
e(i/�)

∫ t
0 dt′σP

]
ρ (0)T

[
e−(i/�)

∫ t
0 dt′σP

]
(10.7)

The desired expectation value is 〈Q〉J (t) = Tr Q (t) ρ (t). For small sources, we
may linearize

〈Q〉 (t) = 〈Q〉0 (t) +
∫ t

0

dt′ R (t, t′)σ (t′) (10.8)

where 〈Q〉0 (t) is the expectation value for Q (t) in equilibrium, and R is the
response function

R (t, t′) =
(
i

�

)
〈[Q (t) , P (t′)]〉0 θ (t− t′) (10.9)

The general relationship between the retarded and Jordan propagators intro-
duced before is but a particular case of this general identity. Furthermore, cer-
tain transport coefficients may be written in terms of time integrals of response
functions, by means of the Kubo formulae, to be discussed in Chapter 12. Then
equation (10.9) may be used to link those transport coefficients to equilibrium
expectation values of Heisenberg operators.
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294 Thermal field and linear response theory

To obtain equations (10.8) and (10.9) in a CTP framework, we first introduce
a generating functional for 〈Q〉 (t)

e(i/�)WQ[J] = eβF
∫

DϕA exp
{
(i/�)

[
Sσ

[
ϕA
]
+ JAQ

A
]}

(10.10)

so that the desired expectation value is

〈Q〉 (t) =
δWQ [J ]
δJ1 (t)

∣∣∣∣
J=0

(10.11)

(observe that we doubled the degrees of freedom). In this equation, the action Sσ

contains the σ-dependent term
∫
dt σ (t)

(
P 1 − P 2

)
(t) ; it is unnecessary to add

CTP indices to σ, since this is a physical source, and in any case we would obtain
σ1 = σ2 = σ. Since σ turns on for t > 0 only, the free energy is independent of
it. We may therefore expand

WQ [J ] = WQ [J ]|σ=0 +

∫
DϕA e{(i/�)[S0[ϕA]+JAQA]} ∫ dt′ (P 1 − P 2

)
σ (t′)∫

DϕA e{(i/�)[S0[ϕA]+JAQA]}

(10.12)

The path integral in the numerator of the second term vanishes at J = 0. Per-
forming the J derivative in equation (10.11), we see that equations (10.8) and
(10.9) are a simple consequence of the time ordering properties of the path
integral.

10.3 The Kubo–Martin–Schwinger theorem

Since we have succeeded in incorporating the information about the state in the
time path, we may adopt verbatim the perturbative approaches already discussed
in Chapter 6. In particular, any expectation value may be developed as a sum
of Feynman graphs, carrying in internal legs the thermal propagators

G11
β (x, x′) ≡ GβF (x, x′) = eβFTr

{
e−βHT [Φ (x) Φ (x′)]

}
(10.13)

etc. Since the thermal time path has three branches, it may seem that now
we need nine different propagators to carry out perturbation theory. How-
ever, the path independence of the path integral may be invoked to push the
third branch arbitrarily into the distant past, whereby it decouples from the
other branches, and the usual set-up, based on four propagators, is sufficient.
Nevertheless, the third branch is essential in enforcing the fundamental prop-
erty of the thermal propagators, namely, that they can be analytically con-
tinued to complex time, and when so continued, they obey certain periodicity
conditions, embodied in the so-called Kubo–Martin–Schwinger (KMS) theorem
[Kub57, KuYoNa57, MarSch59]. The KMS theorem plays such a central role in
thermal perturbation theory that it is often adopted as the definition of the
thermal propagators.
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10.3 The Kubo–Martin–Schwinger theorem 295

To state the KMS theorem, let us consider the thermal positive frequency
propagator

G21
β (x, x′) ≡ G+

β (x, x′) = eβFTr
{
e−βHΦ (x) Φ (x′)

}
(10.14)

and insert energy–momentum eigenstates

G+
β (x, x′)=eβF

∑
n,m

ei(Pm−Pn)(x−x′)/�e−βEne−i(Em−En)(t−t′)/� |〈n |Φ (0)|m〉|2

(10.15)

Given suitable conditions on the matrix elements of the field operators, we
may regard the sum in equation (10.15) as converging when the integrand is
exponentially suppressed, namely for 0 ≥ Im (t− t′) ≥ −β. In this strip, equa-
tion (10.15) defines a complex variable function, which is the definition of the
thermal propagator for complex time. G+

β may be analytically continued beyond
the strip, of course, but this constitutes its fundamental domain of definition.

If we apply the same reasoning to the “negative frequency” propagator we
obtain

G−
β (x, x′) = eβF

∑
n,m

ei(Pm−Pn)(x−x′)/�e−βEme−i(Em−En)(t−t′)/� |〈n |Φ (0)|m〉|2

(10.16)
Comparing equations (10.15) and (10.16), it is immediate that

G+
β ((t,x) , x′) = G−

β ((t + i�β,x) , x′) (10.17)

This is the KMS theorem for Bose–Einstein fields. The KMS theorem for Fermi–
Dirac fields will be discussed in a later section.

A shorter argument may serve as a mnemotechnic device, and also underscores
the generality of this result. Let us define the complex time Heisenberg operators

Φ (z) = eizH/�Φ (0) e−izH/� (10.18)

and observe the identity

e−βHΦ (t) = Φ (t + i�β) e−βH (10.19)

Then a simple cyclic permutation under the trace yields

G+
β (t, t′) = eβFTr

{
e−βHΦ (t) Φ (t′)

}
= eβFTr

{
e−βHΦ (t′) Φ (t + i�β)

}
= G−

β (t + i�β, t′) (10.20)

QED

Given the importance of the KMS theorem for this subject, we shall show a
third proof of it, now based on the properties of the path integral representation.
The propagator G+

β (t, t′) = G21
β (t, t′) may be computed by inserting the product

ϕ2 (t)ϕ1 (t′) inside the path integral (10.6); namely, the field at t is put on the
second branch, and at t′ on the first branch. Given the path independence,
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296 Thermal field and linear response theory

we may choose a time contour beginning at t′ and ending at t′ − iβ�. Because
field configurations are periodic, we obtain ϕ2 (t)ϕ1 (t′) = ϕ3 (t′ − iβ�)ϕ2 (t).
Since the path integral automatically sets field operators on the third branch
to the left of field operators in the second branch, when we integrate we obtain
the negative frequency propagator G−

β (t, t′ − iβ�) . Thermal propagators being
translation invariant, this is again the KMS theorem.

The KMS theorem implies a new relationship among the Fourier transforms
of the thermal propagators, namely

G+
β (ω) = eβ�ωG−

β (ω) (10.21)

Together with the universal relationship G+
β −G−

β = Gβ , the latter being the
thermal Jordan propagator, we obtain

G+
β (ω) =

eβ�ω

eβ�ω − 1
Gβ (ω) ; G−

β (ω) =
1

eβ�ω − 1
Gβ (ω) (10.22)

The two formulae can be combined into

G±
β (ω) = 2π� [θ (±ω) + f0 (ω)]D (ω) (10.23)

where

2π�D (ω) = sign (ω)Gβ (ω) = Gβ (|ω|) (10.24)

and f0 is the Bose–Einstein distribution

f0 (ω) =
1

eβ�|ω| − 1
(10.25)

These formulae generalize the vacuum Lehmann representation. As in the vac-
uum case, they allow us to find all the propagators, once the Jordan propagator
is known. For example, the Hadamard propagator becomes

Gβ1 (ω) = 2π� [1 + 2f0 (ω)]D (ω) (10.26)

For a free field the commutator of two field operators is a c-number, and there-
fore its expectation value is independent of the state. In this case the zero-
temperature Jordan propagator remains valid at all temperatures.

The linear response equation (10.9) allows us to connect the Jordan and
retarded propagators

Gβret (x, x′) =
(
i

�

)
Gβ (x, x′) θ (t− t′) (10.27)

which is the same relationship as at zero temperature. Fourier transforming, we
obtain as in Chapter 3

Gβ (p) = 2�ImGβret (p) (10.28)

and therefore equation (10.26) may be regarded as a statement of the fluctuation–
dissipation theorem.
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10.4 Thermal self-energy: Screening 297

10.4 Thermal self-energy: Screening

As remarked earlier, the CTP perturbation theory at finite temperature is for-
mally identical to its zero-temperature counterpart, only now propagators must
be consistent with the KMS theorem. In particular, the 2PIEA is formally the
same, but it is now evaluated at a different set of propagators. We may even
give a direct proof of this statement, by noting that thermal field theory is the
usual field theory on a three-branched path. We may push the third branch
to the remote past, and at the same time switch interactions off adiabatically,
so that the action in the third branch corresponds to a free theory. Then the
path integral over Euclidean configurations will be Gaussian, and the net effect
will be to add a two-point source KβAB (concentrated at the initial time), as
we did when we formally constructed the 2PIEA. The construction will then
go as in Chapter 6, only that the final equation for the thermal propagators
becomes

δΓ2

δGAB
β

= −1
2
KβAB (10.29)

Because the right-hand side turns on only at the initial time, in practice we may
ignore it; its only role is to enforce the KMS initial conditions. We may therefore
write down the thermal 2PI Schwinger–Dyson equation: it is just the same as
the vacuum equation we discussed in Chapter 6.

Because Lorentz invariance is lost for thermal fields, we cannot define the mass
of the field from the location of the pole of the propagators. Luckily, this problem
only appears at the three-loop level in the 2PIEA, so we may still make progress
by analyzing the one-loop gap equation.

The analysis is in fact the same as in Chapter 6, only now the tadpole is com-
puted with a thermal Feynman propagator or, what is the same at the coincidence
limit, a thermal Hadamard propagator. Since the free Jordan propagator is inde-
pendent of temperature, this means that there is a new term, corresponding to
the integration over the thermal correction demanded by the KMS theorem. So
the gap equation becomes

M2 = m2
b + m2

V +
λb�

2
M2

T (10.30)

where

M2
T =

∫
d4p

(2π)3
δ (Ω0) f0 (p) =

1
π2

∫ ∞

M

dω

√
ω2 −M2

eβω − 1
(10.31)

and Ω0 = p2 + M2. The second term m2
V is a vacuum tadpole.

Although strictly speaking the gap equation must be renormalized before it
makes sense, we may learn some of its implications from the following simple
arguments. First, observe that there exists a critical temperature Tc (maybe
imaginary) such as to make M2 vanish. If we use dimensional regularization,
the massless tadpole vanishes as well, and the massless thermal contribution gives
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298 Thermal field and linear response theory

the usual value of M2
T c ∼ (1/6) (kBTc/�)2 , so we get m2

b = (−λb/12�) (kBTc)
2
.

If we adopt Tc rather than mb as the fundamental object, then M2 ∼ O
(
λT 2
)
�

T 2, which justifies neglecting the tadpole term and computing the thermal mass
as for a massless theory. We then get the simple gap equation

M2 =
λk2

B

12�

[
T 2 − T 2

c

]
(10.32)

The first and obvious consequence of the thermal gap equation is that a field the-
ory which is massless at some temperature (T = Tc = 0, say) will not be massless
at other temperatures. If we associate a massless field (such as the photon) with
a long-range interaction, then at finite temperature the same interaction will
be short range (of course, Maxwell’s theory is a gauge theory, and we must be
careful [LeB96]).This phenomenon is called screening, and because it fixes the
screening length M−1, M2 is sometimes called the Debye mass M2

D.
If Tc is real, the gap equation admits negative solutions at low temperature

(meaning that the symmetric point φ = 0 corresponds to an unstable configura-
tion of the field, and we should not be doing perturbation theory around it) and
regular solutions above Tc. This is the phenomenon of symmetry restoration, and
Tc is the critical temperature which marks the destabilization of the symmetric
point [DolJac74, Wei74].

In theories with multiple fields the thermal mass matrix may not be positive
definite. In this case, there may be inverse symmetry restoration (namely, a
symmetry is broken at high temperature) or else symmetry nonrestoration (a
symmetry is never restored) [Wei74, PinRam06].

The generation of the Debye mass and the corresponding screening length
means that the behavior of thermal propagators is totally different from their
zero temperature counterparts, at least for soft momenta p ≤ MD. In this range,
to assume that one can develop a meaningful perturbation theory without a
careful consideration of screening is simply wrong. At the very least, one should
use the physical mass throughout. Since a mass shift in the inverse propagator is
equivalent to resumming an infinite number of graphs in the perturbative expan-
sion of the propagator itself, and the shift may be seen as coming mostly from
the high momentum sector where all masses can be neglected, the techniques
necessary to implement a consistent perturbation theory are generally known as
hard thermal loops resummation.

10.5 Landau damping

In addition to screening, at finite temperature a collective excitation will be
damped by scattering off quanta in the heat bath. Therefore, there are decay
channels unavailable at zero temperature. The most important of these decay
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10.5 Landau damping 299

processes is the so-called Landau damping, originally discussed by Landau in
the context of collisionless plasma theory [LifPit81].

In this section, we shall discuss Landau damping through a concrete example,
namely, the damping of a Maxwell field interacting with a Dirac quantum field
at finite temperature. To stress the physics involved, we shall begin with a brief
review of Landau damping in its original plasma physics context.

10.5.1 Landau damping in a relativistic collisionless plasma

Before we consider the issue of damping in the equation for a Maxwell background
field coupled to quantum fluctuations in a Dirac spinor field, let us discuss the
same issue in the simpler context of a classical relativistic collisionless plasma.

Under the collisionless approximation, particles evolve independently under
the electromagnetic field, which in turn is sourced by the average charge density
and current. The dynamics of each particle is determined by the Hamiltonian
(we set the speed of light c = 1)

p0 =
[
(p − eA)2 + m2

]1/2
+ eA0 (10.33)

Therefore we have the velocity

v = ∇pp
0 =

(p − eA)
(p0 − eA0)

(10.34)

and the Lorentz force (in a somewhat unusual notation)

[pi]
. = −∂ip

0 = e
[
vjAj,i − ∂iA

0
]

(10.35)

The charge and current densities are given by

j0 = e

∫
d3p

(2π)3
f (x,p, t) (10.36)

j = e

∫
d3p

(2π)3
v f (x,p, t) (10.37)

Charge is conserved as a consequence of Hamilton’s equations, provided f satis-
fies the Vlasov equation

∂f

∂t
+ v · ∇xf + ṗ · ∇pf = 0 (10.38)

Explicitly

(p− eA)μ
∂f

∂xμ
+ e [(p− eA)ν Aν,j ]

∂f

∂pj
= 0 (10.39)

We are interested in linearized Maxwell fields, so we may expand f = f0 +
f1 + . . . in powers of A. Assume f0 = f0(p). The first-order terms read

pμ
∂f1

∂xμ
+ e [pνAν,j ]

∂f0

∂pj
= 0 (10.40)
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300 Thermal field and linear response theory

If the Maxwell background corresponds to a plane wave

Aμ = Akμe
ikx (10.41)

we may seek a solution

f1 = f1
ke

ikx (10.42)

where, adopting Landau’s causal boundary conditions,

f1
k = e

[
pνAkν

−pλ (k + iε)λ

]
kj

∂f0

∂pj
(10.43)

We may now write the charge density (10.36). Using our perturbative solution
and discarding the zeroth-order term this becomes

j0 = j0
ke

ikx (10.44)

j0
k = e2

∫
d3p

(2π)3

[
pνAkν

−pλ (k + iε)λ

]
ki

∂f0

∂pi
(10.45)

Observe that the induced current is gauge invariant. Essentially, what we have
done is to compute the conductivity of the plasma. The important point is that
equation (10.45) develops an imaginary part when there are particles whose
momenta satisfy pλkλ = 0. The imaginary part reads

Im
[
j0
k

]
=

−πe2

(k0)2
[
k0Aj

k − kjAk0

]
ki
∫

d3p

(2π�)3
δ

[
p0 − k.p

k0

]
pj

∂f0

∂pi
(10.46)

If we use this as a source for the Maxwell equations, the imaginary part in the
charge density will engender the so-called Landau damping of the background
plane wave. As can be seen from equation (10.46), Landau damping occurs when
there are charged particles moving at the phase speed of the wave. These par-
ticles see the wave as a time-independent field, and may extract energy from
it. Actually, the expression for Im

[
j0
k

]
does not have a definite sign; however,

damping obtains generally for isotropic distributions [LifPit81].

10.5.2 A nonequilibrium problem with fermions: The case of QED

As a simple example of fermionic nonequilibrium field theory, we wish to consider
the linearized equations of motion for a Maxwell background field coupled to a
Dirac spinor (representing the electron field). The action is given by

S = SM + SD + Sint (10.47)

where SM is the free Maxwell action

SM =
(−1

4

)∫
d4x FμνFμν (10.48)

Fμν = ∂μAν − ∂νAμ (10.49)
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10.5 Landau damping 301

is the Maxwell field tensor, and Aμ the photon field. SD is the free Dirac action

SD =
∫

d4x ψ (iγμ∂μ −m)ψ (10.50)

where ψ is a four-component Dirac spinor, the γμ are the Dirac matrices obeying

{γμ, γν} = −2gμν (10.51)

and ψ is the Dirac adjoint spinor

ψ = ψ†γ0 (10.52)

The interaction term is

Sint =
∫

d4x eAμψγ
μψ (10.53)

We wish to compute the lowest order (O
(
e2
)
) linearized equation of motion for

the Maxwell background field. To this order, photon quantum fluctuations are
decoupled, so we need not consider them further. The CTPEA for the Maxwell
field reads

Γ
[
Aa

μ

]
= SM

[
Aa

μ

]
+ Γ1

[
Aa

μ

]
(10.54)

SM

[
Aa

μ

]
= SM

[
A1

μ

]
− SM

[
A2

μ

]
(10.55)

Γ1

[
Aa

μ

]
= −i� ln

∫
DψaDψ

b
e(i/�){SD+Sint} (10.56)

where the path integral is over Grassmann fields [Ber66, NegOrl98] defined on
the closed time path, and the actions in the integrand also are CTP actions.

To quadratic order in the external field,

Γ1

[
Aa

μ

]
=

ie2

2�
cacdcbef

∫
d4xd4x′ Aa

μ (x)Ab
ν (x′)〈[

ψ
c
(x) γμψd (x)

] [
ψ
e
(x′) γνψf (x′)

]〉
0

(10.57)

where

〈O〉0 =
∫

DψaDψ
b
eiSD O (10.58)

and we have used the fact that〈[
ψ (x) γμψ (x)

]〉
0

= 0 (10.59)

(see below). Since the integration measure is Gaussian, Wick’s theorem holds
and 〈[

ψ
c
(x) γμψd (x)

] [
ψ
e
(x′) γνψf (x′)

]〉
0

= −γμGde (x, x′) γνGfc (x′, x)

(10.60)
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302 Thermal field and linear response theory

where

Gde (x, x′) =
〈
ψd (x)ψ

e
(x′)
〉

0
(10.61)

and we have used the fact that in this problem〈
ψd (x)ψe (x′)

〉
0

= 0 (10.62)

which follows directly from the Gaussian integration.
The Gde are the CTP free Dirac propagators. From the ordering properties of

the CTP path integral

G21 (x, x′) =
〈
ψ̂ (x) ψ̂ (x′)

〉
(10.63)

G12 (x, x′) = −
〈
ψ̂ (x′) ψ̂ (x)

〉
(10.64)

where ψ̂ is the Heisenberg picture field operator, and the brackets denote vacuum
expectation value. We also have

G11 (x, x′) = G21 (x, x′) θ (t− t′) + G12 (x, x′) θ (t′ − t) (10.65)

G22 (x, x′) = G21 (x, x′) θ (t′ − t) + G12 (x, x′) θ (t− t′) (10.66)

The Heisenberg equation for the free field operator is the Dirac equation,
whereby

(iγμ∂μ −m)G21 (x, x′) = 0 (10.67)

and similarly for G12 (x, x′), while

(iγμ∂μ −m)G11 (x, x′) = i�δ (x− x′) (10.68)

(iγμ∂μ −m)G22 (x, x′) = −i�δ (x− x′) (10.69)

The solution to these equations with the proper CTP boundary conditions is

Gab (x, x′) = (iγμ∂μ + m) Δab (x, x′) (10.70)

where Δab are the Klein–Gordon CTP propagators. With the representation
(10.70) it is immediate to obtain equation (10.59).

The new term in the CTPEA induces a new term in the wave equation for the
photon field

e2

�

∫
d4x′ Πμν (x, x′)Aν (x′) (10.71)

Πμν (x, x′) = (−i) γμ
{
G11 (x, x′) γνG11 (x′, x) −G12 (x, x′) γνG21 (x′, x)

}
(10.72)

As in the case of the scalar field, the first term is what we would have found
from the “in-out” EA, and the second term enforces reality and causality.

Using the representation (10.70) the calculation of this term is a standard
exercise in quantum field theory [Ram80, PesSch95] and we will not repeat it. The
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10.5 Landau damping 303

photon retarded propagator acquires an imaginary part for off-shell momenta
−p2 ≥ 4m2. This represents damping of a photon wave from pair creation. We
have seen in Chapter 4 that damping also goes on below threshold, but it is
exponentially suppressed.

10.5.3 KMS and thermal Fermi propagators

The proof of the KMS theorem works as well for Fermi fields, but now we must
take into account the proper relation between the Fermi propagators and their
expression as averages of Heisenberg fields. If we introduce the thermal positive
and negative frequency propagators G+

β ≡ G21
β and G−

β ≡ G12
β the KMS condition

becomes

G+
β (ω) = −eβ�ωG−

β (ω) (10.73)

We may introduce a Fermi Jordan propagator

Gβ = G+ −G− =
〈{

ψ,ψ
}〉

β
(10.74)

(for a free field, Gβ is independent of the temperature) and a density of states

DF (ω) =
1

2π�
sign (ω)Gβ (ω) (10.75)

Then the KMS condition becomes

G±
β (ω) = 2π� {θ (±ω) − fFD (ω)}DF (ω) (10.76)

where fFD is the Fermi–Dirac distribution

fFD (ω) =
[
eβ�|ω| + 1

]−1

(10.77)

All other propagators may be built from these two.

10.5.4 Induced charge density from a finite temperature

Dirac quantum field

We now return to the quantum field problem. A nontrivial Maxwell background
induces a current (cf. equation (10.71))

jμ (x) =
δΓ1

δAμ (x)
=

e2

�

∫
d4x′Πμν (x, x′)Aν (x′) (10.78)

where Πμν (x, x′) is defined in equation (10.72). As in our simple plasma example,
we shall look into the induced charge density only. If the background is a single
plane wave as in equation (10.41), then

j0
k =

e2

�
Π0ν

k Akν (10.79)

Π0ν
k = (−i) γ0

∫
d4p

(2π)4
{
G11 (p) γνG11 (p− k) −G12 (p) γνG21 (p− k)

}
(10.80)
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304 Thermal field and linear response theory

To continue, let us decompose all propagators into a zero-temperature and a
statistical component

Gab (p) = Gab
0 (p) −Gstat (p) (10.81)

where Gab
0 (p) has the form of the zero-temperature propagators, but maybe with

temperature-dependent coefficients, and

Gstat (p) = 2π� fFD

(
p0
)
[−γμpμ + m] δ

(
−p2 −m2

)
(10.82)

is the same for all basic propagators. Clearly

Π0ν
k = Π0ν

k0 + Π0ν
kstat (10.83)

where the first term is the zero-temperature contribution. As we know, this term
describes, among other things, damping from pair creation out of the vacuum.
Our interest here is the other term

Π0ν
kstat = �γ0

∫
d4p

(2π)4
Jν (10.84)

Jν = Gret

(
p +

k

2

)
γνGstat

(
p− k

2

)
+ Gstat

(
p +

k

2

)
γνGadv

(
p− k

2

)
(10.85)

The exact expression for Π0ν
kstat is involved and shall not be discussed further.

It becomes simpler at high temperature, where we may argue that the leading
contribution to the integral comes from momenta p ≈ T � k,m. The leading
contribution in this limit is

4�
2

∫
d4p

(2π)3
p0pν

p (k + iε)
J (10.86)

J = fFD

(
p− k

2

)
δ

((
p− k

2

)2

+ m2

)
− fFD

(
p +

k

2

)
δ

((
p +

k

2

)2

+ m2

)

(10.87)

If k � p, we may expand inside the brackets. The leading contribution to the
imaginary part comes from a term

4�
2

∫
d4p

(2π)3
2p0δ

(
−p2 −m2

)
θ
(
p0
)

[−p (k + iε)]
pνk0 ∂fFD

∂p0
(10.88)

The momenta which contribute to the imaginary part satisfy p · k = 0, and so

k0 ∂fFD

∂p0
=

k0p0

p0

∂fFD

∂p0
=

k · p
p0

∂fFD

∂p0
= k∇pfFD (10.89)

We see a quantum field theory version of the Vlasov equation, only now we have
a factor of 4 reflecting the presence of electrons and positrons with two spin
states each, and �fFD instead of the classical one-particle distribution function.
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10.6 Hard thermal loops 305

10.6 Hard thermal loops

In this section we show how the above machinery can be applied to one set
of important problems – the dynamics of long-wavelength or “soft” modes of a
nonlinear quantum field, as affected by the short-wavelength or “hard” modes
towering over them. Historically, the techniques of this subject were developed
in an attempt to understand the physics of soft modes in non-abelian gauge
theories, for application to the quark–gluon plasma in relativistic heavy ion col-
lisions (RHICs), and to topology change in electroweak theory. This specific
context imposed a number of constraints, such as the need to deal with gauge
invariance, derivative couplings, ghost fields, etc. We wish to isolate the basic
physical ideas relating to nonequilibrium and statistical behavior from the tech-
nical devices specific to a given application, and therefore we shall not follow the
historical path, but rather present a fictitious toy model which retains sufficient
fundamental physics.

The important lesson to be gleaned from this is that formal questions, such as
which is the best perturbative scheme or to which order should it be pursued,
cannot be separated from physical questions. As illustrated in this example, we
get different answers depending on whether we wish to discuss soft or ultrasoft
modes. In either case, simply counting powers of coupling constants gives the
wrong result. It is necessary to analyze the contents of the theory to make sure
that what looks small is indeed small, and to realize that different scales pertain
to different physics.

In this section we shall use some tools of quantum kinetic field theory which will
be discussed in detail in Chapter 11. The reader unfamiliar with these techniques
may return to this section after getting acquainted with them.

10.6.1 The model

The essential elements we need to keep from the physics of non-abelian gauge
fields are the presence of massless fields and a derivative cubic coupling. For
massless fields radiative corrections are infrared sensitive, and will require special
care to evaluate them. There is a term in the action containing three gauge fields
and one derivative. In momentum space, the derivative becomes one momentum
component. At finite temperature T , typical momenta are of the order of T , and
so the effective coupling strength increases with temperature.

Therefore we postulate as our toy model a massless scalar field theory with
cubic interaction

S =
∫

d4x

{
−1

2
∂μΦ∂μΦ − gT

6
Φ3 + hΦ

}
(10.90)

with the constitutive relation h = gT 3/12. We assume g � 1. The linear term
is necessary to cancel a tadpole term later on; non-abelian gauge theories are
protected against such terms by gauge invariance. Of course, this model is not
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306 Thermal field and linear response theory

by itself a viable theory, since it has no stable ground state; we shall use it only
as an ersatz for a fully consistent, but necessarily more involved, non-abelian
gauge theory.

The basic problem, as already stated, is to find the dynamics of the “soft”
modes as modified by the virtual “hard” particles, the so-called “hard thermal
loops” (HTLs). Here a “soft” mode corresponds to wavenumbers k ∼ gT , while
a “hard” mode has a much larger wavenumber k ∼ T. Taking the open systems
approach as introduced in Chapter 5, we partition the scalar field Φ = φ + ϕ,
where φ is the soft field, and ϕ is the hard field. The soft and hard field equations
are, respectively

∂2φ− gT

2
φ2 − gT

2
ϕ2
∣∣
soft

+ h = 0 (10.91)

∂2ϕ− gTφϕ− gT

2
ϕ2
∣∣
hard

= 0 (10.92)

In a naive perturbation expansion, we would argue that since the hard modes
appear in equation (10.91) in a O (g) term, we only need to solve equation (10.92)
up to O (1) accuracy. We would neglect the second and third terms in equation
(10.92), proceeding to treat ϕ as a massless Klein–Gordon field. The treatment
simplifies even further if we actually think of the soft modes as a classical field
(which may be justified on the grounds of the large occupation numbers prevalent
in the soft sector of the theory). Then we may replace ϕ2

∣∣
soft

in equation (10.91)
by the thermal expectation value appropriate for a massless field

〈
ϕ2
〉
∼ T 2/6.

In this approximation the
〈
ϕ2
〉

term is canceled by the h term, by design, and we
find that to leading order in g, the hard modes have no effect on the soft modes.

10.6.2 Hard thermal loops

Braaten and Pisarski [BraPis90a, BraPis90b, BraPis92] and Frenkel and
Taylor [FreTay90] were the first to point out that this argument is not only naive,
but actually wrong. The reason is resonance. Assume for simplicity that the soft
modes undergo a homogeneous oscillation φ = φ0 cosωt. Assume also a pertur-
bative expansion ϕ = ϕ0 + ϕ1 + . . . for the hard modes, where ϕn ∝ gn, and
neglect interactions between hard modes. Then ∂2ϕ0 = 0, and we may expand
(in this section, we use natural units)

ϕ0 =
∫

d3k

(2π)3
eikx

√
2k

ϕ0k; ϕ0k = a0ke
−ikt + a†0−ke

ikt (10.93)

with 〈
a†0ka0p

〉
= nkδ(k − p) (10.94)

where nk is the Bose–Einstein distribution

nk =
[
ek/T − 1

]−1 (10.95)

For not-so-hard modes, nk ∼ T/k.
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Now consider the first-order correction. Assuming a Fourier decomposition

ϕ1 =
∫

d3k

(2π)3
eikx

√
2k

ϕ1k (10.96)

we have
∂2

∂t2
ϕ1k + k2ϕ1k = − [gTφ0 cosωt]ϕ0k (10.97)

Neglecting the homogeneous solution, we get, in the limit of soft ω,

ϕ1k =
gTφ0

2k2ω
sinωt

∂

∂t
ϕ0k (10.98)

Glossing over the details of actually computing the expectation values, we see
that a priori we expect a correction to the soft equation of motion of order
of magnitude gT 〈ϕ0ϕ1〉 ∼ g2 (T/ω)T 2φ0. For ω ∼ gT , this is larger than the
classical term ω2φ0 by a factor of g−1, and it cannot possibly be neglected.

In diagrammatic terms, we may represent
〈
ϕ2
〉

as a tadpole graph (cf. Fig. 6.1
in Chapter 6). By considering a soft field insertion, it turns into a fish graph (Fig.
6.7 in Chapter 6). Explicitly〈

ϕ2
〉

= Δ (x, x) + gT

∫
d4y Δ2 (x, y)φ (y) + . . . (10.99)

where Δ represents a massless scalar propagator. We postpone the question on
exactly which propagator is involved, and work for now with the Feynman prop-
agators (as would be the case in the “in-out” formulation). Fourier transforming,〈

ϕ2
〉

=
∫

d4p

(2π)4
Δ (p) + gT

∫
d4k

(2π)4

∫
d4p

(2π)4
Δ (p) Δ (p− k)φ (k) (10.100)

We are interested in the contribution from the second term. Consider the con-
tribution from the thermal part in Δ (p) . Then p is on-shell. Since p− k cannot
be on-shell, Δ (p− k) ∼ (p− k)−2 ∼ 1/2p0ω. The presence of an inverse power
of ω in the integral invalidates the naive perturbation theory when ω is para-
metrically small. If in particular ω ∼ gT , the “correction” is a priori as large as
the leading term.

Moreover, the problem appears with every soft insertion. Adding a soft inser-
tion to a pre-existing graph adds a power of gTφ but also a power of

(
p0ω
)−1. If

we are considering large field amplitudes φ ∼ T, hard momenta p ∼ T , and soft
frequencies ω ∼ gT, then gTφ ∼ p0ω ∼ gT 2. The overall amplitude of the graph
with the insertion is not smaller than without it, and we must sum over all
soft field insertions at once. The result is called a HTL resummed perturbation
theory.

10.6.3 Hard thermal loops from the 2PI CTP effective action

To derive the HTL resummed theory, we shall use the 2PI CTP formalism.
Since graphs with more than one external field insertion cannot be two-particle

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


308 Thermal field and linear response theory

irreducible, they do not appear explicitly in the 2PI effective action (that is, the
graph with a single insertion represents them all). The CTP technique warrants
causality of the resulting equations of motion.

To simplify things, we shall make the semiclassical approximation for the soft
field (that is, we shall not include soft field propagators) and set the hard back-
ground field to zero (that is, the hard field will be represented only by its prop-
agators). The 2PI CTP effective action Γ2 is thus a functional of a CTP soft
background field φA (as before, the index A comprises a branch index a = 1, 2
and a spacetime location x) and hard propagators GAB , and takes the form

Γ2 = S
[
φA
]
+

1
2
S,AB

[
φA
]
GAB − i

2
Tr lnG + ΓQ (10.101)

where S
[
φA
]

= S
[
φ1
]
− S

[
φ2
]
, and

S,AB

[
φA
]

=
{
cab∂

2
x − cabcgTφ

c (x)
}
δ (x− y) (10.102)

(the tensors cabc... take the value 1 when all their indices are 1, −1 when all the
indices are 2, and vanish otherwise). ΓQ is the sum of all 2PI vacuum bubbles with
a cubic vertex and G propagators. It represents the hard field’s self-interactions,
and we shall disregard it for the time being.

Variation of Γ2 yields the 2PI Schwinger–Dyson equation for G

{
cab∂

2
x − cabcgTφ

c (x)
}
Gbd (x, y) = iδdaδ (x− y) (10.103)

(where φ1 (x) = φ2 (x) = φ (x)) and the field equation for the soft modes

∂2φ (x) − gT

2
φ2 (x) − gT

2
G11 (x, x) + h = 0 (10.104)

In principle, one is to solve equation (10.103) for G and plug into equation
(10.104) for φ. In practice, solving equation (10.103) is nontrivial, because of
the spacetime dependence in φ (x). One possibility is to take advantage of the
slow variation of the soft field to write the hard propagator in terms of a Wigner
function. Since there are no hard self-interactions, the result is a Vlasov equation
for the hard-field Wigner function.

10.6.4 The Vlasov equation for hard modes

Observe that the soft field only couples to the hard Hadamard propagator, which,
neglecting hard self-interactions, obeys the simple equation

(
∂2
x − gTφ (x)

)
G1 (x, y) = 0 (10.105)

To avoid formal problems particular to the cubic interaction, we shall assume
φ (x) > 0 throughout.
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10.6 Hard thermal loops 309

Following the usual quantum kinetic theory approach, to be discussed further
in Chapter 11, we decompose

G1 (x, y) =
∫

d4p

(2π)4
eipu G1 (X, p) (10.106)

u = x− y; X =
1
2

(x + y) (10.107)

We also expand

φ (x) ∼ φ (X) +
u

2
∂φ (X) + . . . (10.108)

Keeping the first derivatives only (formally, ∂φ ∼ gTφ) we obtain the mass shell
condition [

p2 + gTφ (X)
]
G1 (X, p) = 0 (10.109)

therefore

G1 (X, p) = 2πδ
(
p2 + gTφ (X)

)
[1 + 2f (X, p)] (10.110)

where the distribution function f obeys the Vlasov equation(
p

∂

∂X
− 1

2
gT

∂φ

∂X

∂

∂p

)
f = 0 (10.111)

We solve this equation perturbatively

f = f0 + f1 + . . . (10.112)

off the thermal distribution

f0 = np0 (10.113)

Then

p
∂

∂X
f1 =

1
2
g

∂φ

∂X0
np0

(
1 + np0

)
(10.114)

which admits the particular solution

f1 =
(−i)

2
gnp0

(
1 + np0

) ∫
d4Y

∫
d4Q

(2π)4
eiQ(X−Y )

p (Q + iε)
∂φ

∂Y 0
(10.115)

To find the soft equation of motion we must compute the coincidence limit
G1 (x, x)

G1 (x, x) = G0
1 (x, x) + G1

1 (x, x) + . . . (10.116)

G0
1 (x, x) =

∫
d4p

(2π)3
δ
(
p2 + gTφ (x)

) [
1 + 2np0

]
∼ T 2

6
+ O (g) (10.117)

G1
1 (x, x) = (−i) g

∫
d4Y

∫
d4Q

(2π)4
eiQ(X−Y ) ∂φ

∂Y 0

×
∫

d4p

(2π)3
δ
(
p2 + gTφ (x)

) np0

(
1 + np0

)
p (Q + iε)

(10.118)
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310 Thermal field and linear response theory

Assume for simplicity that φ is spatially homogeneous, then the integral over the
space components Y is immediate, and we obtain

G0
1 (x, x) = ig

∫
dY

∫
dQ e−iQ(X0−Y )

(2π) (Q + iε)
∂φ

∂Y

∫
d4p

(2π)3

× δ
(
p2 + gTφ (x)

) np0

(
1 + np0

)
p0

(10.119)

Now ∫
d4p

(2π)3
δ
(
p2 + gTφ (x)

) np0

(
1 + np0

)
p0

∼ α

√
T 3

gφ
(10.120)

where α is some numerical constant. In the other integral, we integrate by parts∫
dY

∫
dQ

(2π) (Q + iε)
e−iQ(X0−Y ) ∂φ

∂Y
∼ −iφ (X) (10.121)

Finally, we retrieve the equation for the soft modes

∂2φ (x) − gT

2
φ2 (x) − αgT 2

4

√
gTφ = 0 (10.122)

The correction is actually larger than the classical potential term when (φ/T ) <
g1/3; in any case, the corrections behave like g3/2 rather than the expected g2.
The infrared sensitivity of the theory invalidates naive perturbation theory.

10.6.5 Ultrasoft modes and Boltzmann equation

We now return to address a possible concern about the consistency of neglecting
interactions among hard modes. A moment’s reflection shows that for soft modes
ω ∼ gT Feynman graphs containing hard cubic vertices are indeed of higher
order. For example, if we compare the graph in Fig. 10.1 to the fish graph, we
see that both lead to one power of ω−1, but Fig. 10.1 has four powers of gT

against 2 in the fish. Even the graph in Fig. 10.2 is safe, because although it
scales as ω−2, it also has four powers of gT in the denominator.

Figure 10.2 becomes unsafe, however, if we push the theory to deal with ultra-
soft modes ω ∼ g2T. To include it into the model, we must reconsider the role of
ΓQ. In particular, we obtain Fig. 10.2 if we approximate ΓQ by the setting-sun

Figure 10.1
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Figure 10.2

graph (Fig. 6.4 in Chapter 6). The three loops graph in Fig. 6.10 of Chapter 6
will lead to graphs of higher order even in the ultrasoft regime.

Adding a nontrivial ΓQ has the important effect that the equation for the
hard propagators becomes nonlinear. We may still make use of Wigner function
techniques, but now the transport equation acquires a collision term – for the
cubic self-interaction, the corresponding kinetic equation has been worked out
by Danielewicz in the early days of NEqQFT [Dan84a, Dan84b], and it is not
quite Boltzmann’s. Of course, if we are only interested in small oscillations, we
may linearize the collision term around the equilibrium solution for zero soft
background. Even after linearization, the presence of the collision term affects
the physics in important ways.

To get an idea of the changes brought by the collision term, we may adopt the
simple “collision time approximation” [Lib98], and write the full kinetic equation
as (

p
∂

∂X
− 1

2
gT

∂φ

∂X

∂

∂p

)
f = −T

τ
(f − f0) (10.123)

where τ is the relaxation time. From naive power counting and dimensional
analysis, we see τ ∼

(
g2T
)−1

. The unperturbed solution is still a Bose–Einstein
distribution, but now the first correction is(

p
∂

∂X
+

T

τ

)
f1 =

1
2
g

∂φ

∂X0
np0

(
1 + np0

)
(10.124)

and we may approximate

f1 =
gτ

2T
∂φ

∂X0
np0

(
1 + np0

)
(10.125)

This introduces a dissipative term in the equation for ultrasoft modes

∂2φ (x) − gT

2
φ2 (x) − 2γ

∂φ

∂X0
= 0 (10.126)

γ =
g2τ

8

∫
d4p

(2π)3
δ
(
p2 + gTφ (x)

)
np0

(
1 + np0

)
(10.127)

An explicit calculation yields

γ ∼ α′g2T 2τ ln
[
T

gφ

]
(10.128)

where α′ is (another) numerical constant.
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312 Thermal field and linear response theory

Once again, the contribution from HTLs is of order g2T 2φ, much larger than
the classical term ∂2φ/∂X02 ∼ g4T 2φ.

10.6.6 Langevin dynamics of ultrasoft modes

We have seen in the previous section that the dynamics of ultrasoft modes is
dissipative. From the discussion in Chapter 8, we know that it will be noisy as
well. We shall use this as a model problem, by deriving the fluctuations in three
different ways.

Method 1: fluctuation–dissipation theorem for ultrasoft modes

The simplest approach is to apply to the ultrasoft equation of motion (10.126) the
fluctuation-dissipation theorem as discussed in Chapter 8. We modify equation
(10.126) to read

∂2φ (x) − gT

2
φ2 (x) − 2γ

∂φ

∂X0
= ξ (x) (10.129)

〈ξ (x) ξ (x′)〉 = σ2δ (x− x′) (10.130)

The fluctuation–dissipation theorem yields

σ2 = 4γT (10.131)

Method 2: fluctuations from the CTPEA

Our second approach to the derivation of noise in the dynamics of ultrasoft
modes will be based on the derivation of equation (10.129) from the CTPEA, a
problem we already confronted in Chapter 8. The equation of motion, as derived
from the CTPEA, reads

∂2φ (x) − gT

2
φ2 (x) − gT

2

[〈
ϕ2
〉
φ
−
〈
ϕ2
〉
0

]
(x) =

gT

2
ζ (x) (10.132)

We have shown in Chapter 8 that

〈ζ (x) ζ (x′)〉 =
1
2

[〈{
ϕ2 (x) , ϕ2 (x′)

}〉
φ
− 2
〈
ϕ2
〉
φ

(x)
〈
ϕ2
〉
φ

(x′)
]

(10.133)

To compare these expressions to the explicit derivation above, we recall the linear
response theory result (discussed earlier in this chapter)

〈
ϕ2
〉
φ+δφ

(x) =
〈
ϕ2
〉
φ

(x) − igT

2

∫
d4x′ 〈[ϕ2 (x) , ϕ2 (x′)

]〉
φ
θ
(
x0 − x′0) δφ(x′)

(10.134)
Comparison with equation (10.129) yields

〈[
ϕ2 (x) , ϕ2 (x′)

]〉
φ

=
16iγ
g2T 2

∂

∂x0
δ (x− x′) (10.135)
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10.6 Hard thermal loops 313

On the other hand, commutator and anticommutator are related through the
KMS theorem (also discussed earlier in this chapter). Introducing the Fourier
decomposition

〈[
ϕ2 (x) , ϕ2 (x′)

]〉
φ

=
∫

d4p

(2π)4
eip(x−x′)R (p) (10.136)

〈{
ϕ2 (x) , ϕ2 (x′)

}〉
φ

=
∫

d4p

(2π)4
eip(x−x′)R1 (p) (10.137)

then

R (p) =
16γ
g2T 2

p0 (10.138)

and the fluctuation–dissipation theorem yields

R1 (p) =
16γ
g2T 2

(
1 + 2np0

) ∣∣p0
∣∣ (10.139)

In the high-temperature limit, this leads to the classical result

〈ζ (x) ζ (x′)〉 =
16γ
g2T

δ (x− x′) (10.140)

which agrees with the results from Method 1 after identifying ξ = gTζ/2.

Method 3: fluctuations in the Boltzmann equation

Yet another method to derive the fluctuations in the ultrasoft modes is to keep
to the derivation of the ultrasoft equation of motion in the previous section, but
now using for the hard modes the full Boltzmann equation which, as discussed
in Chapter 2, must contain stochastic terms over and above the usual collision
term, thus becoming a Boltzmann–Langevin equation. This means we replace
equation (10.123) by(

p
∂

∂X
− 1

2
gT

∂φ

∂X

∂

∂p

)
f = −T

τ
(f − f0) + J (X,p) (10.141)

where it is understood that p0 is given as a function of the spatial components
p through the mass shell condition. The noise self-correlation has been derived
in Chapter 2. Under the collision time approximation (10.123) for the collision
integral, we get

〈J (X,p)J (Y,q)〉 = 2 (2π)3 δ (X − Y ) δ (p − q)
T

τ
p0 np0

(
1 + np0

)
(10.142)

For the ultrasoft components of the distribution function, we obtain

f1 = f1det +
τ

T
J (10.143)

where f1det is the deterministic solution given in equation (10.125). The equation
of motion for ultrasoft modes (10.126) is transformed into equation (10.129),
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where now we have a model for the noise

ξ (x) =
gT

2

∫
d4p

(2π)3
δ
(
p2 + gTφ (x)

) [ τ
T
J (x,p)

]
(10.144)

leading to the self-correlation

〈ξ (x) ξ (x′)〉 =
g2Tτ

2
δ (x− x′)

∫
d4p

(2π)3
δ
(
p2 + gTφ (x)

)
np0

(
1 + np0

)
(10.145)

Comparing this to equation (10.127), we recover equation (10.130)

10.6.7 A note on the literature

As already mentioned, Braaten, Pisarsky, Frenkel and Taylor were the first to
point out the need to restructure perturbation theory to account for the physics
at different scales. Their work was motivated by the need to derive a reliable
estimate of the decay constants of various fields in a hot non-abelian plasma. In
this context, there are a number of issues associated with the gauge nature of the
fundamental theory (such as whether the right decay constants are automatically
gauge invariant) which have no analog in our toy model. We have only attempted
to give a flavor of the physical ideas behind the formalism.

The subsequent literature on hard thermal loops is voluminous. Le Bellac’s
book [LeB96] has a nice chapter on this subject. Our presentation here is mostly
a retelling of work by Bödeker [Bod98, Bod99] and by Arnold, Moore, Son and
Yaffe [Son97, ArSoYa99a, ArSoYa99b, ArMoYa00] (of course, any flaw incurred
in our attempt to “simplify” their discussion is our own). Important contributions
from Blaizot and Iancu are summarized in the Physics Reports review article by
these authors [BlaIan02]. The Boltzmann–Langevin equation for Φ4 field was
investigated by the authors in [CalHu00] while for non-abelian plasmas by Litim
and Manuel. We recommend their review article as a good entry point to the
literature [LitMan02].

We shall return to some of these issues in later chapters.
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11

Quantum kinetic field theory

11.1 The Kadanoff–Baym equations

Quantum kinetic field theory is the theme of this chapter. In this section we get
right to the heart of it by showing a derivation of the celebrated Kadanoff–Baym
(KB) equations [KadBay62]. The basic idea is that close to equilibrium, prop-
agators are nearly translation invariant. It is possible to define a partial Fourier
transform with respect to the relative position of the arguments. The Kadanoff–
Baym equations then determine how the partial Fourier transform depends on
the average (or “center of mass”) of the arguments in the original propagators.

Besides the presentation in Kadanoff and Baym’s textbook, there are sev-
eral derivations of these equations in the literature [Dub67, Dan84a, MroDan90,
MroHei94, ZhuHei98]. We shall follow [CalHu88, CaHuRa00]. See also [Hen95,
IvKnVo00, KnIvVo01, Nie02, Koi02]. References [BoVeWa00, WBVS00] follow a
different path towards quantum kinetic theory, based on the so-called dynamical
renormalization group.

11.1.1 The model

To better appreciate the main points in this derivation, we shall consider a simple
model, namely, the KB equations for the theory of a single real self-interacting
λΦ4 scalar field, in the absence of background fields. Actually, the key ideas are
not sensitive to the particular models, but for concreteness it will be helpful to
have a model in mind. The classical action is given by equation (6.106).

A translation-invariant propagator Gab depends on its arguments x and x′

only through the so-called “relative” variable u = x− x′. The Fourier transform
with respect to u yields the momentum representation

Gab (x, x′) = �

∫
ddk

(2π)d
eiku Gab (k) (11.1)

We have discussed in Chapter 6 the basic properties of these Fourier transforms.
We say that a Gab is almost translation invariant if, when partially Fourier

transformed with respect to u, the Fourier transform is weakly dependent on the
“center of mass” variable X = (x + x′) /2, i.e.

Gab (x, x′) =
∫

ddk

(2π)d
eikuGab (X, k) (11.2)
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316 Quantum kinetic field theory

The precise definition of what “weakly dependent” means depends up to a certain
point on the problem at hand. For example, in a hard thermal loop scheme such
as discussed in Chapter 10, we may find a situation where ∂xG

ab (x, x′) ≈ TGab,
while ∂XGab (X, k) ≈ gnTGab with n ≥ 1. In such a case, the propagators are
almost translation invariant in the weak coupling limit.

On the other hand, beware that in gauge theories the same object may be
almost translation invariant in some gauges and not in others (with a corre-
sponding problem in relativistic theories with respect to changes of coordinates).
We also mention that in the presence of external gauge background fields, or in
curved spacetimes, some care must be taken to define precisely the Fourier trans-
form in (11.2) [Hei83, Win85, CaHaHu88, Fon94]. We shall discuss these issues
later in this chapter.

Irrespective of whether the assumption of almost translation-invariance holds,
expressions involving Gab (X, k) may be classified according to their “adiabatic
order,” namely, the number of X derivatives appearing in the expression. We call
this the “adiabatic expansion.” When almost translation-invariance is satisfied,
we may further reject all terms above a given adiabatic order. We call such
a truncation of an adiabatic expansion an “adiabatic approximation.” In other
words, the adiabatic order is used as a tag to bunch together certain terms in the
equations of motion in accordance to their derivative orders and the adiabatic
approximation determines how many of those terms are kept.

Our aim is to analyze the adiabatic expansion of the 2PI Schwinger–Dyson
equations for the propagators. These are deduced from the 2PI CTPEA (cf.
Chapter 6)

Γ =
1

2ZB

∫
ddxddy cabD(x, y)Gab(x, y) − i�

2
Tr lnG + ΓQ (11.3)

where c11 = −c22 = 1, c12 = c21 = 0,

D(x, y) =
[
∂2
x −m2

b

]
δ(x− y) (11.4)

ΓQ is the sum of all 2PI vacuum bubbles. Taking variations of the 2PI CTPEA
we find the equations of motion

1
ZB

cabD (x, y) − i�
[
G−1

]
ab

(x, y) − �Σab (x, y) = 0 (11.5)

�Σab (x, y) = −2
δΓQ

δGab(x, y)
(11.6)

These are the exact equations we must solve. We assume there are known rela-
tions expressing Σab in terms of the propagators. These can be found, for exam-
ple, by adopting one of the perturbative schemes discussed in Chapter 6.

Observe that to determine G (X, k) as the inverse Fourier transform of G (x, x′)
we must know the whole evolution of the correlation, both to the past and future
of the event X. It is possible to present an alternative formulation where only
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11.1 The Kadanoff–Baym equations 317

equal time correlations are Fourier transformed, thus more in keeping with the
spirit of causality [ZhaHei96a, ZhaHei96b, ABZH96, ZhuHei98].

In general, it will be necessary to add nonlocal sources to the classical action to
account for nontrivial correlations at the initial time. We consider these sources
are included into the Σab (x, y).

Let us continue with the analysis of (11.5). Our first task is to find an efficient
parameterization for the propagators. It is clear that the four basic propagators
(Feynman, Dyson, positive and negative frequency) are not independent. As we
shall see, there are essentially two (phase space) functions which contain the
relevant information from which all propagators may be reconstructed. One of
these functions plays the role of a (position-dependent) density of states, and
the other one of the nonequilibrium one-particle distribution function. To be
able to write all propagators in terms of these two functions we must consider
first the so-called Keldysh representation of the propagators, in which the four
basic propagators are written in terms of the Hadamard, retarded and advanced
propagators as

Gab =
(
G11 G12

G21 G22

)
=

1
2

(
1 1
−1 1

)(
0 −i�Gadv

−i�Gret G1

)(
1 −1
1 1

)
(11.7)

with inverse(
0 −i�Gadv

−i�Gret G1

)
=

1
2

(
1 −1
1 1

)(
G11 G12

G21 G22

)(
1 1
−1 1

)
(11.8)

11.1.2 Density of states and distribution function

Let us introduce the density of states D (X, k) out of the Fourier transform of
the Jordan propagator G = G21 −G12

G (X, k) ≡ 2π�D (X, k) sign
(
k0
)

(11.9)

Observe that by symmetry we must have G (X, (0,k)) = 0. We shall assume G

is continuous there, implying D (X, (0,k)) = 0.
The Jordan and retarded propagators are related through

G (X, k) = 2� ImGret (X, k)

= −2� |Gret (X, k)|2 Im [Gret (X, k)]−1 (11.10)

This suggests defining a new kernel γ (X, k) such that

D (X, k) = |Gret (X, k)|2 γ (X, k) (11.11)

γ (X, k) =
1
π

Im [−Gret (X, k)]−1 sign
(
k0
)

(11.12)

Observe that per earlier assumptions, γ (X, (0,k)) = 0.
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318 Quantum kinetic field theory

We now define the (dimensionless) distribution function f (X, k) through the
partial Fourier transform of the Hadamard propagator

G1 (X, k) ≡ 2π�D (X, k) F1 (X, k) (11.13)

F1 (X, k) = 1 + 2f (X, k) (11.14)

It follows that

G21(12) (X, k) = 2π� F 21(12) (X, k)D (X, k) (11.15)

where

F 21(12) (X, k) = θ
(
±k0

)
+ f (X, k) (11.16)

In equilibrium, f is the Bose–Einstein distribution function (KMS theorem). It
can be assumed that (11.13) serves as the definition of the function f , valid
to all orders in perturbation theory. Observe that, since the relevant Fourier
transforms are distributions (e.g. in free theories), this definition may only be
applied if both Fourier transforms have the same singularity structure, which
amounts to a restriction on allowed quantum states. In what follows, we shall
assume these restrictions are met.

While this definition of the one-particle distribution function will prove to
be very convenient in practice, and it is guaranteed to give the right result in
equilibrium, it is not tied to any fundamental definition of what a particle is. It
is also possible to take an alternative route, where one introduces a physically
motivated particle destruction operator, builds the corresponding particle num-
ber operator, and finally derives an equation of motion for the latter (cf. the
discussion of the quantum Vlasov equation in Chapter 4) [GreLeu98].

11.1.3 The dissipation and noise kernels

As we have seen, the information content of the almost translation-invariant
propagators can be encoded in just two functions D (X, k) and f (X, k) . To pro-
ceed, we must perform a similar compression of the self-energies Σab. We do this
by writing both propagators and self-energies in terms of the dissipation D and
the noise kernel N, which appear in the Hessian of the one-particle irreducible
(1PI) effective action. These two kernels are largely independent of each other,
and have a distinct physical meaning, with D carrying the dynamical informa-
tion and N the statistical information. This division of labor is most clearly seen
in a free theory. Together D and N are a more compact description of the theory
than the propagators themselves.

We have two different ways of relating D and N to the propagators. On one
hand, they are constructed from Feynman diagrams which carry propagators
in their internal legs. Which diagrams must be considered depends on which
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11.1 The Kadanoff–Baym equations 319

approximation is being used. On the other hand, the Schwinger–Dyson (SD)
equations allow us to express the propagators in terms of D and N. For a true
solution, these two paths must be equivalent. This consistency requirement yields
the most efficient representation of the dynamics.

The dissipation and noise kernels D and N appear in the linearized CTP 1PI
EA Γ1PI (cf. Chapter 6)

Γ1PI =
1
2

∫
ddxddy

{[
ϕ1 − ϕ2

]
(x)
[

1
ZB

D (x, y) + D (x, y)
] [

ϕ1 + ϕ2
]
(y)

+ i
[
ϕ1 − ϕ2

]
(x)N (x, y)

[
ϕ1 − ϕ2

]
(y)
}

(11.17)

D is causal and N is even, and both are real. The causality of D allows for a
more efficient parameterization. Introduce the kernels

Deven (x, y) =
1
2

[D (x, y) + D (y, x)] ; Γ (x, y) =
1
2

[D (x, y) − D (y, x)]

(11.18)
then

D = 2Γ θ
(
x0 − y0

)
(11.19)

Deven= Γ sign
(
x0 − y0

)
(11.20)

D and N are related to the Gab through the identity

D2Γ1PI

DϕaDϕb
= i�

[
G−1

]
ab

(11.21)

The inverse propagators may be read off the Schwinger–Dyson equations, and
we get

−�Σ11 = Deven + iN (11.22)

−�Σ12 = Γ − iN (11.23)

−�Σ21 = −Γ − iN (11.24)

−�Σ22 = −Deven + iN (11.25)

Since D (x, y) is real, we know the real part of D (X, k) is even and the imaginary
part is odd: D (X, k) = D (X,−k)∗, so

Deven (X, k) = Re D (X, k) (11.26)

Γ (X, k) = i Im D (X, k) (11.27)

and (11.20) transforms into the Kramers–Kronig relations for the causal
kernel D.
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320 Quantum kinetic field theory

11.1.4 The retarded and advanced propagators

We have seen how to relate the dissipation and noise kernels D and N to the
inverse propagators. To relate them to the propagators themselves, let us first
investigate the SD equations in the Keldysh representation.

Write

�
[
G−1

]
ab

=
1
2

(
1 1
−1 1

)(
�
−1G−1

retG1G
−1
adv iG−1

ret

iG−1
adv 0

)(
1 −1
1 1

)
(11.28)

The equations of motion now read(
�
−1G−1

retG1G
−1
adv iG−1

ret

iG−1
adv 0

)
= (−i)

(
2iN D

ZB
+ D

D
ZzB

+ Dadv 0

)
(11.29)

where

Dadv (x, y) = Deven − Γ = D (y, x) (11.30)

These equations show that G1 and Gret may be considered functionals of D and
N. The formulae above upon partial Fourier transform become

D (X, k) =
{
−G−1

ret (X, k) +
1
ZB

(
k2 + m2

b

)}
(11.31)

To relate G−1
ret (X, k) to [Gret (X, k)]−1 we recall the formula for the partial

Fourier transform of a convolution

[f ∗ g] (X, k) = f (X, k) g (X, k) − i

2
{f, g} −1

8

{
∂2f

∂Xμ∂Xν

∂2g

∂kμ∂kν

+
∂2g

∂Xμ∂Xν

∂2f

∂kμ∂kν
− 2

∂2f

∂Xμ∂kν

∂2g

∂kμ∂Xν

}
+ . . . (11.32)

where we use the Poisson bracket (cf. Chapter 2)

{f, g} =
∂f

∂k

∂g

∂X
− ∂f

∂X

∂g

∂k
(11.33)

We obtain the adiabatic expansion of G−1
ret (X, k) by applying equation (11.32)

to the obvious statement that the convolution of G−1
ret and Gret is the identity

operator. To simplify the resulting expression, we assume that in the second-
order terms we may approximate G−1

ret (X, k) by its quasi-particle approximation
form

[
(k + iε)2 + M2

]
.

More generally, the so-called quasi-particle approximation consists in replac-
ing the actual propagators for those of a free field (see Chapter 5) with a yet-
to-be-determined mass M2. The physical basis of this approximation is that
one expects the most interesting dynamics may be described in terms of local-
ized excitations which, in between collisions, propagate as free particles with
a well-defined mass. This leads to propagators concentrated on a sharp mass
shell, which can be well approximated by free propagators. The quasi-particle
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11.1 The Kadanoff–Baym equations 321

approximation is expected to hold when the mean free path for quasi-particles
is long compared with the Debye length M−1. We warn the reader beforehand
that important processes, such as thermalization, are not well described within
this approximation (see the next chapter).

Computing the required derivatives and rearranging, we obtain

1 =
{

1
ZB

(
k2 + m2

b

)
− D (X, k)

}
Gret (X, k)

− 1
4
∇2

XGret (X, k) − 1
8

∂2M2

∂Xμ∂Xν

∂2Gret (X, k)
∂kμ∂kν

(11.34)

Over and above the need to renormalize (11.34), observe that this is a full-
fledged evolution equation for the Fourier transform of the retarded propagator.
To make the approach more definite, we may request that the quasi-particle
approximation for Gret actually becomes exact as k → 0. We shall discuss mass
renormalization in more detail below.

Ideally one would seek simultaneous solutions for (11.34) and the transport
equation to be derived below, but these are hard (and may be impossible) to
find [Mro97]. In such a case, one simply regards (11.34) as a way to generate the
adiabatic expansion of Gret.

In the approximation where only terms linear in the gradients of the Fourier
transforms of the propagators are retained, it is possible to write down a non-
perturbative (in the coupling constant) expression for the retarded and Jordan
propagators. The advantage of this approach is that it goes beyond the quasi-
particle approximation. In particular, it is sufficient for the discussion of the
transition to hydrodynamics and the computation of transport functions.

It is convenient to introduce a real kernel

R (X, k) =
1
ZB

(
k2 + m2

b

)
− Deven (X, k) (11.35)

The required expression is

[Gret (X, k)]−1 = R− Γ (11.36)

From (11.27)

Γ (X, k) = (−i) Im [Gret (X, k)]−1 = iπ γ (X, k) sign
(
k0
)

(11.37)

and finally, from (11.11),

D (X, k) =
γ (X, k)
R2 − Γ2

(11.38)

Recall that since we assume we know how to express R and Γ (and therefore
also γ) in terms of propagators, this is really a consistency condition linking the
density of states and the distribution function. Also recall that in deriving it we
have neglected terms of second adiabatic order and higher.
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322 Quantum kinetic field theory

11.1.5 The off-shell kinetic equation

To obtain the dynamics of the distribution function f , we make use of the remain-
ing equation involving the noise kernel

N (x, y) =
1
2�

∫
ddz1d

dz2 G−1
ret (x, z1)G1 (z1, z2)G−1

adv (z2, y) (11.39)

Iterating the formula for the partial Fourier transform of a convolution (11.32),
and dropping second-order terms and higher, we get

2�N =
[
G−1

retG
−1
adv − i

2
{
G−1

ret , G
−1
adv

}]
G1

− i

2
[
G−1

adv

{
G−1

ret , G1

}
−G−1

ret

{
G−1

adv, G1

}]
(11.40)

Observe that by performing the adiabatic expansion on this form of the SD
equations we avoid the appearance of N within Poisson brackets. This choice is
related to the so-called Botermans and Malfliet approach [BotMal90, IvKnVo00,
KnIvVo01, IvKnVo03]. Next, write

G1 = 2π�γGretGadvF1 (11.41)

N =
[
πγ

(
1 − i

2
GretGadv

{
G−1

ret , G
−1
adv

})

− iπ

2
(
Gret

{
G−1

ret , γ
}
−Gadv

{
G−1

adv, γ
})]

F1

− iπγ

2
[
Gret

{
G−1

ret , F1

}
−Gadv

{
G−1

adv, F1

}]
(11.42)

Recall that

{Γ, γ} = iπ γ (X, p)
{
sign

(
p0
)
, γ
}

= iπ δ
(
p0
) ∂

∂X0
γ2 (X, p) = 0 (11.43)

because γ (X, (0,p)) = 0. Therefore{
G−1

ret , G
−1
adv

}
= {R− Γ,R + Γ} = 2 {R,Γ} (11.44)

{
G−1

ret , γ
}

=
{
G−1

adv, γ
}

= {R, γ} (11.45)

N = [πγ (1 − 2iGretGadv {R,Γ})]F1

− iπγ

2
[
Gret

{
G−1

ret , F1

}
−Gadv

{
G−1

adv, F1

}]
(11.46)

Introduce the collision integral

Icol ≡ [N−πγF1] sign
(
k0
)

=
−i�

2
[
(Σ12 + Σ21)

(
F 21 − F 12

)
+ (Σ12 − Σ21)

(
F 21 + F 12

)]
= −i�

[
Σ12F

21 − Σ21F
12
]

(11.47)
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11.1 The Kadanoff–Baym equations 323

Then we obtain the kinetic equation

A {R,F1} + B {Γ,F1} + CF1 = Icol sign
(
k0
)

(11.48)

where

A = − Γ2

R2 − Γ2
(11.49)

B =
RΓ

R2 − Γ2
(11.50)

C = −2
Γ

R2 − Γ2
{R,Γ} (11.51)

Equation (11.48) is the key result of this chapter.

11.1.6 Weakly coupled theories and the Boltzmann equation

For weakly coupled theories, a series of approximations allow us to reduce (11.48)
to the more familiar Boltzmann kinetic equation (cf. Chapter 2).

We observe that in terms of the coupling constant λ we have, for a generic
momentum p, R ∼ O (1) while Γ ∼ O

(
λ2
)
. The C term in (11.48) combines

both space derivatives (assumed small) and radiative corrections. It is therefore
expected to be smaller than the other terms in the equation, and thus neglected
(approximations of this kind are further discussed in Section 11.1.9). An alterna-
tive, which we shall not follow, is to consider these terms as parts of the collision
integral, in which case we could regard them as a first-order approximation to a
more general, non-Markovian kinetic equation [KBKS97, Ike04].

A second observation is that in general Γ, which involves the coupling con-
stants, will be much smaller than R for a generic choice of p. When the cou-
pling constants go to zero Γ → 0, but the retarded propagator has a well-defined
asymptotic value, and (11.36) becomes

Gret ∼ PV
1
R

+ iπ sign(k0)δ(R) (11.52)

From equations (11.9) and (11.10), the density of states

D = δ(R) (11.53)

In this limit the propagators are insensitive to the behavior of the distribution
function “off shell” (i.e. when R �= 0), because the distribution function is always
multiplied by the density of states, and this is very small there. Therefore, only
“on shell” modes (i.e. those for which R = 0) really contribute to the field corre-
lation functions. If our only concern is to follow the evolution of the distribution
function on shell, we are allowed to replace the A and B coefficients in (11.48) by
their “on shell” values, namely A = 1 and B = 0. We thus obtain the Kadanoff–
Baym equations

{R,F1} = −i� sign
(
k0
) [

Σ12F
21 − Σ21F

12
]

(11.54)
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324 Quantum kinetic field theory

Observe that in this argument we first took the weakly coupled limit, and then
went on-shell. Also we assumed that somehow the adiabatic expansion and the
expansion in powers of the coupling constant were linked; otherwise the C coef-
ficient would be found to be comparable to A and B. A way to put this on a
systematic basis is the hard thermal loop expansion discussed in Chapter 10.

After these approximations (in keeping with the weak coupling assumption,
we are entitled to keep only O (λ) terms in R as well), the nontrivial content
of (11.54) is given by the form of the collision integral, namely, which Feynman
graphs contribute to the self-energies.

The Kadanoff–Baym equations are formally valid to all orders in the coupling
constant. It is convenient to consider the loop expansion of the self-energies to
reduce this equation to a more familiar form. However, even now we recognize
the structure of the collision term as the difference between a gain and a loss
term for particles moving in or out of a phase space cell around the point (X, p)
per unit time. Taking p0 > 0 for simplicity, we see that Σ12F

21 is the gain term,
with F 21 = 1 + f accounting for stimulated emission of particles into the cell,
while the other term is the loss term, which is proportional to the number of
particles F 12 = f already there.

Let us consider the expansion of the self-energies in terms of Feynman graphs
of increasing loop order, as a means of obtaining a definite expression for the
collision term in the kinetic equation. Since we have the relationship Σ21 (p) =
Σ12 (−p) it is enough to analyze only the expansion of Σ12. Physically this means
considering only the gain processes, which produce a particle within a given phase
space cell. The collision term is then obtained by subtracting the loss processes,
which remove a particle therein.

The first term in the expansion is the setting-sun graph. To this order,

Σ12 (x, y) =
i

6
λ2

�G (x, y) (11.55)

G =
1
�3

[
G12 (x, y)

]3
(11.56)

In momentum space, dealing with the propagators as if they were translation
invariant, and using the definition of F 12, we get

G (p)=(2π)4
∫

d4rD (r)
(2π)3

d4sD (s)
(2π)3

d4tD (t)
(2π)3

δ (p− r − s− t)F 12 (r)F 12 (s)F 12 (t)

(11.57)
We also replace D by its quasi-particle form D0 = δ

(
p2 + M2

)
. We must then

find sets of four on-shell momenta adding up to zero. If p0 > 0, this means that
two of the r, s, t momenta must be future oriented, and the third past oriented.
Using the symmetries of this expression, we obtain

G (p) = 3 (2π)4
∫

DrDsDt δ (p + r − s− t) [1 + f (r)] f (s) f (t) (11.58)
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11.1 The Kadanoff–Baym equations 325

where

Dp =
d4pD(p)θ

(
p0
)

(2π)3
(11.59)

It is fairly obvious that the resulting kinetic equation is just Boltzmann’s.
An important if simple consequence of this fact is that the usual arguments

showing that the only stationary solutions of the Boltzmann equation are ther-
mal distributions carry over to the Kadanoff–Baym equations. In other words,
the only translation-invariant propagators which solve the Kadanoff–Baym equa-
tions, or, for that matter, the 2PI Schwinger–Dyson equations, to this order in
perturbation theory are thermal propagators. This fact is relevant to the discus-
sion of thermalization in quantum field theory [JuCaGr04].

The basic formalism we presented here can be extended in several ways, such
as including higher terms in the derivative expansion [Mro97, Jak02], higher cor-
relations [WanHei02] or non-Markovian effects [MorRop99, SeKrBo00]. Another
important generalization consists of explicitly incorporating the effects of quan-
tum fluctuations in higher composite operators by including a stochastic source
besides the collision integral [ReiToe94, AARS96, CalHu00]. We may regard this
so-called Boltzmann–Langevin equation (see Chapter 2) as the quantum kinetic
analog of the Langevin approach we discussed in Chapter 8.

The classical limit

It is interesting to consider the classical limit of the Boltzmann equation. Naively,
we have, in powers of �, that {R,F1} ∼ O (1) and Icol ∼ O

(
�

2
)
. However, in

the classical limit we must have that the Jordan propagator G → 0 but the
Hadamard propagator G1 remains finite. To allow for a nonzero limit we must
have

f = �
−1fcl (11.60)

and counting powers of � we get

{R, fcl} = I
(3)
col [fcl] (11.61)

where I
(3)
col [fcl] contains all terms in the collision integral that are cubic in fcl.

The conclusion is that the correlation functions for a weakly interacting classi-
cal field, in the nearly translation-invariant limit, may be captured by a kinetic
equation describing two by two scattering of on-shell excitations [MueSon04].

The classical Boltzmann equation describing interacting particles has a col-
lision term quadratic in the distribution function. To obtain equation (11.61)
instead, we must include the Bose enhancement factors, although of course this
is a classical theory [Ein17].
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326 Quantum kinetic field theory

11.1.7 The Vlasov equation

To lowest order in λ, our theory reduces to the Vlasov equation, namely, a
transport theory for collisionless particles interacting with a self-consistent field.

This theory is obtained by neglecting the O
(
λ2
)

terms in our equations. The
unperturbed equations are

R = Ω0 = p2 + M2 (11.62)

and

D(p) = δ
(
p2 + M2

)
+ O

(
λ2
)

(11.63)

The kinetic equation reduces to

0 = D
[
p

∂

∂X
− 1

2
∂XM2∂p

]
f (11.64)

which is indeed in the form of a Vlasov equation. The mass is defined through
the self-consistent gap equation

M2 = m2
b + m2

V +
λb�

2
M2

T (11.65)

where

M2
T =

∫
d4p

(2π)3
δ (Ω0) f (X, p) (11.66)

m2
V =

λb�

4

∫
d4p

(2π)3
δ (Ω0) (11.67)

This second quantity is actually divergent, so to evaluate it we need to regu-
larize it first. We shall use dimensional regularization, writing (cf. Chapter 5)

m2
V = −λb�M

2

16π2

[
z − 1

2
ln
(

M2

4πμ2

)]
(11.68)

z ≡ Γ
[
1 + ε

2

]
ε
[
1 − ε

2

] =
1
ε

+
1
2

(1 − γ) + . . . (11.69)

(γ = 0.5772 . . .).
We go back to the gap equation and write it as

M2

{
1 +

λb�

16π2

[
z − 1

2
ln
(

M2

4πμ2

)]}
= m2

b +
λb�

2
M2

T (11.70)

which implies

1
2
dM2

T

dM2
=

1
λb�

+
1

16π2

[
z − 1

2
− 1

2
ln
(

M2

4πμ2

)]
(11.71)

Since the left-hand side is finite, the expression

1
λb�

+
1

16π2

[
z − 1

2

]
≡ 1

λ�
(11.72)
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11.1 The Kadanoff–Baym equations 327

must also be finite, and the differential gap equation becomes

1
2
dM2

T

dM2
=

1
λ�

− 1
32π2

ln
(

M2

4πμ2

)
(11.73)

Mass renormalization entails defining an initial condition for this differential
equation, such as M2

T (M2 = 0) = T 2/6�
2.

What is the small parameter?

Since reducing the theory to just the Vlasov equation means dropping terms of
order λ2, it might appear that one ought to replace the physical mass by the
solution of the gap equation to the same order, namely

M2 = M2
0 +

λ�

32π2
M2

0 ln
(

M2
0

4πμ2

)
(11.74)

where

M2
0 =

λ�

2

(
M2

T − T 2
c

6

)
(11.75)

(we gloss over the fact that M2
T itself depends on M2; at high enough temperature

M2
T stabilizes at a value of T 2/6, as in the massless theory). However, a moment’s

thought shows that, at least in the high-temperature limit, this is not a good
idea. For high enough temperature, the second term in our expansion is of the
order of the first term, meaning the breakdown of naive perturbation theory.

However, we can also proceed differently. In the regime where the derivation
of the gap equation is valid, we can also write it as

M2 =
M2

0

1 − λ�

32π2 ln
(

M2
0

4πμ2

) (11.76)

(of course, this expression also blows up when the denominator vanishes, but
that is a pathology of the λφ4 theory, which is not asymptotically free). If we
replace back equation (11.74) into the gap equation, we see that there is an error
term of order

2
[

λ�

32π2
ln
(

M2
0

4πμ2

)]2
M2

0 (11.77)

If we repeat the same with the expression (11.76), we see that the error has been
reduced to [

λ�

32π2

]2
ln
(

M2
0

4πμ2

)
M2

0 (11.78)

that is, an improvement by a factor of
(
ln
[
M2

0 /4πμ
2
])−1. An analysis of the

perturbative expansion shows that the terms from higher order Feynman graphs
are also of this order (see [CaJaPA86] and references therein).
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328 Quantum kinetic field theory

In other words, by adopting expression (11.76) we obtain a nonperturbative
(in powers of the coupling constant) approximation to the physical mass, which
is equivalent to summing all terms of the form

(
λ� ln

[
M2

0 /4πμ
2
])p in the per-

turbative expansion (the so-called leading logs) while leaving aside terms of the
form (λ�)p

(
ln
[
M2

0 /4πμ
2
])q with q < p. In this sense, the true small parame-

ter in our expansion is not the coupling constant, but rather
(
ln
[
M2

0 /4πμ
2
])−1

[ArSoYa99a, ArSoYa99b].

11.1.8 Time reversal invariance

Time reversal invariance means that for any solution Gab (x, y) of the equations
of motion the time-reversed expression Gab

rev (x, y) is also a solution. The form
of Gab

rev is determined by the time reversal operation appropriate to the under-
lying field theory. In our case, time reversal transforms an expectation value〈
Φ
(
x, x0

)
Φ
(
y, y0

)〉
into

〈
Φ
(
y,−y0

)
Φ
(
x,−x0

)〉
(see Streater and Wightman

[StrWig80] and T.D. Lee [Lee81]). If x =
(
x, x0

)
, write x̄ =

(
x,−x0

)
(observe

that x̄μ = xμ = ημνx
ν , where ημν is the Minkowski metric); therefore

G21
rev (x, y) = G21 (ȳ, x̄) (11.79)

G12
rev (x, y) = G12 (ȳ, x̄) (11.80)

For the Feynman propagator, we have

G11
rev (x, y) = θ

(
x0 − y0

)
G21

rev (x, y) + θ
(
y0 − x0

)
G12

rev (x, y)

= θ
(
−y0 −

(
−x0

))
G21 (ȳ, x̄) + θ

(
−x0 −

(
−y0
))

G12 (ȳ, x̄)

= G11 (ȳ, x̄) (11.81)

Similarly,

G22
rev (x, y) = G22 (ȳ, x̄) (11.82)

These formulae are summarized by

Gab
rev (x, y) = Gab (ȳ, x̄) (11.83)

It is convenient to introduce the notation: for any kernel A (x, y) , we define the
kernel Ā (x, y) = A (ȳ, x̄) . Therefore the time reversal operation means changing
Gab into Ḡab. Observe that a spherically symmetric translation invariant solution
is automatically a fixed point under time reversal.

In terms of the partial Fourier transform we get for any kernel A that

Ā (X, p) = A
(
X̄,−p̄

)
(11.84)

and as a consequence the first-order terms on the left-hand side of the kinetic
equations (11.48) change sign (there is always one derivative that does), while the
right-hand side Icolsign

(
k0
)

does not. So equations (11.48) are not time reversal
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11.1 The Kadanoff–Baym equations 329

invariant, unless I
(0)
col vanishes (which implies a thermal solution). On the other

hand, a local thermal solution cannot be a solution to first order, because then
I
(0)
col vanishes, but just four degrees of freedom βμ (X) are not enough to kill the

left-hand side terms identically in p.

Since (11.48) is the result of a systematic adiabatic expansion of the origi-
nal 2PI SD equations, and the expansion itself would not break time reversal
invariance, we conclude that the equations derived from the 2PIEA, unlike the
Heisenberg equations themselves, break time reversal symmetry. This is to be
expected, since these equations result from the slaving of higher correlations to
the two-point functions [IvKnVo99, CalHu00].

However, we must not conclude that the observed thermalization in solutions
of the evolution equations derived from the 2PIEA [Ber02, Ber04b, JuCaGr04,
ArSmTr05] is an artifact of the approach. Thermalization is also observed in
classical field theories, where the wave equation is directly solved [BoDeVe04].
We shall discuss this important issue in Chapter 12.

11.1.9 The limits of the kinetic approach

The derivation of the kinetic equations in this chapter is important for both
practical and fundamental reasons. The fact that it can be done, as we have seen,
already shows that the equations derived from the 2PIEA are not time reversal
invariant. We will see in the next chapter that the Kadanoff–Baym equations play
an important role in the derivation of the transport coefficients for a quantum
field, and that kinetic equations may be used to describe an important stage in
the thermalization process.

However, whether the kinetic equations, and more generally the adiabatic
approximation, are quantitatively accurate, is a difficult issue and should not
be taken lightly. We present an example, taken from [Mro97], which clearly dis-
plays the dangers at hand.

Consider a simple free Klein–Gordon field. The Heisenberg equations may be
solved exactly, and the field decomposed in creation and destruction operators:

Φ =
∫

d3k

(2π)3/2
eikx

√
2ωk

{
ake

−iωkt + a†ke
iωkt
}

(11.85)

where ω2
k = k2 + M2. Thus we may write any correlation function in terms of

the expectation values of products of ak and a†k. Let us assume for simplicity a
spatially homogeneous and isotropic state, so that

〈
a†paq

〉
= fpδ (p − q) (11.86)

〈apaq〉 =
〈
a†pa

†
q

〉∗
= gpδ (p + q) (11.87)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


330 Quantum kinetic field theory

The Jordan propagator is of course state independent and translation invari-
ant. The Hadamard propagator is

G1 (x, x′)=
∫

d3k

(2π)3
eik(x−x′)

ωk

{
[1 + 2fk] cosωk (t− t′) + gke

−2iωkT + g∗ke
2iωkT

}
(11.88)

where T = (t + t′) /2. Observe that no nontrivial choice of the gk makes this
almost translation invariant. The propagator is either exactly translation invari-
ant (if all gk = 0) or else strongly T dependent; in particular, no modification of
the distribution function f in a neighborhood of the mass-shell may account for
the gk terms.

We find the kinetic theory formalism is of no help in this problem, except in
the case where it is unnecessary, since the state is time independent.

11.2 Quantum kinetic field theory on nontrivial backgrounds

11.2.1 The scalar Wigner function in scalar quantum

electrodynamics (SQED)

The application of quantum kinetic field theory methods to fields defined on
nontrivial backgrounds (both abelian and non-abelian gauge fields and gravita-
tional backgrounds) presents special features which are not found in the general
formulation presented above. We shall now discuss some of these characteristics.

For simplicity we shall concentrate on the basic issues of how to define a Wigner
transform on a nontrivial background, the nature of the object so introduced and
the “transport” part of the kinetic equation. Once these difficulties are overcome,
the construction of the “collision” term of the kinetic equation follows the general
guidelines presented above. For the remainder of this Chapter we set � = 1.

The first difficulty encountered in applying the formalism of quantum kinetic
field theory to a scalar field on an electromagnetic background is also the most
obvious. Quantum kinetic theory assumes the two-point functions of the theory
are nearly translation invariant. But this is not a gauge-invariant statement. For
example, the Green function for a charged scalar field

G1 (x, x′) =
〈{

φ̂ (x) , φ̂†(x′)
}〉

(11.89)

becomes

G1 (x, x′) → ei{ε(x)−ε(x′)}G1 (x, x′) (11.90)

under a gauge transformation. It is clear that a nearly translation-invariant kernel
in one gauge may seem to be arbitrarily far from translation invariance in some
other gauge.

As we shall show, it is possible nevertheless to associate a “Wigner func-
tion” with the propagators under a well-defined gauge transformation law. For
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11.2 Quantum kinetic field theory on nontrivial backgrounds 331

an abelian theory, the Wigner function is actually gauge invariant; in the non-
abelian case, it transforms as an element of the adjoint representation.

The price to be paid is to relinquish the identification of the Wigner function
as the partial Fourier transform of a propagator. That relationship will hold
only if both the propagator and the Wigner function are expressed in the Fock–
Schwinger gauge to be introduced momentarily [Foc37, Sch70, Jac02]. Observe
that this is not a very original procedure: it is the same logic by which one
specifies the temperature of a fluid by identifying the frame in which it should
be measured, namely the rest frame.

Concretely, let X be a spacetime event at which we want to define the Wigner
function F (X, p) for the charged scalar field. We want to specify a gauge in which
the gauge aspects of the background are suppressed as much as possible. As a
start, we demand A

(X)
μ (X) = 0, where A

(X)
μ is the background abelian gauge

field in the special gauge around X. We cannot remove all the derivatives of the
abelian field by gauge transformations (unless the field is trivial to begin with),
but we can and will set to zero the symmetric combination

A
(X)
(μ,ν) =

1
2

[
A(X)

μ,ν + A(X)
ν,μ

]
(11.91)

In general, we define

A(μ,ν1...νn) =
1

n + 1

[
Aμ,ν1...νn +

n∑
i=1

Aνi,μν1...νn

]
(11.92)

where the overbar means that νi is omitted. Then the Fock–Schwinger gauge is
defined by the conditions

A
(X)
(μ,ν1...νn) (X) = 0 (11.93)

Without loss of generality we may take X = 0. The above equation (11.93)
reduces to

uμA(0)
μ (tu) = 0 (11.94)

where t is just a parameter, unrelated to time. We may now define the Wigner
function as

F (0, p) =
∫

d4u e−ipuG
(0)
1 (u/2,−u/2) (11.95)

where

G
(0)
1 (x, x′) =

〈{
φ̂(0)(x), φ̂†(0)(x′)

}〉
(11.96)

is the Hadamard propagator in the Fock–Schwinger gauge. On the other hand,
suppose the background field in the gauge we happen to be working in (which
we shall refer to as “the gauge,” for short) is Aμ. There must exist a gauge
parameter ε(0) (x) such that

A(0)
μ (u) = Aμ (u) +

∂

∂uμ
ε(0) (11.97)
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332 Quantum kinetic field theory

The Fock–Schwinger gauge condition (11.94) becomes an equation for ε(0)

d

dt
ε(0) (tu) = −uμAμ (tu) (11.98)

with solution

ε(0) (u) = ε(0) (0) −
∫ 1

0

dt uμAμ (tu) (11.99)

By the same token

G
(0)
1 (u/2,−u/2) = G1 (u/2,−u/2) exp

{(
− i

2

)∫ 1

−1

dt uμAμ

(
tu

2

)}
(11.100)

Performing a simultaneous gauge transformation of G1 and Aμ in (11.100), we
see that G

(0)
1 , and therefore also F , are gauge invariant. Also, observe that the

constant of integration in the gauge parameter (11.99) drops out. In the non-
abelian case, the constant of integration matters, and the Wigner function will
be merely gauge covariant, rather than invariant.

The next step is to invert (11.95), that is, to express the Hadamard propagator
in terms of the Wigner function. Let x and x′ be the points at which we want to
evaluate the Hadamard propagator. Let X (x, x′) be the midpoint and u (x, x′)
the relative variable

Xμ =
1
2

(xμ + x′μ) ; uμ = xμ − x′μ (11.101)

Then

G1 (x, x′) = exp
{(

i

2

)∫ 1

−1

dt uμAμ

(
X +

tu

2

)}∫
d4p

(2π)4
eipu F (X, p)

(11.102)

The transport equation

We shall use (11.102) to obtain the transport equation for the Wigner function F .
Observe that since we already know F is a gauge-invariant object, the transport
equation we are looking for must be gauge invariant. This observation will be
useful in our search.

If we disregard scalar field self-interactions, the field operators obey the Heisen-
berg equations [

DμDμ −m2
]
φ̂ = 0 (11.103)

where D is the covariant derivative

Dμ = ∂μ − iAμ (11.104)

For a non-self-interacting theory the Hadamard propagator obeys the same equa-
tion. From (11.102) we find

DμG1 = e(
i
2 )
∫ 1
−1 dt uμAμ(X+ tu

2 )Dμ (11.105)
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11.2 Quantum kinetic field theory on nontrivial backgrounds 333

where

Dμ =
∫

d4p

(2π)4
eipu

{
ipμ +

1
2

∂

∂Xμ
+ iPμ

}
F (X, p) (11.106)

Pμ =
1
2

∫ 1

−1

dt

[
Aμ

(
X +

tu

2

)
+

1 + t

2
uλAλ,μ

(
X +

tu

2

)]
−Aμ

(
X +

u

2

)
(11.107)

We now make a crucial observation. The object Dμ defined in (11.106) is gauge
invariant, so we may evaluate it in any gauge, and in particular in the Fock–
Schwinger gauge around X. Similarly, now that all derivatives have been made
explicit, there is no harm done if we set X = 0. We add the assumption that the
background field tensor is slowly varying, so we may approximate the background
field (in the special gauge) by its Taylor expansion. Up to two derivatives, we get

A(0)
ν

(u
2

)
=

uλ

4
Fλν (0) +

uλuρ

24
[Fλν,ρ + Fρν,λ] (0) + . . . (11.108)

Dμ =
∫

d4p

(2π)4
eipu

{
ipμ +

1
2

[
Fλμ

∂

∂pλ
+

∂

∂Xμ

]}
F (X, p) (11.109)

Since this expression is gauge invariant, it holds in any gauge.
We now observe that DμG1 has the same structure as G1 itself, namely, with

the factor

e(
i
2 )
∫ 1
−1 dt uμAμ(X+ tu

2 ) (11.110)

multiplying a Fourier integral over momentum space of a gauge-invariant quan-
tity. Therefore, we immediately find

DμDμG1 = e(
i
2 )
∫ 1
−1 dt uμAμ(X+ tu

2 )D2 (11.111)

for some operator D2. This operator, like Dμ, has both real and imaginary parts.
The former, together with the mass term in the Klein–Gordon equation, give rise
to the mass-shell constraint of the theory, while the latter yields the transport
equation

pμ
[

∂

∂Xμ
+ Fλμ

∂

∂pλ

]
F (X, p) = 0 (11.112)

The transport equation describes the evolution of a swarm of particles acted
upon by the Lorentz force. A similar calculation yields the conserved current

jμ (x) =
(−i

2

)
{[Dμ

x −Dμ
x′ ]G1 (x, x′)}x=x′ (11.113)

Using our previous results for the covariant derivatives we get

jμ (X) =
∫

d4p

(2π)4
pμF (X, p) (11.114)

whose conservation follows from the transport equation.
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334 Quantum kinetic field theory

We see that both the transport equation and the conserved current agree (to
this order) with the corresponding expressions in classical kinetic theory, while
the mass-shell condition begins to show traces of nonlocality.

11.2.2 Scalar Wigner functions on non-abelian backgrounds

We now consider the case in which the scalar field forms a multiplet minimally
coupled to a non-abelian gauge field. Observe that now the Hadamard propagator
carries group indices, transforming as φ̂ at x and as φ̂+ at x′.

The first issue we must confront is whether the Fock–Schwinger gauge condi-
tion (11.94) can be realized [Cro80]. We now have

A(0)
μ (u) = g

[
Aμ (u) − ig−1 ∂g

∂uμ

]
g−1 (11.115)

where g = exp {iε} is a group element and ε = εATA belongs to the group algebra.
If we impose the condition (11.94) we get

d

dt
g (tu) = −ig uμAμ (tu) (11.116)

whose solution is

g (u) = g (0) T̃
[
e−i

∫ 1
0 dt uμAμ(tu)

]
(11.117)

where the operator T̃ anti-orders with respect to the parameter t. Recall that
Aμ = AA

μTA are matrices, so they may not commute at different values of t.
This shows that the Fock–Schwinger gauge exists. However, the constant of

integration is no longer irrelevant. When we express the Hadamard propagator
in terms of the propagator in the Fock–Schwinger gauge we find

G1 = T
[
e(

i
2 )
∫ 1
0 dt uμAμ(X+ tu

2 )
]
g−1 (0)G(0,g)

1 g (0) T̃
[
e(

i
2 )
∫ 1
0 dt uμAμ(X− tu

2 )
]

(11.118)

To obtain the right gauge properties for G1 we must assume g−1 (0)G(0,g)
1 g (0) =

G
(0)
1 is independent of g. This means that G

(0)
1 transforms as an element of the

adjoint representation at X.
We adopt the same definition (11.95) for the Wigner function as in the abelian

case; now F is an element of the adjoint representation. The inverse relationship
reads

G1 = T
[
e(

i
2 )
∫ 1
0 dt uμAμ(X+ tu

2 )
] ∫ d4p

(2π)4
eipu F (X, p) T̃

[
e(

i
2 )
∫ 1
0 dt uμAμ(X− tu

2 )
]

(11.119)
To compute the transport equation, observe that

∂

∂Xλ
T
[
e(

i
2 )
∫ 1
0 dt uμAμ(X+ tu

2 )
]

= T
[
e(

i
2 )
∫ 1
0 dt uμAμ(X+ tu

2 )
]( i

2

)∫ 1

0

dt uμÂμ,λ

(
X +

tu

2

)
(11.120)
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where

Âμ,λ

(
X +

tu

2

)
= T̃

[
e(

−i
2 )
∫ t
0 dr uμAμ(X+ ru

2 )
]

×Aμ,λ

(
X +

tu

2

)
T
[
e(

i
2 )
∫ t
0 dr uμAμ(X+ ru

2 )
]

(11.121)

also

Aλ

(
X +

u

2

)
T
[
e(

i
2 )
∫ 1
0 dt uμAμ(X+ tu

2 )
]

= T
[
e(

i
2 )
∫ 1
0 dt uμAμ(X+ tu

2 )
]
Âλ

(
X +

u

2

)
(11.122)

and so

DμG1 = T
[
e(

i
2 )
∫ 1
0 dt uμAμ(X+ tu

2 )
]
DμT̃

[
e(

i
2 )
∫ 1
0 dt uμAμ(X− tu

2 )
]

(11.123)

where

Dμ =
∫

d4p

(2π)4
eipu

{
ipμF +

1
2

∂

∂Xμ
F (X, p) − iÂμ

(
X +

u

2

)
F (X, p)

+
(
i

2

)∫ 1

0

dt

[
Âμ

(
X +

tu

2

)
+

uρ

2
(1 + t)Âρ,μ

(
X +

tu

2

)]
F (X, p)

+
(
i

2

)∫ 1

0

dt

[
Âμ

(
X − tu

2

)
+

uρ

2
(1 − t) Âρ,μ

(
X − tu

2

)]
F (X, p)

}
(11.124)

Since Dμ has definite gauge transformation properties (it belongs to the adjoint
representation) it is enough to evaluate it in the Fock–Schwinger gauge, where
Â = A. Moreover, we replace the background fields by their Taylor expansion
around X = 0, which, since A(0) (0) = 0, is formally identical to the expansion
(11.108), taking into account that now the field tensor is a matrix. In the same
way that in the abelian case the covariant derivative of the propagator decom-
poses into real and imaginary parts, here the covariant derivative is the sum of
Hermitian and anti-Hermitian terms

D(0)
μ =

∫
d4p

(2π)4
eipu

{
ipμF +

1
2

∂

∂Xμ
F +

1
4

{
Fλμ,

∂F

∂pλ

}
+

1
8

[
Fλμ,

∂F

∂pλ

]}

(11.125)

This expression is valid in the Fock–Schwinger gauge. To obtain the correspond-
ing expression in an arbitrary gauge we must replace ∂F/∂Xμ by the covariant
derivative for an element of the adjoint representation

DμF =
∂F

∂Xμ
− i [Aμ, F ] (11.126)
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The double covariant derivative DμD
μ in the wave equation may be analyzed in

the same terms. Its anti-Hermitian part gives rise to the transport equation

0 = pμ
(
DμF +

1
2

{
Fλμ,

∂F

∂pλ

})

− i

8

([
Fλμ,

∂2F

∂pλ∂Xμ

]
+

1
2

[
Fμ
λ,μ,

∂F

∂pλ

]
+

1
4

[{
Fλμ, F

μ
ρ

}
,

∂2F

∂pλ∂pρ

])
(11.127)

The conserved current is −i times the momentum integral of the anti-Hermitian
part of the covariant derivative of the propagator. Discarding total derivatives it
is given formally by the same expression (11.114) as in the abelian case.

Classical limit and the Wong equations

The issue of the classical limit in the kinetic theory of particles on a non-abelian
background is subtler than in the abelian case, because at first sight the objects
involved are of a quite different nature. In the quantum case, as we have seen,
the distribution function is a Hermitian matrix F (X, p) belonging to the adjoint
representation of the group; in the classical case, particles carry a non-abelian
charge qA which may rotate within the group manifold, and the distribution
function f

(
X, p, qA

)
is then an ordinary function with extra arguments.

One simple way of connecting these two objects is by demanding that the
sequence of moments of both distributions are the same. The moments are
defined as

MQ
A1...An

= Tr {TA1 . . . TAnF} (11.128)

in the quantum case, and as

mc
A1...An

=
∫

dq qA1 . . . qAn f (11.129)

where dq is the invariant measure on the group manifold. Observe that because of
the group algebra only a few quantum moments are truly independent. We find
no such restriction in the classical case, which underlines the difference between
both approaches.

We shall carry the comparison in the “near-equilibrium” case where F is close
to a diagonal matrix in color space

F = f0 (X, p) 1 + fA (X, p)TA (11.130)

Let us assume the trace relations

Tr TA = 0; Tr TATB =
1
2
δAB (11.131)

The first few moments are then

MQ
0 = Nf0 (X, p) ; MQ

A =
1
2
fA (X, p) (11.132)
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where N is the dimension of the representation. If we have the corresponding
moments ∫

dq = N ;
∫

dq qA = 0;
∫

dq qAqB =
1
2
δAB (11.133)

then we are led to suggest

f = f0 (X, p) + fA (X, p) qA (11.134)

Our recipe meant the replacement of the identity matrix 1 by the number 1, and
the group generators TA by qA. Assume further the multiplication table

TATB =
1

2N
1δAB +

1
2
(
KC

AB + iCC
AB

)
TC (11.135)

The CC
AB are the structure constants; the KC

AB vanish for SU (2), but not for
SU (3). We insert the quantum distribution function (11.130) into the transport
equation (11.127), with the added assumption that the fA, being small, can be
neglected in terms involving the field tensor. Applying our recipe of replacing
generators by classical charges we obtain the classical transport equation

pμ
∂f

∂Xμ
+ qCC

C
AB

(
pμAA

μ

) ∂f

∂qB
+ pμ

(
qAF

A
λμ

) ∂f

∂pλ
= 0 (11.136)

If we wish to interpret this as a conservation equation for the number of particles
in a phase-space volume, then we must conclude that these particles move along
worldlines whose tangent is proportional to pμ, and whose momenta and charge
evolve according to

pμ
∂pλ
∂Xμ

=
(
qAF

A
λμ

)
pμ (11.137)

pμ
∂qB
∂Xμ

=
(
pμAA

μ

)
CC

ABqC (11.138)

These are the so-called Wong equations [Won70, LitMan02], which form the basis
for a classical theory of non-abelian plasmas.

In most problems of interest the back-reaction of the particles described by the
distribution function on the background fields is not negligible and one must seek
a self-consistent dynamical framework. One possibility is to couple the transport
equation for the particle distribution function to the Yang–Mills equations for the
soft part of the background fields. On general grounds [LitMan02] one expects
that such an approach is reliable when the plasma parameter ε is small. The
plasma parameter is the inverse to the number of particles within a sphere whose
radius is the screening length (see Chapter 10). In a gluon plasma, for example
(see below for the application of quantum kinetic theory to the gauge fields
themselves), the density scales as T 3 and the screening length as (gT )−1, so
ε ≈ g3. In this case, this scheme works for theories with weak coupling.
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338 Quantum kinetic field theory

11.2.3 Quantum kinetic theory in curved spacetimes

Quantum kinetic field theory in curved spacetimes has both similarities with and
important differences from the transport theory in non-abelian field backgrounds.
To begin with, there is one more layer of structure, because besides the Riemann
tensor (to be defined momentarily), which is the natural analog to the field
tensor, and the Christoffel symbols, which are the analogs to the field 4-vector,
there is the metric tensor itself, which has no analog in non-abelian gauge theory.
In particular, we shall carry the derivation of the transport equation up to two
derivatives of the metric, which means only one derivative of the connection and
no derivative of the Riemann tensor.

Let us begin by summarizing the useful definitions and conventions. The met-
ric tensor appears in the expression of Pythagoras’ theorem appropriate to the
spacetime in question: the geodesic distance between two events whose coor-
dinates differ by infinitesimal amounts dxμ is ds2 = gμνdx

μdxν (we adopt the
MTW conventions [MiThWh72] throughout this book). The connection appears
in the covariant derivative for a contravariant vector field Aμ

∇νA
μ = Aμ

;ν = Aμ
,ν + Γμ

νλA
λ (11.139)

We shall adopt the so-called Levi-Civita connection, whose components are the
Christoffel symbols

Γμ
νλ =

1
2
gμρ {gνρ,λ + gλρ,ν − gνλ,ρ} (11.140)

The Riemann tensor is the commutator of two covariant derivatives

[∇ν ,∇ρ]Aμ = Rμ
λνρA

λ (11.141)

It is related to the connection through

Rμ
λνρ = ∂νΓ

μ
λρ − ∂ρΓ

μ
λν + Γμ

νσΓσ
λρ − Γμ

ρσΓσ
λν (11.142)

As in our earlier discussions, start from an event P on the spacetime manifold at
which we wish to define the Wigner function. We will build a special coordinate
system in a neighborhood of P : the so-called Riemann normal coordinates (RNC)
centered at P [Pet69] comes in handy. In this system, the coordinates of P are
Xμ = 0. We also perform a linear change of variables such that the metric tensor
at P becomes gμν = ημν . We now consider a second point P ′ and assume there is a
unique geodesic joining P and P ′ (we say P ′ belongs to a normal neighborhood
of P ). Moreover we parameterize this geodesic as P ′ (t), such that P ′ (0) = P

and P ′ (1) = P ′. We define the RNC of P ′ as the components uμ of the tangent
vector to this geodesic at t = 0. Observe that ημνuμuν gives the geodesic distance
σ (P ′, P ) between P and P ′.

In RNC the line tuμ is by definition a geodesic. Substituting it into the geodesic
equation we obtain the identity

uνuρΓμ
νρ (tu) = 0 (11.143)
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This allows us to express the connection in terms of the Riemann tensor

Γμ
νρ (u) =

1
3

[
Rμ

νλρ + Rμ
ρλν

]
uλ + . . . (11.144)

and similarly for the metric

gμλ = ημν − 1
3
Rμνλρu

νuρ + . . . (11.145)

Now we define the Wigner function F (P, p) by demanding that in RNC the
Hadamard propagator evaluated at opposite points may be represented as

G1

(u
2
,−u

2

)
=

Δ1/2
VM

(
u
2 ,−u

2

)
√
−g (P )

K (P, u) (11.146)

where

K (P, u) =
∫

d4p

(2π)4
eipu F (P, p) (11.147)

and ΔVM is the Van Vleck–Morette determinant [Vle28, Mor51]

ΔVM (x, x′) =
1

16
√
−g (x)

√
−g (x′)

det
[
∂2σ (x, x′)
∂x∂x′

]
(11.148)

ΔVM is a biscalar, that is, a scalar both at x and x′. It is included so that
the lowest order adiabatic expansion of the propagator agrees with its WKB
approximation.

The factor
√
−g (P ) = 1, but we have made it explicit for the following reason.

The Hadamard propagator is a biscalar. If we make a coordinate transformation
from coordinates x to coordinates x′, then u transforms as a contravariant vector
at P . To make the product pu a scalar, p must transform as a covariant vector at
P , and in this case, d4p/

√
−g (P ) is the invariant measure. So we get the right

transformation properties, provided F (P, pμ) transforms into

F ′ (P, p′μ) = F

(
P,

∂x′λ

∂xμ
p′λ

)
(11.149)

The representation (11.146) may be generalized to the case when the propagator
is evaluated at two arbitrary points. Consider three points x, y and z in a normal
neighborhood of P , and let x (s) be the geodesic going from x (0) = z to x (1) = x.

Then in an adiabatic expansion we have x (s) = xs + z (1 − s) + ξ (s). Plug this
into the geodesic equation to get

d2ξμ

ds2
=

−1
3

[
Rμ

νλρ + Rμ
ρλν

]
(xs + z (1 − s))λ (x− z)ν (x− z)ρ + . . .

=
−zλ

3

[
Rμ

νλρ + Rμ
ρλν

]
(x− z)ν (x− z)ρ (11.150)

xμ (s) = xμs + zμ (1 − s) +
zλ

6

[
Rμ

νλρ + Rμ
ρλν

]
(x− z)ν (x− z)ρ s (1 − s)

(11.151)
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The tangent at s = 0 is

tμ (x, z) = (x− z)μ +
zλ

6

[
Rμ

νλρ + Rμ
ρλν

]
(x− z)ν (x− z)ρ (11.152)

To obtain the RNC of x around z we should make a linear coordinate transform
so that the metric tensor at z assumes its Minkowski value. However, this last
step is nonessential for obtaining the representation of the propagator, because
it is compensated by a change of variables in the momentum integral and the√
−g (P ) factor.
If the point z̄ is the geodesic midpoint between x and y, then tμ (x, z̄) =

−tμ (y, z̄) . We get

z̄μ =
(x + y)μ

2
+

(x + y)λ

48

[
Rμ

νλρ + Rμ
ρλν

]
(x− y)ν (x− y)ρ + . . . (11.153)

tμ (x, z̄) =
(x− y)μ

2
+ . . . (11.154)

and the representation of the propagator is

G1 (x, y) =
Δ1/2

VM (x, y)√
−g (z̄)

K (z̄, 2tμ (x, z̄)) (11.155)

where K was defined in (11.147). To this adiabatic order we may approximate
z̄ = (x + y) /2 within the K function.

We can now evaluate

∇μ∂μG1 (x, x′) = gμν (x) ∂μ∂νG1 (x, y) − gμν (x) Γλ
μν (x) ∂λG1 (x, y)

= ημν∂μ∂νG1 (x, y) +
Δ1/2

VM (x, y)√
−g (z̄)

×
[
1
3
Rμ ν

λ ρx
λxρ∂μ∂νK − 2

3
Rλ

σx
σ∂λK

]
(11.156)

Observe that

∂νG1 (x, y) =
Δ1/2

VM (x, y)√
−g (z̄)

[
∂νK +

(
1
2
∂ν ln [ΔVM (x, y)] − 1

2
∂ν ln [−g (z̄)]

)
K

]
(11.157)

ημν∂μ∂νG1 (x, y) = ημν
Δ1/2

VM (x, y)√
−g (z̄)

Jμν (11.158)

Jμν = ∂μ∂νK + (∂ν ln [ΔVM (x, y)] − ∂ν ln [−g (z̄)]) ∂μK

+
1
2

(∂μ∂ν ln [ΔVM (x, y)] − ∂μ∂ν ln [−g (z̄)])K (11.159)
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Now that all derivatives have been made explicit, there is no loss of generality if
we specialize to the case x = −y = u/2. We have

∂ν ln
[
ΔVM

(
u

2
,
−u

2

)]
=

1
3
Rνσu

σ (11.160)

∂ν ln [−g (z̄)] = 0 (11.161)

ημν∂μ∂ν ln [ΔVM (x, y)] =
1
3
R (11.162a)

ημν∂μ∂ν ln [−g (z̄)] =
−1
6

R (11.162b)

∇μ∂μG1

(
u

2
,
−u

2

)
=

Δ1/2
VM

(
u
2 ,−u

2

)
√
−g (P )

{
ημν∂μ∂νK +

1
4
RK +

1
12

Rμ ν
λ ρu

λuρ∂μ∂νK

}

=
Δ1/2

VM

(
u
2 ,−u

2

)
√
−g (P )

∫
d4p

(2π)4
eipu

{
−p2 + ipμ

∂

∂Xμ

+
ημν

4
∂2

∂Xμ∂Xν

1
6
R +

1
12

Rμ ν
λ ρpμpν

∂

∂pλ

∂

∂pρ

−1
6
R ν

λ pν
∂

∂pλ

}
F (X, p)X=0 (11.163)

Therefore the mass-shell constraint and the transport equation, evaluated at the
origin of a RNC system, read[

−p2 −m2 −
(
ξ − 1

6

)
R +

1
12

Rμ ν
λ ρpμpν

∂

∂pλ

∂

∂pρ

− 1
6
R ν

λ pν
∂

∂pλ
+

ημν

4
∂2

∂Xμ∂Xν

]
F = 0 (11.164)

pμ
∂

∂Xμ
F = 0 (11.165)

To obtain the corresponding expressions in an arbitrary coordinate system, we
must replace the ordinary derivatives by the covariant derivatives

∇μF =
[

∂

∂Xμ
+ Γλ

μρ pλ
∂

∂pρ

]
F (11.166)

∇ν∇μF = ∂ν∇μF − Γλ
νμ∇λF + Γλ

νρ pλ
∂

∂pρ
∇μF (11.167)

At the origin of the RNC

∇ν∇μF (X, p)X=0 = ∂ν∂μF +
1
3
[
Rλ

μνρ + Rλ
ρνμ

]
pλ

∂

∂pρ
(11.168)

so the covariant mass-shell constraint is[
−p2 −m2 −

(
ξ − 1

6

)
R +

1
12

[
Rμ ν

λ ρpμpν
∂

∂pλ

∂

∂pρ
−R ν

λ pν
∂

∂pλ

]

+
gμν

4
∇ν∇μ

]
F = 0 (11.169)
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and the covariant transport equation is

pμ
∂F

∂Xμ
+ pμΓλ

μρ pλ
∂F

∂pρ
= 0 (11.170)

If we think of this as a classical Liouville equation, it describes particles moving
along the geodesics of the background spacetime. The geodesics are parameter-
ized by s = τ/m, where m is the mass of the particles and τ is their proper time,
and the 4-velocity is uμ = pμ/m.

Higher spin fields

We now discuss the generalization of the quantum kinetic theory for scalar fields
in curved spacetimes to fields of higher spin. For concreteness, we shall discuss
the case of a Dirac spinor, but the central ideas apply to fields of any spin.

To begin, the notion of a local Lorentz transformation is introduced to define
spinor fields in curved spacetimes. To do this, we need a moving frame, or, in
four-dimensional spacetimes, a vierbein. A vierbein is a set of four vector fields
eμa such that at every point

gμνe
μ
ae

ν
b = ημν and ηabeμae

ν
b = gμν (11.171)

The components of the vierbein transform as contravariant vectors under general
coordinate transformations. The vierbein changes under a local Lorentz trans-
formation as

eμa → ξμa = Λb
ae

μ
b (11.172)

A Dirac spinor ψ is a set of four (world) scalar fields which transform as a spinor
under the local Lorentz transformation Λb

a. In general the quantity obtained by
taking the ordinary derivatives of a spinor field is not a spinor. We define instead
the covariant derivative

∇μψ = ∂μψ − Γμψ (11.173)

where

Γμ =
1
2
Σabeaνe

ν
b;μ (11.174)

Σab is the Lorentz generator appropriate to the representation to which ψ

belongs. ∇μψ is a spinor of the same order as ψ.
The propagator S (x, x′) transforms as the product ψ (x) ψ̄ (x′). We want to

express it in terms of a Wigner function F defined at the geodesic midpoint z̄

between x and x′, which transforms as ψ (z̄) ψ̄ (z̄). To do this, we introduce the
so-called parallel transport matrices A (x, z̄), which transform as ψ (x) ψ̄ (z̄), and
write

S (x, x′) = A (x, z̄)S(z̄) (x, x′)A (x′, z̄) (11.175)
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The matrices A (x, z̄) are parallel transported along the geodesic from z̄ to x. In
RNC around z̄ this means

xμA (x, 0);μ = 0 (11.176)

with the boundary condition A (0, 0) = 1. This equation allows us to write the
parallel transport matrices in terms of the spin connection

A (x, 0) = 1 + xμΓμ (z̄) + . . . (11.177)

The object S(z̄) (x, x′) may be treated with the methods we have used for scalar
fields; indeed, it is a world biscalar, though a local bispinor at z̄. We refer the
reader to [CaHaHu88] for further details.

Higher spin fields in non-abelian theories require the combination of methods
presented in all sections of this chapter. The gauge fields themselves pose a
particular problem, since their transformation law is not homogeneous. In this
case the simplest strategy is the so-called background field method [DeW81,
Abb81, Hart93, Alx99, PesSch95]. The gauge field Aμ is split into a c-number
background V μ and a quantum fluctuation Wμ. Under a gauge transformation,
V μ transforms as a gauge field, and Wμ as a field on the adjoint representation.
A gauge-fixing term

1
2α

(Dμ
V Wμ)2 (11.178)

is added to the action, where α is the gauge-fixing parameter and Dμ
V Wν is the

gauge covariant derivative with connection V μ, namely

DV μW
ν = ∂μW

ν − i [Vμ,W
ν ] (11.179)

The action (where we must also add the corresponding ghost terms) is invariant
under joint gauge transformations of V μ and Wμ, but non-invariant under gauge
transformations of Wμ alone. This is enough to make the W propagator well
defined.

The quantum field W has a homogeneous transformation law, and may be
handled as any other higher spin field. In curved spacetime, of course, we would
not be concerned with the world-vector Wμ but with the four world-scalars
W a = eaμW

μ, which transform as a vector under local Lorentz transformations.

11.2.4 A note on the literature

For original literature on Wigner functions in gauge backgrounds we recommend
Heinz [Hei83] and Winter [Win84], and for Wigner functions in curved space-
times, Winter [Win85] and Calzetta, Habib and Hu [CaHaHu88]. These meth-
ods were elaborated by many authors; other relevant references are [ElGyVa86,
Mro89, Fon94, Gei96, Gei97, Son97, BlaIan99, BlaIan02, LitMan02]. Our
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344 Quantum kinetic field theory

exposition on gauge backgrounds is greatly influenced by [WRSG02, WRSG03],
and on curved spacetimes by [CaHaHu88].

We recommend [BirDav82] as an entry point to the literature on higher spin
fields in curved spacetimes, and [ChWiDi77] for further information on geometry
and analysis on group manifolds.
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12

Hydrodynamics and thermalization

Since the systems described by quantum fields are by definition extended, it is
natural to think that in some limit they may reasonably well be approximated
as fluids. This means that the state of the system is parameterized by a few
locally well-defined fields such as temperature or energy density, obeying a set
of hyperbolic equations of motion. A concrete example is the extensive use of
fluid models to describe high-energy collisions [BelLan56, CarDuo73, CoFrSc74,
Bjo83, CarZac83].

Our earlier derivation of quantum kinetic theory suggests a way to put this
insight on a formal basis. Within its range of validity, the Boltzmann equation
will drive the one-particle distribution function towards local thermal equilib-
rium. On scales much larger than the local thermalization scale, we expect to see
hydrodynamical behavior [BeCoPa02]. This is, after all, the usual way of deriving
hydrodynamics from kinetic theory [Hua87]. Beware, notwithstanding, that even
at the level of classical kinetic theory there are still open questions regarding the
cross-over from the kinetic to the hydro regime [KarGor02, KarGor03].

If we understand hydrodynamics as stated in the first paragraph of this chap-
ter, then a system defined in terms of a quantum field may not have a hydro-
dynamic limit. This has been shown in [Elz02] for the case of a free Fermi field.
However, since the hydrodynamic description seems justifiable when applied
to the physics of quark–gluon plasmas (see the discussion in Chapter 14) and
early universe cosmology [Hu82, Hu83, CalGra02], we shall accept as a working
hypothesis that for “interesting” systems whose fundamental description involves
quantum fields there is a local thermal equilibrium limit where the system may
be described as a fluid. The specifics of quantum fields are manifested through
the gap equation and constitutive relations, whose derivation will be our main
goal in this chapter.

Let us begin, however, with a brief review of basic thermodynamics, and then
its relativistic generalization. The subject of hydrodynamics is one where the
generally covariant formulation is actually simpler than the flat spacetime one,
and much simpler than the nonrelativistic version. Therefore, it is worth investing
some initial effort to familiarize ourselves with the generally covariant approach
from scratch. Our presentation follows the review articles by Israel [Isr72, Isr88];
see also [Cal98].
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346 Hydrodynamics and thermalization

12.1 Classical relativistic hydrodynamics

12.1.1 A primer on thermodynamics

The basic tenets of thermodynamics we need to keep in mind are the following: we
have a (simple) system described by some intensive parameters (temperature T,

chemical potential μ, pressure p, etc.) whose meaning we take for granted (e.g.
we already know everything about the zeroth law) and extensive parameters,
such as energy U , entropy S, volume V , and particle number N (we use particle
number for concreteness, but any – or several – conserved charge(s) would serve
just as well). In equilibrium, all these quantities are position independent. Their
first deviations from equilibrium are related by the first law

TdS = dU + pdV − μdN (12.1)

Extensive quantities are homogeneous functions of each other, so we must have

TS = U + pV − μN (12.2)

From the differential of this second identity we obtain the Gibbs–Duhem relation

dp = sdT + ndμ (12.3)

where s = S/V and n = N/V are the entropy and particle number densities,
respectively. This means

∂p

∂T

∣∣∣∣
μ

= s =
ρ + p− μn

T
;

∂p

∂μ

∣∣∣∣
T

= n (12.4)

where ρ = U/V is the energy density.
Actually, it is convenient to adopt as independent variables T and α = μ/T,

whereby

∂p

∂T

∣∣∣∣
α

=
ρ + p

T
;

∂p

∂α

∣∣∣∣
T

= Tn (12.5)

We may also write

S = Φ +
(

1
T

)
U − αN (12.6)

where the thermodynamic potential Φ = pV/T is the logarithm of the grand-
canonical partition function. Finally we have the second law

TdS ≥ dQ (12.7)

This concludes our mini-tutorial on nonrelativistic thermodynamics.

12.1.2 Covariant hydrostatics

We now generalize the above framework of thermodynamics to a relativistic fluid
evolving in a spacetime with an arbitrary metric gμν . After overcoming some
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12.1 Classical relativistic hydrodynamics 347

initial threshold, the reader will be rewarded in the long run by the economy
and exactitude of this formulation. All derivatives shall be covariant derivatives
with respect to the Levi-Civita connection, so that gμν;ρ ≡ 0. We use MTW
conventions [MiThWh72].

The divergence of a (contravariant) vector Xμ is defined by

Xμ
;μ =

1√−g
∂μ
(√−gXμ

)
(12.8)

(where ∂ denotes an ordinary derivative), and the flux of a vector through a
hypersurface Σ is ∫

d3x
√

(3)gnμX
μ (12.9)

where (3)gab is the induced metric on the surface and nμ is the outer normal.
If the surface element is space like (that is, the normal is a time-like vector)
we adopt the convention that n0 < 0 (so that n0 > 0, recall that g00 < 0 in any
frame). For example, in ordinary Minkowski space we say a t = constant surface
is space like, and its normal nμ = (∂/∂t)μ = (1, 0, 0, 0). Then we obtain Gauss’
theorem ∫

V

d4x
√−g Xμ

;μ =
∫
∂V

d3x
√

(3)g (εnμ)Xμ (12.10)

where ε = 1 if the normal is space like, and −1 if time-like.
To simplify matters we will describe the construction of a covariant theory in

terms of a set of rules:

(a) Intensive quantities (T, p, μ) are associated with scalars, which represent the
value of the quantity at a given event, as measured by an observer at rest
with respect to the fluid.

(b) Extensive quantities (S, V,N) are associated with vector currents Sμ, uμ, Nμ,
such that for any given space like surface element dΣμ = nμdΣ, then the
amount of quantity X within the volume dΣ as measured by an observer
with velocity nμ is given by −XμdΣμ. Therefore xn = −nμX

μ is the density
of the quantity X measured by such an observer. If the quantity X is con-
served, then Xμ

;μ = 0. The quantity uμ associated with volume is the fluid
4-velocity, and obeys the additional constraint u2 = −1. We call density tout
court the density measured by an observer comoving with the fluid, namely
x = −uμX

μ.
(c) Energy and momentum are combined into a single extensive quantity

described by an energy–momentum tensor Tμν which is symmetric. The
energy current, properly speaking, is Uμ = −Tμνuν , and the energy density
ρ = Tμνuμuν .

We wish to describe a fluid in a state of equilibrium. However, we do not assume
that the metric is stationary; at the very least, we must allow for the possibility
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348 Hydrodynamics and thermalization

that the metric appears time dependent in our chosen coordinates. An example
is a static de Sitter universe whose metric appears as an expanding spatially
flat universe if written locally in Robertson–Walker metric form. Because of the
(possibly) changing metric, we cannot expect that the relevant quantities are
position independent. We shall only assume that the fluid is isotropic in the rest
frame. This means that in the equilibrium state all vector currents are collinear
with the velocity, the mixed components of Tμν vanish in the rest frame, and the
spatial components (namely, the momentum flux) are isotropic. In other words,
in equilibrium we may decompose

Nμ = nuμ, Tμν = ρuμuν + pΔμν , Δμν = gμν + uμuν (Δμνuν = 0)

(12.11)

where p is the equilibrium or hydrostatic pressure of the fluid. The entropy
current Sμ is given by TSμ = −Tμνuν + puμ − μNμ, which we rewrite as

Sμ = Φμ − βνT
μν − αNμ (12.12)

Here, we have introduced the thermodynamic potential current Φμ = pβμ, and
the inverse temperature vector βμ = T−1uμ. Observe that T−2 = −βμβμ. Con-
tracting with uμ we get Ts = p + ρ− μn, so locally we recover the usual ther-
modynamics. The first law becomes

TdSμ = −d(Tμνuν) + pduμ − μdNμ = −uνdT
μν − μdNμ (12.13)

Contracting the Gibbs–Duhem relation (dT )Sμ = (dp)uμ − (dμ)Nμ with the
4-velocity, we recover the derivatives (12.5). If we regard the thermodynamic
potential as a function of βμ and α, then

∂Φμ

∂βν
= pδμν + (p + ρ)uμuν = Tμ

ν ;
∂Φμ

∂α
= nuμ = Nμ (12.14)

so

Sμ
;μ = −βνT

μν
;μ − αNμ

;μ (12.15)

This means that entropy production vanishes in equilibrium, provided the con-
servation laws of energy–momentum and particle number hold. Now, linear devi-
ations from equilibrium are constrained by the first law (12.13). If we consider a
state which deviates linearly from equilibrium, but where the conservation laws
still hold, then in this state the entropy production must be

d
(
Sμ

;μ

)
= (dSμ);μ = −βν;μdT

μν − α,μdN
μ (12.16)

On the other hand, entropy production must be stationary at equilibrium, so the
linear variation must vanish, whatever the deviations dTμν and dNμ might be.
In equilibrium the inverse temperature vector must be a Killing field (β(ν;μ) = 0)
and α must be constant. Being a Killing field means that a coordinate transfor-
mation of the type xμ → xμ + εβμ is a symmetry of the underlying spacetime.
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12.1 Classical relativistic hydrodynamics 349

Observe that not every spacetime or field theory may support an equilibrium
state.

If we consider the variation of the entropy content within some spatial region Σ
as a function of time, the second law demands that the increase in entropy should
be higher than the entropy flow through the boundary δΣ. Thus the covariant
statement of the second law is that entropy production must be positive, i.e.
Sμ

;μ ≥ 0.

12.1.3 Ideal and real fluids

In order to generalize the above framework to hydrodynamics (rather than hydro-
statics) let us first introduce the concept of an ideal fluid , namely a fluid where
the decomposition (12.11) is always available, not just under equilibrium con-
ditions. Everything we said about equilibrium states is valid for an ideal fluid
even away from equilibrium; this applies in particular to the vanishing of entropy
production.

The equations of motion for the perfect fluid are the conservation laws for
energy–momentum and particle number. Suppose we know α to be constant (for
example, α = 0). Then energy–momentum conservation implies the identities
(recall that uμu

μ
,ν = 0)

ρ,t − (ρ + p)uν
;ν = 0; − (ρ + p)uμ

,t + Δμνp,ν = 0 (12.17)

where X,t ≡ −uμX,μ. The second equation is the Navier–Stokes equation for a
fluid without viscosity. Since ρ and p become space dependent only through their
temperature dependence, we may write ρ,t = ρ,TT,t, and similarly for p. Using
the identity (12.5), equations (12.17) simplify to

1
T
T,t −c2su

ν
;ν = 0; −uμ

,t +
1
T

ΔμνT,ν = 0 (12.18)

which can be reduced in a standard way to the wave equation with

cs =
√
p,T /ρ,T (12.19)

denoting the speed of sound.
We are interested in weakly nonideal fluids, namely, fluids which are not ideal,

but whose properties remain close to a reference ideal fluid. The first obstacle
we encounter is an ambiguity in the concept of the velocity of the fluid.

In effect, if the decomposition (12.11) fails, then the motion of mass does not
agree with the motion of the conserved charges. In other words, heat transfer
implies energy transfer, and therefore mass transfer, even if there is no charge
flow. Therefore we must define what we mean by velocity. In practice, two differ-
ent conventions have proved useful, namely the Eckart and the Landau–Lifshitz
prescriptions [Wei72, LanLif59].

In the Eckart prescription, velocity and particle number densities are defined
from the particle number current through the equations Nμ = nuμ, u2 = −1, and
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350 Hydrodynamics and thermalization

the energy density is read off the energy–momentum tensor ρ = Tμνuμuν . In the
Landau–Lifshitz prescription, the velocity is defined as the (only) normalized
time-like eigenvector of the energy–momentum tensor, and the energy density
is (minus) the corresponding eigenvalue: Tμν = ρuμuν + Tμν

T , with Tμν
T uν = 0.

The number density is read off the number current, n = −uμN
μ. In either

case, the reference ideal fluid is chosen as having the same velocity, energy
and particle number densities as the actual flow. The equation of state pre-
scribes the pressure, p0 = p0(ρ, n) of the reference fluid, and we may param-
eterize Tμν

T = (p0 + π) Δμν + Tμν
TT , where Tμν

TTuν = Tμ
TTμ = 0. Here π measures

the deviation of the isotropic part of the stress tensor from its local equilibrium
value. By definition, it is the product of the bulk viscosity of the real fluid times
the local rate of expansion.

We must emphasize that, although so far we may think of the Eckart and
Landau–Lifshitz prescriptions as simply different conventions, later on, when we
impose constitutive relations, say, linking viscous stresses to velocity gradients,
these different prescriptions will lead to different physical models of the fluid.
For reasons which will become clear in due time, we adopt the Landau–Lifshitz
prescription.

Let us write the energy–momentum and particle number currents for a real
fluid as

Tμν = Tμν
0 + τμν ; Nμ = Nμ

0 + jμ (12.20)

where Tμν
0 = ρuμuν + p0Δμν and Nμ

0 = nuμ are the energy–momentum and par-
ticle number current of a reference ideal fluid. We emphasize that, while ρ and n

have a direct operational meaning, p0 is a theoretical construct. Concretely, p0

results from using ρ and n as inputs in the equation of state for the ideal fluid.
Recall that τμνuν = jμuμ = 0.

In order to complete the specification of the model for the real fluid, we
must describe also the entropy current. To do this, let us go back to our dis-
cussion of hydrostatics. There we saw that, if we consider an arbitrary state
departing by amounts dTμν and dNμ from an equilibrium state, then, to
first order in departures from equilibrium, the entropy production is given by
(dSμ);μ = −βν;μdT

μν − α,μdN
μ.

We shall apply this formula to two nonequilibrium states of two different fluids
(namely, the real and reference ideal ones) rather than to nonequilibrium and
equilibrium states of the same fluid, while disregarding the higher order correc-
tions. Suffice it to be forewarned that these assumptions are not rigorous (we
shall return to this point later) and will get us in trouble.

We therefore adopt as our model for a real fluid the entropy production formula

Sμ
;μ = −βν;μτ

μν − α,μj
μ (12.21)

which may be easily integrated to a formula for the entropy current, namely

Sμ = Φμ
0 − βνT

μν − αNμ (12.22)
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12.1 Classical relativistic hydrodynamics 351

where Φμ
0 = p0β

μ. This formula may look like a simple extension of the corre-
sponding one for the equilibrium entropy current, but it is not, since it depends
on keeping the ideal form for the thermodynamic potential but replacing the
other two terms by their real counterparts.

The second law, in the form of positivity of entropy production, allows us to
put further restrictions on the form of τμν and jμ. For example, if we demand
that −α,μj

μ be nonnegative while jμ is transverse, then we are led to

jμ = −κΔμνα,ν (12.23)

and the second law implies κ ≥ 0. This coefficient is related to heat conductivity.
In the other term, it is convenient to decompose βν;μ in its components along

the direction transverse to the velocity, symmetrize, and, in the transverse part,
extract the trace part to obtain

β(μ;ν) = {PL + PLT + PT + PTT }μνρσ βρ;σ (12.24)

where

Pμνρσ
L = uμuνuρuσ (12.25)

Pμνρσ
LT =

−1
2

[uμuρΔνσ + uνuσΔμρ + uνuρΔμσ + uμuσΔνρ] (12.26)

Pμνρσ
T =

1
3
ΔμνΔρσ (12.27)

Pμνρσ
TT =

1
2

[
ΔμρΔνσ + ΔμσΔνρ − 2

3
ΔμνΔρσ

]
(12.28)

Observe that the P ’s are symmetric, mutually orthogonal projectors. Since more-
over PLτ = PLT τ = 0, and PT τ = πΔρσ, we obtain

−βν;μτ
μν = −πΔρσβρ;σ − Tμν

TT [PTTβρ;σ]μν (12.29)

which leads us to

Tμν
TT = −2ηT [PTTβρ;σ]μν ; π = −ζTΔρσβρ;σ (12.30)

where the coefficients η and ζ are, respectively, the shear (or first) and bulk (or
second) viscosities, and they must be nonnegative.

The reason why we have introduced factors of temperature explicitly in the
above formulae is that they cancel the corresponding powers of T−1 in

βρ;σ =
1
T

{
−T,σ

T
uρ + uρ;σ

}
(12.31)

The first term vanishes under the projectors, and the second is purely transverse
(uρuρ;σ = 0), so

Tμν
TT = −ηHμν ; π = −ζuσ

;σ (12.32)

Hμν = 2 [PTTuρ;σ]μν (12.33)
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352 Hydrodynamics and thermalization

which are the most often quoted forms. It is easy to see that with these con-
stitutive relations, energy–momentum conservation leads to the Navier–Stokes
equation in covariant form.

This outcome is very good from the phenomenological point of view, but trou-
blesome from a theoretical point of view, as it can be proven that the covariant
Navier–Stokes theory admits no stable solutions [HisLin83, HisLin85]. Eventu-
ally we shall learn to live with this contradiction, but let us elaborate on it a
little further, to the point where at least we understand what we have settled for.

12.1.4 Stability and the Landau–Lifshitz theory

Rather than attempting a direct study of stability in the Navier–Stokes equa-
tions, we shall show that the theory for a real fluid just constructed is a partic-
ular case of a class of theories which satisfy the essential condition of causality,
whereas the Landau–Lifshitz theory does not. These are the divergence type the-
ories of Geroch and Lindblom [GerLin90]. To simplify our discussion, we shall
assume α ≡ 0 throughout, since this is the relevant case to compare against the
quantum theory of a real scalar field.

In a divergence type theory, the degrees of freedom XA of the theory are used
to construct currents Tμ

A, which are assumed to be ultralocal functions of the
XA (that is, they depend on the XA at each point, but not on their derivatives).
The equations of motion take the form of conservation laws for the currents
Tμ
A;μ = IA. For simplicity, let us assume linear production terms, IA = −VABX

B

with a nonnegative matrix VAB (this will be the relevant case below).
Suppose we consider a linear departure δX from some solution to the equations

of motion, say X = 0. To make it even simpler, suppose that the Cauchy data are
homogeneous in space, so that δX depends only on time. Then the equations of
motion take the form MABδẊ

B = −VABδX
B , where MAB = ∂T 0

A/∂X
B . If the

solution we are starting from is stable, then δX must regress, and since the matrix
V is nonnegative, for this to be true the matrix M must be positive definite. In
a covariant theory, moreover, this must be true for any choice of time variable,
and so we conclude that the matrix −tμ∂T

μ
A/∂X

B must be positive definite for
every future-oriented, time-like vector tμ, or, equivalently, the vector

∂Tμ
A

∂XB
δXAδXB (12.34)

must be time-like and future oriented for any choice of the δX displacements.
This is our simple stability criterion.

The Landau–Lifshitz prescription does not directly fit in this scheme, because
under the obvious choice XA → βμ, Tμ

A → Tμν , the energy–momentum tensor is
not ultralocal. We must first extend the number of degrees of freedom, so that
we can write the theory as first order throughout.

Concretely we introduce a new traceless, symmetric tensor ζμν (ζμμ = 0) and
write (we shall omit indices, for simplicity) the viscous stress tensor as τ = Cζ.
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12.2 Quantum fields in the hydrodynamic limit 353

In time, we want this to be equivalent to the constitutive relations (12.30),
which we write as τ = −B∇β. To this end, we introduce a new current Aμνρ =
(T 2/2) [Δμνβρ + Δμρβν ] . The divergence of this current may be expressed in
terms of first derivatives of the velocity, Aμνρ

,ρ = D∇β. Then, by imposing the
conservation law ∇A = −(DB−1C)ζ, we see that indeed the new form τ = Cζ

of the viscous stress is equivalent to the old one.
So now we have a theory of fields βμ and ζμν , and ultralocal currents Tμν

and Aμνρ, and are ready to apply the stability criterion. But then we realize
that, while Tμν depends on all fields, Aμνρ depends on βμ only. The vector in
equation (12.34) cannot possibly be time-like for every displacement, since a
whole diagonal block is missing from ∂Tμ

A/∂X
B . So the Landau–Lifshitz theory

fails the stability criterion.
The failure of the Landau–Lifshitz approach to depict real fluids may be

attributed to two unwarranted assumptions, namely, that the real fluid could
be described with the same set of variables and with the same entropy current
as its perfect counterpart. As a matter of fact, all that equilibrium thermody-
namics suggests is that, whatever extra variables are brought in to describe
the nonequilibrium state, they must vanish in equilibrium, and the entropy
current must match its equilibrium value up to first order in the deviations
from equilibrium. In other words, when we write the entropy production as
Sμ

;μ = −βν;μτ
μν − α,μj

μ we are neglecting second-order deviations from equi-
librium. But under the Landau–Lifshitz constitutive relations, the two terms we
are retaining are second order themselves. The inconsistency of keeping only
some second-order terms is the root cause of our problems.

The fact remains that the Navier–Stokes theory is highly successful phe-
nomenologically. The answer to this riddle seems to be that the would-be run-
away perturbations of the Landau–Lifshitz theory are in reality high-frequency
oscillations around the Navier–Stokes solutions. These oscillations cancel out if
evolution is averaged over macroscopic time-scales, and therefore they do not
appear in actual observations [NaOrRe94, KrNaOrRe97]. With this understand-
ing, we shall carry on with the Landau–Lifshitz theory [Ger01].

12.2 Quantum fields in the hydrodynamic limit

12.2.1 Quantum hydrodynamic models

Since thermodynamics alone cannot provide further information on the transport
functions, to proceed, we must place the above discussion in the context of a
more fundamental description of the field, namely, the quantum kinetic field
theory based on the Kadanoff–Baym equations. Let us begin with analyzing the
equilibrium states.

Since we shall only discuss the theory of a real scalar field, we may also set
α = 0 from scratch. This reflects the fact that a real scalar field is its own
antiparticle. Thus our problem is to connect the hydrostatic equilibrium states,
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354 Hydrodynamics and thermalization

described by an ideal energy–momentum tensor Tμν
0 = ρuμuν + p0Δμν , with the

equilibrium kinetic theory states, described by the Bose–Einstein distribution
f0 = [exp |βp| − 1]−1.

To begin with, let us identify the energy–momentum tensor with the expec-
tation value of the corresponding Heisenberg operator. This is derived from the
CTPEA Γ. The arguments of Γ are field configurations on a closed time path
and in general we will have different metrics g

(1)
μν and g

(2)
μν in the forward and

backward branches, respectively. The energy–momentum tensor is defined by the
formula (valid for a general state)

Tμν =
2√−g

δΓ

δg
(1)
μν

(12.35)

where only the derivative with respect to the metric in the first time branch is
taken. After the derivative is taken we identify g

(1)
μν and g

(2)
μν with the physical

metric gμν . The effective action itself is given by

Γ[G] = − i�

2
Tr lnG +

1
2
S,ABG

AB + Γ2[G], (12.36)

where the functional Γ2 is −i� times the sum of all two-particle-irreducible dia-
grams with lines given by G and vertices given by the quartic interaction. The
first term Tr lnG does not depend on the metric. Written in full, the second term
reads

1
2

∫
d4x

{√
−g(1)

(
∂2
x −m2

b

)
G11 (x, x′)

∣∣∣
x′=x

− (1 → 2)
}

(12.37)

As usual

δ
√−g

δgμν
=

1
2
√−ggμν ;

δgμν

δgρσ
= −gμρgνσ (12.38)

and so the contribution from this term to Tμν is[
−∂μ∂ν +

1
2
ημν
(
∂2
x −m2

b

)]
G11 (x, x′)

∣∣
x′=x

(12.39)

In the third term, the metric appears through the
√−g factors multiplying the

coupling constants. The contribution to Tμνtakes the form

−λb

8
ημν
[
G11 (x, x)

]2 − Λ̃bη
μν (12.40)

where Λ̃b contains all the higher order contributions. To the accuracy desired,
Λ̃b is position independent, and we shall not analyze it further. Adding the two
nontrivial contributions we get

Tμν = −
[
∂μ∂ν − 1

2
ημν∂2

x

]
G11 (x, x′)

∣∣∣∣
x′=x

− ημν

2

[
m2

b +
λb

4
G11 (x, x)

]
G11 (x, x) − Λ̃bη

μν (12.41)
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12.2 Quantum fields in the hydrodynamic limit 355

We assume the quasi-particle approximation for G11

G11 =
(−i�)

p2 + M2 − iε
+ 2π�δ

(
p2 + M2

)
f (X, p) (12.42)

f is the solution to a kinetic equation of the form

pμ
∂f

∂Xμ
− 1

2
M2

,μ

∂f

∂pμ
= Icol (X, p) (12.43)

We only assume energy–momentum conservation∫
Dp pμIcol (X, p) = 0; Dp =

d4p

(2π)3
θ
(
p0
)
δ (Ω0) (12.44)

where Ω0 = p2 + M2. Observe that equation (12.42) implies that f must be real
and even in p. In turn, the effective mass M2 is the solution of the gap equation
(11.65) given in Chapter 11.

To write the energy–momentum tensor in terms of the distribution func-
tion, observe that ∂x → ip + 1

2∂X . We must neglect second derivative terms,
and observe that terms involving p∂X eventually vanish because G11 (X, p) is
even in p. So

Tμν (X) =
∫

d4p

(2π)4

[
pμpν − 1

2
ημνp2

]
G11 (X, p)

− 1
2
ημν
[
m2

b +
λb

4
G11

]
G11 − Λ̃bη

μν (12.45)

Let us isolate

Tμν
V = −i�

∫
ddp

(2π)d

[
pμpν − 1

2η
μνp2

]
p2 + M2 − iε

≡ −ημνΛ1 (12.46)

where

Λ1 =
(

(d− 2)
2d

)
ημνμε

�

∫
ddp

(2π)d
(−i) p2

p2 + M2 − iε
=

M4
�

32π2

[
z − 1

4
− 1

2
ln
(

M2

4πμ2

)]
(12.47)

and z was defined in (11.69) of Chapter 11. Also write

�

∫
d4p

(2π)4
pμpν2πδ (Ω0) f (X, p) ≡ Tμν

T (12.48)

and observe that∫
d4p

(2π)4

(
−1

2
p2

)
2πδ (Ω0) f (X, p) =

1
2
M2M2

T (12.49)

so we get Tμν = Tμν
T − Λbη

μν , with

Λb = Λ1 +
1
2

[
m2

b +
λb

4
G11

]
G11 + Λ̃b −

�

2
M2M2

T (12.50)
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356 Hydrodynamics and thermalization

If we regard G11 (x, x) and M2
T as functions of M2 defined by the gap equa-

tion, then Λb is a function of M2 too, meaning that there is no explicit state
dependence other than through M2.

Our first concern is to eliminate the formal divergences from these expressions,
following the procedure outlined in Chapter 11. With respect to the renormaliza-
tion of the cosmological constant Λb term, we observe that any M2 independent
term may be absorbed in the gravitational action (even if it is formally infinite).
So we only need to show that dΛb/dM

2 is finite. Now, the gap equation yields
dG11/dM2 = 2/λb, and

dΛb

dM2
=

−�

2
M2

T (12.51)

Consistency requires that we actually neglect the O
(
λ2
)

terms in Λ̃b, or at least
that we consider them as a true (temperature independent) constant. Equation
(12.51) then implies that energy–momentum conservation follows from the trans-
port equation. Henceforth we shall assume that any constant contribution has
been subtracted, and drop the b subscript.

To summarize, what we have done in this section is to introduce a class of
theories which, although they receive some support as the long-wavelength limit
of an underlying quantum field theory, may be – indeed, should be – studied as
bona fide models of physical systems. These theories describe fluids with energy–
momentum tensor Tμν = Tμν

T − Λgμν , where the first term is defined from a
one-particle distribution function f in equation (12.48), and Λ is the solution to
equation (12.51), with M2

T also defined in terms of f . The construction of the
model is completed by stipulating the collision term in the Boltzmann equation
for f and the gap equation, given by

M2 − ϕ
(
M2, μ2

)
=

�λ

2
M2

T (12.52)

The two functions Icol and ϕ allow us to incorporate some higher order effects
into the same general scheme.

Charge conservation may be introduced as in classical hydrodynamics through
the corresponding currents, provided the collision term has the required symme-
try. The entropy current was defined in Chapter 2, equation (2.98). From this,
entropy production is given by

Sμ
;μ = 2

∫
Dp

[
ln

(1 + f)
f

]
Icol (12.53)

where Dp was introduced in (12.44). The positivity of this integral is an expres-
sion of the H-theorem.

12.2.2 Thermal equilibrium states

Our next task is to investigate the equation of state for an equilibrium state
described by a Bose–Einstein distribution function f0. The energy–momentum
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12.2 Quantum fields in the hydrodynamic limit 357

tensor takes the perfect fluid form. The thermal component Tμν
T admits a similar

decomposition

Tμν
0T = 2�

∫
Dp pμpνf0 (X, p) = ρTu

μuν + pTΔμν (12.54)

where

ρT = 2�

∫
Dp (up)2 f0 (X, p) (12.55)

Since ρT and M2
T are scalars, we may compute them in the rest frame

ρT =
�

2π2

∫ ∞

M

dω ω2f0 (ω)
√
ω2 −M2 (12.56)

M2
T =

1
2π2

∫ ∞

M

dω f0 (ω)
√
ω2 −M2 (12.57)

For the thermal pressure, we find 3pT − ρT = −�M2M2
T , so

pT =
1
3
(
ρT − �M2M2

T

)
=

�

6π2

∫ ∞

M

dω
[
ω2 −M2

]3/2
f0 (12.58)

The total energy density and pressure are then ρ = ρT + Λ and p = pT − Λ.
The equilibrium entropy current takes the form

Sμ
0 = pβμ − Tμν

0 βν = (ρ + p)βμ = (ρT + pT )βμ (12.59)

On the other hand, equation (2.98) yields Sμ
0 = Φμ

0T − Tμν
0T βν , where

Φμ
0T = −2

∫
Dp pμ ln

[
1 − e−|�βμp

μ|
]

(12.60)

This form of the thermodynamic potential recalls another equivalent expression
for the thermal pressure

pT
T

=
−1
2π2

∫ ∞

M

dω ω
√
ω2 −M2 ln

[
1 − e−�βω

]
(12.61)

Together (12.51) and (12.61) imply the thermodynamic relationship dp/dT =
(p + ρ)/T . (Here and hereafter, we shall use d/dT to denote a total temperature
derivative, which accounts for the explicit temperature dependence through f0

as well as the implicit dependence through M2. We shall use ∂/∂T when we
mean only the former.) Indeed, equation (12.61) implies

T
dpT
dT

= pT + ρT − �M2
T

2
T
dM2

dT
(12.62)

but pT + ρT = ρ + p, and

T
dp

dT
= T

dpT
dT

− T
dΛ
dT

= T
dpT
dT

+
�M2

T

2
T
dM2

dT
(12.63)

Observe that for T 2 � M2 we recover the Stefan–Boltzmann law and p = ρ/3,
as expected (in this regime, the cosmological constant ∼ M2T 2 is negligible
compared to ρ ∼ T 4). This concludes our study of the equilibrium states.
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358 Hydrodynamics and thermalization

12.2.3 Local equilibria

We now extend this analysis to local equilibrium states. The idea is to generate
a solution to the transport equation as a formal expansion “in derivatives of”
βμ, replace this solution in the definition of Tμν , and to compare the result to
the Landau–Lifshitz energy–momentum tensor for a real fluid. The first point to
realize is that it is not possible to assume arbitrary values for the derivatives of
the temperature 4-vector at a given point; they must satisfy constraints derived
from the symmetries of the transport equation. These constraints may be used
to eliminate the time derivatives of the inverse temperature 4-vector from the
equations.

Let us recall the transport equation (12.43). Write f = f0 + f1, where f1 is
“first order,” and observe that, since the collision integral involves no derivatives,
Icol [f0] = 0. Therefore, to first order, we may write Icol [f ] = K̃ [f1] , where the
operator K̃ is linear. To analyze the left-hand side, let us assume p0 > 0, so
that

f0 =
1

e−�βμpμ − 1
(12.64)

Then

�f0 (1 + f0)
{
pμpνβμ;ν − 1

2
βμM2

,μ

}
= K̃ [f1] (12.65)

Our goal is to solve for f1. However, we must realize there are integrability
conditions derivable from (12.44), so a solution exists only when

�

∫
Dp f0 (1 + f0)

{
pκpμpνβμ;ν − 1

2
pκβμM2

,μ

}
= 0 (12.66)

The idea is to use the integrability conditions to eliminate time derivatives from
the linearized transport equations, thereby obtaining an equation relating f1 to
spatial derivatives of the inverse temperature tensor only.

Since the integrability conditions are clearly covariant, we may write them
down in any frame, in particular, the rest frame. In general, we have βμ =
(1/T

√
1 − v2)(1,v). In the rest frame, v = 0, the above equations result in

〈
ω3
〉 Ṫ

T 2
+

1
3
〈
ω
(
ω2 −M2

)〉 ∇v
T

− 1
2
〈ω〉TM2

,T

Ṫ

T 2
= 0 (κ = 0) (12.67)

1
3T
〈
ω
(
ω2 −M2

)〉 [
(v). +

∇T

T

]
= 0 (κ = 1, 2, 3) (12.68)

In these expressions, we have introduced the notation

〈X〉 =
∫

Dp f0 (1 + f0)X

=
1

2π2

∫ ∞

M

dω
√
ω2 −M2f0 (1 + f0)X (12.69)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


12.2 Quantum fields in the hydrodynamic limit 359

To simplify the integrability conditions, recall that

dρ

dT
=

dρT
dT

+
dΛ
dT

=
∂ρT
∂T

+ M2
,T

[
∂ρT
∂M2

− �

2
M2

T

]
(12.70)

∂ρT
∂T

= �
2

〈
ω3
〉

T 2
(12.71)

∂ρT
∂M2

=
(−�

2

)
1

2π2

∫ ∞

M

dω
ω2

√
ω2 −M2

f0

=
(−�

2

)
1

2π2

∫ ∞

M

dω

(
d

dω

√
ω2 −M2

)
ωf0 =

(
�

2

)[
M2

T − � 〈ω〉
T

]
(12.72)

so

〈
ω3
〉
− 1

2
〈ω〉TM2

,T =
T 2

�2

dρ

dT
(12.73)

On the other hand,

dp0

dT
=

dp0T

dT
− dΛ

dT
=

∂p0T

∂T
+ M2

,T

[
∂p0T

∂M2
+

�

2
M2

T

]
(12.74)

∂p0T

∂M2
= −�

2
M2

T (12.75)

∂p0T

∂T
=

�
2

3T 2

〈
ω
(
ω2 −M2

)〉
(12.76)

Also, recall that

dp0

dT
=

p0 + ρ

T
(12.77)

so finally 〈
ω3
〉
−M2 〈ω〉 =

3T
�2

(p0 + ρ) (12.78)

The integrability conditions are simply the conservation equations for the ideal
energy–momentum tensor built out of f0. These equations determine the dynam-
ics of local equilibrium states.

We may regard (12.73) and (12.78) as a system of equations for the two
unknowns 〈ω〉 and

〈
ω3
〉
, which yields

〈
ω3
〉

=
T 2

�2

dρ

dT

[
M2 − 3

2TM
2
,T c

2
s

]
[
M2 − 1

2TM
2
,T

]
〈ω〉 =

T 2

�2

dρ

dT

[
1 − 3c2s

][
M2 − 1

2TM
2
,T

] (12.79)

where c2s is the speed of sound (12.19).
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360 Hydrodynamics and thermalization

12.3 Transport functions in the hydrodynamic limit

While in equilibrium the energy–momentum tensor for the quantum fields takes
the ideal fluid form, for mere local equilibrium this will not be so. In general,
we may seek a solution of the transport equation as a formal series “in deriva-
tives of the hydrodynamic variables.” The first order in this series is given by
the solution to the linearized equation (12.65). When the corrected distribution
function is employed to compute the energy–momentum tensor, we get non-
ideal terms which are, by construction, linear in gradients. By matching these
terms to the Landau–Lifshitz template, we may read off the transport functions,
thereby “deriving” the constitutive relations for the quantum real fluid. This is,
of course, the traditional way of deriving the transport functions from kinetic
theory [ChaCow39, GrLeWe80, Lib98, Hei94]; what is new is the unconventional
form of the collision integral. Our treatment here follows [CaHuRa00].

It is amusing to observe that, while in deriving the Kadanoff–Baym equations
we had to justify at every step the neglect of higher gradient terms (and were
admittedly not always quite convincing), the transport terms are lifted from
terms in the energy–momentum tensor which are linear in gradients by definition.
So many approximations which may be controversial at the quantitative level,
are fully legitimate in the context of the derivation of the constitutive relations.
We shall not discuss the further issue of whether a first-order theory is a good
description of the quantum field in the hydrodynamic limit.

Let us begin by eliminating time derivatives from the left-hand side of the
linearized transport equation (12.65). In the rest frame

βμ,ν =
1
T

(
Ṫ
T

∇T
T

v̇ vi,j

)
(12.80)

Using the integrability conditions we get

βμ,ν =
1
T

(
−c2s∇v ∇T

T

−∇T
T vi,j

)
(12.81)

Obviously only the symmetric part contributes to the linearized transport equa-
tion. Also

1
2
M2

,μβ
μ =

1
2
M2

,T

Ṫ

T
=

−c2s
2

M2
,T∇v (12.82)

Splitting v(i,j) into the diagonal and the traceless parts, and reverting to the
covariant form, we get the left-hand side of (12.65) as

�f0 (1 + f0)
[

1
T
pμpνH

μν − 1
T

{
(p.u)2

[
c2s −

1
3

]
+

M2

3
− c2s

2
TM2

,T

}
uλ
,λ

]
(12.83)

where Hμν was defined in (12.33).
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12.3.1 The collision term

On the right-hand side of the transport equation the collision integral has the
structure of the balance between a gain and a loss term [FiGaJe06]. Let us
consider a collision process whereby n reactant particles are transformed into m

product ones. We get a gain when one of the product particles has the moment
p1, say, where we wish to evaluate Icol. Let the other product particles have
momenta p2, . . . pm, and the reactants have momenta q1,. . . qn. Then the gain
term is

�σ2
n,m [q,p] δ

⎛
⎝ m∑

j=1

pj −
n∑

i=1

qi

⎞
⎠ m∏

j=1

(1 + f (pj))
n∏

i=1

f (qi) (12.84)

where we have made explicit use of the energy–momentum conservation and
placed properly the Bose enhancement factor. The corresponding loss term is

�σ2
n,m [q,p] δ

⎛
⎝ m∑

j=1

pj −
n∑

i=1

qi

⎞
⎠ n∏

i=1

(1 + f (qi))
m∏
j=1

f (pj) (12.85)

We make the micro-reversibility assumption that the cross-section σ2 is the same
for both processes. The collision integral is

Icol [p1] = �

∑
n,m

∫ n∏
i=1

Dqi

m∏
j=2

Dpj σ
2
n,m [q,p] δ

⎛
⎝ m∑

j=1

pj −
n∑

i=1

qi

⎞
⎠

×

⎧⎨
⎩

m∏
j=1

(1 + f (pj))
n∏

i=1

f (qi) −
n∏

i=1

(1 + f (qi))
m∏
j=1

f (pj)

⎫⎬
⎭ (12.86)

In equilibrium, each (n,m) term vanishes independently. We assume the cross-
sections are invariant under permutations of the reactants and products, sep-
arately. For reasons made clear below, we are interested in collision integrals
which do not conserve particle number, meaning∫

Dp1 Icol [p1] �= 0 (12.87)

Explicitly, this says

∑
n>m

∫ n∏
i=1

Dqi

m∏
j=1

Dpj
[
σ2
n,m [q,p] − σ2

m,n [p,q]
]
δ

⎛
⎝ m∑

j=1

pj −
n∑

i=1

qi

⎞
⎠

⎧⎨
⎩

m∏
j=1

(1 + f (pj))
n∏

i=1

f (qi) −
n∏

i=1

(1 + f (qi))
m∏
j=1

f (pj)

⎫⎬
⎭ �= 0 (12.88)

so in general we request σ2
n,m [q,p] �= σ2

m,n [p,q] if n �= m. In an explicit pertur-
bative calculation, we find that, to order λ2, only σ2

2,2 is not zero, yielding the
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362 Hydrodynamics and thermalization

usual Boltzmann collision integral. To order λ4, both σ2
2,4 and σ2

4,2 are activated,
and the inequality may be explicitly verified (in fact, σ2

2,4 ∼ 2σ2
4,2).

12.3.2 The linearized transport equation

Writing f = f0 + f1,

f1 = f0 (1 + f0)χ; K̃ [f1] = �f0p (1 + f0p)K [χ] (12.89)

Dβp = Dp f0p (1 + f0p) (12.90)

we obtain

K [χ] = −
∑
n,m

∫ n∏
i=1

Dβqi

m∏
j=2

Dβpj σ
2
n,m [q,p] δ

⎛
⎝ m∑

j=1

pj −
n∑

i=1

qi

⎞
⎠

× {χ (p1) + (m− 1)χ (p2) − nχ (q1)}∏n
i=1 (1 + f0 (qi))

∏m
j=1 f0 (pj)

(12.91)

Thus far we have reduced our problem to that of solving the linear integral
equation

K [χ] =
1
T
pμpνH

μν − 1
T

{
(p · u)2

[
c2s −

1
3

]
+

M2

3
− c2s

2
TM2

,T

}
uλ
,λ ≡ R

(12.92)
Let us write K = KB + K1, where the former is the lowest order (Boltzmann’s)

collision operator. KB is a Hermitian operator in the space of functions defined
on the positive energy mass shell with inner product

〈ς | χ〉 =
∫

Dβp ς∗ (p)χ (p) ; 〈χ〉 ≡ 〈1 | χ〉 (12.93)

and 〈χ〉 agrees with the expectation value introduced earlier (12.69).
K1 will not be symmetric, in general. There is a basis of eigenvectors |χn〉

of KB, with eigenvalues an. Four eigenvectors correspond to the functions pμ,
with eigenvalue zero. Because of momentum conservation, these are also eigen-
vectors of the full collision operator. KB admits a fifth null eigenvector, namely
a constant: this follows from particle number conservation in Boltzmann’s the-
ory. Let us call |χ0〉 this (normalized) eigenvector (in conventional notation,
|χ0〉= 〈1〉−1/2). We observe that the inhomogeneous term R in the linearized
transport equation (12.92) is orthogonal to the null eigenvectors pμ (not to |χ0〉).
We shall ignore the former, that is, we shall restrict our considerations to the
orthogonal space to the pμ’s.

Writing the unknown χ in Dirac’s notation as |χ〉 =
∑ |χn〉 〈χn | χ〉, we get

〈χ0 | K1 | χ0〉 〈χ0 | χ〉 +
∑
n≥1

〈χ0 | K1 | χn〉 〈χn | χ〉 = 〈χ0 | R〉 (12.94)

∑
m

(anδnm + 〈χn |K1|χm〉) 〈χm | χ〉 = 〈χn | R〉 (12.95)
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12.3 Transport functions in the hydrodynamic limit 363

if n ≥ 1. From the second equation, we see that 〈χm | χ〉 ∼ O(λ−2) for m �= 0;
instead, the first equation suggests that 〈χ0 | χ〉 is much larger (O(λ−4)). We are
therefore led to the approximation

〈χ0 | χ〉 =
〈χ0 | R〉

〈χ0 |K1|χ0〉
; 〈χn | χ〉 =

1
an

〈χn | R〉 (12.96)

As a matter of fact, R may be split into a term Rs proportional to the shear tensor
Hμν and a term Rb proportional to uλ

,λ, and therefore so will the solution. Actu-
ally, 〈χ0 | Rs〉 = 0, so solving the “shear” problem involves only the Boltzmann
collision operator. The eigenvalues of this operator are of order T/τrel, where
τrel is the mean free time, and so the shear linear correction to the distribution
function is χs ∼

(
−τrel/T

2
)
pμpνH

μν .

The mean free time may be identified by writing the Boltzmann equation
in the collision time approximation, where f ∼ feq + δf and δḟ ∼ −δf/τrel. On
power counting and dimensional arguments, we find τrel ∼ 1/λ2T.

On the other hand, 〈χ0 | Rb〉 is not zero. It follows that the component of the
“bulk” solution in the direction of |χ0〉 is much larger than in any other direction,
and we may approximate

|χb〉 =
|χ0〉 〈χ0 | Rb〉
〈χ0 |K1|χ0〉

=
〈Rb〉

〈K1 [1]〉 = constant (12.97)

Expanding in the rest frame

χb ≡ c0 =
−1

T 〈K1 [1]〉

{〈
ω2
〉 [

c2s −
1
3

]
+ 〈1〉

[
M2

3
− c2s

2
TM2

,T

]}
uλ
,λ (12.98)

12.3.3 The temperature shift and the bulk stress

As we have seen, the correction to the distribution function has two components.
The one associated with the Hμν tensor contributes to the shear stress, but it
does not induce a change in the energy density. Therefore it is compatible with
the Landau–Lifshitz matching conditions. The constant shift of χ by c0, on the
other hand, affects in principle both the energy density and the thermal mass MT .
So, to enforce the Landau–Lifshitz conditions, it must be partially compensated
by a temperature shift. Concretely, if we call T the temperature of the fiducial
equilibrium state, such that ρ (T ) is equal to the energy density in the nonequilib-
rium state, then the temperature appearing in the local equilibrium distribution
function f0 must be T0 = T + δT. The effect of this temperature shift is the same
as adding another term proportional to ω in the first-order correction χ.

The distribution function and temperature shifts in turn produce a shift δM2

in the physical mass, which likewise does not affect the transport equation. How-
ever, both δT and δM2 enter in the consideration of the bulk stress. Observe
that there is no shift in the four velocity uμ.

The three displacements c0 (12.98), δT and δM2 are related by the con-
straints that the gap equation must hold, and the total energy density in the
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364 Hydrodynamics and thermalization

nonequilibrium state must be the same as in the local equilibrium state. Writing
the gap equation as in (12.52), the linearized equation then reads[

1 − ϕ′ − �λ

2
∂M2

T

∂M2

]
δM2 =

�λ

2

[
∂M2

T

∂T
δT + c0 〈1〉

]
(12.99)

In fact, ∂M2
T /∂T = � 〈ω〉 /T 2, so δM2 = M2

,T δT + M2
,cc0, where M2

,c =
T 2M2

,T 〈1〉 /� 〈ω〉. Since the gap equation is enforced, we can look at the (cosmo-
logical) constant Λ as a function of M2, so δΛf = −�M2

T δM
2/2. Then

δρ =
dρ

dT
δT +

[
∂ρT
∂M2

− �

2
M2

T

]
M2

,cc0 + �
〈
ω2
〉
c0 (12.100)

Actually
∂ρT
∂M2

=
�

2
M2

T − �
2 〈ω〉

2T
(12.101)

so

δρ =
dρ

dT
δT +

[〈
ω2
〉
− 〈1〉

2
TM2

,T

]
�c0 (12.102)

And, since the total energy remains the same,

dρ

dT
δT = −�c0

[〈
ω2
〉
− 〈1〉

2
TM2

,T

]
(12.103)

Let us apply the same reasoning to the bulk stress, which results from both the
deviation of the pressure from p (T ) and the direct contribution from the new
terms in the distribution function

τ = c2s
dρ

dT
δT +

[
∂pT
∂M2

+
�

2
M2

T

]
M2

,cc0 +
1
3
[〈
ω2
〉
−M2 〈1〉

]
�c0 (12.104)

Now ∂pT /∂M
2 = −�M2

T /2, so

τ = −�c0

{[
c2s −

1
3

] 〈
ω2
〉

+
[
M2

3
− c2s

2
TM2

,T

]
〈1〉
}

(12.105)

Using (12.98) and the expressions for 〈ω〉 and
〈
ω3
〉

from the last section, we get

τ = −
�

5uλ
,λ

[
M2 − 1

2TM
2
,T

]2
9T 5

(
dρ
dT

)2

{〈
ω3
〉
〈1〉 −

〈
ω2
〉
〈ω〉
}2

|〈K [1]〉| (12.106)

where we have used the fact that an explicit calculation shows that 〈K [1]〉 < 0
to lowest nontrivial order.

12.3.4 Shear stress and bulk viscosity

The shear stress can be read off directly from the new terms in Tμν
T . In the rest

frame, we get χs =
(
−τrel/T

2
)
pμpνH

μν

τ ij =
−�τrel
T 2

Hkl
〈
pipjpkpl

〉
∼ −�τrel

T 2
Hij

〈
p4
〉

(12.107)
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12.3 Transport functions in the hydrodynamic limit 365

from where we can read out the shear viscosity η. To estimate η, it is enough to
keep only the leading (binary scattering) contributions, so η ∼ λ−2. On dimen-
sional grounds, we recover the usual result, η ∼ T 3/λ2.

As expected, things are not so simple with the bulk viscosity. We can read it
off from equation (12.106). However, in evaluating it we must consider that 〈1〉
is logarithmically divergent in the massless limit, so we must correct the sheer
dimensional estimate to 〈1〉 ∼ T 2 ln (M/T ). As for the size of |〈K [1]〉|, observe
that the integral is dominated by the Rayleigh–Jeans tail, where f0 ∼ T/ω � 1.
Thus |〈K [1]〉| ∼ �

3λ4T 6F
(
M2
)
. Since the overall units are [mass]4, it must be

that |〈K [1]〉| ∼ T 6/M2. For the remaining elements we may use the conventional
estimates

〈
ω3
〉
∼ T 5, ρ ∼ �T 4, and thus obtain

ζ ∼ M2

λ4T 3

[
M2 − 1

2
TM2

,T

]2
ln2 (M/T ) (12.108)

which is the folk result. In the limit in which the bare mass vanishes, or equiva-
lently in the T → ∞ limit, we may write on dimensional grounds

M2 − 1
2
TM2

,T ≡ 1
2
μM2

,μ ∼ λM2 (12.109)

and since M2 ∼ λT 2 itself, equation (12.108) reduces to ζ ∼ λT 3 ln2 (λ).

12.3.5 Transport functions for non-abelian plasmas

Although the calculation of transport coefficients in field theories follows the
general strategy we have exemplified with a self-interacting scalar field, it is
important to keep in mind the particularities of specific theories when aiming for
a derivation of those coefficients good enough for a sensible comparison against
experimental data.

In this sense, the most important scenario where an estimate of transport
coefficients is of crucial relevance is the physics of relativistic heavy ion collisions
(RHICs) [Ris98, BaRoWi06a, BaRoWi06b] (which we shall discuss in greater
detail in Chapter 14), and correspondingly great effort has been devoted to the
derivation of transport functions for hot non-abelian plasmas.

While we shall be content to refer the reader to the comprehensive set of
papers by Arnold, Moore and Yaffe on this subject [ArMoYa00, ArMoYa03a,
ArMoYa03b, ArDoMo06], we also wish to point out some aspects where the
derivation of transport functions for non-abelian plasma differs from the equiv-
alent study in scalar field theory.

First, there is the issue of momentum-dependent interactions and small denom-
inator effects. Because of these, the actual weight of a given diagram may be very
different from naive power-counting estimates. We have already encountered this
phenomenon in Chapter 10, in our discussion of hard thermal loop resummation
for a toy model scalar field.
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366 Hydrodynamics and thermalization

As in the scalar field case, particle number-changing interactions play a central
role in the derivation of the bulk viscosity coefficient [ArDoMo06]. However, the
relevant processes are different. In particular, for a hot gluon field the most
important contributions to bulk viscosity come from “2 to 1” processes, namely
gluon splitting and joining.

In a conformally invariant theory, such as classical pure Yang–Mills theory, the
bulk viscosity vanishes. We can see this in two related ways [ArDoMo06]. First,
bulk viscosity is related to the departure of the trace part of the stress tensor
from its equilibrium value upon isotropic expansion. In a conformally invariant
theory, such expansion does not drive the system out of equilibrium – for the
Maxwell case, see [Pla59] – so there is no departure. Second, in a conformally
invariant theory the energy–momentum tensor must be traceless. This leaves no
room for deviations of the trace part of the stress tensor from the value prescribed
by the equilibrium equation of state p = ρ/3.

Therefore, the bulk viscosity in Yang–Mills theory is linked to the trace
anomaly of the energy–momentum tensor [Fuj80]. In non-abelian gauge theo-
ries the trace anomaly is proportional to the β function which describes the
running with scale of the gauge coupling [CoDuJo77]. Arnold, Dogan and Moore
[ArDoMo06] observe that, since in principle the β function can have either sign
(in a theory with matter fields included), while the bulk viscosity must be posi-
tive because of the second law, the bulk viscosity must be related to the square

of the β function.
We must also mention the Landau–Pomeranchuk–Migdal (LPM) effect

[LanPom53a, LanPom53b, Mig56, BaiKAt03]. This effect concerns the suppres-
sion of the emission probability for low-frequency photons, and correspondingly
the suppression of exchange interactions in the low-frequency sector. It also
affects gluon emission at both low and high frequency.

It is crucial that the kinetic equation one takes as take-off point be consistent
with the LPM effect. Consistency can be achieved by an explicit calculation
of the relevant cross-sections in the collision integral [ArMoYa00, ArMoYa03a,
ArMoYa03b]. For an estimate of transport coefficients one does not often require
a detailed knowledge of the cross-sections, but rather of certain integrals of them,
for which there exist sum rules [AuGeZa02]. In such a case, it is enough to
incorporate the LPM effect through the relevant sum rules [BBGM06].

An exciting new development is the possibility of an absolute lower bound
for the ratio of shear viscosity to entropy density [KoSoSt05]. A low value for
this ratio is usually an indication of a strongly coupled theory (compare with
(12.107)). If this “viscosity bound conjecture” is confirmed, it would open up
new avenues for the investigation of transport coefficients in a variety of strongly
coupled systems, ranging from RHICs to cold atomic gases [Coh07].

More generally, the method of AdS/CFT correspondence [Mal99] is a new
tool which is playing an increasing role in the study of strongly coupled
gauge theories. A crucial step is the generalization of the correspondence for
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12.4 Transport functions from linear response theory 367

the computation of Schwinger–Keldysh (as opposed to Euclidean) propagators
[HerSon03]. Similar tools have been used to study the hydrodynamic limit
of M theory [Her02, Her03]. Since this field is growing exponentially at the
time of writing we cannot even aim to provide a comprehensive list of refer-
ences. However, see [PoSoSt02a, PoSoSt02b, KoSoSt05, HelJan07] for some key
developments.

This concludes our study of the hydrodynamic limit from the kinetic field
theory. There are several interesting directions to extend these results, such as
including higher order effects [CaDeKo01]. We shall discuss some of these devel-
opments in later chapters in the context of applications to concrete problems.

To gain a broader perspective it is instructive to show the derivation of the
transport coefficients from a different approach, namely, that of linear response
theory, which we now turn to.

12.4 Transport functions from linear response theory

Linear response theory aims to provide exact representations for the transport
functions as equilibrium expectation values of current correlations. The actual
evaluation of these expressions may be technically rather subtle. The reader
should consult the literature for details. However, the fact that one has, in prin-
ciple, a rigorous definition of the transport functions opens up the possibility of
implementing nonperturbative techniques, such as extracting the relevant cor-
relations from numerical simulations [AarBer01, AarMar02]. Moreover, the fact
that the linear response theory program may be carried through is a beauti-
ful illustration of the deep connection between equilibrium and near-equilibrium
dynamics such as embodied in the fluctuation–dissipation theorem, as well as in
the stochastic approach to NEqQFT discussed in Chapter 8.

In the literature, there are several equivalent derivations of the linear
response expressions for the transport functions. With some over-simplification,
they can be traced back to the work of Mori [Mor58, HorSch87], Zubarev
[Zub74, HoSata84] and Kadanoff and Martin [KadMar63]. The work of Jeon
[Jeo93, Jeo95] and Jeon and Yaffe [JeoYaf96] is also of substantive value. For
later developments, see [WaHeZh96, CaDeKo00, WanHei99, WRSG03, Koi07].

Following the presentation of Kadanoff and Martin [KadMar63], we shall first
demonstrate this approach with the simpler case of the spin diffusion coefficient
for an Ising-like model of a ferromagnetic material, and then derive the linear
response theory expressions for the viscosity coefficients η and ζ.

12.4.1 The spin diffusion coefficient

We consider a model of some ferromagnetic material where the spin density is
described by a continuous scalar quantum field m (t,x). (Here we use bold face
to denote quantum fields – not for a vector field – with light face for classical
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368 Hydrodynamics and thermalization

fields.) The model is nonrelativistic, and for brevity we consider the symmetric
phase only. Since the total magnetization is conserved, the Heisenberg equation
of motion for the spin density takes the form of a continuity equation

∂

∂t
m (t,x) + ∇J (t,x) = 0 (12.110)

As we have seen in Chapter 8, it is possible to introduce a classical stochastic
field m (t,x) such that

〈m (t,x)m (0,y)〉s =
1
2
〈{m (t,x) ,m (0,y)}〉 (12.111)

where we have a stochastic average on the left-hand side, and a quantum average
on the right. m satisfies a Langevin equation

∂

∂t
m (t,x) + ∇J (t,x) = Hs (t,x) (12.112)

To linear order in m, for slowly varying fields, with consideration of Galilei
invariance, we must have

J (t,x) = −D∇m (t,x) + . . . (12.113)

where D is the spin diffusion coefficient we want to determine.
Since in this approximation the dynamics is linear and space translation invari-

ant, it is convenient to introduce Fourier transforms

m (t,x) =
∫

d3k

(2π)3
eikxmk (t) (12.114)

If the value of the amplitude at t = 0 is mk (0) , then for t > 0

mk (t) = mk (0) e−Dk2t + mS
k (t) (12.115)

where mS
k (t) depends on the noise between 0 and t. If the noise and mk (0) are

uncorrelated, then

〈mk (t)mk′ (0)〉s = e−Dk2t 〈mk (0)mk′ (0)〉s (t > 0) (12.116)

From Onsager’s principle of microscopic reversibility [LaLiPi80a], we know that
the correlation is even in t, so this equation determines its value for t < 0 as well,
namely,

〈mk (t)mk′ (0)〉s = e−Dk2|t| 〈mk (0)mk′ (0)〉s (12.117)

We now compute the inverse Fourier transform

mk (ω) =
∫

dt eiωtmk (t) (12.118)

2Dk2

ω2 + (Dk2)2
〈mk (0)mk′ (0)〉s =

1
2

∫
dt eiωt 〈{mk (t) ,mk′ (0)}〉 (12.119)
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12.4 Transport functions from linear response theory 369

To obtain a prediction for D from this formula, we take the limits k → 0 and
ω → 0 in this order [KuToHa91] to get

D 〈mk (0)mk′ (0)〉s =
ω2

4k2

∫
dt eiωt 〈{mk (t) ,mk′ (0)}〉 (12.120)

Since the equilibrium correlation on the right-hand side is time-translation invari-
ant, we may write

ω2

∫
dt eiωt 〈{mk (t) ,mk′ (0)}〉 =

∫
dt eiωt

〈{
∂

∂t
mk (t) ,

∂

∂t
mk′ (0)

}〉

= −
∫

dt eiωtkik
′
j

〈{
Ji
k (t) ,Jj

k′ (0)
}〉

(12.121)

It only remains to compute 〈mk (0)mk′ (0)〉s . As k → 0,

mk (t) → M (t) =
∫

d3x m (t,x) (12.122)

where M is the total magnetization of the sample. Recall that if we turn on an
external magnetic field H, then the Hamiltonian H acquires a new term −HM.

Therefore, at constant temperature

M = − ∂F

∂H

∣∣∣∣
T

(12.123)

where F is the free energy

e−βF = Tr e−βH (12.124)

Taking two derivatives we get〈
M2
〉

= −kBT
∂2F

∂H2

∣∣∣∣
T

= kBTV χ (12.125)

where χ is the susceptibility

χ =
1
V

∂M

∂H

∣∣∣∣
T

(12.126)

(where V is the volume of the sample). We get

Dχ =
−1

4V kBT

∫
dt eiωt

kik
′
j

k2

〈{
Ji
k (t) ,Jj

k′ (0)
}〉

(k, k′, ω → 0) (12.127)

By using the symmetries of the correlator, we may simplify this expression to
obtain

Dχ =
1

4kBT

∫
d3x

∫
dt ei(ωt−kx) kikj

k2

〈{
Ji (t,x) ,Jj (0, 0)

}〉
(k, ω → 0)

(12.128)
We may also use the KMS theorem to express the anticommutator in terms of a
commutator.

We shall now use this calculation as a model for the derivation of the viscosity
coefficients.
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370 Hydrodynamics and thermalization

12.4.2 The bulk and shear viscosity coefficients

We return to the calculation of the viscosity coefficients in scalar quantum field
theory. We wish to write them in terms of equilibrium correlations of Heisenberg
operators. Observe that in the Landau–Lifshitz prescription there is no heat flux,
and for real scalar field theory there is no particle number conservation law. So we
have no heat conductivity or particle number diffusion constants. The transport
functions to be determined are the shear and bulk viscosities η and ζ.

In this subsection we shall not use different types for q or c number quantities.
The basic dynamical law, both in the fundamental quantum field theory and in
the stochastic field theory formulation, is the conservation of energy–momentum

Tμν
;ν = 0 (12.129)

Decomposing the energy–momentum tensor as in equation (12.20), we get

ρ̇ + (ρ + p)uλ
;λ − τμνuμ;ν = 0 (12.130)

(ρ + p) u̇μ + Δμν
(
p,ν + τλν;λ

)
= 0 (12.131)

In the local rest frame of the fluid, when terms of second order in deviations
from equilibrium are neglected, they reduce to

∂ρ

∂t
+ (ρ + p)ui,i = 0 (12.132)

(ρ + p)
∂ui

∂t
+ p,i + τij,j = 0 (12.133)

They have the form of continuity equations with currents J i
ρ = (ρ + p)ui and(

Jui

)j = pδji + τ ji .

Let us now consider the stochastic description. As in the spin diffusion case,
the noise terms will not affect the final result, so we will not consider them. We
may now parameterize

τij = −η (ui,j + uj,i) −
(
ζ − 2

3
η

)
δijus,s (12.134)

The second conservation equation becomes

(ρ + p)
∂ui

∂t
+ p,i − ηui,jj −

(
ζ +

1
3
η

)
(uj,j) ,i = 0 (12.135)

We may decompose the velocity field u = uL + uT , where ∇× uL = ∇uT = 0.
The transverse part decouples from the energy fluctuations, and obeys the simple
heat equation

(ρ + p)
∂uT

i

∂t
− ηuT

i,jj = 0 (12.136)

This is the same as in the spin diffusion case, with D there replaced by DT
u =
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12.4 Transport functions from linear response theory 371

η/ (ρ + p) here. We therefore write

η

(ρ + p)
〈
uT
ik (0)uT

jk′ (0)
〉
s
=

ω2

4k2

∫
dt eiωt

〈{
uT
ik (t) , uT

jk′ (0)
}〉

(k, k′, ω → 0)

(12.137)
For the longitudinal part, observe that uL

i,jj =
(
uL
j,j

)
,i. So we may write

∂ρ

∂t
+ (ρ + p)uL

i,i = 0 (12.138)

(ρ + p)
∂ui

∂t
+ p,i −

(
ζ +

4
3
η

)
uL
i,jj = 0 (12.139)

Introduce the velocity potential uL = −∇φ, the sound speed p,i = c2sρ,i, and
Fourier transform

∂ρk

∂t
+ (ρ + p) k2φk = 0 (12.140)

(ρ + p)
∂φk

∂t
− c2sρk +

(
ζ +

4
3
η

)
k2φk = 0 (12.141)

These are the equations of a damped harmonic oscillator
∂2φk

∂t2
+ k2c2sφk + 2Γk2 ∂φk

∂t
= 0 (12.142)

where

Γ =

(
ζ + 4

3η
)

2 (ρ + p)
(12.143)

The secular equation

ω2 − k2c2s − 2iΓk2ω = 0 (12.144)

has solutions

ω± = iΓk2 ±
√
k2c2s − Γ2k4 (12.145)

If Γ2k2 � c2s , we may expand

ω± = ±kcs + iΓk2 + O
(
k3
)

(12.146)

so the general solution is

φk (t) = e−Γk2t [φk (0) cos (kcst) + Ak sin (kcst)] (t > 0) (12.147)

At t = 0, we find
∂φk

∂t
= kcsAk − Γk2φk (0) (12.148)

so

(ρ + p) kcsAk − c2sρk (0) +
(
ζ +

4
3
η

)
k2

2
φk (0) = 0 (12.149)

Ak =
c2sρk (0)

(ρ + p) kcs
− Γk

cs
φk (0) (12.150)
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372 Hydrodynamics and thermalization

Assuming that the equal-time potential and energy fluctuations are uncorre-
lated (see below), we get

〈φk (t)φk′ (0)〉 = e−Γk2|t|
[
cos (kcst) −

Γk
cs

sin (kcs |t|)
]
〈φk (0)φk′ (0)〉 (12.151)

Upon Fourier transforming(
ζ + 4

3η
)

(ρ + p)
〈
uL
ik (0)uL

jk′ (0)
〉
s
=

ω2

4k2

∫
dt eiωt

〈{
uL
ik (t) , uL

jk′ (0)
}〉

(12.152)

(k, k′, ω → 0). From symmetry considerations, we expect〈{
uL
ik (t) , uT

jk′ (0)
}〉

= 0 (12.153)

and so we may combine the longitudinal and transverse correlations into a single
expression

η
〈
uT
ik (0)uT

jk′ (0)
〉
s
+
(
ζ +

4
3
η

)〈
uL
ik (0)uL

jk′ (0)
〉
s

= (ρ + p)
ω2

4k2

∫
dt eiωt 〈{uik (t) , ujk′ (0)}〉 (12.154)

(k, k′, ω → 0). We now have to compute the equal-time averages on the left-hand
side. Let us begin by computing the velocity–velocity correlation. Recall that if
the center of mass of the system is moving with velocity V, then in the statistical
operator we must add a new term −VP to the Hamiltonian H, where P is the
total momentum. Therefore

〈Pi〉 = − ∂F

∂Vi
(12.155)

and

〈PiPj〉 = kBT
∂ 〈Pi〉
∂Vj

(12.156)

To transform this into velocity correlations, we simply observe that from the
equilibrium energy–momentum tensor

〈Pi〉 = V (ρ + p)Vi (12.157)

so

〈ViVj〉 =
kBT

V (ρ + p)
δij (12.158)

The longitudinal part of the velocity may be obtained from the total velocity by
projection

uL
ik (0) =

kik
j

k2
ujk (0) (12.159)

We do likewise for uL
jk′ , observe that the correlation must be proportional to

δ (k + k′) by translation invariance, and that in the limit k → 0, uik → V Vi,
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we get 〈
uL
ik (0)uL

jk′ (0)
〉
s
=

kikj
k2

V kBT

(ρ + p)
(k, k′ → 0) (12.160)

which also implies〈
uT
ik (0)uT

jk′ (0)
〉
s
=
[
δij −

kikj
k2

]
V kBT

(ρ + p)
(k, k′ → 0) (12.161)

Thereby we find

η

[
δij +

1
3
kikj
k2

]
+ ζ

kikj
k2

=
(ρ + p)2

V kBT

ω2

4k2

∫
dt eiωt 〈{uik (t) , ujk′ (0)}〉 (12.162)

(k, k′, ω → 0). As in the previous case of the spin diffusion coefficient, this may be
reduced to an expression involving correlations of the energy–momentum tensor
alone. First, use the expressions for T 0i and the conservation laws to write this
as

η

[
δij +

1
3
kikj

k2

]
+ ζ

kikj

k2

=
1

V kBT

kmkn
4k2

∫
dt eiωt

〈{
T im
k (t) , T jn

k′ (0)
}〉

(k, k′, ω → 0) (12.163)

Next, separate T im
k into scalar and traceless components

T im
k = Pkδ

im + τ imk ; τ iki = 0 (12.164)

In the limit k → 0, the tensor structure of the correlations can be expressed in
terms of the isotropic tensor δij alone. By symmetry, we must have〈{

P0, τ
im
0

}〉
= 0 (12.165)

1
V

〈{
τ im0 (t) , τ im0 (0)

}〉
= A (t) δimδjn + B (t)

(
δijδmn + δinδmj

)
(12.166)

This last expression must be traceless with respect to (im) , so 3A + 2B = 0, and

1
V

〈{
τ im0 (t) , τ im0 (0)

}〉
= A (t)

[
δijδmn + δinδmj − 2

3
δimδjn

]
(12.167)

Contracting (ij) and (mn) we get

σ2 (t) ≡ 1
V

〈{
τ im0 (t) , τ im0 (0)

}〉
= 10A (t) (12.168)

Substituting this back in equation (12.163) we get

η =
1

40kBT

∫
dt eiωtσ2 (t) (ω → 0) (12.169)

ζ =
1

4kBT

∫
dt eiωt 〈{P0 (t) ,P0 (0)}〉 (ω → 0) (12.170)

which are the familiar expressions [Jeo95].
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374 Hydrodynamics and thermalization

12.5 Thermalization

Perhaps the single most important demand on a theory of nonequilibrium
quantum fields is that it should describe the means by which equilibrium is
reached and sustained by those systems. The process of thermalization plays
an important role in all the applications of the theory, such as the behavior of
order-parameter fluctuations after a quench (Chapter 9), the dynamics of Bose–
Einstein condensates and their associated noncondensed atomic clouds (Chapter
13), the early stages of relativistic heavy ion collisions (Chapter 14) and the
physics of reheating after inflation (Chapter 15). In this chapter, we will deploy
the knowledge gained so far in the physics of nonequilibrium fields to describe
some general features of the thermalization process; then we will discuss some
of these applications indicated above.

In spite of this ubiquity, the thermalization process is very hard to access
experimentally. Usually all one can actually observe are relics superposed on the
equilibrated thermal background, such as topological defects after a nonequi-
librium phase transition or the ratios between different particle species after
hadronization of the quark–gluon liquid. For this reason, a good deal of our
understanding of the thermalization process comes from large-scale numerical
simulations. We shall not discuss these simulations per se, but will point out
below the key entry points to the literature.

Before we proceed, a word is in order about what thermalization is. Quan-
tum field theory is unitary; quantum field theoretic evolution in a closed system
cannot create entropy, and so a quantum field starting from a pure state, say,
cannot thermalize in the strict thermodynamic sense (unless, e.g. it is coupled
to a heat bath, see next section). By thermalization we mean that a restricted
set of observables (correlation functions, hydrodynamics variables such as energy
density and pressure, equation of state, field configurations over regions of space
small compared to the total available volume) evolve in time towards stable,
near-stationary values which are robust against changes in the initial condi-
tions and may be approximated by thermal distributions with suitable intensive
parameters (temperature, chemical potentials, etc.) [BoDeVe04].

If we talk about thermalization in the context of quantum field theories, the
problem becomes slightly academic because nobody has ever solved the full uni-
tary evolution (unless in trivial cases, which do not thermalize). One solves
instead the equations of motion for the correlation functions derived, e.g. by
some n-PI effective action functional with a finite n, which are not time-reversal
invariant [IvKnVo99]. However, for classical field theories one can, in princi-
ple, actually solve the field equations. Then thermalization in the strict sense is
impossible. For example, in a thermal state one should be able to observe arbi-
trarily high values of the total energy in the field (though large values will be
very unlikely); in a numerically correct calculation, one should never see energy
values outside the range defined by the initial conditions. Nevertheless, in the
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12.5 Thermalization 375

thermodynamic limit the behavior of local observables becomes indistinguishable
from equilibrium. This means that thermalization is obtained “for all practical
purposes” (FAPP) in the sense defined above. In this chapter, we shall adhere
to this use of the term thermalization.

12.5.1 A toy model of thermalization

Although our goal is to describe thermalization (FAPP) in an isolated quantum
field, it is instructive to consider first the case in which the field is thermalized
(strictu sensu) by bringing it in contact with a heat bath. This problem was
analyzed by Schwinger [Sch61]. The reservoir may be described by one or several
quantum fields, and the action will be expanded by adding the action describing
these fields, plus the new term describing the system–bath interaction. Probably
the most mysterious empirical fact about thermodynamics is that the long-term
equilibrium state, if achieved, is totally independent of the details of the bath
dynamics and interaction. Therefore we shall leave open the details of the bath,
and simply write an interaction term of the form gϕAΨA, where Ψ is some (gen-
erally composite) bath operator and g is a coupling constant. We shall assume
the usual set-up where system and bath are brought into contact at some ini-
tial time t = 0. We also assume the initial condition is spatially homogeneous,
which, neglecting the system’s self-interactions, allows us to decompose it into
independent spatial modes. We consider the thermalization of each mode, and
in so doing reduce the original theory to a 1 + 0 field theory.

As we have seen in Chapter 11, the equations for the (system) Jordan and
Hadamard propagators are determined by the dissipation and noise kernels in
the 1PI CTPEA for the system field. To lowest order in the system–bath coupling
constant g, they are

D (t− t′) = ig2
�
−1θ (t− t′) 〈[Ψ (t) ,Ψ (t′)]〉

N (t− t′) =
1
2
g2

�
−1 〈{Ψ (t) ,Ψ (t′)}〉 (12.171)

Here, a common or implicit assumption is that the bath is always kept in equi-
librium at some temperature T , and that any back-reaction from the system is
negligible. So, writing

〈[Ψ (t) ,Ψ (t′)]〉 = �

∫
dω

2π
e−iω(t−t′)sign (ω)R (ω) (12.172)

where R (ω) must be even and positive, and following the analysis in Chapter
11, the imaginary part of the retarded propagator becomes

Im G−1
ret =

(−g2

2

)
sign (ω)R (ω) (12.173)
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376 Hydrodynamics and thermalization

The full equation is determined by causality[
ω2 −m2

b − g2

∫ ∞

0

dσ2

2π
R (σ)

(ω + iε)2 − σ2

]
Gret = −1 (12.174)

where mb is the bare mass of the system field.
If ω2 = ξ + iη, the inverse propagator develops an imaginary part

η

[
1 + g2

∫ ∞

0

dσ2

2π
R (σ)

(ξ − σ2)2 + η2

]
(12.175)

The expression in brackets is positive, so any (first sheet) zero must have η = 0.
But on the real axis, the inverse propagator has a cut, with a discontinuity
g2R (ξ) in the imaginary part. So, unless R (σ) vanishes below some threshold,
the inverse propagator cannot be zero. We shall assume this is the case, which
means that all excitations of the system are unstable against decay into the
bath.

Besides damping, the bath also provides screening. The Debye mass is defined
as the closest thing to a zero of the inverse propagator, namely a zero of the real
part of the inverse propagator. Therefore

M2
D −m2

b − g2PV

[∫ ∞

0

dσ2

2π
R (σ)

M2
D − σ2

]
= 0 (12.176)

We shall assume the physically reasonable condition that M2
D ≥ 0. A sufficient

condition for this is that the left-hand side of the gap equation changes sign as
we go from MD = 0 to ∞. If R (σ) is well behaved (which may require that we
perform a subtraction beforehand) the left-hand side is dominated by the first
term M2

D when this is large, and so it is positive. The sufficient condition for
screening (as opposed to anti-screening) boils down to

m2
b ≥ g2PV

[∫ ∞

0

dσ2

2π
R (σ)
σ2

]
(12.177)

We may now write the equation for the retarded propagator as{(
ω2 −M2

D

) [
1 + g2PV

∫ ∞

0

dσ2

2π
R (σ)

(ω2 − σ2) (M2
D − σ2)

]

+
ig2

2
ω

|ω|R (ω)
}
Gret = −1 (12.178)

The nice thing about this expression is that it makes it easy to identify the mean
life of a field excitation. Indeed, the inverse propagator has a near Ornstein-
Zernike structure [

ω2 −M2
D + 2iγω

]
Gret = −1 (12.179)

where γ ∼ g2R (MD) /4MD is the damping constant, and so we may conclude
that the decay of an excitation will be nearly exponential (at very long times it
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12.5 Thermalization 377

may turn to power law, depending on the behavior of R (ω) as ω → 0). Inciden-
tally, this equation also fixes the field density of states

D (ω) = π−1 |ImGret| =
(
g2

2π

)
|Gret|2 R (ω) (12.180)

In particular, the Ornstein-Zernike approximation for the retarded propagator
implies a corresponding approximation for the density of states

D (ω) ∼ 1
π

2γ |ω|
(ω2 −M2

D)2 + 4γ2ω2
(12.181)

So far we have analyzed how the interaction with the heat bath affects the
system dynamics, but we have not addressed thermalization per se. To do this,
it is not efficient to look at the retarded propagator, because this propagator
is very robust against thermal corrections. We look instead at the Hadamard
propagator, which obeys the equation

G−1
retG1 = 2�NGadv (12.182)

We have arrived at the crucial point. The inhomogeneous equation (12.182)
admits a particular solution G1 = 2�N |Gret|2 and also homogeneous solutions
which carry the information about the initial conditions. But the homogeneous
solutions decay, so after a time long compared to the mean life γ−1, only the
particular solution remains. Now, the bath propagators are subject to the KMS
theorem (it being insensitive to whether the field Ψ is fundamental or composite)

N =
g2

2
[1 + 2f0 (ω)]R (ω) (12.183)

Therefore the asymptotic Hadamard propagator obeys

G1 = 2π� [1 + 2f0 (ω)]D (ω) (12.184)

This is just the KMS theorem for the field (as opposed to the bath) Hadamard
propagator.

In conclusion, the essential elements of the thermalization process are that
there must be a heat bath, capable of transmitting the KMS condition to the
system, and at the same time a damping mechanism so that the field initial
conditions may be forgotten in time. Of course, damping does not cease when
equilibrium is finally reached, but at late times it is exactly compensated by
the inhomogeneous term in the equation for the Hadamard propagator. Thus we
arrive at yet another perspective on the KMS theorem, now as a detailed balance
condition which enforces the stability of the thermal state.

It is remarkable that when we come to view (12.184) as a relationship between
the field Hadamard propagator and density of states, any direct reference to the
bath has disappeared. The bath is necessary to validate the KMS theorem on the
system, but once this task is accomplished, it can go free. In fact, any bath can
perform this function (although the relaxation times will be different) as long as
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378 Hydrodynamics and thermalization

it is a good bath, meaning that it is able to sustain a constant temperature in
the face of back-reaction, and that it provides efficient dissipation in all scales.
Of course, this is precisely the condition for thermodynamics to prevail.

12.5.2 Thermalization of isolated fields

Let us now turn our attention to isolated fields, and examine whether in any
sense they fulfill the two conditions above. The answer is yes in both cases. The
KMS theorem is built in the Kadanoff–Baym equations, because field configu-
rations consistent with the KMS theorem have slower dynamics, and eventually
outlive those that do not. As for dissipation, beware that by restricting ourselves
to thermalization in the FAPP sense, we are de facto turning the problem into
an effectively open system. The interaction between the relevant system and
irrelevant sectors (the environment, with its large capacity) brings dissipation
and decoherence (or its classical analog, dephasing) to the system, by which the
memory of initial conditions is lost. These mechanisms work either for quan-
tum or classical field theories, although we expect them to be more efficient in
the quantum case. For example, quantum particle creation may emanate from
the vacuum, while classical parametric amplification can only work from a pre-
existing seed; thus pumping energy from a heat bath or a classical background
into an unpopulated region of the spectrum is easier in quantum theories (for
Fermi systems, of course, we have to take Pauli blocking into consideration).

By now, there is a mounting body of (numerical) evidence in support of these
statements. Numerical work has focused mostly on scalar field theories with quar-
tic self-interactions, with either one single field or else N fields with O (N) sym-
metry in the large N limit. Numerical investigations of the equations of motion
as derived from the Kadanoff–Baym equations were pioneered by Danielewicz
[Dan84a, Dan84b].

As we mentioned in the Introduction, it is not our aim to discuss numerical
approaches in detail. However, it is important to know what has been achieved.
To this end, it is useful to classify the mounting literature on the subject into the
four basic categories of quantum mechanical, classical, semiclassical and quantum
field models.

Quantum mechanical models

The complexity of the field theoretic equations led to the search for simpler
systems where at least the basic approximations could be tested. One possible
simplification is to consider a field theory in 0 + 1 dimensions, namely quantum
mechanics. For example, Cooper et al. [CDHR98] showed that while the evo-
lution of the coefficients in the quantum mechanical Hartree and leading order
(LO) large N approximations may be described as a chaotic Hamiltonian sys-
tem, in truth chaos is an artifact of the approximation. Another work using
quantum mechanical systems as a testing ground is [BetWet98]. [MACDH00]
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12.5 Thermalization 379

matches Hartree, LO and next-to-LO (NLO) large N against numerical solu-
tions of the Schrödinger equation. [MiDaCo01] analyzes the so-called bare-vertex
and dynamic Debye screening approximations. [Hab04] shows that the Gaussian
approximation in a closed system leads to the same dynamics for the Wigner
and the distribution functions, irrespective of whether the system is quantum or
classical.

Classical field models

Another direction in which the theory may be simplified is by taking the classi-
cal limit. Thermalization in classical φ4 theory was investigated in [AaBoWe00b,
Aar01, BoDeVe04]. Oftentimes a classical field theory arises from a mean field
approximation to a quantum problem. In particular, the nonequilibrium dynam-
ics of Bose–Einstein condensates has been thoroughly investigated as described
by the Gross–Pitaevskii equation [GaFrTo01, SanShl02, UedSai03, BajaMa04,
Adh04].

Both classical field theories and the time-dependent Ginzburg–Landau equa-
tion have been investigated as models of defect formation after an instanta-
neous quench [AntBet97, DzLaZu99, Ste00]. Adding a U(1) gauge field leads
to the Gorkov equations for a type II superconductor [YatZur98, IbaCal99,
StBeZu02]. To simulate a quench at a finite rate, it is possible to introduce
interaction with a heat bath by adding ohmic dissipation and white noise
[Kib80, Kib88, Zur85, Zur96, Riv01, RiKaKa00, LagZur97, LagZur98, YatZur98,
AnBeZu99, BeHaLy99, HabLyt00, BeAnZu00, FASA05, AGRS06]. There have
also been analyses of classical theories in expanding universes, motivated by the
problem of reheating; see [KhlTka96, KoLiSt97, FelTka00, FeKoLi01, FelKof01,
FGGKLT01, MicTka04, PFKP06].

Classical field has been extensively used as a test bench for different approx-
imations, for example, the use of a scalar field in 1+1 to compare the Hartree,
LO and NLO large N approximations in [AaBoWe00a].

Semiclassical field models

One step up in the ladder of increasing complexity we find semiclassical mod-
els, often arising from Hartree or leading order 1/N approximations to the full
quantum field models [BVHLS95].

This category also includes external field problems beyond the test field
approximation (cf. Chapter 4). Among these, the most studied have been electro-
magnetic and gravitational backgrounds. [KESCM92] compares the semiclassical
evolution to a quantum Vlasov equation incorporating Schwinger’s pair creation
from the electric field. [CEKMS93] generalizes the above by including the effect
of an expanding background geometry. [CHKMPA94] investigates a symmetric
scalar O (N) theory and QED with N fermion fields. See also [KlMoEi98] and
[AarSmi99], which deals with the abelian Higgs model with fermions in 1+1
dimensions.
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380 Hydrodynamics and thermalization

Fully numerical solution of semiclassical cosmological models presents enor-
mous difficulties, not only because of the intrinsic complexity of general rela-
tivity but also because most schemes lead to wildly unstable dynamical equa-
tions [ParSim93]. Some questions have been investigated, though, most notably
the back-reaction effect of trace anomalies of quantum fields and particle cre-
ation leading to avoidance of cosmological singularity and anisotropy damping
[FiHaHu79, HarHu79, HarHu80, Har80, Har81].

Another source of semiclassical problems has been the development of spinodal
decomposition [CHKM97]. [BBHKP98] considers initial conditions relevant to
a relativistic heavy ion collision. See also [BVHS99a, SCHR99]. In particular,
the possibility of actually observing disoriented chiral condensates in relativistic
heavy ion collisions has focused much attention on the specifics of this problem
[CKMP95, LaDaCo96, CoKlMo96, BeRaSt01].

The problem of reheating after inflation combines aspects of both semiclassi-
cal theory on curved spacetime backgrounds and spinodal instability. [BoVeHo94]
formulates the Hartree and one-loop approximations in an expanding background
within the test field approximation. [BVHS96] discusses the effect of anhar-
monicity on the background field dynamics and the structure of resonances.
[RamHu97a, RamHu97b] incorporate fully the back-reaction of quantum fluc-
tuations on the dynamics of the inflaton field as well as the dynamics of the
expanding background spacetime. See also [ZiBrSc01].

The problem of condensate collapse within the Hartree–Fock–Bogoliubov
approximation has been studied in [WuHoSa05].

Full quantum field models

At the top of the complexity ladder we find the full quantum field models. Of
course, the field theoretic Heisenberg equations being unassailable, some kind of
perturbative scheme is necessary. Much of our present understanding of nonequi-
librium quantum fields comes from the analysis of O(N) scalar fields to NLO in
the large N approximation [Ber02, AarBer02, BerSer03a] in 1 + 1 dimensions.
This work is reviewed in [Ber04b, BerSer03b, BerSer04, BerBol06].

The λΦ4 theory to two loops and beyond leads to a similar phenomenology. It
has been investigated in one [AarBer01], two [JuCaGr04] and three space dimen-
sions [ArSmTr05]. Going beyond scalar fields, [BeBoSe03] studies the abelian
Higgs model in 3+1 dimensions at two loops. Other approximation schemes have
been explored [BaaHei03a, BaaHei03b]. A radical new approach to numerical
nonequilibrium field theory has been proposed in [BerSta05, BBSS06]. Nonequi-
librium Bose–Einstein condensates have been analyzed from a 2PI perspective
both in a large N expansion and to second order in the interaction strength
[RHCRC04, GBSS05].

The fields of lattice QCD and hydrodynamical and kinetic models of relativis-
tic collisions targeting the hadronization process are beyond the scope of this
book. See [Shu88, Cse94, Wan97, Ris98, BaRoWi06a, BaRoWi06b, TeLaSh01,
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12.5 Thermalization 381

HKHRV01, KolRap03, HirTsu02, HirNar04, HeiKol02b]. There is also some
numerical work on processes which may speed up thermalization in the early
stages of the collision [ArMoYa05, ArnMoo05, Moo05, RomVen06].

By way of summary

This brisk enumeration should convince the reader that by now a wide variety
of cases has been studied, with a matching diversity of means. The important
point is that a coherent picture emerges, since the phenomenology observed in
the different cases is consistent. In the remainder of this chapter, we shall tell
the prototype thermalization story, by combining the insights gained from these
numerical experiments, supporting it whenever possible by analytical arguments.
In the remaining chapters of the book we shall contrast this theory with the
findings and demands of concrete applications.

12.5.3 The stages of thermalization

Summarizing the results of both numerical and analytical work, we may say that
typically the thermalization process in an isolated quantum field goes through
three distinctive stages [Son96]:

(a) early stage;
(b) intermediate stage;
(c) late stage.

The early stage: Preheating and prethermalization

Description of the earliest stage of thermalization varies a lot from one model to
another. It is generally characterized by an explosive pumping of energy into the
field, usually because of instabilities. For example, in a quench from a stable to
an unstable phase (cf. Chapters 4 and 9), the infrared modes become unstable
and begin to grow explosively. A similar phenomenon marks the growth of fluc-
tuations around a collapsing condensate, or the growth of large-scale magnetic
fields from an anisotropic distribution of hard gluons after a relativistic heavy
ion collision (RHIC). Without involving an actual instability, parametric ampli-
fication by a dynamical background is also an efficient way to transfer energy to
the field; this occurs in the so-called preheating stage in reheating after inflation.

It is possible to reach an analytic understanding of the early phase if a set of
modes may be identified as a linear field on an evolving background. In this case,
the early stage may be analyzed within a one-loop or Hartree type approximation.
One generic phenomenon is that of decoherence (or dephasing) brought about
through quantum diffusion [HKMP96]. As a result, quantities involving contri-
butions from many modes (like the energy density or the pressure) quickly lose
memory about the initial conditions, and the equation of state stabilizes to its
near-thermal form. This is the phenomenon of pre-thermalization [BeBoWe04].
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382 Hydrodynamics and thermalization

One basic difficulty in formulating a model of this early stage is accounting
for the system–environment interaction which is what drives the system out of
equilibrium to begin with. This is usually done by assuming an ad hoc time
dependence in the field parameters, and/or adding dissipation and noise to the
equations of motion. However this procedure is hard to justify on a first principle
basis.

There is however an environment which is easy to include into the equations
and can bring about the desired effect – a dynamical background spacetime. In
an expanding universe only conformally invariant fields may hold on to thermal
equilibrium. Once conformal invariance is broken, field modes are relentlessly
red-shifted by the expansion, bringing about an effective (in both senses of the
word) cooling. We have analyzed this problem in Chapter 4.

The initial stage concludes at the point the infrared peak becomes nonlinear.
After a period of parametric amplification, the end result is a nonthermal spec-
trum with a narrow band of highly populated modes. In the next stage, this
far-from-equilibrium spectrum evolves into a Planck distribution through the
process of turbulent thermalization.

Intermediate stage: Turbulent thermalization and kinetic equilibration

The second stage of the thermalization process is characterized by nonlinear
interactions among quantum modes, bringing about an effective thermalization
in the energy spectrum, as measured from the Fourier transform of the two-point
functions.

As we have seen, the early stage may be described as a theory of linear fields
evolving on a classical background. However, as the quantum field amplitude
grows, there is a point where a linear model ceases to make sense. We emphasize
that the breakdown of linear models beyond a certain point goes over and above
formal problems, such as the existence of secular terms [Ber04b, BerSer03b,
BerSer04]. If that were the case, it would be enough to resum those terms,
for example, by using dynamical renormalization group techniques [BVHS99b,
KunTsu06]. The point is that the model of linear fields on a background misses
an essential part of the physics, for which there is no formal remedy.

To estimate the point at which the linear approximation is no longer valid, we
could for example consider the case of a Bose–Einstein condensate. The Heisen-
berg operator ψ (x) which destroys a noncondensate atom at point x may be
regarded as a nonrelativistic scalar field theory with a quartic self-interaction.
There is a scattering length a = UM/4π�

2 pertaining to the strength U of the
self-interaction and the mass of the atom M . The cross-section for scattering
between noncondensate atoms is σ ∼ a2. If we split the density into its con-
densate and noncondensate (or anomalous) parts n = Φ2 + ñ, then the mean
free path for a noncondensate atom is λ ∼ 1/ñσ. On the other hand, let L be
a characteristic length of the problem. It could be the distance over which the
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12.5 Thermalization 383

condensate varies, or the size of a causal horizon as measured from the start
of the nonequilibrium evolution. Once λ ≤ L, self-interactions can no longer be
ignored, which yields

ñ ≥
(
4π�

2
)2

U2M2L
(12.185)

This may come about because ñ gets large or L gets large, for example, if L

grows linearly in time. We observe that for a self-interacting field, there is a
nonzero anomalous density even at zero temperature.
λ ≤ L is also the condition for the validity of the quantum kinetic theory

approach, since we expect λ to set the scale for the decay of correlations with
respect to the relative variable, and L to describe the dependence of the correla-
tions on the center-of-mass variable. This affords an enormous simplification of
the problem.

Observe, however, that in the same way that it is wrong to apply a linear
model in the intermediate stage, it would be wrong to apply a quantum kinetic
theory scheme in the early stage [BerBol06, BeBoWe05]. The simplest kinetic
theories assume, besides λ ≤ L, that all initial non-Gaussian correlations have
decayed, and that effectively the initial time may be chosen as in the asymp-
totic distant past. These restrictions are removed in more complex approaches,
but they also set limits to the applicability of quantum kinetic theory at early
times.

In a typical problem, the early stage concludes with most of the energy in
the field concentrated in a narrow set of modes, and the intermediate stage
sees the spread of energy over the full spectrum. There is an initial stage
where a cascade is formed between the initial scale k0 and a moving front
kmax (t) . Within these limits, there is a constant energy current towards higher
wavenumbers. This phenomenon closely resembles Kolmogorov’s 1941 scenario
for fully developed turbulence, and hence the name of turbulent thermalization
[Fri95, McC94, LanLif59, Hin75, Bat59, ZaLvFa92].

Turbulent thermalization ends with a self-similar particle number spectrum (as
defined by the Fourier transform of the Hadamard propagator, see Chapter 11)
f (k) ∼ k−α, with α > 1. The following stage, or kinetic equilibration, sees the
evolution of the spectrum towards the Rayleigh–Jeans form f (k) ∼ (kBT ) k−1.

We are assuming of course a high-temperature, weakly coupled scalar field, with
high occupation numbers.

The basic features of turbulent thermalization may be understood in terms
of a simple quantum kinetic theory model [ZaLvFa92, FelKof01, MicTka04,
MuShWo07]. Assume a kinetic equation

ωk
∂f

∂t
(t, k) = Icol (12.186)
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384 Hydrodynamics and thermalization

For the collision kernel, write

Icol =
∫ m∏

i=1

ddpi
2ωi

σ2
m,j

⎧⎨
⎩

j∏
l=0

(1 + f (pl))
m∏

l′=j+1

f (pl′)

−
j∏

l=0

f (pl)
m∏

l′=j+1

(1 + f (pl′))

⎫⎬
⎭ δ(d+1)

⎡
⎣ j∑

l=0

pl −
m∑

l′=j+1

pl′

⎤
⎦ (12.187)

where d is the number of spatial dimensions and p0 = k. For example, for elas-
tic 2 → 2 scattering we have m = 3, j = 1. For large occupation numbers, this
simplifies to

Icol =
∫ m∏

i=1

ddpi
2ωi

σ2
m,j

[
m∏
l=0

f (pl)

]⎡⎣ j∑
l=0

f−1 (pl) −
m∑

l′=j+1

f−1 (pl′)

⎤
⎦

× δ

⎡
⎣ j∑

l=0

pl −
m∑

l′=j+1

pl′

⎤
⎦ (12.188)

Observe that ωkf (t, k) is also the energy density in wavenumber space, and so
the energy current JE obeys

∇kJE = −Icol (12.189)

Let us assume an isotropic situation JE = JE k̂. The total energy flux through a
shell of radius k is KE = rkd−1JE , where r is a constant pure number. Therefore,
if Icol scales as k−β , then JE scales as k1−β and KE ∼ kd−β . It follows that
turbulent thermalization requires β = d.

On the other hand, if f (k) ∼ k−α then from equation (12.188) we get (assum-
ing σ2

m,j does not scale)

β = (d + 1) + m (α + 1 − d) (12.190)

and finally

α = d− 1 − 1
m

(12.191)

The numerical result for d = 3 is α = 3/2, which corresponds to m = 2
[MicTka04]. This is obtained for a gφ3 theory or for a λφ4 theory in the presence
of a background field. Observe that for d = 1 we get α < 0 whatever the value of
m. Therefore there are no turbulent UV cascades in 1 + 1, also consistent with
numerical results. The observed cascade has the Rayleigh–Jeans spectrum α = 1
corresponding to KE = 0 (cf. equation (12.188)).

The evolution of the wave front kmax (t) depends upon further details such
as whether the total energy (or else the total particle number) contained in the
cascade may be considered constant.
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12.5 Thermalization 385

As the spectrum spreads it also loses amplitude, and at some point the typ-
ical occupation numbers are no longer large. At this point turbulent thermal-
ization ceases. The subsequent relaxation to Rayleigh–Jeans equilibrium may
be described by nonequilibrium renormalization group methods. The time-scale
for kinetic equilibration may be estimated from a simple Boltzmann equation
approach as τrel ∼ 1/λ2T .

Late stage: chemical equilibration

The latest stage concerns chemical, rather than kinetic, equilibration. This means
that the energy and particle number spectra already have (local) equilibrium
forms, and now the issue is the equilibration among different species. For a
real scalar field theory, the two species involved (particles and antiparticles)
are identical, and chemical equilibration means the vanishing of the chemical
potential.

As in the earlier stages, the basic problem is to find the right tool for the
right job. For example, the simplest Boltzmann equation with 2 → 2 scattering
may be successfully used to describe kinetic equilibration. Nevertheless, it fails
to describe chemical equilibration, because it has a spurious particle number
conservation law built in. To describe chemical equilibration we must go beyond
this lowest order kinetic equation, either by considering a more general den-
sity of states (as opposed to a sharp mass-shell) or/and by considering higher
order terms in the loop or 1/N expansions [CaHuRa00, Wei05b, FiGaJe06]. The
relevant terms have been analyzed earlier in this chapter.

Concrete applications may demand other departures from the simple Boltz-
mann approach. For example, in dealing with a quark–gluon plasma, the relevant
kinetic equation is not Boltzmann’s, but rather a Landau-type kinetic equa-
tion incorporating the effects of grazing collisions [ChaCow39, Lib98, LifPit81,
Mue00a, Mue00b, BjoVen01]. Also we must take into account the color degree
of freedom, for example, by analyzing the Wong equations [LitMan02].

Another possibility is to go over directly to a hydrodynamic description. Since
the underlying quantum field theory is obviously causal, one expects that the
correct hydrodynamic theory would not be a first-order theory (in the classifica-
tion of Hiscock and Lindblom) but rather a Israel–Stewart or a divergence type
theory [CalThi00, CalThi03].

As a concrete example, let us analyze the regression towards zero of the chem-
ical potential in a self-interacting scalar field theory. We assume we are close
enough to equilibrium that the chemical potential may be regarded as a linear
perturbation, and use the kinetic equation with higher order terms already dis-
cussed in this chapter. Assuming the chemical potential is a function of time only,
for simplicity, we may write the equation in the spatially translation-invariant
case, namely [

ω
∂

∂t
− 1

2

(
dM2

dt

)
∂

∂ω

]
f = Icol

[
f,M2

]
(12.192)
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386 Hydrodynamics and thermalization

The mass is given by the gap equation

M2 − ϕ
(
M2, μ2

)
=

λ

2
M2

T (12.193)

where

M2
T =

∫
d4p

(2π)3
δ
(
p2 + M2

)
f (X, p) (12.194)

Now write

f = f0 + f0 (1 + f0)χ (12.195)

M2 = M2
0 + δM2 (12.196)

Icol
[
f,M2

]
= f0 (1 + f0)K [χ] (12.197)

ω
∂χ

∂t
+

β

2
dδM2

dt
= K [χ] (12.198)[

1 − ϕ′ − λ

2
∂M2

T

∂M2

]
δM2 = λ 〈χ〉 (12.199)

The perturbation χ may be expanded in eigenfunctions of the linearized Boltz-
mann collision operator

χ = β

[
μ +

δT

T
ω + χ̄

]
(12.200)

χ̄ =
∑
n=1

cnχn (12.201)

so

δM2 = 2ω0

[
μ +

〈ω〉
〈1〉

δT

T

]
(12.202)

[ω + ω0]
dμ

dt
+

1
T

[
ω2 +

〈ω〉
〈1〉 ω0

]
dδT

dt
+ ω

∂χ̄

∂t
= μK [1] + K [χ̄] (12.203)

ω0 =
λβ 〈1〉

2
[
1 − ϕ′ − λ

2

∂M2
T

∂M2

] (12.204)

Since we know that μ = constant is a solution if we keep only the lowest order
Boltzmann collision term, we expect μ to decay on time-scales of the order of
λ−4 at least. χ̄ will have a slow part, that will track μ, and a fast part, that will
decay on time-scales of the order of ω−1. Clearly only the slow part is relevant
to our discussion, and so we may neglect the ∂χ̄/∂t term.

Observe that now we have an equation of the form

K [χ̄] = Aω2 + Bω + C (12.205)

If we look at the right-hand side as a function of ω, then the dominant term
is the first. The solution is χ̄ ∼ − (τrel/T )Aω2 + νω + ν′, where the linear and
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12.5 Thermalization 387

constant terms enforce the constraints 〈χ̄〉 = 〈ωχ̄〉 = 0. In other words, the effect
of the K [χ̄] term in equation (12.203) is to compensate the dδT/dt one. Canceling
those two, we get the regression equation for μ as the average of equation (12.203)
(recall that 〈K [1]〉 < 0)

[〈ω〉 + ω0 〈1〉]
dμ

dt
= −μ |〈K [1]〉| (12.206)

From the estimates in this chapter, we conclude that the characteristic time-scale
for chemical equilibration is τchem ∼ M2/λ4T 3, parametrically larger than τrel.

12.5.4 Coda

In this section we have painted a broad outline of the thermalization process,
going as far as possible without invoking the specifics of modeling or features of
concrete applications. We have seen that a general picture indeed emerges, and
that it reveals the communion between quantum field theory and other parts of
physics, represented in this chapter by fluid and wave turbulence theory. As all
portraits of its kind, it emphasizes more the generalities than the specifics, and
so case by case considerations are still useful. In the remainder of this book we
shall do just that, at least for the most conspicuous and developed applications
of nonequilibrium quantum field theory.
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13

Nonequilibrium Bose–Einstein condensates

Bose–Einstein condensation was predicted in 1925 [Ein24, Ein25] but, except for
its indirect manifestation in the superfluidity of He4 [Lon38, Kap38, AllMis38], it
remained a purely theoretical construct until 1995, when condensation in alkali
gases was achieved in the laboratory [CorWie02, Ket02]. Since then, a great deal
of the theoretical work in the previous 70 years has been put to the experimental
test, while new avenues have been opening up, such as the superfluid–insulator
or Mott transition [FWGF89, GMEHB02, CaHuRe06], the BEC-BCS cross-over
[Leg06, Reg04] and the Tonks gas regime [Gir60, Par04]. Because of the great
experimental control over the relevant parameters and the deep understanding
of the fundamental physics, BECs have become a field of choice to perform
experiments of interest not just in atomic and molecular physics, but also in
quantum optics, condensed matter physics, quantum critical dynamics, even field
theory, gravitation, cosmology and black hole physics [CoEnWi99, PetSmi02,
Sou02, BonSen04, ParZha93, ParZha95, UnrSch07, BaLiVi05]. Moreover, cold
Bose gases on optical lattices have been proposed as a possible implementation of
a quantum information processing (QIP) device [JakZol04], boosting new interest
in these systems.

As introductions and reviews on this fast evolving subject abound, it is per-
haps more fitting for us to focus on certain aspects of the nonequilibrium field
theory of BEC, specifically [And04] the application of quantum field theoretic
methods described in this book to the description of nonequilibrium evolution
of condensed gases in magneto-optical traps [ChCoPh95].1

Of course NEqQFT is not the only possible description. Reflecting on the
characteristics of this field as a current attractor of different subdisciplines listed
above, the literature presents an almost bewildering array of possibilities. How-
ever, there are a few basic criteria that any successful description must meet:
it must be faithful to the presence of gapless excitations above the conden-
sate [HohMar65, Gri96, ShiGri98], and must respect the basic conservation laws
of particle number and energy–momentum [Kra60, BayKad61, Bay62]. These
requirements are sealed at the roots of a quantum field theoretical formulation

1 This means we would have to sacrifice the description of important topics like the physics
of cold atoms in optical lattices, which has a rapidly expanding literature [ChCoPh95], and
vortices in BECs and their associated phenomena [ElKrVo06], purely from space limitation
considerations.
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392 Nonequilibrium Bose–Einstein condensates

and, as such, provide a benchmark and standard against which other approxi-
mations may be compared. It also provides a systematic way to develop a per-
turbative expansion to arbitrary order [PRSC02, SPRS02, BFGR01, BaFrRa02,
Boy02].

Realistically, once one gets to the point of actually writing down a nonrela-
tivistic field-theoretic action to describe the second-quantized atomic gas, the
functional approach developed earlier in this book in the context of relativistic
scalar field theories works well in every detail we have considered so far. This
is one of the strengths of this approach. For this reason we will concentrate on
the first stage, namely, how to get from the physical model of the trapped gas to
a nonrelativistic field theory. In the process, we shall attempt to give a model-
independent characterization of the two requirements mentioned above, and to
discuss how they enter into the functional method.

Current experimental work on BECs presents a variety of nonequilibrium
problems, including the dynamics of condensation itself and the response of
the BEC to changes in its environment (temperature and trapping fields) and
particle interactions [KaSuSh96, KaSuSh97]. Probably the most extreme demon-
stration of far-from-equilibrium behavior is the so-called Bose–Nova experiment
[Don01, Cla03a, Cla03b, CoThWi06, SaiUed03, SanShl02, BajaMa04, Adh04,
GaFrTo01, SaRoHo03, WuHoSa05, Yur02, CalHu03, WDBDBH07], where a sud-
den sign change in the interatomic interaction triggers the implosion of the con-
densate. The possible use of cold gases in optical lattices in QIP poses, among
others, two specific challenges for a nonequilibrium theory: the detailed descrip-
tion of the initialization of the device [Rey04, Bre05, Pup04, ReBlCl03], and
an accurate estimation of static and dynamic decoherence times [SaOHTh97,
Oos02, PuWiPr06, Rei05].

The plan for this chapter is as follows: starting from the second-quantized
version of the weakly interacting Bose gas Hamiltonian in a closed time path
(CTP) framework, we shall present the basic (symmetry-breaking) formulation in
a model-independent way. We shall give a precise formulation to the requirements
of a gapless spectrum (the so-called Hugenholtz–Pines theorem) and particle
number conservation in the mean. In the process, we shall introduce the class of
Φ-derivable theories as a broad framework for viable models of BEC dynamics.

Then we shall introduce the 1PI and 2PI effective action descriptions of
the BEC, as described in Chapter 6 [LutWar60, DomMar64a, DomMar64b,
CoJaTo74, LunRam02]. This means that we opt to follow the evolution of
the condensate through the unfolding of correlation functions, as opposed, for
example, to obtaining a time-dependent wavefunction for the many-body system
[KohBur02, PrBuSt98, GKGB04]. We shall show that, in principle, the 2PIEA
leads to a Φ-derivable theory which is both gapless and conserving. However,
the appearance of many models derived from truncations of the 2PIEA in dif-
ferent degrees may tell a different story. We shall show how the familiar the-
ories arise from such truncations and examine them in detail. They are the
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13.1 The closed time path integral approach to BECs 393

Gross–Pitaevskii (GP), Bogoliubov, one-loop, Hartree–Fock–Bogoliubov (HFB),
Popov and two-loop approximations. We shall show that the two-loop approxi-
mation yields a minimal theory which is both gapless (to the required order in
perturbation theory) and conserving. We shall not discuss other approximation
schemes, like the 1/N approximation because they can be analyzed in terms
similar to those introduced in Chapter 6 [TemGas06, GBSS07].

Our next goal will be to discuss two specific predictions of the two-loop theory,
namely, that the evolution of condensate fluctuations is dissipative and stochas-
tic. This is in accord with the fluctuation–dissipation theorem discussed earlier
in the book. In particular, to discuss fluctuations we shall adopt a coarse-grained
effective action scheme where high-energy “noncondensate” modes act as an envi-
ronment for the low-energy “condensate band” modes, where condensation takes
place. We shall concentrate on the derivation of the noise terms coupled to the
Gross–Pitaevskii equation, yielding a stochastic GP equation. Of course, in so
doing the initial conditions for the condensate can also become stochastic, which
is an important consideration in actual applications.

In the regime where modes above the condensate are highly populated – not
macroscopically, of course – relaxation is efficient enough that a kinetic theory
description becomes possible, leading eventually to a two-fluid hydrodynamic.
Since we have discussed quantum kinetic theory in detail earlier in the book,
we shall focus here only on those features which are characteristic of the BEC
environment.

Finally, we shall close the chapter with a brief description of the so-called par-
ticle number conserving formalism. The symmetry breaking approach described
so far has the drawback that strictly speaking it cannot be applied to a sys-
tem with a finite number of particles. The particle number conserving formalism
overcomes this difficulty. In particular, we shall discuss a functional implementa-
tion of this formalism, which makes it as flexible as the better known symmetry
breaking approach.

13.1 The closed time path integral approach to BECs

In this section we put together the basic formulae for the coherent state rep-
resentation [NegOrl98] of the causal or CTP path integral method (introduced
in Chapters 3, 5 and 6) to compute the expectation values of physical observ-
ables. Let ρi be the density matrix describing the initial state of the system at
t = ti. Then expectation values with respect to ρi may be obtained from the
CTP generating functional (cf. Chapter 6)

eiW = Tr
{
U−1

2 (tf , ti)U1 (tf , ti) ρ (ti)
}

(13.1)

where

U1,2 (tf , ti) = T

[
e−i

∫ tf
ti

dt H1,2(t)

]
(13.2)
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394 Nonequilibrium Bose–Einstein condensates

We shall use the well-known coherent state representation [NegOrl98] in the
construction of a path integral representation of the generating functional in
the next subsection. The CTP boundary conditions will be introduced in the
following subsection.

13.1.1 The coherent state representation

For simplicity, we consider a single one-particle state. There is a basis made of
occupation number eigenstates |n〉

N |n〉 = n |n〉 (13.3)

where N is the number operator (in particular, n = 0 is the vacuum state |0〉).
These states are orthonormal and complete

〈m |n〉 = δmn (13.4)∑
|n〉 〈n| = 1 (13.5)

The destruction and creation operators relate states of different occupation num-
bers

â |n〉 =
√
n |n− 1〉 ; â† |n〉 =

√
n + 1 |n + 1〉 (13.6)

Therefore

â†â = N ; [â, â†] = 1 (13.7)

A coherent state |a〉 is an eigenstate of the destruction operator

â |a〉 = a |a〉 (13.8)

It follows that

〈n |a〉 =
1√
n
〈n− 1| â |a〉 =

a√
n
〈n− 1 |a〉 (13.9)

Adopting the normalization

〈0 |a〉 = 1 (13.10)

one gets

〈n |a〉 =
an√
n!

(13.11)

Or else,

|a〉 =
∑ an√

n!
|n〉 =

∑ anâ†n

n!
|0〉 = exp

{
aâ†
}
|0〉 (13.12)

Observe that

â† |a〉 =
∂

∂a
|a〉 (13.13)
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13.1 The closed time path integral approach to BECs 395

Let |b〉 be a second coherent state; then

b 〈a |b〉 = 〈a| â |b〉 =
∂

∂a∗
〈a |b〉 (13.14)

and

〈a |b〉 = exp {a∗b} (13.15)

The constant is determined by recognizing that the vacuum is the coherent state
with a = 0. From this point on, we shall omit the hats on operators whenever
there is no risk of confusion.

While not orthogonal, the coherent states are complete, in the following sense∫
da∗da

2πi
exp {−a∗a} |a〉 〈a| = 1 (13.16)

We may use the completeness relationship to write down the trace of an opera-
tor A

TrA =
∑

〈n|A |n〉 =
∫

da∗da

2πi
exp {−a∗a} 〈a|A |a〉 (13.17)

Now consider the transition amplitude between the state |ai〉 at time ti = 0 and
the state |āf 〉 at time tf . We have (setting � = 1)

|āf 〉 = eiHtf |ā〉 (13.18)

and

〈āf |ai〉 = 〈ā| e−iHtf |ai〉 (13.19)

Note that |āf 〉 is not a solution of the Schrödinger equation, but an eigenstate of
the Heisenberg operator a (tf ) with proper value ā. Since a (tf ) = eiHtf ae−iHtf ,
we have a (tf ) |āf 〉 = ā |āf 〉.

Let N be some large number and ε = tf/N. Write ai = a0, ā = aN . Then,
inserting N − 1 identity operators, we have

〈āf |ai〉 =
∫ {N−1∏

n=1

da∗ndan
2πi

exp {−a∗nan} 〈an+1| e−iHε |an〉
}
〈a1| e−iHε |a0〉

(13.20)

which may be written as (assuming the Hamiltonian H = H(a†, a) is in a normal
form)

〈aN |a0〉 =
∫

[Da]N−1 exp {iSN [a∗, a]} ea∗
NaN (13.21)

where

[Da]N−1 =
N−1∏
n=1

da∗ndan
2πi

(13.22)

SN [a∗, a] =
N∑

n=1

{ia∗n (an − an−1) − εH (a∗n, an−1)} (13.23)
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396 Nonequilibrium Bose–Einstein condensates

Going to the continuum limit, where an − an−1 ∼ ε∂a/∂t, we get

〈āf |a〉 =
∫

[Da] exp {iS [a∗, a]} ea∗a(tf ) (13.24)

S [a∗, a] =
∫

dt

{
ia∗

∂a

∂t
−H (a∗, a)

}
(13.25)

The integration is over paths which interpolate between a (0) = a and a∗ (tf ) =
ā∗.

13.1.2 The closed time path boundary conditions

We now have all the necessary elements to evaluate the CTP generating func-
tional (13.1). The idea is that the initial density matrix ρ is propagated forwards
in time with some Hamiltonian H1 and then backwards with a Hamiltonian H2.
Insert three identity operators in (13.1) to obtain

eiW =
∫

da∗NdaN
2πi

da1∗
0 da1

0

2πi
da2∗

0 da2
0

2πi
exp
{
−
(
a∗NaN + a1∗

0 a1
0 + a2∗

0 a2
0

)}
×〈aN |U2 (tf , ti)

∣∣a2
0

〉∗ 〈aN |U1 (tf , ti)
∣∣a1

0

〉 〈
a1
0

∣∣ ρ (ti)
∣∣a2

0

〉
(13.26)

Now use the corresponding path integral representations

eiW =
∫

da∗NdaN
2πi

da1∗
0 da1

0

2πi
da2∗

0 da2
0

2πi
exp
{
a∗NaN − a1∗

0 a1
0 − a2∗

0 a2
0

} 〈
a1
0

∣∣ ρ (ti)
∣∣a2

0

〉
×
∫ [

Da2
]∗
N−1

exp
{
−iS2

N

[
a2∗, a2

]∗}∫ [
Da1

]
N−1

exp
{
iS1

N

[
a1∗, a1

]}
(13.27)

The configuration on the forward branch has a1 (0) = a1
0 and a1∗ (tf ) = a∗N . On

the backward branch, we have a2∗ (0) = a2∗
0 and a2 (tf ) = aN . Once W is known,

causal expectation values may be computed by differentiation. Equation (13.27)
is the main result of this section.

13.2 The symmetry-breaking approach to BECs

For a field-theoretic description of BECs we begin with a second-quantized field
operator Ψ (x, t) which removes an atom at the location x at times t. It obeys
the canonical commutation relations

[Ψ (x, t) ,Ψ (y, t)] = 0 (13.28)[
Ψ (x, t) ,Ψ† (y, t)

]
= δ (x− y) (13.29)

The dynamics of this field is given by the Heisenberg equations of motion

−i�
∂

∂t
Ψ = [H,Ψ] (13.30)
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13.2 The symmetry-breaking approach to BECs 397

where H is the Hamiltonian. The theory is invariant under a global phase change
of the field operator

Ψ → eiθΨ, Ψ† → e−iθΨ† (13.31)

The constant of motion associated with this invariance through Noether’s theo-
rem is the total particle number.

To motivate the symmetry-breaking approach to BECs we observe that there
is a special one-particle state, with wavefunction φ0, which, upon condensation,
acquires a macroscopic occupation number N0, comparable to the total number
of particles N . We call this state the “condensate.” We regard φ0 as the first
element of a complete basis of one-particle states, and expand Ψ = a0φ0 + . . .

The operator a0 is the destruction operator for the condensate.
Let |N,N0〉 be the state of the gas with N particles, N0 of which are in the

condensate. Then

a0 |N,N0〉 =
√
N0 |N − 1, N0 − 1〉 (13.32)

If N and N0 are both very large, then the state does not change much. We see
that the condensed state is very close to a coherent state for a0. Taking the
actual state for a coherent state is an excellent approximation when both N and
N0 are macroscopic (but an approximation nonetheless). We shall return to this
point below, in Section 13.3.

Under the approximation

a0 |N,N0〉 ≈
√
N0 |N,N0〉 (13.33)

the expectation value of the field operator is no longer zero

〈Ψ〉 ≡ Φ ≈
√
N0φ0 (13.34)

Because the field operator develops an expectation value, the symmetry (13.31) is
spontaneously broken. (Beware that the actual relationship between the expec-
tation value and the wavefunction of the condensate is more complex than a
simple proportionality, see Section 13.3.)

In the symmetry-breaking approach to BEC dynamics, one relegates this moti-
vation to the background and views the condensation as a resultant of the spon-
taneous breakdown of symmetry (13.31). Upon symmetry breaking Ψ develops
a nonzero expectation value Φ (c-number). We introduce a background field
decomposition for Ψ

Ψ = Φ + ψ (13.35)

where ψ (q-number) is the field operator corresponding to quantum fluctuations
with zero mean 〈ψ〉. Various approaches differ on how to handle the dynamics
of these two constituents.

To progress further, we need a specific model for the atom–atom interactions.
In principle, we should specify the atom–atom interaction potential. However,
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398 Nonequilibrium Bose–Einstein condensates

in many applications it is enough to know the cross-section σ for low-energy
spherically symmetric scattering of two identical bosons. We introduce the scat-
tering length a through σ ≡ 8πa2, where the factor 8π involves both integration
over all scattering angles and Bose enhancement factors. We shall adopt as a
model atom–atom interaction a contact potential Uδ (x). To reproduce the right
scattering length we need U = 4π�

2a/M , where M is the mass of the atoms. A
positive value of a means a repulsive interaction; we adopt the convention that
an attractive interaction is described by a negative value of a.

We observe that from the expectation value Φ and the scattering length a it
is possible to build a new characteristic length, the healing length ξ, as ξ−2 ≡
aΦ2. Physically, suppose we introduce a condition such as a boundary into the
condensate forcing Φ = 0 there. Then ξ is the distance from the boundary where
Φ grows back to its asymptotic value. The healing length also plays an important
role in the spectrum of fluctuations above the condensate, as we shall show below.

Assuming a contact atom–atom potential we get then the Hamiltonian

H =
∫

ddx
{

Ψ†HΨ +
U

2
Ψ†2Ψ2

}
(13.36)

The single-particle Hamiltonian H is given by

HΨ = − �
2

2M
∇2Ψ + Vtrap (x) Ψ (13.37)

where Vtrap (x) denotes a confining trap potential. Then the Heisenberg equation
of motion

i�
∂

∂t
Ψ = HΨ + UΨ†Ψ2 (13.38)

is also the classical equation of motion derived from the action

S =
∫

dd+1x i�Ψ∗ ∂

∂t
Ψ −

∫
dt H (13.39)

For later use, it is convenient to introduce a single field doublet ΨA =
(
Ψ,Ψ†).

Recall the Pauli matrices

σ1 =
(

0 1
1 0

)
(13.40)

σ2 =
(

0 −i

i 0

)
(13.41)

σ3 =
(

1 0
0 −1

)
(13.42)

We also include spatial and temporal position in the A indices (repeated indices
are added over discrete indices and integrated over spacetime). The classical
action reads (we also set � = 1)

S =
1
2
σ2ABΨA ∂

∂t
ΨB − 1

2
σ1ABΨAHΨB − UABCD

24
ΨAΨBΨCΨD (13.43)
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13.2 The symmetry-breaking approach to BECs 399

where

σiAB → σiABδ (xA − xB) δ (tA − tB) (13.44)

UABCD → U [σ1ABσ1CD + σ1ACσ1DB + σ1ADσ1BC ]

δ (xA − xB) δ (xA − xC) δ (xA − xD)

δ (tA − tB) δ (tA − tC) δ (tA − tD) (13.45)

is totally symmetric. UABCD = 2U if (ABCD) is a permutation of (2211), and
zero otherwise. The Heisenberg equations become

σ2AB
∂

∂t
ΨB − σ1ABHΨB − UABCD

6
ΨBΨCΨD = 0 (13.46)

From the expectation value of the Heisenberg equations we find the mean field
equation

σ2AB
∂

∂t
ΦB − σ1ABHΦB − ηA = 0 (13.47)

where we parameterize

ηA =
UABCD

6
〈
ΨCΨDΨB

〉
(13.48)

We adopt the convention that whenever different operators evaluated at the
same time appear within an expectation value, they must be normal ordered.
Therefore, in expanded notation

η2 = η†1 = U
〈
Ψ†Ψ2

〉
(13.49)

In Section 13.2.9 we will relate η to the chemical potential.
The fluctuations around the mean field will be described through the correla-

tion functions〈
T
[
ΨA (t,x) ΨB (t′,y)

]〉
≡ ΦA (t,x) ΦB (t′,y) + GAB ((t,x) , (t′,y)) (13.50)

GAB =
〈
T
[
ψA (t,x)ψB (t′,y)

]〉
(13.51)

These include the so-called normal and anomalous densities

ñ (t,x) =
〈
ψ†ψ

〉
(t,x) = G21 ((t,x) , (t,x)) (13.52)

m̃ (t,x) =
〈
ψ2
〉
(t,x) = G11 ((t,x) , (t,x)) (13.53)

The fluctuation field ψ inherits the ETCR[
ψA (x, t) , ψB (y, t)

]
= iσAB

2 δ (x − y) (13.54)

From the usual formulae〈
T
[
ψA (t,x)ψB (t′,y)

]〉
= θ (t− t′)

〈
ψA (t,x)ψB (t′,y)

〉
+ θ (t′ − t)

〈
ψB (t′,y)ψA (t,x)

〉
(13.55)
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400 Nonequilibrium Bose–Einstein condensates

and the equation of motion for the fluctuations (which is obtained by subtracting
the mean field from the Heisenberg equations)

σ2AB
∂

∂t
ψB − σ1ABHψB − UABCD

6
ΨBΨCΨD + ηA = 0 (13.56)

the equations of motion for the propagators read

0 = σ2AB
∂

∂t
GBE − σ1ABHGBE − UABCD

6
〈
T
(
ΨCΨDΨBψE

)〉
− iδEA (13.57)

which we parameterize as

0 = σ2AB
∂

∂t
GBE − σ1ABHGBE − ΣABG

BE − iδEA (13.58)

ΣABG
BE =

UABCD

6
〈
T
(
ΨCΨDΨBψE

)〉
(13.59)

Let us define the “free” propagators DBE as the solutions to

0 = σ2AB
∂

∂t
DBE − σ1ABHDBE − iδEA (13.60)

Observe that

D−1
AB = −i

δ2S

δΦAδΦB

∣∣∣∣
Φ=0

(13.61)

or, more explicitly,

D−1
AB = (−i)

(
0 D−1∗

D−1 0

)
(13.62)

D−1 = i�∂t +
�

2

2M
∇2 − V (x) (13.63)

We may then write this equation as

G−1
AB = D−1

AB + iΣAB (13.64)

Of course we cannot compute ηA and ΣAB in closed form. Different theories arise
from different ansatz for these unknowns as functionals of the mean fields and
propagators, thus closing the system.

13.2.1 A relationship between ηA and ΣAB

Observe that all of the above remains valid if we consider fields defined on a
closed time path. If we need to differentiate among the branches of the time
path, we shall make them explicit in the time argument. We shall write t for a
generic point on the time path, or else ta, where a = 1 denotes a point on the
first (forward) branch, and a = 2 a point on the second (backward) one.

One way of generating a vacuum expectation value for the field is coupling
it to an external source. The mean field is obtained from the derivatives of a
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13.2 The symmetry-breaking approach to BECs 401

generating functional

ΦA =
δW [J ]
δJA

(13.65)

eiW =
〈
ei
∫
JAΨA

〉
(13.66)

In the presence of the sources, the Heisenberg equations now read

σ2AB
∂

∂t
ΨB − σ1ABHΨB − UABCD

6
ΨBΨCΨD = −JA (13.67)

so taking the expectation value we obtain

σ2AB
∂

∂t
ΦB − σ1ABHΦB − ηA = −JA (13.68)

Since we have not committed ourselves as to the nature of ηA, this statement is
totally general.

We now have the linear response theory result

δΦA

δJE
= iGAE (13.69)

whereby

iδEA = σ2AB
∂

∂t
GBE − σ1ABHGBE − dηA

dΦB
GBE (13.70)

We use d for the variational derivative of ηA in the last term to emphasize that
we mean the full derivative. We shall return to this point below. Comparing
with (13.58) we see that in the exact theory there is a connection

ΣAB =
dηA
dΦB

(13.71)

Any approximation which does not respect this will get into trouble at some
point.

13.2.2 Gaplessness and phase invariance

It is a property of the Heisenberg equations that if ΨA =
(
Ψ,Ψ†) is a solution,

then

exp (iσ3ABθ) ΨB =
(
eiθΨ, e−iθΨ†) (13.72)

where θ is a constant, is also a solution. In the exact theory, this property is
inherited by the mean field equations, and so the small fluctuations equations
must always admit a solution δΦA = σ3ABΦB . This means that the fundamental
solutions −iGAB must have a pole.

In equilibrium, time-translation invariance means that ΦA must have the form

ΦA = e−iσ3ABμtΦB
0 =

(
e−iμtΦ1

0, e
iμtΦ2

0

)
(13.73)
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402 Nonequilibrium Bose–Einstein condensates

where ΦB
0 is constant and may be chosen as real, Φ1

0 = Φ2
0. Now recall the mean

field equations and write

ηA = eiσ3ABμtηA0 =
(
eiμtη10, e

−iμtη20

)
(13.74)

Then

η10 = η20 = (μ−H) Φ1
0 (13.75)

For a homogeneous trap V (x) = 0, Φ1
0 is a constant and HΦ1

0 = 0.
The linearized equations are[

σ2AB
∂

∂t
− σ1ABH − ΣAB

]
δΦB = 0 (13.76)

The requirement that these equations must admit a solution where δΦA is a
constant times a simple harmonic factor means that the operator in brackets has
a zero, but this is the same as saying that the two-point functions GAB have
a pole. Therefore, provided the relationship above between the self-energy ΣAB

and the “force” ηA holds, the theory must be gapless.
Actually, substituting δΦA = σ3ACe

−iσ3CBμtΦB
0 =

(
e−iμtΦ0,−eiμtΦ0

)
and

ΣAB =

(
Σ0

11e
iμ(t+t′) Σ0

12e
iμ(t−t′)

Σ0
21e

−iμ(t−t′) Σ0
22e

−iμ(t+t′)

)
(13.77)

implies

(μ−H) Φ0 (x) −
∫

dt′d3y
[
Σ0

21 − Σ0
22

]
((t,x) , (t′,y)) Φ0 (y) = 0 (13.78)

If V (x) = 0, the constant Φ0 cancels out and we obtain a connection between μ

and the ΣAB . This is the Hugenholtz–Pines theorem [HugPin59, Gold61]

μ =
∫

dt′d3y
[
Σ0

21 − Σ0
22

]
((t,x) , (t′,y)) (13.79)

13.2.3 Conserving and Φ-derivable theories

A theory is called conserving if particle number is conserved in the mean. The
theory is called Φ-derivable if there is a functional Φ of ΦA and GAB such that

ηA =
δΦ
δΦA

(13.80)

ΣAB = 2
δΦ

δGAB
(13.81)

We shall now show that a Φ-derivable theory is necessarily conserving provided
the Φ functional is invariant under time-dependent phase changes

ΦA → exp [iσ3ABθ (tA)] ΦB (13.82)

GAB → exp [iσ3ACθ (tA)] exp [iσ3BDθ (tB)]GCD (13.83)
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13.2 The symmetry-breaking approach to BECs 403

This is a more demanding requirement than the global phase invariance of the
classical action. To see this, introduce a tensor

cABC =
1
2
δ (tA − tB)σ1BC (13.84)

The particle number operator is

NA = cABCΨBΨC (13.85)

Global particle number conservation means that

∂

∂t
〈NA〉 = 0 (13.86)

But

∂

∂t
〈NA〉 = cABC

[
2ΦC ∂ΦB

∂tB
+

∂

∂tB
GBC +

∂

∂tC
GBC

]
(13.87)

By symmetry in the SU(2) indices and a spatial integration by parts the mean
field equations imply

2cABCΦC ∂ΦB

∂tB
= iδ (tA − tB)σ3BCΦCηB (13.88)

Analogously

0 =
∂

∂tB
GBC + iσBD

3 HDGDC − σBD
2 ΣDEG

EC − iσBC
2 (13.89)

0 =
∂

∂tC
GBC + iσDC

3 HDGBD + σEC
2 ΣDEG

BD + iσBC
2 (13.90)

Therefore, a conserving theory must obey

0 = iδ (tA − tC)
{
σ3BCΦCηB +

[
σDC

3 GEC + σEC
3 GCD

] ΣDE

2

}
(13.91)

which for a Φ-derivable theory is just the invariance statement above.
By extending the symmetry properties of the Φ functional it is possible to

enforce energy and momentum conservation as well. The discussion is similar to
the general proof of energy–momentum conservation in the mean in relativistic
theories, and we shall not repeat it here.

We emphasize that in the exact theory, particle number is strongly conserved,
not only in the mean. Strong particle number conservation implies an infinite
chain of identities which several correlation functions must obey; in a Φ-derivable
theory, they cannot all be satisfied.

Gapless, conserving and Φ-derivable theories

To summarize, Φ-derivable theories are always conserving if the Φ functional is
invariant under time-dependent simultaneous phase changes of the mean fields
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404 Nonequilibrium Bose–Einstein condensates

and propagators. They are also gapless if

ΣAB = 2
δΦ

δGAB
=

dηA
dΦB

=
δ2Φ

δΦAδΦB
+

1
2
δΣCD

δΦA

dGCD

dΦB
(13.92)

In the last term, the propagators are regarded as functionals of the mean fields
through their equation of motion, namely

G−1
AB = D−1

AB + iΣAB (13.93)

implies [
G−1

EGG
−1
HF + i

δΣEF

δGGH

]
dGGH

dΦB
= (−i)

δΣEF

δΦB
, (13.94)

so the condition for a gapless theory becomes

ΣAB = 2
δΦ

δGAB
=

δ2Φ
δΦAδΦB

− i

2
δΣGH

δΦA

[
G−1

EGG
−1
HF + i

δΣEF

δGGH

]−1
δΣEF

δΦB
(13.95)

Observe that in general the term in brackets is nonlocal, so either
δΣGH

δΦA
= 0 (13.96)

or else the self-energy ΣAB must contain a nonlocal part. This observation will
be crucial below.

13.2.4 The full 2PI effective action as a Φ-derivable approach

In this subsection, we shall discuss the 2PIEA as a Φ-derivable approach, assum-
ing one knows the full effective action.

As shown in Chapter 6, the 2PIEA is given by [RHCRC04]

Γ2

[
ΦA, GAB

]
= S

[
ΦA
]
+

1
2
S,ABG

AB − 1
2
i�Tr lnG + ΓQ (13.97)

where ΓQ is the sum of all 2PI vacuum bubbles for a theory with propagators
GAB and vertices

UABCD

24
ψAψBψCψD and

UABCD

6
ΦAψBψCψD (13.98)

The equations of motion are

S,A +
1
2
S,ABCG

BC +
δΓQ

δΦA
= 0 (13.99)

−iS,AB − 2i
δΓQ

δGAB
=
[
G−1

]
AB

(13.100)

Therefore

ηA =
UABCD

6
ΦBΦCΦD +

UABCD

2
ΦBGCD − δΓQ

δΦA
(13.101)

ΣAB =
UABCD

2
ΦCΦD − 2

δΓQ

δGAB
(13.102)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


13.2 The symmetry-breaking approach to BECs 405

which follow from the functional

Φ =
UABCD

24
ΦAΦBΦCΦD +

UABCD

4
ΦAΦBGCD − ΓQ (13.103)

Conservation follows from the fact that ΓQ is made out of graphs where the same
number of 1 and 2 fields enter at each vertex.

Since we are assuming ΓQ contains all graphs, the theory must be gapless.
Nevertheless, it is interesting to seek a direct proof. We must verify the identity
(13.95). To do this, let us put back the external sources in the equations of
motion

iD−1
ABΦB − ηA = −JA −KABΦB (13.104)

iD−1
AB − i

[
G−1

]
AB

− ΣAB = −KAB (13.105)

Taking variations we get

iD−1
AB

δΦB

δJC
− δηA

δΦB

δΦB

δJC
− δηA

δGBD

δGBD

δJC
= −δCA (13.106)

i

[[
G−1

]
AD

[
G−1

]
EB

+ i
δΣAB

δGDE

]
δGDE

δJC
− δΣAB

δΦD

δΦD

δJC
= 0 (13.107)

In any Φ-derivable approach,

δηA
δGBD

=
1
2
δΣBD

δΦA
(13.108)

and we still have the LRT result (13.69), from which we get

δGDE

δJC
=
[[
G−1

]
AD

[
G−1

]
EB

+ i
δΣAB

δGDE

]−1
δΣAB

δΦF
GFC (13.109)

so the first equation (13.106) becomes[
G−1

]
AB

= D−1
AB + i

δηA
δΦB

+
1
2
δΣFD

δΦA

[[
G−1

]
GD

[
G−1

]
EF

+ i
δΣGE

δGDF

]−1
δΣGE

δΦB
(13.110)

QED
This shows that, in principle, the 2PIEA yields a theory which is both gapless

and conserving. In reality, though, one does not known the full effective action,
and truncations may spoil either of these features, or both.

13.2.5 Varieties of theories from truncations

of the 2PI effective action

Let us expand on this last statement by looking at some common approaches to
nonequilibrium BECs as truncations of the 2PIEA. For simplicity, in this section
we assume V (x) = 0.
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406 Nonequilibrium Bose–Einstein condensates

(1) The simplest, and surprisingly useful, approach is the Gross–Pitaevskii
(GP) one: just write the classical equations of motion for Φ, and forget
about G. However, this approach is incomplete, because it says nothing about
fluctuations.

(2) The next simplest approach is Bogoliubov’s, which is based on the identi-
fications

ηBog
A =

UABCD

6
ΦBΦCΦD (13.111)

ΣBog
AB =

UABCD

2
ΦCΦD (13.112)

or, in expanded notation

η0Bog
2 = UΦ3

0 (13.113)

Σ0Bog
21 = 2Σ0Bog

22 = 2UΦ2
0δ (t− t′) δ (x − y) (13.114)

Here, the mean fields obey the Gross–Pitaevskii equation

i
∂

∂t
Φ = HΦ + UΦ†Φ2 (13.115)

and the fluctuations the linearized equation

i
∂

∂t
ψ = Hψ + Uψ†Φ2 + 2UΦ†Φψ (13.116)

Write Φ = e−iμtΦ0, ψ = e−iμtψphys to get

μ = UΦ2
0 (13.117)

i
∂

∂t
ψphys = Hψphys + UΦ2

0

[
ψ†

phys + ψphys

]
(13.118)

Bogoliubov’s approach is not Φ-derivable; however, it is gapless, because the
equation for the propagators is defined to be identical to the first variation of
the equation for the mean fields, and this is phase invariant. Equivalently, we
see that the Bogoliubov approach is consistent with the Hugenholtz–Pines
theorem.

The Bogoliubov approach is not conserving. This may be seen from the
analysis above, but it is probably simplest to give a direct proof. Since the
equation for the mean field is just the classical equation, its contribution to
particle number is conserved, so the only question is about the number of
particles in the fluctuation field. From the equations above we find

d 〈N〉
dt

= (−i)UΦ2
0

∫
ddx

[〈
ψ†2

phys

〉
−
〈
ψ2

phys

〉]
(13.119)

which does not vanish identically.
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13.2 The symmetry-breaking approach to BECs 407

The simplest Φ-derivable extension of the Bogoliubov approach is the one-
loop theory, where ΓQ = 0

Φ1 loop=
UABCD

24
ΦAΦBΦCΦD +

UABCD

4
ΦAΦBGCD (13.120)

From the above analysis, one loop is obviously conserving, but it is not
gapless. This can be seen from the fact that ΣAB is purely local, while to
satisfy the gapless condition it must also include nonlocal terms.

Alternatively, we can check that the one-loop approximation violates the
Hugenholtz–Pines theorem. The one-loop self-energies are the same as in the
Bogoliubov approach, but the forces are different

η01loop
2 =

[
UΦ2

0 + U (2ñ + m̃)
]
Φ0 (13.121)

leading to

μ = UΦ2
0 + U (2ñ + m̃) (13.122)

(3) The so-called Hartree–Fock–Bogoliubov approximation (HFB) is another
local Φ-derivable approach, where ΓQ is reduced to the double-bubble
diagram

ΦHFB = Φ1 loop +
UABCD

8
GABGCD (13.123)

HFB is conserving but not gapless, for the same reasons as the one-loop
approach. The HFB forces are the same as in the one-loop approach, while
the self-energies are

Σ0HFB
22 = U

(
Φ2

0 + m̃
)
δ (t− t′) δ (x − y) (13.124)

Σ0HFB
21 = 2U

(
Φ2

0 + ñ
)
δ (t− t′) δ (x − y) (13.125)

Observe that the Hugenholtz–Pines theorem is violated because of the m̃

term. This suggests a simple way to modify HFB so that it becomes gapless,
though no longer conserving. In the HFB approach, the equations for the
mean fields are

i
∂

∂t
Φ = HΦ + UΦ†Φ2 + 2U

〈
ψ†ψ

〉
Φ + U

〈
ψ2
〉
Φ† (13.126)

and the fluctuations obey the linearized equation

i
∂

∂t
ψ = Hψ + Uψ† (Φ2 +

〈
ψ2
〉)

+ 2U
(
Φ†Φ +

〈
ψ†ψ

〉)
ψ (13.127)

(4) In the so-called Popov approximation, one neglects the “anomalous” density
in both equations (13.126), (13.127). Writing Φ = e−iμtΦ0, ψ = e−iμtψphys,
we get

μ = U
[
Φ2

0 + 2
〈
ψ†ψ

〉]
(13.128)

i
∂

∂t
ψphys = Hψphys + UΦ2

0

[
ψ†

phys + ψphys

]
(13.129)
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408 Nonequilibrium Bose–Einstein condensates

which is easily verified to give a gapless spectrum (see the next subsection).
The first equation is the Hugenholtz–Pines theorem reduced to this approx-
imation.

The spectrum under the Popov approximation

We now investigate more closely the spectrum which results from the Popov
approximation. To this end, let us reinstate � into the equation, and assume a
homogeneous condensate in a three-dimensional normalizing box of volume V .
Φ0 is a constant, and ψphys may be expanded

ψphys =
∑
k

eikx√
V
ψk (t) (13.130)

i�
∂

∂t
ψk =

�
2k2

2M
ψk + UΦ2

0

[
ψ†
−k + ψk

]
(13.131)

We seek a solution

ψk = αkAke
−iωkt − βkA

†
−ke

iωkt (13.132)

where αk and βk are real and spherically symmetric, and α2
k − β2

k = 1. Collecting
positive and negative frequency terms we get(

�
2k2

2M
+ UΦ2

0 − �ωk

)
αk − UΦ2

0βk = 0 (13.133)

UΦ2
0αk −

(
�

2k2

2M
+ UΦ2

0 + �ωk

)
βk = 0 (13.134)

leading to the dispersion relation

�
2ω2

k =
(

�
2k2

2M
+ UΦ2

0

)2

− U2Φ4
0 (13.135)

and to a gapless spectrum, as expected. Let us write

�
2k2

2M
+ UΦ2

0 = �ωk cosh 2ϕ (13.136)

UΦ2
0 = �ωk sinh 2ϕ (13.137)

Then

αk = coshϕ, βk = sinhϕ (13.138)

It follows that

tanhϕ =
UΦ2

0(
�2k2

2M + UΦ2
0 + �ωk

) (13.139)

and so

βk =
UΦ2

0[(
�2k2

2M + UΦ2
0 + �ωk

)2 − U2Φ4
0

]1/2 (13.140)
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13.2 The symmetry-breaking approach to BECs 409

Let us introduce the scattering length a through U ∼ �
2a/M and the healing

length ξ through aΦ2
0 = ξ−2. Then the dispersion relation reads

ωk = csk

√
1 +

1
4

(ξk)2 (13.141)

where the speed of sound is

cs =
�

Mξ
(13.142)

We see that there are roughly two set of modes, hard modes with k > ξ−1 which
remain mostly undisturbed by the condensate, and soft modes k < ξ−1 which
lose their particle-like character and become phonon-like.

The above analysis does not apply to the homogeneous mode, which by con-
struction has zero frequency. Therefore the amplitude of the zero mode will grow
linearly in time, and eventually it will invalidate perturbation theory. The point
is that within the symmetry-breaking approach this is unavoidable. Of course
the zero mode is physically different from other modes, being closer to a collec-
tive variable [Raj87] than to a true physical degree of freedom. Therefore it is
justified to treat it in a different way than other modes [MCBE98, SiCaWi06].
But when we do so we move beyond the symmetry-breaking approach. A possi-
ble strategy is the particle conserving formulation, to be discussed later in this
chapter.

The equation obtained from the Popov approximation may be used to clarify
one important point, namely, what the physical small parameter in the loop
expansion is. As a measure of the size of the higher corrections, let us compare
the density of noncondensate particles ñ =

〈
ψ†

physψphys

〉
against the condensate

density Φ2
0. In the continuous approximation

ñ =
∫

d3k β2
k = 4π

∫ ∞

0

dk k2β2
k (13.143)

The integral converges at both limits. For small k, ωk ∼ k
[
UΦ2

0/M
]1/2 and

β2
k ∼

(
MUΦ2

0

)1/2
/�k (13.144)

Replacing U ∼ �
2a/M we get k2β2

k ∼ a−2 (ka)
(
a3/2Φ0

)
. In the opposite limit of

large k, we have �ωk ∼ �
2k2/2M and k2β2

k ∼ a−2 (ka)−2 (
a3/2Φ0

)4
. The largest

contribution comes from the cross-over region where k ∼ a−1
(
a3/2Φ0

)
.

The resulting estimate yields ñ ∼ Φ2
0

(
a3/2Φ0

)
. We see that the physical small

parameter in the expansion is
√
Na, where Na = a3Φ2

0 ∼ a3N/V is the number
of particles within a scattering length of a given particle. The loop expansion is
therefore a dilute gas approximation.
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410 Nonequilibrium Bose–Einstein condensates

13.2.6 Higher gapless approximations

We see from the previous discussion that, while the 2PIEA yields a theory which
is truly both gapless and conserving, in practice truncations of the effective action
lead to approaches where one or the other feature must be sacrificed. To prevent
this, we must stick to approximations to the 2PIEA which satisfy the gapless
condition

−2
δΓQ

δGAB
=

UABCD

2
GCD − δΓQ

δΦAδΦB

− i

2

[
UGHADΦD − 2

δΓQ

δGGHδΦA

] [
G−1

EGG
−1
HF − 2i

δ2ΓQ

δGEF δGGH

]−1

×
[
UEFBJΦJ − 2

δΓQ

δGEF δΦB

]
(13.145)

This nonlinear equation in functional derivatives of ΓQ is too complex to admit a
closed-form solution, but it can be solved iteratively: we start by replacing some
value of Γ(n)

Q on the right-hand side, and find Γ(n+1)
Q by one integration with

respect to G. We thereby generate a family of theories which are gapless within
a prescribed accuracy.

Choosing as starting point the Bogoliubov approximation Γ(1)
Q = 0, we obtain

the first nontrivial approximation

Γ(2)
Q = −UABCD

8
GABGCD +

i

12
UGHADΦDGABGGEGHFUEFBJΦJ (13.146)

which is the full two-loop approximation to the 2PIEA, including the double-
bubble and setting sun graphs. This approximation was first explored by Beliaev
[Bel58a, Bel58b].

We note that other approximation schemes have been explored in the lit-
erature, most notably the 1/Nf expansion in a theory with Nf “flavors” or
equivalent Bose fields. If going over to a nonlocal approximation is considered
too involved, another possibility is to depart from the 2PIEA approach, adding
ad hoc terms, for example, to restore gaplessness in an otherwise conserving
theory.

As we have discussed in detail in earlier chapters, the two-loop approximation
leads to self-energies which are in general complex, signaling damping of the
condensate fluctuations. At zero temperature, the leading damping mechanism
is the decay of a condensate fluctuation into two noncondensate excitations. This
so-called Beliaev damping [Bel58a, Bel58b] has been discussed in detail in Chap-
ter 8, in the simpler context of a gφ3 scalar field theory. At finite temperature
a new mechanism appears, the so-called Landau damping where a condensate
fluctuation is absorbed by a noncondensate excitation, which transmutes into a
higher energy excitation. The imaginary parts of the thermal self-energy have
been discussed in Chapter 10, to which we refer the reader for details.
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13.2 The symmetry-breaking approach to BECs 411

Finally, we observe that for cold gases in an optical lattice, gaplessness may
actually become a problem, if one is interested in describing the Mott regime.

Let us return to Γ(2)
Q = ΓHFB

Q + δΓQ. In a more natural notation,

δΓQ =
iU2

2

〈{∫
dtd3x

[
Φ∗ψ†ψ2 + Φψ†2ψ

]}2
〉

(13.147)

where the expectation value is computed under a Gaussian approximation and
only 2PI terms are kept. Recall that the time integration runs over the closed
time path, and that products of fields are path ordered, or normal ordered if the
path ordering prescription is ambiguous. Expanding

δΓQ =
iU2

2

∫
dtd3x

∫
dt′d3y

×
{

Φ∗ (t,x) Φ∗ (t′,y)
[
2
〈
ψ†ψ†′〉 〈ψψ′〉2 + 4

〈
ψ†ψ′〉 〈ψψ†′〉 〈ψψ′〉

]
+ Φ∗ (t,x) Φ (t′,y)

[
4
〈
ψ†ψ†′〉 〈ψψ′〉

〈
ψψ†′〉+ 2

〈
ψ†ψ′〉 〈ψψ†′〉2]

+ Φ (t,x) Φ∗ (t′,y)
[
2
〈
ψψ†′〉 〈ψ†ψ′〉2 + 4 〈ψψ′〉

〈
ψ†ψ′〉 〈ψ†ψ†′〉]

+ Φ (t,x) Φ (t′,y)
[
2
〈
ψ†ψ†′〉2 〈ψψ′〉 + 4

〈
ψ†ψ′〉 〈ψψ†′〉 〈ψ†ψ†′〉]}

(13.148)

Although the model is built to be gapless to O
(
U2
)
, it is interesting to give a

direct check. We consider only the zero temperature case. Observe that

η2 = ηHFB
2 + δη2 (13.149)

δη2 = iU2

∫
dt′d3y

×
{

Φ∗ (t′,y)
[
2
〈
ψ†ψ†′〉 〈ψψ′〉2 + 4

〈
ψ†ψ′〉 〈ψψ†′〉 〈ψψ′〉

]
+ Φ (t′,y)

[
4
〈
ψ†ψ†′〉 〈ψψ′〉

〈
ψψ†′〉+ 2

〈
ψ†ψ′〉 〈ψψ†′〉2]} (13.150)

In equilibrium, and after extracting the phases, this leads to a chemical potential

μ = μHFB + δμ (13.151)

with

δμ = iU2

∫
dt′d3y

[
2
〈
ψ†ψ†′〉 〈ψψ′〉2 + 4

〈
ψ†ψ′〉 〈ψψ†′〉 〈ψψ′〉

+4
〈
ψ†ψ†′〉 〈ψψ′〉

〈
ψψ†′〉+ 2

〈
ψ†ψ′〉 〈ψψ†′〉2] (13.152)

To O(U2) we may compute the expectation values as pertaining to a free field.
At zero temperature δμ vanishes.
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412 Nonequilibrium Bose–Einstein condensates

Similarly we compute the self-energies

ΣAB = ΣHFB
AB + δΣAB (13.153)

δΣ0
21 = −2iU2Φ2

0

〈
ψψ†′〉0 [2 〈ψψ′〉0 +

〈
ψψ†′〉0 + 2

〈
ψ†ψ′〉+ 2

〈
ψ†ψ†′〉0]

(13.154)

δΣ0
22 = −2iU2Φ2

0 〈ψψ′〉0
[
〈ψψ′〉0 + 2

〈
ψψ†′〉0 + 2

〈
ψ†ψ′〉0 + 2

〈
ψ†ψ†′〉0]

(13.155)

In equilibrium, δΣ0
22 = 0 and

δΣ0
21 = −2iU2Φ2

0

(〈
ψψ†′〉0)2

(13.156)

The gaplessness condition reads

2Um̃ =
∫

dt′d3y δΣ0
21 (13.157)

to lowest order in U.

To compute the left-hand side we expand the destruction operators as

ψ0 =
∑ ei(kx−ωkt)

√
V

ak (13.158)

where

ωk =
�k2

2M
(13.159)

Therefore, after separating the contributions from both branches of the closed
time path∫

dt′d3y δΣ0
21 = −2U2Φ2

0

V

∑
p,q

δp+q

ωp + ωq
= −U2Φ2

0

V

∑
p

1
ωp

(13.160)

On the other hand, at zero temperature

m̃ =
−1
V

∑
p

αpβp (13.161)

To lowest order we have αp = 1

βp =
UΦ2

0

2�ωp
(13.162)

QED

13.2.7 Damping

The fact that under the above approximation there are nonlocal terms in the
equations of motion for both the mean field and propagators suggest that they
already include damping effects. Indeed, this has been proved by Beliaev [Bel58a,
Bel58b].
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13.2 The symmetry-breaking approach to BECs 413

Let us consider the evolution of a mean field fluctuation e−iμtδΦ. The lin-
earized equation of motion is

i
∂

∂t
δΦ = (H − μ) δΦ + UΦ2

0

[
δΦ† + 2δΦ

]
+ 2U

〈
ψ†ψ

〉
0
δΦ + U

〈
ψ2
〉
0
δΦ†

+UΦ0

[
2δ
〈
ψ†ψ

〉
+ δ
〈
ψ2
〉]

+ δη2 [δΦ] (13.163)

We see that there are two types of nonlocal terms, the terms coming from the
modification of the fluctuating field propagators, and terms from the second
variation of the effective action. The former will be shown to be proportional to
UΦ2

0 and therefore will dominate at low temperatures, where almost all particles
are condensed. Conversely, we expect the direct variation terms to dominate
immediately below the critical temperature. We consider only the former case.

Since the perturbed propagators appear already in O(U) terms, we only need
to compute them to O(U) accuracy. At this level, it is enough to consider the
Heisenberg equation

i
∂

∂t
ψphys = (H − μ)ψphys + Uψ†

phys

(
Φ2

0 + 2Φ0δΦ
)

+ 2U
(
Φ2

0 + Φ0

(
δΦ† + δΦ

)
+
〈
ψ†ψ

〉
0

)
ψphys (13.164)

To the desired order

μ = U
[
Φ2

0 + 2
〈
ψ†ψ

〉]
(13.165)

and

i
∂

∂t
ψphys = Hψphys + Uψ†

phys

(
Φ2

0 + 2Φ0δΦ
)

+U
(
Φ2

0 + 2Φ0

(
δΦ† + δΦ

))
ψphys (13.166)

Let us write

ψphys = ψeq
phys + δψ (13.167)

where

ψeq
phys =

∑ eikx

√
V

[
Ake

−iωkt − UΦ2
0

2�ωp
A†

−ke
iωkt

]
(13.168)

and expand

δΦ =
∫

dω

2π

∑
k

ei(kx−ωt)

√
V

fk (ω) (13.169)

Keeping only up to O(U) terms

i
∂

∂t
δψ −Hδψ = 2Φ0U

[
ψeq†

physδΦ +
(
δΦ† + δΦ

)
ψeq

phys

]
(13.170)
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414 Nonequilibrium Bose–Einstein condensates

and so

δψ = 2Φ0U

∫
dω

2π

∑
p,q

ei(p+q)x

V

×
{
fp (ω)A†

−qe
−i(ω−ωq)t

ω − ωq − ω|p+q| + iε
+

[
fp (ω) + f∗

−p (−ω)
]
Aqe

−i(ω+ωq)t

ω + ωq − ω|p+q| + iε

}

(13.171)

We may now compute

δ
〈
ψ†ψ

〉
=
〈
ψeq†

physδψ
〉

+
〈
δψ†ψeq

phys

〉
= O

(
U2
)

(13.172)

δ
〈
ψ2
〉

=
〈
ψeq

physδψ
〉

= 2Φ0U

∫
dω

2π

∑
p,q

ei(px−ωt)

V 3/2

fp (ω)
ω − ωq − ω|p+q| + iε

(13.173)
The equation for the fluctuation is then

i
∂

∂t
δΦ = HδΦ + UΦ2

0

[
δΦ† + δΦ

]
+ U

〈
ψ2
〉
0
δΦ† + UΦ0δ

〈
ψ2
〉

(13.174)

or, after Fourier transformation,[
ω − ωp − UΦ2

0 −
2U2Φ2

0

V

∑
q

1(
ω − ωq − ω|p+q| + iε

)
]
fp (ω)

−U
[
Φ2

0 + m̃
]
f∗
−p (−ω) = 0 (13.175)

Changing p → −p, ω → −ω and conjugating we find the second equation

U
[
Φ2

0 + m̃
]
fp (ω)

+

[
ω + ωp + UΦ2

0 −
2U2Φ2

0

V

∑
q

1(
ω + ωq + ω|p+q| + iε

)
]
f∗
−p (−ω) = 0

(13.176)

Up to O(U2) the secular equation is

0 = ω2 −
(
ωp + UΦ2

0

)2 − 2U2Φ2
0

�2V
(ω − ωp)

∑
q

1(
ω + ωq + ω|p+q| + iε

)
−2U2Φ2

0

�2V
(ω + ωp)

∑
q

1(
ω − ωq − ω|p+q| + iε

) + U2Φ4
0 (13.177)

We expect that the solution will be close to ωp, but if there is a q such that
ωp ∼ ωq + ωp+q then the O(U2) terms become large and perturbation theory
breaks down. What is going on is that the free evolution of condensate fluctu-
ations cannot be described as oscillations with a small number of fundamental
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13.2 The symmetry-breaking approach to BECs 415

frequencies. This is clearly seen in the continuum limit, where we may replace

1
V

∑
q

→
∫

d3q

(2π)3
(13.178)

The resulting integrals have an imaginary part and the frequencies for the free
evolution of condensate fluctuations become complex, ω ∼ ωp − iΓ

Γ ∼ U2Φ2
0M

8π�3
p ∼

(
a

ξ

)
csp (13.179)

The underlying mechanism is that the energy of a condensate fluctuation carrying
momentum p is spent in exciting two particles out of the condensate, one of
momentum −q and another of momentum p + q. Of course, this mechanism
requires the presence of a condensate. The term δη2 [δΦ] contains additional
channels describing the direct decay of the condensate fluctuation into three
particles.

Also, we have assumed that the mode p was hard enough that it fell into the
“particle-like” part of the spectrum. In practice, damping is very sensitive to
the shape of the dispersion relation and to the number of spatial dimensions
[TsuGri03, TsuGri05, Rob05, RHCC05]. A more detailed calculation shows, for
example, that the mechanism we have described does not work in one dimension,
because it is not possible to satisfy energy conservation. In such a case damping
becomes a higher order effect.

13.2.8 The stochastic Gross–Pitaevskii equation

If the evolution of condensate fluctuations is damped, then from fluctuation–
dissipation relation considerations we must expect it will also be stochastic.
This is indeed the case. The resulting “stochastic Gross–Pitaevskii equation”
has been investigated by Stoof [Sto99], Duine and Stoof [DuiSto01] and specially
by Gardiner and collaborators [GaAnFu01, GarDav03, Jaigar04, BrBlGa05]. Our
treatment is essentially a translation of the discussion by Gardiner, Anglin and
Fudge [GaAnFu01] into the language of this book [CaHuVe07]. It is interesting
to compare our treatment of this problem with [DaDzOn02, KKHOSK06] and
[DomRit02].

The simplest way to identify the stochastic elements in the evolution of the
condensate is to adopt a coarse-grained effective action scheme (cf. Chapter 5)
where the single-particle modes are divided into a “condensate band” (system)
of low-lying modes, where most of the condensation takes place, and a “noncon-
densate” band (environment) of higher modes which act as an environment for
the system. In the open system treatment (see Chapters 5 and 8) the quantum
fluctuations of the higher band can be represented as classical stochastic fluctu-
ations in the lower band through the nonlinear coupling between the two bands.
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416 Nonequilibrium Bose–Einstein condensates

A second source of stochasticity is in the random initial conditions appropriate
to the condensate [Ste98, ScHuGa06, NobaGa05, NobaGa06].

Since the basic formalism and its physical content have been discussed in
detail in the quoted chapters, we shall only review here the simplest scenario.
We consider a bosonic gas confined to a box of volume V with periodic boundary
conditions, and assume the condensate band to contain just the homogeneous
mode, namely

Ψ (x, t) = φc (t) + χ (x, t) (13.180)

where φc is the condensate band field operator. Note the subscript “c” here
denotes condensate, not classical, thus this is not quite the background field-
quantum field split we have considered so far because φc, unlike the mean field
Φ, is a q-number, and the noncondensate band operator χ, unlike the fluctuation
field ψ, has no zero mode.

We compute the influence functional (equivalent to the coarse-grained closed
time path effective action) for the φ field to order U2, to which order the field
χ is just a nonrelativistic free bosonic field. Let φc

1 and φc
2 be the fields in

the first and second branch, respectively, and write (φn)− =
(
φc

1
)n −

(
φc

2
)n

,
(φn)+ = (

(
φc

1
)n

+
(
φc

2
)n

)/2. Then

SIF

[
φc

1, φc
2
]

= S
[
φc

1
]
− S

[
φc

2
]

+
iU2

2

∫
dt dt′

{(
φ†2)

− (t)
(
φ2
)
+

(t′) ν (t− t′) θ (t− t′)

−
(
φ2
)
− (t)

(
φ†2)

+
(t′) ν (t′ − t) θ (t− t′)

+
1
2
(
φ†2)

− (t)
(
φ2
)
− (t′) ν (t− t′)

}
(13.181)

where

ν (t− t′) =
∑
p

e−2iωp(t−t′), ωp =
�p2

2M
(13.182)

The last line in the influence functional may be traded for two stochastic sources

exp
{−U2

4�

∫
dt dt′

(
φ†2)

− (t)
(
φ2
)
− (t′) ν (t− t′)

}

=
∫

DξDξ∗ P [ξ, ξ∗] exp
{
iU

2�

∫
dt
[
ξ (t)

(
φ2
)
− (t) + ξ∗ (t)

(
φ†2)

− (t)
]}

(13.183)

where P is a Gaussian measure defined by the correlations

〈ξ (t)〉 = 〈ξ (t) ξ (t′)〉 = 0

〈ξ∗ (t) ξ (t′)〉 = �ν (t− t′) (13.184)
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13.2 The symmetry-breaking approach to BECs 417

Variation of the influence functional yields the stochastic GPE for the condensate
field

i�φc,t − Uφc
†φc

2 +
iU2

V
φc

†
t∫
dt′ ν (t− t′)φc

2 (t′) = −U

V
ξ∗ (t)φc

† (t) (13.185)

As a check, let us seek the equilibrium solution (neglecting the stochastic term).
In equilibrium,

φc =

√
N

V
e−iμt/� (13.186)

so the only unknown is the chemical potential

μ =
UN

V
− U2N

2V 2

∑
p

1
ωp − μ− iε

(13.187)

which is equivalent to the one-loop result.
We see that in general the condensate will undergo non-Markovian dynamics

driven by multiplicative colored noise. The generalization of (13.185) for a trap
of arbitrary shape is given in [CaHuVe07].

13.2.9 The hydrodynamic and quantum kinetic approach to BECs

So far we have described in some detail the equilibrium and linear response
regimes of the condensate, but a nonequilibrium approach has not shown its
worth unless it can tackle also the out-of-equilibrium evolution. Of course, the
truly far from equilibrium case is as hard to handle as with all other quan-
tum fields we have discussed in this book; see e.g. Chapter 12. However, there
is one case where one should be able to make progress, namely, when both
the condensate and noncondensate densities are high enough to enforce efficient
local thermalization. Then a quantum kinetic theory approach along the lines of
Chapter 11 ought to be viable.

The quantum kinetic theory approach to BECs was introduced by Kane
and Kadanoff [KanKad65] and elaborated in two series of papers by Gar-
diner, Zoller and collaborators and Holland, Wachter, Walser and collaborators
[GarZol97, JaGaZo97, GarZol98, JGGZ98, GarZol00a, WWCH99, WaCoHo00,
WWCH01, WWCH02a, BhWaHo02, WWCH02b]. The derivation of quantum
kinetic theory from the 2PIEA is discussed in [BaiSto04, RHCC05]. We follow
the latter reference.

There are two basic differences between the quantum kinetic theory applied to
BECs and to a generic scalar field theory as discussed in Chapter 11. First, there
are two fundamental quantum fields (ψ and ψ†) and therefore the number of
propagators is higher. This poses only formal difficulties and we will not discuss
it in detail (similar problems arise in the application of the quantum kinetic
theory approach to gauge theories, see Chapter 11).

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


418 Nonequilibrium Bose–Einstein condensates

Second, the quantum kinetic theory approach assumes that all mean fields are
slowly varying on the scale of the wavelength of the relevant quantum modes, so
that an adiabatic expansion is feasible. In the case of BECs, this assumption can
be made for the condensate density, but the condensate phase may show strong
position dependence.

A solution to this problem is suggested by the long known fact that the evolu-
tion of the condensate as described by the GPE is equivalent to the evolution of
an irrotational fluid. The idea is that the kinetic description will be valid when
the hydrodynamic variables (rather than the condensate wavefunction itself) are
slowly varying functions of position.

Let us begin by briefly reviewing the hydrodynamic formulation. Unlike the
relativistic theories described in Chapter 12, the condensate is represented as a
nonrelativistic (super) fluid. Since the superfluid carries no entropy, the energy
density ε, pressure p, number density ρ, chemical potential μ, superfluid velocity
v and momentum density π are linked through the relationship

ε + p− ρμ− v · π = 0 (13.188)

This implies the Gibbs–Duhem relation

dp− ρdμ− π · dv = 0 (13.189)

If we assume the usual relationship π = Mρv, this suggests

μ = μ0 −
1
2
Mv2 (13.190)

where the relationship between μ0 and p is the usual one for a fluid at rest

dp = ρdμ0 (13.191)

We have to make contact between this fluid description and the usual one
in terms of a condensate wavefunction. Let us write the mean field as [Mad27,
Hal81, Cas04]

Φ = eiΘ(x,t)
√
ρ (x, t) (13.192)

(observe the position dependence of the phase), whereby we have a microscopic
interpretation of the density, and the propagators as

GAB ((x, t) , (y, t′)) = eiσ3ACΘ(x,t)eiσ3BDΘ(y,t′)ḠCD ((x, t) , (y, t′)) (13.193)

Observe that since ΓQ is built out of Feynman graphs based on local interactions
it has no explicit dependence on the phases Θ (x, t). Therefore the force η2 will
transform as

η2 [Φ] = eiΘ(x,t)η̄
[
ρ, ḠAB

]
(13.194)

Now the mean field equation is given by

e−iΘ(x,t)

[
i�

∂

∂t
+

�
2

2M
∇2

]{
eiΘ(x,t)

√
ρ (x, t)

}
− V (x)

√
ρ− η̄ = 0 (13.195)
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13.2 The symmetry-breaking approach to BECs 419

Its imaginary part reads
∂ρ

∂t
+

�

M
∇ [ρ∇Θ] = 2

√
ρIm η̄ (13.196)

This allows us to identify

v =
�

M
∇Θ (13.197)

as the superfluid velocity, which is therefore (locally) irrotational by definition.
There may be global rotation, if the volume occupied by the condensate is not
simply connected.

The real part of the mean field equation reads

−�
∂Θ
∂t

=
M

2
v2 + V (x) +

Re η̄√
ρ

− �
2

2M
√
ρ
∇2√ρ (13.198)

This leads to the evolution equation for the superfluid velocity

∂vi

∂t
+
(
vj∇j

)
vi =

−1
M

∇i

[
V (x) +

Re η̄√
ρ

− �
2

2M
√
ρ
∇2√ρ

]
(13.199)

where we have used the assumption that the superfluid velocity is irrotational.
For the momentum density we get

∂Mρvi

∂t
+ ∇j

[
Mρvjvi

]
+ ρ∇iRe η̄√

ρ
= −ρ∇i

[
V (x) − �

2

2M
√
ρ
∇2√ρ

]
+ 2Mvi

√
ρIm η̄ (13.200)

The usual hydrodynamic equation would read

∂Mρvi

∂t
+ ∇jT

ij = F i (13.201)

where T ij is the nonrelativistic momentum flux tensor

T ij = Mρvjvi + pδij (13.202)

Comparing the hydrodynamic and the microscopic forms of the equation for the
superfluid velocity we may identify the pressure. Assume Re η̄ is a function of ρ.
Then

dp

dρ
= ρ

d

dρ

[
Re η̄√

ρ

]
(13.203)

It is interesting to observe that also
dp

dρ
= Mc2s (13.204)

defines the speed of sound in the condensate. Going back to the Gibbs–Duhem
relation we find

μ0 =
Re η̄√

ρ
(13.205)
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420 Nonequilibrium Bose–Einstein condensates

and so the equation for the time dependence of the phase is

−�
∂Θ
∂t

=
1
2
Mv2 + V (x) + μ0 −

�
2

2M
√
ρ
∇2√ρ (13.206)

To close this system we need the equations for the propagators. From the decom-
positions

G−1
AB ((x, t) , (y, t′)) = e−iσ3ACΘ(x,t)e−iσ3BDΘ(y,t′)Ḡ−1

CD ((x, t) , (y, t′)) (13.207)

ΣAB ((x, t) , (y, t′)) = e−iσ3ACΘ(x,t)e−iσ3BDΘ(y,t′)Σ̄CD ((x, t) , (y, t′)) (13.208)

we get

Ḡ−1
AB = D̄−1

AB + iΣ̄AB (13.209)

where

D̄−1
AB = eiσ3ACΘ(x,t)D−1

CDeiσ3BDΘ(y,t′) (13.210)

Concretely,

D̄−1
AB = (−i)

⎛
⎝ 0 D̄−1∗

D̄−1 0

⎞
⎠ (13.211)

D̄−1 = e−iΘ

[
i�∂t +

�
2

2M
∇2 − V (x)

]
eiΘ

= i�

(
∂t + v.∇ +

(∇.v)
2

)
+

�
2

2M
∇2 + μ0 −

�
2
(
∇2√ρ

)
2M

√
ρ

(13.212)

From this point on, the derivation of the quantum kinetic equation for the non-
condensate particles follows the lines of Chapter 11. For a discussion of nontrivial
hydrodynamic behavior in BECs see [HACCES06].

13.3 The particle number conserving formalism

The symmetry-breaking approach described above has the disturbing feature
that, strictly speaking, symmetry breaking only occurs in the thermodynamic
limit. We therefore have a formalism that assumes the number of particles is
essentially infinite. Most actual experiments deal with situations where particle
number is bounded. Under this circumstance a condensate as described above
simply cannot happen.

In this section we shall describe an alternative formulation which is designed
to deal with gases with fixed particle numbers. We shall call this formulation the
particle number conserving formalism, PNC for short. See [GirArn59, GirArn98,
CasDum97, CasDum98, MorCas03, Gar97, GJDCZ00, Mor04, Mor99, Mor00,
Idz05a, Dzi05b, GarMor07]. Let us begin by discussing how is it possible to
speak of a BEC in a situation where there is no symmetry breaking.
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13.3 The particle number conserving formalism 421

13.3.1 Problems with the symmetry-breaking approach

Recall in the symmetry-breaking (SB) approach to BEC, condensation is signaled
by a spontaneous breakdown of phase invariance (13.31), whereby Ψ develops
a nonzero expectation value Φ. We can therefore employ a background field
decomposition [NegOrl98, PetSmi02] around Φ (c-number): Ψ = Φ + ψ where ψ

(q-number) is the field operator describing quantum fluctuations (see equation
(13.35)).

A common feature of these approaches is that the total particle number

N =
∫

ddx Ψ†Ψ (13.213)

is not fixed. For example, let us assume that the condensate is confined within a
homogeneous box of volume V , condensation occurring in the lowest (translation-
invariant) mode. Let ak be the operator that destroys an atom in the k mode.
Then we may approximate (see the more careful discussion below)

ψ (x, t) =
∑
k�=0

eikx

√
V
ak (13.214)

Even if we treat ψ as a linear perturbation on the condensate, the Hamiltonian is
not diagonal on the ak. To diagonalize it, we must introduce phonon destruction
operators Ak and perform a Bogoliubov transformation

ak = αkAk + βkA
†
−k (13.215)

At zero temperature, the state is the phonon vacuum, Ak |0〉 = 0 for all k �= 0.
We find

〈N〉 =
∫

ddx
〈
Ψ†Ψ

〉
= V

[
|Φ|2 + ñ

]
(13.216)

where

ñ =
〈
ψ†ψ

〉
=

1
V

∑
k�=0

〈
a†kak

〉
=

1
V

∑
k�=0

|βk|2 (13.217)

but 〈
N2
〉

= V 2

[(
|Φ|2
)2

+ |Φ|2
(

4ñ +
1
V

)
+ Φ∗2m̃ + Φ2m̃∗ + . . .

]
(13.218)

where

m̃ =
〈
ψ2
〉

=
1
V

∑
k�=0

〈a−kak〉 =
1
V

∑
k�=0

αkβk (13.219)

The Bogoliubov coefficients αk and βk cannot be equal, because the canoni-
cal (Bose) commutation relations imply |αk|2 − |βk|2 = 1, and so also m̃ �= ñ.

We conclude that necessarily
〈
N2
〉
�= 〈N〉2 in the symmetry-breaking approach,

signaling the presence of particle number fluctuations.
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422 Nonequilibrium Bose–Einstein condensates

13.3.2 The one-body density matrix and long-range coherence

We consider as above a second-quantized Bose field Ψ. The state of the many-
body system is an eigenstate of total particle number operator (13.213). There
is no particle exchange with the environment.

In this case of a finite system, there is no symmetry breaking. The symmetry-
broken state is essentially a coherent state and thus a coherent superposition
of states with arbitrarily large total particle number. Nevertheless, there are
situations where there is long-range coherence across the system, thus capturing
the essential feature of the condensed states. Sometimes these situations are
referred to as quasi-condensates, but we shall not make this distinction, just
referring to them as the symmetry-broken siblings of BECs.

To characterize the BEC state, let us introduce the one-body density matrix
[PenOns56]

σ (x,y, t) =
〈
Ψ† (x, t) Ψ (y, t)

〉
(13.220)

Long-range coherence appears when σ fails to decay as x and y are taken apart.
Observe that σ is Hermitian and nonnegative, in the sense that for any function f∫

ddxddy f∗ (x)σ (x,y, t) f (y) ≥ 0 (13.221)

Therefore it admits a basis of eigenfunctions∫
ddx σ (x,y, t)φα (y, t) = nαφα (x, t) (13.222)

where the eigenvalues nα are real and nonnegative. We assume the φα are nor-
malized

(φα, φβ) = δαβ (13.223)

(f, g) =
∫

ddx f∗g (13.224)

and complete ∑
α

φ∗
α (x, t)φα (y, t) = δ (x − y) (13.225)

The field operator may be expanded in this basis

Ψ (x, t) =
∑
α

aα (t)φα (x, t) (13.226)

The Bose commutation relations imply[
aα (t) , a†β (t)

]
= δαβ (13.227)

The aα (t) are operators which, at time t, destroy a particle in the one-particle
state α whose wavefunction is φα (x, t) . From the definition of σ we find〈

a†α (t) aβ (t)
〉

= nα (t) δαβ (13.228)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


13.3 The particle number conserving formalism 423

Therefore the eigenvalues nα (t) are the mean number of particles in the one-body
state α at time t. We also have the strong identity

N =
∑
α

a†α (t) aα (t) (13.229)

Condensation occurs when one of the nα, say α = 0, becomes comparable with
N itself. Then we have, for large separations

σ (x,y, t) ∼ n0φ
∗
0 (x, t)φ0 (y, t) (13.230)

which displays long-range coherence, as expected. Here φ0 (x, t) is the condensate
wavefunction. We stress that this is the fundamental definition; φ0 (x, t) is not
necessarily proportional to the mean field Φ introduced in the symmetry-breaking
approach.

13.3.3 The particle number conserving approach

We shall now discuss the dynamics of the condensate wavefunction φ0 (x, t) and
the condensate occupation number N0 (we switch to a capital N to emphasize
its macroscopic character). We envisage a situation in which N is finite but
large, and will seek equations of motion as an expansion in inverse powers of
N. In preparation for this, it is convenient to scale the interaction term, writing
U = u/N.

As we have seen above, in the symmetry-breaking approach the condensate
state (for an interacting gas) is seen as a coherent superposition of particle pairs,
each pair having zero total momentum. The basic insight of the PNC approach is
that each particle above the condensate corresponds to a hole in the condensate,
so we may speak of particle–hole (PH) pairs. Of course, introducing a PH into
the system does not change the total number of particles.

Following Arnowitt and Girardeau, let us introduce the operator

β =
1√

N̂0 + 1
a0 = a0

1√
N̂0

(13.231)

where

N̂0 = N −
∑
α�=0

a†αaα (13.232)

is the condensate number Heisenberg operator. Observe that for a number eigen-
state β |N0〉 = |N0 − 1〉 unless N0 = 0, in which case β |0〉 = 0. Therefore β pre-
serves the norm for all states orthogonal to the state with no particles in the
zeroth mode (which is much stronger than not having a condensate). If there is
a condensate, any physically meaningful state will satisfy this requirement, and
β may be considered a unitary operator, with inverse

β† =
1√
N̂0

a†0 = a†0
1√

N̂0 + 1
(13.233)
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424 Nonequilibrium Bose–Einstein condensates

We now introduce the destruction operator of a PH with the particle in mode α

λα = β†aα (13.234)

If we consider the β’s as unitary, then the λ’s satisfy bosonic canonical commu-
tation relations. This relationship may be inverted:

aα = βλα (13.235)

The number of particles in a given mode is equal to the number of PH

a†αaα = λ†
αλα (13.236)

We write the field operator restricted to the subspace with a well-defined total
number of particles N as Ψ =

√
Nβφ

φ = φ0 (x, t) +
1√
N

λ (x, t) − 1
2N

f [δn (t)]φ0 (x, t) (13.237)

where

λ (x, t) =
∑
α�=0

λα (t)φα (x, t) (13.238)

δn (t) =
∫

d3x λ†λ (13.239)

f (x) = 2N
[
1 −
√

1 − x

N

]
∼ x + O

(
N−1

)
(13.240)

Within our approximations β commutes with φ. Finally we have the relationship

0 =
〈
a†0 (t) aα (t)

〉
=
〈
a†0 (t)βλα (t)

〉
=

√
N

〈⎡⎣√1 − 1
N

∑
γ �=0

λ†
γλγ

⎤
⎦λα (t)

〉

(13.241)
which implies

〈λ〉 =
1

2N
〈f [δn (t)]λ〉 (13.242)

The idea is to seek a solution of the Heisenberg equations of motion for Ψ where
β and the λα’s have developments in inverse powers of N . Define a “q-number”
chemical potential μ̂ from

β† dβ

dt
=

−iμ̂

�
(13.243)

We have

i�
∂

∂t
φ = (H − μ̂)φ + uφ†φ2 (13.244)
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13.3 The particle number conserving formalism 425

We then find

0 = −i�φ0,t + (H − μ̂)φ0 + uφ3
0

+
1√
N

[
−i�λ,t + (H − μ̂)λ + uφ2

0

(
2λ + λ†)]+ O

(
N−1

)
(13.245)

Taking the expectation value we find

0 = −i�φ0,t + (H − 〈μ̂〉)φ0 + uφ3
0 −

1√
N

〈μ̂λ〉 + O
(
N−1

)
(13.246)

Recall that φ0 is real (if the condensate is nondegenerate) and μ̂ is Hermitian.
So we may decompose this equation into

0 = (H − 〈μ̂〉)φ0 + uφ3
0 −

1
2
√
N

〈
μ̂λ + λ†μ̂

〉
+ O

(
N−1

)
(13.247)

and

0 = −i�φ0,t −
1

2
√
N

〈
μ̂λ− λ†μ̂

〉
+ O

(
N−1

)
(13.248)

This is consistent with the normalization condition∫
φ0φ0,t = 0 (13.249)

Subtracting the expectation value from the Heisenberg equation, we get

0 = (〈μ̂〉 − μ̂)φ0 +
1√
N

[
−i�λ,t + (H − μ̂)λ + uφ2

0

(
2λ + λ†)]+

1√
N

〈μ̂λ〉

+O
(
N−1

)
(13.250)

The orthogonality of φ0 and λ implies∫
(φ0λ,t + φ0,tλ) = 0 (13.251)

and from (13.250), (13.248) and (13.247) we get

0 = 〈μ̂〉 − μ̂ +
u√
N

(
J3 + J†

3

)
+ O

(
N−1

)
(13.252)

where

Jn =
∫

φn
0λ (13.253)

Observe that this implies

〈μ̂λ〉 = O
(
N−1/2

)
(13.254)
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426 Nonequilibrium Bose–Einstein condensates

The equation for λ simplifies into

0 = −i�λ,t + (H − μ̂)λ + uφ2
0λ + Q

[
uφ2

0

(
λ + λ†)]+ O

(
N−1/2

)
(13.255)

where

Q [X] = X − φ0

∫
φ0X (13.256)

The homogeneous case

To get a feeling of the working of the PMC approach, let us apply it to the sim-
plest case of a BEC in a homogeneous box of volume V, with periodic boundary
conditions.

In equilibrium, by symmetry, the condensate wavefunction must be homoge-
neous, and by normalization we must have φ0 = V −1/2. This equation holds to
all orders in 1/N. Therefore

〈μ̂〉 =
u

V
+ O

(
N−1

)
(13.257)

This gives 〈μ̂〉 = UN/V + . . . . By contrast, in the Bogoliubov approximation the
chemical potential is μBog = UN0/V and in the Popov approximation μPop =
(U/V ) (2N −N0) . We also have

μ̂ = 〈μ̂〉 + O
(
N−1/2

)
(13.258)

and so the lowest order equation for the inhomogeneous mode is

0 = −i�λ,t + Hλ +
UN

V

(
λ + λ†) (13.259)

These are the Popov equations with N in place of N0, and so we know the
spectrum will be gapless. Moreover, in this case there is no zero mode divergence.

After solving these equations it is simple to compute the higher corrections
to μ̂.

13.3.4 Particle number conserving functional approach

One problem with the PNC approach as presented so far is that it is not cast
within a functional approach, and therefore lacks the flexibility which has been
key to most of the applications of NEqQFT in this book. To be able to give a
functional PNC approach, we must revise the measure of integration in the path
integral expression for the generating functional we have considered so far. The
idea is to define a new generating functional which will agree with the old one in
the computation of expectation values for particle number conserving operators,
but will lead to different results otherwise. In particular, the expectation value
of the field operator in the new approach will be identically zero, as it must be
in a system with a finite number of particles.
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13.3 The particle number conserving formalism 427

The quantum theory of the BEC may be regarded as the quantization of
the nonrelativistic classical field theory defined by the action functional (13.39),
where the canonical variables are Ψ(x, t) and its conjugate momentum i�Ψ∗.
This theory conserves particle number (13.213), and we are interested in the
case in which particle number takes on a definite value N . We may reinforce this
point by adding a constraint on the theory. This is achieved by introducing a
Lagrange multiplier μq (t), whereby the action becomes

S =
∫

dd+1x

[
i�Ψ∗ ∂

∂t
Ψ + �μq (t)

(
Ψ∗Ψ − N

V

)]
−
∫

dt H (13.260)

The original action (13.39) is invariant under a global transformation (13.31) but
the new action (13.260) is invariant under the local (in time) transformations (a
familiar theory with local U(1) gauge symmetry is electromagnetism)

Ψ → eiθ(t)Ψ, Ψ† → e−iθ(t)Ψ†, μq → μq +
dθ

dt
(13.261)

provided θ vanishes both at the initial and final times (when θ is infinitesimal,
these are just the canonical transformations generated by the constraint) [Dir50,
Dir58b]. Therefore it must be quantized using the methods developed for gauge
theories, such as the Fadeev–Popov method [PesSch95].

The need for a further refinement of the functional measure comes from the fact
that now the path integral is redundant, since we may transform the fields as in
(13.261). The Fadeev–Popov approach fixes the redundancy by factoring out the
gauge group. Choose some function fθ = f

[
μqθ,Ψθ,Ψ

†
θ

]
, such that dfθ/dθ �= 0.

Then

1 =
∫

dfθ
dθ

dθ δ (fθ − c) (13.262)

Inserting this into the vacuum persistence amplitude and averaging over c with
a weight eic

2/2σ we get

Z0 = Θ
∫

DΨDμq eiSμq,σ/�Det
[
δfθ
δθ

]
θ=0

(13.263)

where

Θ =
∫

Dθ (13.264)

is the volume of the gauge group we wish to factor out;

Sμ,σ = S +
�

2σ

∫
dt f2

0 (13.265)

where S is defined in (13.260). The determinant is expressed as a path integral
over Grassmann fields ζ, η (see Chapter 7)

Det

[
δfθ
δθ

]
θ=0

=
∫

DζDη e−
1
�

∫
dt ζ

δfθ
δθ η (13.266)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


428 Nonequilibrium Bose–Einstein condensates

To finalize the set-up, we need to choose the gauge fixing function f0. Possibly
the simplest choice is the “covariant” gauge

f0 =
dμq

dt
(13.267)

which makes the ghost fields decouple. This gauge is employed in [CaHuRe06] to
explore the critical regime in the Mott transition. Other choices are also available,
and in fact the freedom to choose the gauge fixing condition is one of the main
strengths of the approach [DeuDru02, DrDeKh04].
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14

Nonequilibrium issues in RHICs and DCCs

14.1 Relativistic heavy ion collisions (RHICs)

14.1.1 In the beginning

The goal of this chapter is to provide a short summary of the main points where
nonequilibrium field theory may contribute to our understanding of relativistic
heavy ion collisions. We skip over details of strong interaction processes, but
focus on those aspects which are directly related to the nonequilibrium features
of the (collective) dynamics.

The relevant experiments are the Super Proton Synchroton (SPS) (CERN)
and the Relativistic Heavy-Ion Collider (RHIC) (Brookhaven), with the Large
Hadron Collider (LHC) coming on line soon. SPS accelerates lead ions (Z = 82,
A = 207) to energies of 17 GeV per nucleon in the center-of-mass frame; RHIC
collides gold (Z = 79, A = 197) at energies of 130 to 200 GeV per nucleon. The
RHIC experiments are described in detail in the so-called “white papers,” which
are possibly the most reliable source on the subject [BRAHMS05, PHOBOS05,
STAR05, PHENIX05]. Other basic references are [Cse94, Won94, Gyu01, Shu88].

We shall work in natural units, the characteristic scale for strong interactions
being 1 fm = 10−15 m = (200 MeV)−1

. The strength of the interaction is mea-
sured by the structure constant αS = g2/4π, where g is the coupling constant.
(We assume that the symmetry group is SU (3 ) with eight gluons.) In the pertur-
bative regime E � ΛQCD ∼ 200 MeV, the structure constant runs with scale as

αS (E) =
12π

(33 − 2nf ) ln
[

E2

Λ2
QCD

] (14.1)

where nf is the number of flavors (6) and ΛQCD is the QCD energy scale. This
means that for scales of the order of the proton mass mp ∼ 1 GeV, αS ∼ 0.5.
Because of the logarithmic fall off, it will not get much smaller in the relevant
range of energies.

The most abundant product from the heavy ion collisions are the lightest
mesons, the pions π± and π0 with masses mπ ∼ 140 MeV. Pions are pseudo-
scalars, so they do not have different polarization states. The proton, on the other
hand, comes in two different spin states – this will be important in what follows.

One of the goals of the RHIC program was to probe into possible new phases
of nuclear matter at higher energies such as a conjectured deconfined phase. In
such a high-energy phase, matter would most likely be a plasma of gluons and
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430 Nonequilibrium issues in RHICs and DCCs

(massless) quarks (quark–gluon plasma, QGP). Remember that for relativistic
particles each bosonic degree of freedom contributes

εB =
π2

30
T 4 (14.2)

to the energy density in equilibrium, while (neglecting chemical potentials) each
massless fermionic degree of freedom contributes εF = (7/8) εB . We have eight
different gluons with two polarization degrees of freedom each, and four effec-
tively massless quarks (u, d and their antiparticles) coming in three colors and
two spin states each. Therefore the energy density in the deconfined phase is

εplasma =
37
30

π2T 4 (14.3)

and the pressure is pplasma = εplasma/3.
In the low-temperature phase, only the pions are effectively massless. These

pions live on a quark condensate which enforces confinement. Therefore the
energy density is εhadron = εpions + εcondensate, where

εpions =
3
30

π2T 4 (14.4)

and εcondensate ≡ −B, where B ∼ Λ4
QCD is known as the bag constant . The pres-

sure of the confined phase is phadron = εpion/3 + B.
At the coexistence point, both phases have the same pressure, and so the

critical temperature obeys

34
90

π2T 4
c = B = Λ4

QCD (14.5)

namely Tc =
(
90/34π2

)1/4 ΛQCD ∼ 0.72ΛQCD ∼ 150 MeV. This means that to
enter the deconfined phase, we need a mininal energy density of εcrit = (3 · 37/34)
Λ4

QCD = 650 MeV/fm3.
Of course, this is the transition point at zero chemical potential only; in gen-

eral, we have a coexistence curve in the (μ, T ) plane, so that the critical temper-
ature may be lowered by increasing the baryon number density.

Nevertheless, evidence seems to suggest that the QGP has not been created at
RHIC [BRAHMS05, PHOBOS05, STAR05, PHENIX05]. The high-energy col-
lisions have created what seems to be a new state of dense nuclear matter,
whose description in terms of purely hadronic degrees of freedom seems inad-
equate. This suggests the presence of unscreened color charges over distances
larger than the size of a nucleon. However, the system seems to be strongly
interacting throughout, with properties closer to a liquid than to a plasma.

14.1.2 The Bjorken scenario

Virtually all the field-theoretic analyses of RHICs assume a spacetime picture of
collision provided by the Bjorken model [Bjo83]. The colliding nuclei are seen as
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14.1 Relativistic heavy ion collisions (RHICs) 431

slabs of quark and gluon matter. In the center-of-mass frame, both slabs approach
each other at near light speed. Upon collision, the two slabs of matter will mostly
go through each other, leaving behind a wake of hot plasma. We may then
distinguish three different regions: the two fragmentation regions corresponding
to the receding slabs, and the central region corresponding to the plasma in
between. We are interested in phenomena in the central region.

At the time of crossing a number of hard scattering processes will occur, whose
products will directly reach the detectors. These hard processes are unrelated to
the nonequilibrium dynamics of the plasma; and may presumably be predicted on
perturbative QCD grounds. In what follows, we will assume this hard component
has been isolated despite great difficulty to achieve this in reality.

The hot plasma will expand and cool, and eventually fragment into ordinary
particles in flight intercepted by the detectors. We wish to predict the number
of particles of each species to be detected, as a function of the angle θ between
the direction of flight and the direction z of the beam. It is remarkable that with
this simple picture we can state a first observable prediction already.

Indeed, because of Lorentz contraction, we may think of the approaching slabs
as infinitely thin in the direction of motion z, and in a first approach to the
problem, as infinite and homogeneous in the transverse directions x and y. This
picture is invariant under boost in the z direction, and so is the final distribution
of particles. So if we parameterize the momentum of an out-going particle as
p0 = E, p3 = p and

(
p1, p2

)
= p⊥, then the distribution of particles may depend

only upon the transverse momentum and E2 − p2 = m2 + p2
⊥. In particular, it

must be independent of θ, since cos θ ∼ p/E is not invariant. It is conventional to
plot the yield of the collision in terms of the rapidity y, defined by p/E ≡ tanh y,
or rather the pseudo-rapidity η = − ln tan [θ/2] , tanh η = p/ |p| . Rapidity and
pseudo-rapidity agree at momenta which are large compared to the mass of the
particle. Then the prediction in this picture is that there is a plateau in the
(pseudo) rapidity distribution, at least for small rapidity (|η| → ∞ corresponds
to the fragmentation rather than the central region).1

We may elaborate on the Bjorken picture further. Let us assume that the
plasma is formed on the plane z = 0 at the time t = 0 of the collision, and then
expands along the z direction. A given plasma element will cool according to
its own proper time τ . Now, as in the twin paradox, the proper time lapse will
be less for those elements which move faster, which are also those which reach
farther if we compare the relative positions at a given fixed time, as measured,
say, in the center-of-mass frame. Thus the plasma will be hotter in the outer
layers than in the center. This situation resembles the dessert known as baked
Alaska, made by briefly putting an ice-cream ball in the oven, thereby the outer
crust heats up while the center remains frozen.

1 This prediction is not clearly borne out by the RHIC data [PHOBOS05]. Therefore, it
remains a possibility that analyses based on the Bjorken model are not so relevant to
current experiments compared to future higher energy collisions.
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432 Nonequilibrium issues in RHICs and DCCs

Eventually, at some given constant τ surface, the plasma will be cold enough
(and/or dilute enough) to break up into hadrons. Assuming that the product
hadrons are thermally distributed, massless and at zero chemical potential, the
Bose–Einstein distribution predicts that the energy per particle is ε/n = 2.7 T .
Since temperature is constant on the break-up surface, this means that in all
collisions particles should have the same average energy. Indeed, it is observed
that the energy per particle is about 0.8 GeV, regardless of the center-of-mass
energy and impact parameter.

Another important observation is that for transverse momenta higher than
2 GeV, the number of emitted protons is actually higher than pions. This can
be explained as a consequence of hydrodynamic behavior [HeiKol02a], or else,
at very large momenta, through a recombination mechanism [MulNag06]. If no
chemical potentials were involved, then equality would obtain (at pT = 2 GeV)
for a temperature of about 340 MeV. In reality, pions do not have chemical
potential, but protons do, associated with baryon number conservation. Adding a
chemical potential μ ∼ 40 MeV for the protons reduces the crossing temperature
to 280 MeV [HeiKol02a].

To obtain a more quantitative description of the process, we may describe
the plasma as a relativistic ideal fluid [BelLan56, CarDuo73, CarZac83]. The
assumption of a homogeneous plasma in the transverse direction is too simplis-
tic, and a full four-dimensional solution must be sought, which requires numer-
ical methods [KoSoHe00, MolGyu00, Hir01, MMNH02, HeiWon02, TeLaSh01,
HirTsu02, KolRap03, HeiKol02b, HKHRV01]. To close the hydrodynamic sys-
tem of equations we must provide the equation of state. The central feature of
this is the “softening” near the critical point, meaning that the speed of sound
c2
s = ∂p/∂ε → 0 as we approach the transition point. The softening of the equa-

tion of state affects the evolution of the fireball, which then becomes a signal of
whether the transition point has been reached or not.

Since perfect fluids conserve entropy, the total entropy within the fireball
remains constant, and T scales as V −1/3. So, if the expansion is one-dimensional,
and we consider the volume enclosed between two fixed rapidities, then T ∼
τ−1/3, where τ is the proper time. In particular, the energy density scales as
τ−4/3 rather than τ−1, as in our earlier estimate. This leads to a slight increase
in the estimate of the initial plasma temperature.

For treatment of RHICs beyond perfect fluids, see [GyRiZh96a, GyRiZh97,
Ris98, Tea03].

14.1.3 Break-up

We now consider more closely the phenomenon of break-up [CooFry74,
SiAkHa02]. Assume this occurs on a three-dimensional surface Σ defined by
some equation Σ (xμ) = 0. If x0 is a solution, then the normal vector at x0 is
nμ = (−α) Σ,μ, α = (−Σ,μΣ,μ)−1/2

. We shall assume that nμ is time-like. For
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14.1 Relativistic heavy ion collisions (RHICs) 433

a more realistic scenario where the surface has both time-like and space-like
regions, see [Bug03]. The invariant measure on Σ is given by d3σ = d4x δ (Σ)α−1.

Let us assume that both before and after break-up, we can describe matter as a
perfect relativistic fluid. Let Ka = ∂/∂xa be the four Killing vectors of Minkowski
space. Then Gauss’ theorem shows that the quantities nμKaνT

μν and nμN
μ are

continuous across the break-up surface (we shall consider only one conserved
current, corresponding to, say, the baryon number). These conditions plus the
equation of state of the hadronic phase define the energy density, pressure, baryon
number density (or equivalently, the temperature and chemical potential) and
the 4-velocity of the hadrons at break-up. The detailed spectrum is found by
assuming that the hadrons are thermally distributed.

In principle we could distinguish between matter having a thermal distribution
of momenta (kinetic equilibrium) and in chemical equilibrium. Correspondingly,
there is a kinetic freeze-out, and a chemical freeze-out, which are not necessarily
simultaneous. This permits some extra freedom in matching models to data.

The total number of emitted particles is∫
d3x K0μN

μ
had (14.6)

where the integral is over some t = constant surface well to the future of the
collision. Because of Gauss’ theorem, we may replace the integral by an integral
over the break-up surface (we may have to complete this surface to get a Cauchy
surface, but the particle density flux will vanish on these additions anyway). But
then we may use the matching conditions to express this integral in terms of the
particle current before break-up. We obtain the total number of emitted particles
as ∫

d4x δ (Σ) Σ,μN
μ
hydro (14.7)

In practice, we may wish to smear a little the position of the break-up surface,
thus writing the total number of emitted particles as∫

d4x

[
e−Σ2/2(ΔΣ)2

√
2π (ΔΣ)

]
Σ,μN

μ
hydro (14.8)

The total number of particles of species i with momentum pμ is

gi

∫
d4x

C (x)

[
e−Σ2/2(ΔΣ)2

√
2π (ΔΣ)

]
Σ,μN

μ
hydroδ

(
p2
i −m2

i

) Uhad
λ pλi

[exp (−βνpνi − μbi) − εi]
(14.9)

where

C (x) =
∑
i

gi

∫
d4pi

(2π)4
δ
(
p2
i −m2

i

) Uhad
μ pμi

[exp (−βνpνi − μbi) − εi]
(14.10)

The two basic observables are the total number of particles with transverse (with
respect to the beam axis) momentum p⊥, which is usually given in terms of the
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434 Nonequilibrium issues in RHICs and DCCs

transverse mass m2
⊥ = m2 + p2

⊥, and the elliptic flow coefficient v2, which results
from fitting the particle spectrum in the transverse plane to a second harmonic
(1 + 2v2 (p⊥) cos 2φ) , where φ is the angle measured from the reaction plane.
This is equivalent to considering an elliptic fireball, in which case v2 measures
the eccentricity of the ellipse. The first harmonic is called directed flow, and
would represent a shifted spherical fireball in the transverse plane [VolZha96].

In our simplified discussion we have not considered the possibility that some
particles produced at break-up may actually decay before reaching the detectors,
so that the one-to-one correspondence we have assumed is not strictly valid. Also,
because of long-range interactions, the propagation of charged particles from
break-up to detection is not quite free. Both phenomena must be considered for
a meaningful contrast between theory and experiment. Finally, observe that the
form of the distribution function we have used is not a solution of the transport
equation if there are gradients of the hydrodynamical variables. If these gradients
are important, one may consider using an improved distribution function [Sin99].

The agreement of predictions from hydrodynamical simulations with experi-
mental data is good, provided the simulation is started very early (earlier than
1 fm/c after the collision). If one believes that the validity of hydrodynamics
preassumes (local) equilibration, this very short time is somewhat of a puzzle.
However, as we shall see presently, not all is well with hydro simulations. This is
the main area where NEqQFT may be relevant to understanding RHICs.

14.1.4 Measuring the fireball

We shall describe a method of data analysis from heavy ion collisions which, in
principle, yields direct information on the geometry of the fireball at break-up.
It pertains to studying the simultaneous detection of pairs of identical particles,
rather than individual ones [GyKaWi79, Hei96, WieHei99].

Let us make the simplifying assumption that the only particles produced at
break-up are pions, and that these may be treated as a free Klein–Gordon field.
The Heisenberg pion field operator obeys a wave equation

∂2Φ (x) −m2Φ (x) = −J (x) (14.11)

where the external c-number source J (x) represents the particle creating current
at break-up. Under the action of this source, the pion vacuum state |0〉 evolves
(in the interaction picture) into

|J〉 = T

{
exp
[
i

∫
d4x J (x) Φ0 (x)

]}
|0〉 (14.12)

where Φ0 (x) is a free Klein–Gordon field. Φ0 (x) may be expanded into positive
and negative frequency parts

Φ0 (x) =
∫

d3p

(2π)3
eipx√
2ωp

{
e−iωptap + eiωpta†−p

}
(14.13)
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14.1 Relativistic heavy ion collisions (RHICs) 435

where ω2
p = p2 + m2. The state |J〉 is a coherent state

ap |J〉 =
iJ(p,ωp)√

2ωp

|J〉 (14.14)

where

Jp =
∫

d4x e−ipxJ (x) (14.15)

The number of particles with momentum p in the final state is then

Np =
|Jp|2
2p0

(14.16)

Let us introduce the emission function

S (x, p) =
∫

d4y e−ipyJ∗
(
x− y

2

)
J
(
x +

y

2

)
(14.17)

whence

|Jp|2 =
∫

d4x S (x, p) (14.18)

Comparing (14.9) and (14.16), one may be strongly tempted to write

S (x, p) =
g

C (x)

[
e−Σ2/2(ΔΣ)2

√
2π (ΔΣ)

]
Σ,μN

μ
hydroδ

(
p0 − ωp

) Uhad
λ pλ

[exp (−βνpν − μ) − 1]
(14.19)

The number of pairs of particles, one with spatial momentum p and another
with spatial momentum q, is

Npq = 〈J | a†pa†qaqap |J〉 (14.20)

For a coherent source, such as discussed so far, Npq = NpNq, which is not ter-
ribly interesting.

However, let us consider the case in which the source is an incoherent super-
position of elementary sources

J (x) =
∑
i

eiθiJi (x) , Ji (x) = eipi(x−xi)J0 (x− xi) (14.21)

meaning that the identical elementary sources J0 are translated, boosted and
phased in different ways, with the xi, pi, θi all random mutually independent
variables. In this case, the emission function reads

S (x, p) =
∑
i,j

∫
d4y e−ipyei(θi−θj)J∗

j

(
x− y

2

)
Ji

(
x +

y

2

)
(14.22)

Averaging over the unknown phase of each source, we get

S (x, p) =
∑
i

Si (x, p) (14.23)
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Let us consider again the average number of pairs

Npq =
1

4ωpωq

〈
J∗
pJ

∗
q JqJp

〉
=

1
4ωpωq

∑
ijkl

ei(θi+θj−θk−θl)
〈
J∗
k,pJ

∗
l,qJi,qJj,p

〉
(14.24)

The average over phases vanishes unless i = l, j = k or i = k, j = l (we neglect
the possibility of i = j = k = l simultaneously). Therefore

Npq = NpNq +
1

4ωpωq

∣∣∣∣∣
∑
i

〈
J∗
i,qJi,p

〉∣∣∣∣∣
2

(14.25)

The second term shows the existence of correlations among the created particles.
This is the so-called pion bunching, or HBT (for Hanbury-Brown/Twiss) corre-
lations. In the real world, the sources are neither totally coherent nor totally
incoherent; we may account for this by adding a fudge factor to the second term
in (14.25) (for a more sophisticated treatment, see [AkLeSi01]). A similar factor
may arise from the superposition of particle emission from a collision core and
a halo of long-lived resonances [NiCsKi98].

Introducing

P =
p + q

2
, ξ = p− q (14.26)

then ∑
i

〈
J∗
i,qJi,p

〉
=
∫

d4x e−iξxS (x, P ) (14.27)

and we see that it is possible to express the HBT correlations in terms of the
emission function, for which we already have the ansatz (14.19). In practice,
this is too involved to attempt a direct comparison with data. Rather, the usual
procedure is, for a given P, to evaluate the moments of the emission function∫

d4x S (x, P ) = 2ωPNP (14.28)

x̄μ =
1

2ωPNP

∫
d4x xμS (x, P ) (14.29)

Rμν =
1

2ωPNP

∫
d4x xμxνS (x, P ) − x̄μx̄ν (14.30)

Let us assume the source is axisymmetric and P points in the x-direction (z
being the beam direction). In the center-of-mass frame we have R0i = Rij = 0
for i �= j. The values of the momenta suggest the approximation

S (x, P ) =
2ωPNP

(2π)2 (det [Rμν ])1/2
exp

{
−1

2

[
(t− t̄)2

R00
+

x2

R11
+

y2

R22
+

z2

R33

]}

(14.31)
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14.1 Relativistic heavy ion collisions (RHICs) 437

It is important to realize that the Rμν are not the moments of the source as a
whole, since the emission function is weighted by P dependent factors. We may
think of the emission functions as the probability of a particle with momentum
P being emitted at point x. The Rμν then measure the size of the region where
emission is most likely. This expression for the emission function is simple enough
that we may compute the HBT correlations.

One last point: If the p and q momenta in Npq are on-shell, the components of
P and ξ are not independent. We have P 2 = m2 − ξ2/2, so we may consider P

on-shell when ξ is small, and Pξ = 0, meaning that ξ0 = (P/ωP ) ξ1. Therefore∣∣∣∣
∫

d4x e−iξxS (x, P )
∣∣∣∣
2

= (2ωPN)2P exp
{
−
[(

R00P 2

ω2
P

+ R11

)
ξ2
1 + R22ξ2

2 + R33ξ2
3

]}
(14.32)

We see that the HBT correlations may be parameterized in terms of three “radii,”
with z corresponding to the “longitudinal” direction, x to the “out” direction,
and y to the “side” direction.∣∣∣∣

∫
d4x e−iξxS (x, P )

∣∣∣∣
2

∼ exp
{
−
[
R2

outξ
2
1 + R2

sideξ
2
2 + R2

longξ
2
3

]}
(14.33)

(R2
out = R00P 2/ω2

P + R11, R2
side = R22, R2

long = R33). Observe that, in general,
we expect R11 ∼ R22, and so the out radius, which is sensitive also to the duration
of the emission process (in terms of laboratory time) is predicted to be larger
than the side radius. This prediction is not borne out by the data, which show
Rout/Rside ∼ 1.25–1.5 [BRAHMS05, PHOBOS05, STAR05, PHENIX05]. This
disagreement constitutes the so-called HBT puzzle.

This suggests that the emission process occurs early, which reinforces the need
for an early onset of the hydrodynamic regime, or else for some new thinking
[SoBaDi01, Hum06]. In principle the HBT puzzle is a puzzle only within the
framework of hydrodynamical models.

14.1.5 Insights from nonequilibrium quantum field theory

We see from the above analysis that the clue to understanding the physics of
RHICs lies in the first fermi/c or so after the collision. This is the point where
nonequilibrium field theory methods may have an impact on the theory of RHICs.

The first input for any field theoretic modeling is of course some well-defined
initial condition. The basic idea is that each colliding nucleus is not just a
bunch of nucleons marching in step, but a rather complex array of gluons
and partons. In fact, a naive perturbative calculation yields the result that
the number of gluons with a given momentum diverges as the momentum
becomes light-like. It is believed that this divergence is cut off at some scale
by nonperturbative effects (parton saturation) [Mue01, KhaLev01, KhLeNa01].
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438 Nonequilibrium issues in RHICs and DCCs

A sophisticated model built on this premise is the so-called color glass condensate
[IaleMc02, BjoVen01, KrNaVe02, McLVen94a, McLVen94b, McLVen94c].

The basic framework to understand the early evolution of the plasma is the so-
called bottom-up scenario [BMSS01, MuShWo05]. The hard gluons released from
the color glass condensate take part in both elastic and inelastic collisions. Elastic
collisions broaden a little the initial gluon distribution (see below) while inelas-
tic collisions contribute to the creation of a soft gluon background. It may be
observed that the emission of ultrasoft gluons is suppressed by destructive inter-
ference between multiple collision events, the so-called Landau–Pomeranchuk–
Migdal effect [BaiKAt03, ArMoYa01a, ArMoYa01b, ArMoYa02, BBGM06]. On
the other hand, nearly collinear events are amplified by the small denominators
in the transition amplitude [Won04].

The soft gluons thermalize very efficiently. Eventually they become the domi-
nant species, and we have a picture of a few very energetic gluons on a thermal-
ized soft gluon background. The remaining hard gluons decay (through gluon
branching, which is a specific form of wave splitting for a non-abelian plasma).
The decay of the hard gluons heats up the soft gluons over and above the cooling
from the longitudinal expansion of the plasma, and so we may enter the fully
hydrodynamic stage at a conveniently high temperature.

The key question in the bottom-up scenario is how fast the soft fields build up
from the initial hard quanta. The natural approach would seem to be to write
a kinetic equation for those hard gluons [Mue00a, Mue00b], taking into account
both elastic and inelastic processes (see also Chapter 11). The result seems to be
that the build up of soft fields is too slow to meet the demands of hydrodynamical
RHIC models.

At the time of writing, much effort is being spent on elucidating a pro-
posal by S. Mrowczynski which would result on a much faster growth rate
[Mro94a, Mro94b] (see [Mro05] for a recent review). Mrowczynski’s insight is
that the initial gluon distribution must be highly anisotropic. Since gluons with
a substantial longitudinal momentum will stream out of the central region, the
momentum distribution in the local rest frame is squeezed along the beam. Under
these conditions, the so-called filamentation or Weibel instability sets in. Sup-
pose the initial hard gluon distribution results in alternating currents along a
transverse direction. These currents create magnetic fields, and the correspond-
ing Lorentz force accelerates particles along the longitudinal direction. Moreover,
particles are redistributed in such a way that the initial currents are amplified,
thus setting up a positive feedback loop. While the instability lasts, the soft fields
are found to increase exponentially. Instabilities do not directly equilibrate the
system but rather isotropize it and thus speed up the process of thermalization
[Mro07].

Current efforts are aimed at a precise estimate of the growth rates that may be
achieved by this mechanism, and to identify possible effects which may knock off
the instability. At the time of writing, the most important limiting factor seems to
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14.2 Disoriented chiral condensates (DCCs) 439

be that the growing soft modes will in turn excite a turbulent ultraviolet cascade
[ArLeMo03, ALMY05, Moo05, ArnMoo05, ArMoYa05, ArnMoo06, MuShWo07].
The energy extracted from the hard gluons through the magnetic fields is
returned to them through the cascade. The growth of the soft modes turns from
exponential to linear, and eventually ceases altogether. It is not clear whether
this effect will rule out fast enough thermalization through Weibel instabilities.
In principle, it ought to be possible to obtain an answer by coupling the Yang–
Mills classical equations for the soft fields to the Wong kinetic equations for
the hard fields (see Chapter 11 and [ManMro06, Mro06, RomReb06, DuNaSt07,
Str06, RomVen06, Ven07]), but it is hard to carry out numerical simulations
within a realistic parameter range.

14.2 Disoriented chiral condensates (DCCs)

Besides deconfinement, other exotic events are thought to lie just above the QCD
phase transition. Among these, one of the best researched is the possibility of
chiral symmetry restoration. More concretely, the idea is, if it were possible to
heat strongly interacting matter above the chiral restoration temperature, and
then quenching it again below the critical point, there exists the possibility that
the second time around the system will settle into a different vacuum than the
one we are familiar with. That would create a new form of matter, the so called
“disoriented chiral condensate” (DCC). When brought into contact with the
ordinary vacuum, the DCC would decay with a characteristic burst of particles,
whose detection would provide a signature of its existence.

Theoretical and experimental interest in DCCs had a strong surge in the early
1990s [KowTay92], further motivated by the unexplained Centauro events seen
in cosmic ray experiments [MohSer05]. After several searches both in an ad hoc
experiment [MINIMAX03] and as a part of larger RHIC program, no clear detec-
tion has been reported. However, this null result is actually in agreement with
theoretical estimates. New probes are being suggested which could lead to a
positive result [AgSoVi06]. We refer the reader to [Bjo97] and [MohSer05] for
reviews.

With these experimental perimeters delimited, let us describe in slightly more
detail what a DCC is expected to look like. According to the standard models of
particle interactions, the fundamental constituents of hadrons are quarks. There
are six flavors of quarks, organized into three isospin doublets (u, d), (c, s) and
(t, b). The quark masses increase as we go from one doublet to the next; for the
(u, d) pair they are of a few MeV, about a GeV for (c, s) and a few GeV for (t, b).
In a first approximation, the (u, d) quarks may be taken as massless.

Now, a theory with a massless isospin doublet would be invariant under inde-
pendent global isospin rotations of the left and right quark components. Thus
the isospin group should have been SU(2) × SU(2), rather than the observed
SU(2). In particular, for each hadronic state there would be a partner with
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440 Nonequilibrium issues in RHICs and DCCs

opposite parity. This is not even approximately observed, and therefore the
SU(2) × SU(2) symmetry must be broken down to the physical isospin SU(2).

The idea is that the quark vacuum is not invariant under SU(2) × SU(2).
Since the algebra of this group is isomorphic to SO(4), it is natural to take the
order parameter for this transition (chiral symmetry breaking) as a vector in
a four-dimensional internal Euclidean space. The symmetric state corresponds
to a vanishing order parameter. A nonzero order parameter picks up a definite
direction in four-dimensional internal space, therefore breaking the symmetry
down to SO(3), with covering group SU(2). From the microscopic point of view,
the components of the order parameter express the formation of quark pair
condensates, in a mechanism which resembles the formation of Cooper pairs
(with a breaking of the U(1) symmetry) in a BCS superconductor.

According to Goldstone’s theorem, the breaking of a global symmetry must
be followed by the apparition of one massless particle for each broken sym-
metry. In our case there are three, one for each SU(2) generator, while the
Goldstone bosons are the pions. Of course, quarks are not really massless,
SU(2) × SU(2) is not an exact symmetry, and pions are therefore not quite mass-
less, but their masses are small enough, certainly in comparison with the quarks
themselves.

In this picture, pions are viewed as the lowest energy excitations of the quark
vacuum, and at low energy the standard model is a pion theory. In the broken-
symmetry phase, the modulus of the pion vector is fixed by the symmetry-
breaking condition, and so pions are represented by a vector living in the unit
sphere of Euclidean 4-space. This is the nonlinear sigma model. At higher energy,
the modulus also becomes dynamical, and we may represent pions as a 4-vector
self-interacting via a SO(4)-invariant potential. This is the linear sigma model,
which will be the starting point for our discussion below.

As we have seen, the Bjorken scenario of a RHIC leads to the “baked Alaska”
picture of the collision, where the edge of the expanding central region is hotter
than its center. The hot plasma layer shields the cool center from interaction
with the outer world, and therefore makes it possible for cooling the pion field
to develop in a direction (in internal isospin space) different from the (cosmolog-
ically chosen) direction outside.

At some point the outer layer will be cool enough that causal contact will
be restored, and the “disoriented” pion condensate will register as “ordinary”
pions. Suppose that we call z the direction corresponding to neutral pions in
isospin space, and that the disoriented pion condensate points in a direction z′

at an angle Θ with respect to z. Upon decay into ordinary matter, the ratio
of neutral to total number of pions will go roughly as f = cos2 Θ. Assuming
that all directions in the unit sphere in isospace are equivalent, and recalling
that the same f results from angles Θ and π − Θ, then the probability to find a
ratio between f and f + df would go like df/

√
f . This characteristic distribution

is another remarkably simple prediction of the “baked Alaska” scenario. Other
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14.2 Disoriented chiral condensates (DCCs) 441

signatures of DCC formation involve the nonequilibrium emission of photons
[BVHK97, CNLL02].

Going beyond this qualitative picture, we now wish to introduce a microscopic
perspective based upon nonequilibrium quantum field theory to provide a more
detailed description of the chiral phase transition in the aftermath of the collision.
We will largely follow the treatment by Cooper and collaborators [CKMP95,
CoKlMo96, LaDaCo96]. To the best of our knowledge, this was also one of the
first attempts to apply NEqQFT to a realistic experimental situation. Mean field
models have also been investigated [MroMul95, Ran97, AmBjLa97], and there is
a proposal to study DCC evolution within a Langevin framework [BeRaSt01].

14.2.1 Self-consistent mean fields in the large N approximation

Adopting the above qualitative picture we now study the evolution of the mean
field in a O(4) symmetric theory assumed to describe the low-energy excitations
of the QCD vacuum. We shall make one further simplification, namely, instead of
O(4) we work with an O(N) theory under the large N approximation. We have
studied the large N (LN) approximation in Chapter 6. Unlike there, now we have
to account for the possibility of symmetry breaking. To avoid misunderstandings,
we shall develop the relevant formulae from scratch.

The O(N) invariant action, allowing for spontaneous symmetry breaking,
reads

S =
∫

d4x

{
−1

2
∂μΨA∂μΨA − λ

8N
(
ΨAΨA −Nv2

)2}
(14.34)

We scale ΨA =
√
NΦA to get

S = N

∫
d4x

{
−1

2
∂μΦA∂μΦA − λ

8
(
ΦAΦA − v2

)2}
(14.35)

To make the perturbative expansion more manageable, we use the Coleman–
Jackiw–Politzer trick of including an auxiliary field χ = λ

(
ΦAΦA − v2

)
/2, by

adding a term to the action, which becomes

S = N

∫
d4x

{
− 1

2
∂μΦA∂μΦA − λ

8
(
ΦAΦA − v2

)2

+
1
2

(
χ√
λ
−

√
λ

2
(
ΦAΦA − v2

))2}
(14.36)

Expanding out, we get

S = N

∫
d4x

{−1
2

∂μΦA∂μΦA +
χ2

2λ
+

1
2
v2χ− 1

2
χΦAΦA

}
(14.37)

In this new action, strings of fish graphs beyond two loops are no longer 2PI.
The next nontrivial graph is the three-pointed star, Fig. 6.10 in Chapter 6, which
scales as N−1. Thus, once again, we obtain a closed form for NLO large N .
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To obtain this explicit expression, we begin by shifting the field ΦA → fA +
ϕA, χ → K + κ̄. As usual, we discard linear terms, so

S = S
[
fA,K

]
+ N

∫
d4x

×
{−1

2
∂μϕ

A∂μϕA +
κ̄2

2λ
− 1

2
KϕAϕA − fAκ̄ϕA − 1

2
κ̄ϕAϕA

}
(14.38)

It is convenient to eliminate the quadratic cross-term, shifting κ̄ = κ + λfAϕA.
We get

S = S
[
fA,K

]
+ N

∫
d4x

{
−1

2
(∂ϕ)2 +

κ2

2λ
− 1

2
M2

ABϕ
AϕB

− 1
2
κϕAϕA − 1

2
λfAϕAϕBϕB

}
(14.39)

(M2
αβ = KδAB + λfAfB), where the 2PIEA is

ΓNLO = S
[
fA,K

]
+

N

2

{[
∇2δAB −M2

AB

]
GAB +

H

λ

}

− i�

2
{Tr lnH + Tr lnG} + ΓNLO

Q + O
(
N−1

)
(14.40)

ΓNLO
Q =

iN2

4�

∫
d4xd4x′

{
H (x, x′)

[
GAB (x, x′)

]2
+λ2fA (x) fB (x′) ΔAB (x, x′)

}
(14.41)

ΔAB (x, x′) = GAB (x, x′)
[
GCD (x, x′)

]2
+ 2GAD (x, x′)GCD (x, x′)GCB (x, x′)

(14.42)
Let us write the equations of motion leaving the CTP indices implicit

∇2fA −KfA − λGAB (x, x) fB (x) +
iλ2N

2�

∫
d4x′ fB (x′) ΔAB (x, x′) = 0

(14.43)
K

λ
+

1
2
v2 − 1

2
fAfA − 1

2
GAA (x, x) = 0 (14.44)

1 − iλ�

N
H−1 +

iλN

2�

[
GAB (x, x′)

]2
= 0 (14.45)

[
∇2δAB −M2

AB

]
− i�

N
G−1

AB +
iN

�
H (x, x′)GAB (x, x′)

+
iλ2N

2�
fA (x) fB (x′)

[
GCD (x, x′)

]2
+

iλ2N

�
fC (x) fD (x′)GCD (x, x′)GAB (x, x′)

+
iλ2N

�
fC (x) fD (x′)GCB (x, x′)GAD (x, x′)

+
iλ2N

�
fA (x) fD (x′)GCD (x, x′)GCB (x, x′)

+
iλ2N

�
fC (x) fB (x′)GCD (x, x′)GAD (x, x′) = 0 (14.46)
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It is clear from these equations that the propagators are O
(
N−1

)
, and therefore

some of the terms we have included are actually of higher order. In removing
them, however, we must be careful that we compute factors of N which may
arise when summing over internal indices. The resulting equations are

∇2fA −KfA = 0 (14.47)

K

λ
+

1
2
v2 − 1

2
fAfA − 1

2
GAA (x, x) = 0 (14.48)

1 − iλ�

N
H−1 +

iλN

2�

[
GAB (x, x′)

]2
= 0 (14.49)

[
∇2δAB −M2

AB

]
− i�

N
G−1

AB +
iλ2N

2�
fA (x) fB (x′)

[
GCD (x, x′)

]2
= 0 (14.50)

We observe that the H propagator does not feed back on the mean fields, so
we will not consider its evolution. For the other propagators, it is convenient
to discriminate between the “pion” propagators GAB

⊥ (which is defined by the
property that GAB

⊥ fB ≡ 0) and the “sigma” propagator, that is, the propagator
for fluctuations along the mean field. Since there are N − 1 “pions” and only
one “sigma,” only the former feed back on K. Writing only the equations for the
mean field and the pion propagator, we obtain

∇2fA −KfA = 0 (14.51)

K

λ
+

1
2
v2 − 1

2
fAfA − 1

2
GAA

⊥ (x, x) = 0 (14.52)

[
∇2 −K

]
δ⊥AB − i�

N
G−1

⊥AB = 0 (14.53)

where δ⊥AB is the projector orthogonal to the mean field. These are the equations
which determine the mean field evolution. Clearly, they admit a solution where
f1 = f , fA = 0 (A �= 1) and GAB

⊥ = G (x, x′) δAB
⊥ /N . For such a solution, we

obtain

∇2f −Kf = 0 (14.54)

K

λ
+

1
2
v2 − 1

2
f2 − 1

2
G (x, x) = 0 (14.55)

[
∇2 −K

]
− i�G−1 = 0 (14.56)

where we have used the result that (N − 1)/N = 1 −O(1/N).

14.2.2 The quantum pion field

The equations for the mean fields and the pion propagator are simplified by
the observation that the latter are identical to the equations for the propaga-
tors of free fields with a position-dependent mass K. Thus we may introduce a
“Heisenberg” pion field Φ, decompose it in modes, and then compute the prop-
agators by summing over modes in the usual way. It is natural to choose a set
of modes adapted to the boost symmetry of the baked Alaska scenario. That is,
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we introduce, instead of the usual Minkowski coordinates t and x, Rindler coor-
dinates τ and η, defined by t = τ cosh η and x = τ sinh η. In these coordinates,
the Minkowski metric reads ds2 = −dτ2 + τ2dη2 + dx2

⊥ (x⊥ = (y, z)), and the
D’Alembertian ∇2 = −τ−1∂ττ∂τ + τ−2∂2

η + ∇2
⊥. We therefore write

Φ (τ, η,x⊥) =
∫

d2k⊥dp

(2π)3/2
eik⊥x⊥eipη

{
φpk⊥ (τ) apk⊥ + φ∗

pk⊥ (τ) a†−p−k⊥

}
(14.57)

where the mode functions obey{
1
τ

d

dτ
τ
d

dτ
+

p2

τ2
+ k2

⊥ + K

}
φpk⊥ (τ) = 0 (14.58)

and the destruction operators apk⊥ have the usual commutation relations[
apk⊥ , a

†
p′k′

⊥

]
= δ (p− p′) δ2 (k⊥ − k′⊥) (14.59)

To obtain the usual ETCCRs for the field operators, we must normalize the
modes as

φ∗
pk⊥ (τ)

d

dτ
φpk⊥ (τ) − φpk⊥ (τ)

d

dτ
φ∗
pk⊥ (τ) = − i

τ
(14.60)

If we make the reasonable assumption that the initial state, defined on some
surface τ = τ0 = constant, is an incoherent superposition of states with well-
defined occupation numbers as defined from the apk⊥ particle model, then the
coincidence limit in the equation for K reads

G = 2
∫

d2k⊥dp

(2π)3
|φpk⊥ (τ)|2

{
1
2

+ n0
pk⊥

}
(14.61)

where n0
pk⊥

is the occupation number for the corresponding mode in the initial
state.

14.2.3 Adiabatic modes and renormalization

At this point, we have reduced the problem of computing the mean field evolution
to a system of n + 2 coupled ordinary differential equations, where n is the
number of modes we care to include in our numerical solution (already this
problem is too complex to attempt a closed analytical solution). Since the number
of modes is necessarily finite, in effect we are imposing a momentum cut-off on
the theory. This means that the coincidence limit (14.61) is de facto finite, but,
since it diverges as the cut-off is removed, it is strongly cut-off dependent.

Physics, on the other hand, is supposed to be cut-off independent, so we should
be able to absorb the dependence on the cut-off by renormalizing the parameters
in the equation for K, namely λ and v2, which implies, as a previous necessary
condition, that the cut-off dependent part of the coincidence limit depends on
the instantaneous value of K, but not on its derivatives.
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14.2 Disoriented chiral condensates (DCCs) 445

To analyze the ultraviolet behavior of the mode amplitudes, let us write
φpk⊥ (τ) = τ−1/2ϕpk⊥ (τ), whereby

d2

dτ2
ϕpk⊥ (τ) +

[
Ω2

pk⊥ (τ) +
1

4τ2

]
ϕpk⊥ (τ) = 0, Ω2

pk⊥ (τ) =
p2

τ2
+ k2

⊥ + K

(14.62)
and ϕ∗

pk⊥
ϕ′
pk⊥

− ϕpk⊥(ϕ′
pk⊥

)∗ = −i, where a prime stands for a τ derivative. In
this regime Ω2

pk⊥
(τ) becomes a slowly varying function of τ . This suggests trying

a WKB-type solution

Fpk⊥ (τ) =
e−iS(τ)√
2wpk⊥ (τ)

, S =
∫ τ

dτ ′ wpk⊥ (τ ′) (14.63)

Fpk⊥ is well normalized by construction, and the mode equation becomes

w2
pk⊥ = Ω2

pk⊥ (τ) +
1

4τ2
− 1

4

(
w2

pk⊥

)′′
w2

pk⊥

+
5
16

⎡
⎢⎣
(
w2

pk⊥

)′
w2

pk⊥

⎤
⎥⎦

2

(14.64)

The hypothesis of slow variation allows us to seek an adiabatic solution, namely,
an iterative solution starting from the zeroth order approximation w2

pk⊥
=

Ω2
pk⊥

(τ) . Let us write this solution as a formal series

w2
pk⊥ =

∞∑
n=0

W (n)

[
p2

τ2
, k2

⊥, τ

]
(14.65)

where W (n) is a homogeneous function of p2/τ2 and k2
⊥ of degree 1 − n. It follows

that

1
wpk⊥

=
1[

W (0)
]1/2 − 1

2
W (1)[

W (0)
]3/2 + R (14.66)

where R vanishes at large momentum as (momentum)−5. It is clear that only
W (0) and W (1) may contribute to the cut-off dependence. Replacing (14.65) into
(14.64), we obtain

W (0) =
p2

τ2
+ k2

⊥ (14.67)

W (1) = K +
1

4τ2
− 1

4

6p2

τ4

p2

τ2 + k2
⊥

+
5
16

(
2p2

τ3

p2

τ2 + k2
⊥

)2

≡ K +
k2
⊥

(
−4p2

τ2 + k2
⊥

)
4τ2
(

p2

τ2 + k2
⊥

)2

(14.68)

The potentially cut-off dependent terms in the coincidence limit of the propaga-
tor are

1(
p2

τ2 + k2
⊥

)1/2
− K

2
(

p2

τ2 + k2
⊥

)3/2
−

k2
⊥

(
−4p2

τ2 + k2
⊥

)
8τ2
(

p2

τ2 + k2
⊥

)7/2
(14.69)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


446 Nonequilibrium issues in RHICs and DCCs

However, the third term vanishes upon integration (this is easiest to see in polar
coordinates). In conclusion, we obtain the same cut-off dependence as from the
simple approximation w2

pk⊥
= Ω2

pk⊥
(τ), and in passing we have proved that

the cut-off dependent terms are functions of the instantaneous value of K, as
required.

To complete the renormalization procedure, we write

v2 = v2
r +

Λ2

4π2
;

1
λ

=
1
λr

− 1
8π2

ln
(

Λ
κ

)
(14.70)

where κ defines the renormalization point. The finite equations of motion now
read

∇2f −Kf = 0 (14.71)

K

λr
+

1
2
v2
r −

1
2
f2 − 1

2
M2 = 0 (14.72)

d2

dτ2
ϕpk⊥ (τ) +

[
Ω2

pk⊥ (τ) +
1

4τ2

]
ϕpk⊥ (τ) = 0 (14.73)

where Ω2
pk⊥

(τ) = p2

τ2 + k2
⊥ + K and

M2 =
1
τ

∫ Λ d2k⊥dp

(2π)3

⎧⎪⎨
⎪⎩|ϕpk⊥ (τ)|2

(
1 + 2n0

pk⊥

)
− 1(

p2

τ2 + k2
⊥

)1/2

+
Kθ
(

p2

τ2 + k2
⊥ − κ2

)
2
(

p2

τ2 + k2
⊥

)3/2

⎫⎪⎬
⎪⎭ (14.74)

In a typical collision, the initial occupation numbers n0
pk⊥

will be high enough to
ensure a large positive M2, and therefore also K will be positive; in this regime,
the symmetric point f = 0 is stable. As the system expands and cools, M2 will
go down, and eventually K becomes negative. This event marks the start of
the chiral symmetry-breaking transition, and the formation of the disoriented
condensate.

For negative K and large enough τ , not only f but also some of the long-
wavelength modes will grow exponentially. This will shift the particle spectrum
towards the infrared, which becomes the basic signal for DCC formation.

In summary, we have depicted DCC formation as a spinodal decomposition
process in an expanding geometry. Since we have already discussed a similar
process in Chapter 4, we will not discuss further the evolution of this model.
The size and duration of the ordered domains determine the prospective sizes of
the DCCs, and therefore the probability of their detection.
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15

Nonequilibrium quantum processes
in the early universe

As stated in the Preface, we intend the chapters in the last part of the book to
illustrate how quantum field theoretical methods can be applied to nonequi-
librium statistical processes in several areas of current research, specifically,
particle–nuclear processes (in RHIC and DCC), dynamics of cold atoms (BEC)
in AMO physics and quantum processes in the early universe (cosmology) and in
this endeavor also try to present an introduction to an important subject matter
in that area. With this specified emphasis on the applications of techniques of
NEqQFT, these accounts are more in the nature of a research topic exercise or
extended example than a full review, in that the topics are selected because of
the NEqQFT context, and the presentations are illustrations of the methodol-
ogy. Thus we suggest the reader refer to review articles or monographs to get a
more balanced and complete view on different physical approaches to the same
subject matter.

In this chapter on cosmology, after a brief introduction to inflationary cosmol-
ogy, highlighting the stochastic inflation model, we discuss how NEqQFT impacts
on some central issues in cosmology. The methodology introduced in Chapters
4–6 covering particle creation mechanisms and the nPI CTP-CGEA/IF func-
tional formalisms for NEq processes can be applied to solve a number of basic
problems in cosmology.

Some specific processes have been discussed in earlier parts of this book. In
Chapter 5, with the aid of the CGEA and the influence functional [Hu94b] we
learned the relationship between the processes of dissipation, fluctuation, noise
and decoherence. Then, in Chapter 9, we examined, starting from first princi-
ples, under what circumstances the fluctuations of a quantum field transmute
into classical, stochastic fluctuations. We used a simple model to illustrate how
decoherence comes about in a quantum phase transition. We then used a par-
titioned interacting scalar field theory in de Sitter spacetime to show how in
the stochastic inflation paradigm the long-wavelength sector gets decohered and
becomes classical under the influence of the short-wavelength sector acting as
noise (more precisely, the rms value of the fluctuations can be treated as clas-
sical). Here we continue this investigation in early universe quantum processes,
focusing on three major topics: the origin and nature of noise from quantum
fields, structure formation from colored noises, and reheating from particle cre-
ation after inflation.
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448 Nonequilibrium quantum processes in the early universe

15.1 Quantum fluctuations and noise in inflationary cosmology

15.1.1 Inflationary cosmology

In modern cosmology, before the advent of the inflationary universe, the widely
accepted model which explains very well the present day observed universe
(according to the high-precision experiments of the 1990s and 2000s such as
COBE and WMAP) has been the so-called standard model [Pee80] based on the
Friedmann–Lemaitre–Robertson–Walker (FLRW) universe. Filled with a classi-
cal matter source with equation of state pressure p = γρ matter density, its scale
factor a(t) undergoes a power-law expansion a(t) = tα in cosmic time t. Thus for
a spatially flat FLRW universe, in the matter-dominated era γ = 0, α = 2/3 for
a pressureless fluid; and in the radiation-dominated era, γ = 1/3, α = 1/2 for a
relativistic fluid.

Since the 1980s the inflationary cosmology has become a widely accepted
paradigm to explain the observed large-scale flatness and homogeneity of the
universe [LytRio99, Rio02]. Inflation also provides an efficient mechanism for the
magnification of quantum fluctuations to cosmological scales, and the generation
of small curvature perturbations which in principle can produce the observed
cosmic microwave background (CMB) temperature anisotropies and provide the
seeds for the formation of large-scale structures from galaxies to superclusters in
today’s universe.

Inflationary cosmology can be represented by the same FLRW spacetime, but
instead filled with a constant energy density source which drives the universe
(again assuming a spatially flat metric) into a phase of exponential expansion,
a(t) = a0 exp(Ht), where H = ȧ/a is the Hubble expansion rate (a dot over
a quantity stands for a derivative with respect to cosmic time t). This is the
Einstein–de Sitter model obtained by de Sitter in 1917 from a solution of Ein-
stein’s equation with a cosmological term. When interpreted as classical matter
this constant energy density source corresponds to matter with an unphysical
equation of state p = −ρ because it admits acausal propagation. What turned
the de Sitter universe into a viable cosmological model was when Guth in 1981
proposed that this constant energy density in the potential energy is associated
with the expectation value of a quantum field (the Higgs or the gauge field) which
mediates some particle physics symmetry-breaking process in the early universe.
Inflation was originally motivated by the removal of monopole overabundance in
the GUT epoch, which it does, but turned out to be highly successful in address-
ing the flatness and horizon issues which are the more significant and immediate
problems in cosmology.

The quantum scalar field Φ which drives inflation, known as the inflaton,
evolves according to the equation

Φ̈ + 3HΦ̇ + dV [Φ]/dΦ = 0, (15.1)

where the potential V [Φ] can take on a variety of forms, such as the Φ4 double
well potential in Guth’s original “old” inflation [Guth81, Sato81]; an almost-flat
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15.1 Quantum fluctuations and noise in inflationary cosmology 449

Coleman–Weinberg potential (of a massless field with only radiative correction)
in the “new” inflation of Albrecht-Steinhardt and Linde [AlbSte82, Lin82]; a
m2Φ2 potential in Linde’s chaotic inflation [Lin85]; an exponential form giving
rise to power-law inflation [LucMat85] and many more later models suggested
for specific purposes. The main idea is to get the universe into a vacuum energy
dominated stage (the entry problem), to find ways (or rationale) to sustain the
inflation for at least 68 e-folding time so as to produce sufficient entropy content
of our present universe, and to get it out of this supercooled stage (the exit
problem) by reheating it to the radiation-dominated FLRW universe described
by the standard model.

Issues in the three stages pertaining to NEqQFT

Much work in the 1980s till now was devoted to the second issue, i.e. finding
the right potential for inflation to serve specific purposes (see, e.g. [SteTur84]).
Serious work on reheating started in the mid-1990s, but somewhat surprisingly,
the very first issue, the entry problem, i.e. how did the universe get into a vac-
uum dominated phase, has not been taken up and pursued in earnest in the
inflationary cosmology community, except for a brief period in the early 1990s
[SalBon91, Hod90, MMOL91, KBHP91]. In principle one expects this issue can
be resolved if we know what had happened in an earlier epoch. In this regard
there were studies in quantum cosmology in the 1980s pertaining to this question.
There were claims from both the no-boundary wavefunctions proposal of Hartle
and Hawking [HarHaw83] and the “birth” by tunneling idea of Vilenkin [Vil83b]
that these scenarios admit the de Sitter solution. This is an important issue
of principle, related to what metastable states can exist in the pre-inflationary
stage, what mechanisms can induce the universe to become vacuum dominated,
and the probability it actually did. At the level of ideas there were criticisms of
principle and of practice (e.g. [GiHaSt87, HawPag88, HolWal02, KoLiMu02]) and
there were many plausibility arguments presented. More quantitative methods
involve the derivation and solution of a Fokker–Planck equation for the distribu-
tion function constructed out of the universe’s quantum state, from which one
can examine the likelihood the universe could enter into a metastable state (the
false vacuum) and stay there long enough to start inflation. See, e.g. [Sta82].

For the second issue, on the dynamics of inflation, in Guth’s original model
(old inflation) with a double well potential, the universe gets out of the vac-
uum dominated stage by tunneling. However, the underlying nucleation process
happens infrequently and gives rise to a highly inhomogeneous universe. This
can be improved upon by invoking a nearly flat potential as in new inflation,
or by allowing the inflaton to slowly roll down the quadratic potential as in
chaotic inflation. In all these cases, a slow-roll condition is desirable to sustain
the inflationary expansion for a reasonable duration.

For the third issue, in conjunction with the so-called “graceful exit” prob-
lem, much detailed consideration has been devoted in the last 10 years to the
post-inflation reheating processes. This epoch after the inflationary expansion
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450 Nonequilibrium quantum processes in the early universe

contains several stages: preheating, reheating and thermalization. These pro-
cesses are important because the temperature and entropy generated as the
universe reheats after inflation are important parameters which enter into all
ensuing cosmological processes.

What we want to point out is that in all three stages, the basic issues can be
formulated in the language of NEqQFT, and be addressed with the techniques of
NEqQFT we have constructed in earlier chapters. For example, on the “entry” or
“get-started” issue, a more productive approach to the investigation on whether
any metastable state exists could be by means of the Fokker–Planck equation for
the distribution function (or a related master equation for the density matrix)
of the universe. The second issue on the energetics of inflation depends strongly
on the nature and dynamics of phase transition, whether it is first order via
nucleation, as in old inflation or second order via spinodal decomposition as in
new inflation. Vital issues in the quantum theory of structure formation, such
as when the long-wavelength sector of the inflaton becomes classical, and what
kind of noise the short-wavelength sector of quantum fluctuations engender, if
any, are fundamentally NEqQFT problems. The third stage of reheating involves
particle creation from the rapidly changing inflaton field as it descends a steep
potential well, and is reasonably well treated by the CTP 2PI effective action,
as we will illustrate in the last part of this chapter.

Stochastic inflation

To address these issues in some detail and to seek solutions, we now specialize
and delve into one such theory of inflation known as stochastic inflation which
was proposed by Starobinsky [Sta86] (see also earlier work by Vilenkin [Vil83a,
Vil83b]) and developed by many [BarBub87, Rey87, PolSta96, GoLiMu87,
NaNaSa88, NamSas89, Nam89, LiLiMe94, Hab90, StaYok94, Mat97a, Mat97b,
WinVil00]. In this theory the inflation field is divided into two parts at every
instant according to their physical wavelengths, i.e.

Φ(x) = Φ<(x) + Φ>(x) (15.2)

The first part Φ< (the “system field”) consists of field modes whose physical
wavelengths associated with physical momenta p ≡ k/a are longer than the de
Sitter horizon size, i.e. p < σH where σ is a parameter smaller than unity defining
the size of the coarse-graining domain and the shape of the window function.
The second part Φ> (viewed as the “environment field”) consists of field modes
whose physical wavelengths are shorter than the horizon size whereby p > σH.
Inflation continuously shifts additional modes of the environment field into the
system, stretching their physical wavelengths beyond the de Sitter horizon size.
Technically the system field can be obtained from the total field by introducing a
dynamic cut-off in momentum space through a suitable time-dependent window
function that filters out the modes whose frequencies are lower than the comoving
horizon size.
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15.1 Quantum fluctuations and noise in inflationary cosmology 451

Due to the exponentially rapid expansion of spacetime, fluctuations of the
inflaton field Φ(x) on super-horizon scales effectively “freeze” in a few Hubble
times H−1 after they leave the horizon. For this reason, it is often said that after
suitable smoothing on the super-horizon scales, the averaged field containing the
long-wavelength modes (the system field) Φ< can be considered to be classical.
The quantum field comprising of shorter wavelength modes (the environment
field) can effectively be viewed as a classical noise ξ driving the system field via
a Langevin equation of the form

Φ̇< +
1

3H
dV [Φ<]
dΦ<

= ξ (x, t) (15.3)

where V (Φ) is the inflaton potential, and the “noise field” ξ (x, t) is assumed for
simplicity (but not required – this would be true for free fields anyway) to be a
Gaussian random field characterized by its two-point function 〈ξ (x, t) ξ (x′, t′)〉.
This noise correlator plays a key role in stochastic inflation.

To examine the form of the noise field, one can first examine a free scalar
field in the de Sitter spacetime, wherein the scale factor (assuming a spatially
flat FLRW universe) a(t) ∼ eHt. (In reality the scalar field can only be approx-
imately massless and the spacetime approximately de Sitter, because otherwise
the universe will be forever inflating.) In Starobinsky’s original derivation [Sta86]
the noise correlator is given by

〈ξ (x, t) ξ (x′, t′)〉 =
(
H

2π

)2 sin θ

θ
δ (t− t′) (15.4)

where θ ≡ r/R; r ≡ |x − x′|, and R is the spatial averaging scale for the inflaton
field:

R(t) ≡ [σHa(t)]−1 (15.5)

with σ � 1.
This equation is the basis for the investigation of structure formation. Two

basic issues are: How does the long-wavelength sector become classical, and what
is the underlying mechanism? What makes the short-wavelength sector behave
like noise, and what kind of noise is it? As will be shown below, the characteristics
of the noise field play a pivotal role in determining the spectral function of
structures and the decoherence of the system field.

In this model, the partition of the system and environment modes is a crucial
element which affects the outcome of structure formation, since the noise gen-
erated from it after being amplified in the inflationary dynamics is responsible
for the structure of the late universe. Following Starobinsky’s proposal [Sta86]
many papers have been written using a Langevin equation with a white noise
source, but the justification was not so clearly understood. A few authors (e.g.
[HuPaZh93b, CalHu95, CalGon97, Mat97a, Mat97b]) took exception to this way
of noise generation and suggested that, rather than using a window function for

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


452 Nonequilibrium quantum processes in the early universe

free fields which contains an arbitrary parameter, an interacting quantum field
(which the inflaton is assumed to be) when partitioned into two sectors can natu-
rally produce noise which in general is colored and multiplicative. Recently it was
pointed out [WinVil00] that the white noise originating from a sharp momentum
cut-off (or the window function being a step function in Fourier space) has some
pathological behavior, whereas a smooth window function will necessarily lead
to a colored noise.

As noticed by Winitzki and Vilenkin (WV) [WinVil00], equation (15.4)
shows a surprisingly slow decay of correlations at large distances. For com-
parison, the two-point function of the time derivatives of the unsmoothed field
〈φ̇(x, t)φ̇(x′, t′)〉 at large separations r behaves as ∝ r−4 (here the angular brack-
ets denote vacuum expectation value rather than statistical average). One would
not expect a smearing of the field operators φ (x, t) on scales R to have such an
effect on correlations at distances r � R.

The analysis of WV shows that the origin of the unusual behavior of the
correlator found by Starobinsky is the sharp momentum cut-off in his smoothing
procedure. With a smooth cut-off, WV recover the r−4 behavior independently
of the cut-off window function and find that the time dependence of the noise
correlator at large times is generically ∝ exp (−2Ht) instead of a sharp δ-function
dependence of equation (15.4).

For the correct prediction of the density contrasts in a quantum theory of
structure formation in the early universe it is necessary to give a proper treatment
of quantum and classical fluctuations and a correct identification of the origin
and nature of noise. We have discussed the issue of decoherence in stochastic
inflation in Chapter 9. We will discuss the issue of noise and structures in two
separate sections below.

15.1.2 Noise in stochastic inflation

Noise from partitioning and smoothing a free field

Consider a free massive (m) scalar field Φ(x, t) in a spatially-flat Robertson-
Walker (RW) spacetime with metric

ds2 = −dt2 + a2(t)dx2 = a2(η)(−dη2 + dx2) (15.6)

where a(t) is the scale factor and η is the conformal time defined by a(t)dη = dt.
Expanding Φ in normal modes with the basis spatial wavefunctions

eik·x/(2π)3/2 of the spatially flat RW spacetime,

Φ (x, t) =
∫

d3k

(2π)3/2
[
akφk(t)eik·x + h.c.

]
(15.7)

the amplitude function φk(t) of the k mode obeys the equation of motion

φ̈k(t) + 3Hφ̇k(t) + ω2
kφk(t) = 0 (15.8)
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15.1 Quantum fluctuations and noise in inflationary cosmology 453

where ω2
k(t) ≡ p2 + m2, p ≡ k/a, k ≡ |k| and an overdot here denotes deriva-

tives with respect to cosmic time t.
In the conformally related field, the normal mode amplitude χk(η) = φka(η)

corresponding to φk obeys the equation of motion

χ′′
k(η) +

(
k2 + m2a2 − a′′

a

)
χk(η) = 0 (15.9)

where a prime denotes taking the derivative with respect to the conformal time
∂η = a∂t.

For the de Sitter universe, in a spatially flat RW coordinate representation,

a(t) = eHt (15.10)

the expansion rate (Hubble parameter) H ≡ ȧ/a is a constant in time and infla-
tion goes on forever. In conformal time (ranging from −∞ to 0)

η = − 1
a(t)H

(15.11)

the evolution equation for the amplitude function χk(η) of the conformally
related field becomes

χ′′
k(η) +

[
k2 − 1

η2

(
ν2 − 1

4

)]
χk(η) = 0 (15.12)

where the parameter ν is defined as

ν =

√
9
4
− m2

H2
≡ 3

2
− εm (15.13)

The generic solution to this equation can be expressed in terms of Bessel functions
of the first and second kind,

c1
√
|η|Jν(k|η|) + c2

√
|η|Yν(k|η|) (15.14)

Requiring each χk to match the plane wave solution e−ikη/
√

2k for k � aH,
when wavelengths are too short to feel any spacetime curvature effects, produces
the standard Bunch–Davies solution

χk(η) =
√
π

2

√
|η|H(1)

ν (k|η|) (15.15)

where

H(1)
ν (x) = Jν(x) + iYν(x) (15.16)

is the Hankel function of the first kind. The amplitude function of the kth normal
mode of the original scalar field φ is given by

φk(η) =
√
π

2
H|η|3/2H(1)

ν (k|η|) (15.17)

which in the massless case (ν = 3
2 ) becomes

φk(η) = H
kη − i√

2k3
e−ikη (15.18)
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454 Nonequilibrium quantum processes in the early universe

In an expanding universe each mode will successively leave the horizon when its
physical wavelength p−1 = a/k reaches H−1. Thus for a de Sitter universe, at
the horizon crossing, |kη| = 1.

Spatial averaging and noise

Field fluctuations on super-horizon scales behave effectively as classical fluctua-
tion modes with random amplitudes. This is conventionally described by aver-
aging the field Φ in space over super-horizon scales and treating the resulting
field Φ< as a classical stochastic field satisfying a Langevin equation with a noise
source described by a Gaussian random field of the shorter wavelength modes,
given by equation (15.3); see [Sta86, GonLin86, NaNaSa88, NamSas89, Nam89,
Mij90, SalBon91].

The averaging of the field Φ is performed by means of a suitable window
function Ws (x;R) with a characteristic smoothing scale R,

Φ̄ (x, t) ≡
∫

d3x′φ (x′, t)Ws (x − x′;R) (15.19)

Here, the physical smoothing scale is taken to be σ−1 times larger than the
horizon size, with σ � 1. The corresponding comoving scale is

R (t) =
1

σHa (t)
(15.20)

The volume-averaged field has a mode expansion

Φ̄ (x, t) =
∫

d3k

(2π)3/2
[
w(kR)akφk (t) eik·x + h.c.

]
(15.21)

where w(kR) is a suitable Fourier transform of the window function Ws.
Starobinsky used a sharp step-function cut-off in Fourier space:

w(kR) = θ(1 − kR) (15.22)

The volume-averaged inflaton field is treated as a classical field Φ< satisfying
the Langevin (15.3) under the potential V (Φ) and an effective “noise field”
source ξ (x, t). In the original proposal the noise source ξ (x, t) was heuristically
defined as a stochastic field that corresponds to the quantum operator of the
free field derivative ˙̄Φ, in the sense that any average of ξ, such as the correla-
tor 〈ξ (x, t) ξ (x′, t′)〉, is assumed to be the same as the corresponding quantum
expectation values of ˙̄Φ in the vacuum state (which for de Sitter spacetime is the
standard Bunch–Davies vacuum). The effective noise field ξ defined in this way
is a Gaussian random field with zero mean, so the correlator 〈ξ (x, t) ξ (x′, t′)〉
completely describes its properties.

We show below the calculation of the noise correlator 〈ξ (x, t) ξ (x′, t′)〉 from
a computation of the corresponding expectation value of the quantum “noise
operator” ˙̄Φ following WV [WinVil00]. The noise correlator generally depends
on the particular window function Ws (x;R) and on the parameter σ. These
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15.1 Quantum fluctuations and noise in inflationary cosmology 455

parameters can in principle be related to observational data such as from the
WMAP via the standard theory of structure formation, a topic we will come to
in a later section.

Correlator of noise

Here we derive the correlators of the effective noise field ξ (x, t) for an arbi-
trary smoothing window. In stochastic inflation the noise field ξ (x, t) is defined
through the time derivative of the averaged field ˙̄Φ in mode expansion

˙̄Φ (x, t) =
∫

d3k

(2π)3/2
[
vk (η) ake

ik·x + h.c.
]

(15.23)

where

vk (η) ≡ d

dt
[w (kR)φk (η)] =

[
−HkRw′ (kR)φk (η) + w (kR) φ̇k (η)

]
(15.24)

In the limit of σ � 1 we may disregard the second term in the square brackets.
The noise correlator then becomes

〈ξ (x1η1) ξ (x2, η2)〉 =
H4η1η2

4π2rσ2

∫ ∞

0

dk sin kr h (k) (15.25)

where h(k) is a dimensionless function of two variables η1, η2

h (k) ≡ (1 + iy1) (1 − iy2) eik(η2−η1)w′
(
−y1

σ

)
w′
(
−y2

σ

)
(15.26)

where y1 = kη1, y2 = kη2. The asymptotic form of equation (15.25) at large r is
given by

〈ξ (x1, η1) ξ (x2, η2)〉 = −
(
H2η1η2

)2
2π2r4σ4

|w′′ (0)|2 + O
(
r−6
)

(15.27)

Now examine the unsmoothed correlator of quantum field derivatives given at
arbitrary space and time points by (Appendix C of WV):〈

Φ̇ (x1, t1) Φ̇ (x2, t2)
〉

=
1

2π2

∫ ∞

0

φ̇k (t) φ̇∗
k (0)

sin kr

r
kdk

=
H4

2π2
(η1η2)

2 3 (η1 − η2)
2 + r2[

(η1 − η2)
2 − r2

]3 (15.28)

As expected, it diverges on the lightcone where r becomes |η1 − η2|. The asymp-
totic form of equation (15.28) at large distances r is〈

Φ̇ (x1, t1) Φ̇ (x2, t2)
〉

= −H4 (η1η2)
2

2π2r4
+ O

(
r−6
)

(15.29)

We see that the stochastic source correlator (15.27) is very similar to the quan-
tum field correlator (15.29). Note also that the asymptotic (15.27) is essentially
independent of the shape of the window function, since the value |w′′ (0)| as
indicated by equation (15.21) has the meaning of the window-averaged squared
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456 Nonequilibrium quantum processes in the early universe

distance and must be of order 1 because the window profile W (q) starts to decay
at q ∼ 1 by construction.

We can obtain a simpler expression for the correlator in the limit when the
smoothing parameter σ is small while the product σHr remains finite. A rescal-
ing r → σHr ≡ ρ and the corresponding change of variable k ≡ σHκ simplify
equation (15.25) because we can omit terms of order σ and smaller; in particu-
lar, the product of mode functions is simplified to

φ∗
k (η1)φk (η2) =

1
2Hκ3σ3

(
1 + O

(
σ2
))

(15.30)

The leading term in the correlator, expressed through κ and ρ, becomes

〈ξ (x1, η1) ξ (x2, η2)〉 =
H6η1η2

4π2ρ

∫ ∞

0

dκ sinκρw′ (−Hη1κ)w′ (−Hη2κ) + O
(
σ2
)

(15.31)
Therefore, in the limit of small σ but finite σHr, the correlator as a function of
the “effective distance” ρ and the time difference (expressed by η2/η1) becomes
independent of σ.

The expression in equation (15.31) allows us to compute the correlator at all
distances in the limit of small σ. Under this condition, for a Gaussian smoothing
window, w (p) = exp

(
−p2/2

)
, we obtain

〈ξ (x1, η1) ξ (x2, η2)〉

=

(
H4η1η2

)2
4π2ρ

∫ ∞

0

exp
[
−H2 η

2
1 + η2

2

2
κ2

]
κ2 sinκρdκ

=

(
H4η1η2

)2
μ4

4π2ρ4

[
1 −
(

1
μ
− μ

)
i

√
π

2
erf
(

iμ√
2

)
exp
(
−μ2

2

)]
(15.32)

where

μ ≡ ρ√
H2 (η2

1 + η2
2)

(15.33)

is a dimensionless quantity. (A plot of this function for η1 = η2 can be found
in WV.) The leading term of the expression in brackets in equation (15.32) at
large μ is

(
−2μ−4

)
, and since for the Gaussian window w′′ (0) = −1, we recover

equation (15.27). The value of the correlator at the coincident points (ρ = 0) as
a function of time separation is

〈ξ (0, η1) ξ (0, η2)〉 =
H4 (η1η2)

2

2π2 (η2
1 + η2

2)2
=

H4

8π2

1
cosh2 HΔt

(15.34)

We can also obtain the leading asymptotics of the unequal-time correlator at
large time separations. Again start with equation (15.25) and assume that the
time separation is much greater than the Hubble time, η2/η1 ≡ a−1 � 1. For
simplicity we can choose the initial time such that Hη1 = −1. Using an expansion
(see equation (A12) of WV) for w

(
a−1k

)
at small a−1κ (since the integration is
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15.2 Structure formation: Effect of colored noise 457

effectively performed over a fixed finite range of k) we obtain

〈ξ (x1, η1) ξ (x2, η2)〉 =
H2w′′ (0)

4π2σ3a2Hr

∫ ∞

0

dk k sin kr w′
(

k

σH

)

× eik/H
(

1 + i
k

H

)
+ O

(
a−4
)

(15.35)

The integral in equation (15.35) is time-independent. Therefore the correlator
decays as a−2 = exp (−2Ht) with time separation at any fixed distance. This
derivation shows how a regular window function produces a colored noise.

Colored noise from coarse graining an interacting field

In addition to using a smoothing window function as illustrated in the above
section [WinVil00, Mat93, Rio02] one could make a frequency or wavelength
partition, splitting the short- and the long-wavelength sectors. This has been
treated in Chapter 5 for a scalar field in Minkowski spacetime and in Chapter 9
for a conformally-related theory in de Sitter spacetime. We now turn to the issue
of structure formation from a colored noise.

15.2 Structure formation: Effect of colored noise

A standard mechanism for structure formation is the amplification of primordial
density fluctuations by the evolutionary dynamics of spacetime [Sak66, LifKal63,
Bar80, Muk05]. In the lowest order approximation the gravitational perturba-
tions (scalar perturbations for matter density and tensor perturbations for grav-
itational waves) obey linear equations of motion. Their initial values and dis-
tributions are stipulated, generally assumed to be a white noise spectrum. In
these theories, fashionable in the 1960s and 1970s, the primordial fluctuations
are classical in nature. In the standard model of FLRW cosmology, the scale
factor of the universe growing in a power law of cosmic time generates a density
contrast which turns out to be too small to account for the galaxy masses. The
observed nearly scale-invariant spectrum [Har70, Zel72] also does not find any
easy explanation in this model [Pee80, ZelNov85].

Inflationary models explain structure formation from amplification of vacuum
fluctuations of a scalar field Φ, the inflaton; see [GuthPi82, Sta82, MukChi82,
Haw82, BaStTu83, Bra83, MuFeBr92, DeGuLa92, YiViMi91, YiVis92, YiVis93,
YiVis93b, GlMaRa82, BoVeHo94, Bur95, Muk05]. Consider the “eternal infla-
tion” stage where the universe has locally a de Sitter geometry, with a constant
Hubble radius (de Sitter horizon) lh = H−1. (In reality H cannot strictly be a
constant, for otherwise the universe cannot reheat to our present FLRW state.)
The physical wavelength l of a mode of the inflaton field is l = p−1 = a/k, where
k is the wavenumber of that mode. As the scale factor increases exponentially,
the wavelengths of many modes can grow larger than the horizon size. After
the end of the de Sitter phase, the universe begins to reheat, turning into a
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458 Nonequilibrium quantum processes in the early universe

radiation-dominated Friedmann universe with power law expansion a(t) ∼ tn.
In this phase, the Hubble radius grows much faster than the physical wave-
length, and some inflaton modes will reenter the horizon. The fluctuations of
these long-wavelength inflaton modes that went out of the de Sitter horizon and
later came back into the FLRW horizon play an important role in determining
the large-scale density fluctuations of the early universe, which in time seeded
the galaxies.

The stochastic inflation paradigm, after a proper treatment of decoherence
of the long wavelength modes1 and a first-principles derivation of noise (arising
from the short wavelength sector), could thus provide a sound rationale for the
Langevin equation depicting the dynamics of the inflaton perturbations or the
Fokker–Planck equation describing the evolution of their probability distribu-
tions.

A key issue in the solution of the Langevin or Fokker–Planck equation is
the choice of the initial conditions for the perturbations. Many authors (see
[SalBon91, Hod90, MMOL91, KBHP91]) agree that it should be consistent to
assume the spatial homogeneity of our observable local patch of the universe, and
therefore the vanishing of all fluctuations right before the moment it crosses the
horizon size, about 60 e-folds before the end of inflation, since at that time only
fluctuations on larger scales could have grown significantly. Therefore, all points
inside the present Hubble radius (at that time contained in the same coarse-
graining domain) must have the same local value of the scalar field, although
this value can be different from the one assumed in other regions of the Universe.

Even if it is generally assumed that inflation started well before the last 60
e-folds, for the white-noise case the evolution of fluctuations is completely insen-
sitive to what happened before that epoch and the constraint really becomes
a new initial condition. In contrast, non-Markovian fluctuations generated by
colored noises [HuPaZh93b] will retain some memory of the evolution before the
constraint.

The linkage of colored noise-generated structure to observations in WMAP
was suggested in [MaMuRi04] (MMR), where evidence was found for a blue
tilt in the power-spectrum on the largest observable scales as a consequence
of the non-Markovian dynamics near the constraint. This is due to the fact
that the increased noise correlation time (with respect to the white-noise case)
acts as a sort of “inertia” against the growth of the perturbations after the
constraint, thereby resulting in a suppression of the power-spectrum on the scales
that crossed the horizon in the ensuing few Hubble times. This is an interesting

1 There are different views on how the long-wavelength modes got decohered, including the
extreme one that no dynamical explanation needs to be provided. This so-called
decoherence without decoherence theme first proposed by Polarsky and Starobinsky
[KiPoSt98] is attractive more because of its expedience than truth value. The original form
has been revised after meeting with criticisms. For a more careful recent study on this
proposal, see, e.g. [CamPar05]. A different approach is suggested by Woodard
[TsaWoo05, Woo05a, Woo06]. For a recent review, see [Win06].
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15.2 Structure formation: Effect of colored noise 459

feature, since the CMB anisotropy measurements made by WMAP [Spe03] give
some evidence for a suppression of the low multipoles, consistent with earlier
analogous results found by COBE [Ben96], although the statistical significance
of such a suppression is not large [TeCoHa03, OTZH04, Efs03, Efs04, BiGoBa04].

A related paper [LMMR04] (LMMR) points out the low multipoles suppres-
sion might also be a consequence of the colored noise. Compared to white noise, a
smooth choice of the window function will in fact slightly suppress the contribu-
tion to the noise given by the field modes whose frequency is immediately higher
than the cut-off scale σ(aH) (while enhancing the lower frequencies). Right
after the time τ∗ at which the homogeneity constraint is set on the comoving
patch of the universe, fluctuations with k � σa∗H∗ will grow less than in the
white-noise case before freezing out, and if σ is not too small this suppression
can be effective also on observable scales. Even in the Markovian case, the noise
correlation function in configuration space has a dependence of σ beyond the
second order which could show up in the power spectrum.

Before getting into the details we want to add a qualifying remark on how this
mechanism is placed in relation to other mechanisms so as to avoid a skewed per-
spective. The colored noise explanation of the suppression of lower multipoles
(blue tilt) mode is only one amongst many proposed. As cautioned in the begin-
ning, we select this topic mainly to illustrate some key ideas in NEqQFT, in this
case, the effect of quantum noise on structure formation in stochastic inflation.
Adopting this perspective we hope that even if at the end the actual physical
scenario may not survive over other competing theories, the readers can learn
the physics of NEq quantum fields through a detailed analysis of these sample
problems.

15.2.1 Colored noise from smooth window functions

Partitioning and smoothing

As discussed earlier, if one uses the cosmological horizon as the partition scale,
the environment field Φ> consisting of the subhorizon (short-wavelength) modes
can be sieved out by the use of a suitable time-dependent high-pass filter
in Fourier space. This is achieved by means of a different window function
W̃σ(y), y ≡ kη such that W̃σ(y) = 0 for k|η| � σ and W̃σ(y) = 1 for k|η| � σ.
(Note that this window function used by LMMR is complementary to the one
used by WV discussed in the last section, which is a low-pass filter.) The param-
eter σ defines the size of the coarse-graining domain and an “effective horizon”
σ(aH):

Φ> =
∫
d3k

W̃σ(kη)
(2π)3/2

[
akφk(η)eik·x + h.c.

]
(15.36)

In the stochastic inflation paradigm, the quantum fluctuations on subhorizon
scales act as a classical noise source ξ with a given probability distribution P [ξ]
in a Langevin equation which drives the super-horizon modes. Our discussions
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460 Nonequilibrium quantum processes in the early universe

in the previous section on the origin and nature of noise from quantum fluctu-
ations and on the decoherence of the long-wavelength mode by this noise may
serve as justification for such a proposal. Technically, the quantum problem of
computing the expectation value of the coarse-grained field is thus reduced to
the classical problem of evaluating the mean of the solution to the stochastic
evolution equation averaged over all possible noise configurations.

Following such a prescription, we can split the scalar field Φ = φ̄ + ϕ into
its statistical mean value φ̄ whose normal mode amplitudes satisfy the classi-
cal equation of motion (15.8) and a fluctuation field ϕ[ξ], with zero mean over
the distribution P [ξ].2 The stochastic equation of motion for the super-horizon
fluctuations was shown before to be

ϕ̈k + 3Hϕ̇k −
(
k2

a2
−m2

)
ϕk =

ξk
a3

(15.37)

or, for the conformally related field normal mode amplitude χk = aφk in con-
formal time η, in a similar decomposition χk = χ̄k + χ̃k the mean field satisfies
(15.9) and the fluctuation field modes χ̃k obeys

χ̃′′
k +
(
k2 + m2a2 − a′′

a

)
χ̃k = ξk (15.38)

The noise ξ is a Gaussian random field, whose configurations are weighted by
the functional probability distribution

P [ξ] = N exp
[
−1

2

∫
d4xd4x′ξ(x)N−1(x, x′)ξ(x′)

]
(15.39)

= N exp
[
−1

2

∫
dηdη′d3kd3k′ξk(η)N−1

k,k′(η, η′)ξk′(η′)
]

(15.40)

where N−1
k,k′(η, η′) is the functional inverse of

Nk,k′(η, η′) = δ(k + k′)
Re[f(y)f∗(y′)]

2k3
(15.41)

and, with y ≡ kη,

f(y) =
√

2k3(W̃ ′′
σχk + 2W̃ ′

σχ
′
k) (15.42)

This probability distribution allows us to calculate the statistical mean value
〈. . .〉ξ of any ξ-dependent quantity averaged over the noise field configurations,
defined as

〈. . .〉ξ =
∫
D[ξ] . . . P [ξ] (15.43)

2 This is true at linear order because nonlinear corrections will shift the mean value. Also, if
Φ is the inflaton field then φ̄ should be the homogeneous background, and as such have no
Fourier decomposition. All is well in the case of a test field with no metric fluctuations,
which is what we will assume here.
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15.2 Structure formation: Effect of colored noise 461

Then, by definition the mean 〈ξ(η)〉ξ of the noise vanishes at all times, while the
two-point correlation function is by definition

〈ξk(η)ξk′(η′)〉ξ = Nk,k′(t, t′) (15.44)

This correlation function, the noise kernel, completely characterizes the statisti-
cal properties of the Gaussian noise field. In configuration space it reads

〈ξ(x)ξ(x′)〉ξ =
∫

d3k
(2π)3

eik·(x−x′) 1
2k3

Re[f(y)f∗(y′)] (15.45)

As we saw before the statistical behavior of the noise depends critically on the
shape of the filter. Choosing the special window function W̃σ(kη) = θ(k|η| − σ)
leads to the standard white-noise two-point correlation function. For x = x′ it
reads

〈ξ(x)ξ(x′)〉ξ =
H3

4π2

(
1 + O(σ2)

)
δ(t− t′) (15.46)

which is highly divergent for t = t′ and has a vanishing characteristic correlation
time. In contrast a smooth window function yields a correlation function with
no divergence and a finite correlation time, therefore producing a colored noise,
e.g. with

W̃σ(y) = 1 − e−
y2

2σ2 (15.47)

the two-point correlation function at r = 0 is given by

〈ξ(t)ξ(t′)〉ξ =
H4

8π2

1
cosh2(H(t− t′))

+ O(σ2) (15.48)

which behaves like e−2H(t−t′) asymptotically. This asymptotic behavior is quite
general for a wide class of smooth window functions [WinVil00].

Fluctuations and structures

The particular solution of the evolution equation (15.38) for the fluctuations χ̃k

sourced by the noise field ξ can be expressed in terms of the general solutions
χ1 =

√
k|η|Jν(|y|) and χ2 =

√
k|η|Yν(|y|) of the homogeneous equation (15.12).

This solution reads

χ̃k[ξ](η) =
∫ η

ηi

dη′ g(y, y′) ξk(y′) (15.49)

where

g(y, y′) =
χ1(y)χ2(y′) − χ2(y)χ1(y′)
χ′

1(y′)χ2(y′) − χ′
2(y′)χ1(y′)

(15.50)

and ηi is the beginning of inflation, at which we set the initial condition
χ̃k(ηi) = 0.
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462 Nonequilibrium quantum processes in the early universe

Keeping this assumption, LMMR impose the constraint that at a much later
time η∗ (roughly about 60 e-folds before the end of inflation) there are no fluctu-
ations in that part of the universe corresponding to the present observable sky.
This is motivated by the fact that all the points we observe today with substantial
homogeneity were included at η∗ in the same coarse-grained domain.3 Physically
this amounts to the assumption that at η∗ the comoving patch of the universe we
observe today has complete homogeneity and all fluctuations on smaller scales
were generated later by the stochastic source represented by the noise term.4

There is no assumption made on the behavior of larger unobservable scales.
We are thus led to consider (for a given noise configuration) a different solu-

tion for the subsequent evolution of the fluctuations, obtained as in (15.49) by
starting the integration at η∗, when a new (stochastic) initial condition holds.
In turn, χ̃k[ξ](η∗) is determined again from (15.49) with the usual vanishing ini-
tial condition at ηi. However, as long as we are dealing with points inside the
present observable universe, we can skip the stochastic initial conditions η∗ since
their inverse Fourier transform is assumed to vanish. Therefore, in configuration
space the subsequent evolution of the fluctuations will only contain noise modes
integrated after η∗. Thus, for relevant x’s we may write

ϕ(x, η) =
∫

d3k
(2π)3/2

eik·x

a

∫ η

η∗

dy′ g(y, y′) ξk(η′) (15.51)

and

ϕ(x, η∗) =
∫

d3k
(2π)3/2

eik·x

a∗

∫ η∗

ηi

dη′ g(y∗, y) ξk(y′) (15.52)

where the first equation is only valid for scales inside our observed patch of the
universe.

As expected, since the fluctuation ϕk[ξ] is linear in ξ, at all times we have that

〈ϕ[ξ](η)〉ξ = 0 (15.53)

while the two-point correlation function in x1 and x2 = x1 + r can be obtained
by integrating the noise correlation function (15.41). LMMR find

C(r, η) ≡ 〈ϕ[ξ](x1, η)ϕ[ξ](x2, η)〉ξ =
∫

d3k
(2π)3

eik·r
|I1(k)|2

2k3
(15.54)

3 Introduced first by Salopek and Bond [SalBon91], such a constraint is necessary if one
wants to use the variance of the single-point probability distribution (which has no spatial
information encoded) to extract some information on the cosmic microwave background.
Without this constraint, the variance will be much larger because fluctuations (specially at
the beginning of inflation) add up very rapidly over time. However, this variance can now
only be used to model the structure on ultralarge scales (of the order of the wavelength of
the first modes crossing the Hubble radius).

4 In principle, solving the Langevin equation with the full space dependence may not require
the imposition of this constraint, because the correlation function is able to distinguish the
scales. At any time, as a consequence of the smoothing, fluctuations on scales smaller than
the filtering scale will not appear (as in white noise) or will appear only in a finite
frequency range around this scale (as with colored noise). In either case imposition of the
window function could effectively serve the function of the homogeneity constraint.
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15.2 Structure formation: Effect of colored noise 463

where

I1(k) =

√
2k3

a

∫ η

η∗

dη′ g(y, y′)(W̃ ′′
σχk + 2W̃ ′

σχ
′
k) (15.55)

In the same way one can calculate the correlation function evaluated at η∗,
yielding

C∗(r, η∗) ≡ 〈ϕ[ξ](x1, η∗)ϕ[ξ](x2, η∗)〉ξ =
∫

d3k
(2π)3

eik·r
|I2(k)|2

2k3
(15.56)

where I2(k) has the same form as I1(k) but it refers to the time interval [ηi, η∗].
One can also define the mixed correlation function of the scalar field pertur-

bations evaluated at different times:

C×(r, η, η∗) ≡ 〈ϕ[ξ](x1, η)ϕ[ξ](x2, η∗)〉ξ =
∫

d3k
(2π)3

eik·r
Re[I1(k)I∗2 (k)]

2k3
(15.57)

With these correlation functions C(r, η), C∗(r, η∗), C×(r, η, η∗) one can proceed
to calculate the conditional correlation function of the scalar field perturbations
– conditional (subscript c) here referring to the constraint defined in the set-up
of the initial conditions described above. In the physically reasonable limit of
ηi � η∗ LMMR [LMMR04] obtained

〈ϕ(x1)ϕ(x2)〉c � C(r) (15.58)

This yields the power spectrum Pδϕ(k) of the fluctuations, defined by

〈ϕ(x1)ϕ(x2)〉c =
1
4π

∫
d3k eik·r

Pδϕ(k)
k3

(15.59)

as

Pδϕ(k) =
1

4π2
|I1(k)|2 (15.60)

In the small-σ limit the standard scale-invariant result Pδϕ(k) = H2/4π2 is
recovered.

15.2.2 Curvature perturbations and blue tilt

So far this treatment has been under the test-field approximation, meaning that
the background spacetime where the quantum field propagates is assumed to be
fixed, i.e. the de Sitter universe. But in reality the quantum field contributes
to the energy–momentum tensor which determines the evolution of the scale
factor, via the slow-roll Friedmann equation H2 � (8πG/3)V (φ), and the field
perturbations induce fluctuations in the metric. These metric perturbations need
be considered alongside the scalar field perturbations ϕ. Let ψ be the curvature
perturbation, which is gauge dependent. To avoid spurious coordinate effects it
is preferable to use the gauge-invariant comoving curvature perturbation R =
ψ + H(ϕ/φ̇) which measures the intrinsic spatial curvature on hypersurfaces of
constant time [Rio02] as the physical degrees of freedom.
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464 Nonequilibrium quantum processes in the early universe

Defining in conformal time v = a2φ′/a′, the variable u = −vR satisfies the
equation of motion

u′′ −∇2u−
(
v′′

v

)
u = 0 (15.61)

Expanding the last term to first order in the slow-roll parameters εV ≡
−3Ḣ/H2; ηV ≡ V ′′/3H2 formed from the Hubble parameter and the inflaton
potential, one finds

v′′

v
� 1

η2

(
ν2 − 1

4

)
(15.62)

where ν � 3
2 + 3εV − ηV .

We see that in the slow-roll approximation the gauge-invariant normal modes
uk satisfy the same equation of motion (15.12), the only difference enters in the
definition of the parameter ν labeling the solutions:

u′′
k +
[
k2 − 1

η2

(
ν2 − 1

4

)]
uk = ξk (15.63)

We can then apply to R the results derived for the power spectrum of the
perturbations of a test scalar field, concluding that for the curvature perturbation
we also have PR(k) ∝ |I1(k)|2.

In the limit k|η| � σ � 1 which is reasonably satisfied on cosmological scales,
the power spectrum simplifies to

PR(k) = A2
RW̃ 2

σ (k|η∗|)(k|η|)2ηV −6εV (15.64)

Since W̃ 2
σ < 1, this shows a blue tilt on large observable scales with k ∼ σa∗H∗,

corresponding to physical lengths about σ−1 times greater than the present Hub-
ble radius. In the limit σ � k|η∗| (since W̃σ(k|η∗|) � 1) we recover the ordinary
result

PR(k) = A2
R(k|η|)2ηV −6εV (15.65)

This blue tilt stems from the fact that a smooth window function does not make
a sharp separation in Fourier space but it gradually weighs the modes, allowing
for a small low-frequency contribution to the short-wavelength part of the field
(in terms of which the noise is defined) while depleting modes whose wavelength
is immediately smaller than the cut-off scale. The colored noise originated from
such a window function is thus able to generate fewer fluctuations than a white
noise on scales slightly smaller than the comoving coarse-graining domain.

As a consequence, under the constraint that in our comoving patch of the
universe the fluctuations can grow only after η∗, the scales that are leaving the
horizon in the following few Hubble times receive fewer “random kicks” before
freezing out than in the white-noise case. Therefore, the power spectrum is a
function of k smoothly interpolating between the values 0 and 1 it assumes for
small and large k, respectively.
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15.2 Structure formation: Effect of colored noise 465

This power spectrum can be used to calculate the CMB multipoles predicted
by a specific choice of the window function W . Quite generally, we expect to
find a suppression of the lowest multipole, which is sensitive to a modification
of the power spectrum on this very large scale. However, in order to quantify
this suppression one needs to choose the shape of the window function and
the precise time η∗ at which the constraint is set. As mentioned before the
significance of the low multipole suppression varies depending on the choice of
the constraint time. Detailed description can be found in LMMR, where our
exposition here is adapted from.

15.2.3 Structures from coarse graining an interacting field

As we learned earlier colored noise can also be generated by coarse graining a sec-
tor of one partitioned interacting quantum field [CalHu95, CalGon97, Mat97a,
Mat97b]. In Chapter 5 we derived the influence functional describing the effect of
high-frequency modes on the low-frequency sector. The real part of the influence
action contains divergent terms and should be renormalized. The imaginary part
is finite and is associated with the decoherence process. From this one can derive
the renormalized semiclassical Langevin equation governing the system field (the
long-wavelength sector) driven by a noise originating from coarse graining the
environment field (the short-wavelength sector). We can use this equation to
understand the generation of classical inhomogeneities from quantum fluctua-
tions, obtaining their power spectrum and be able to compare with observational
data such as from WMAP.

In the φ4 model used by Lombardo and Nacir [LomNac05] we presented in
Chapter 9, there are two such sources ξ2 and ξ3, associated with the interac-
tion terms φ2

<φ
2
> and φ3

<φ> respectively. The full influence function is given in
(9.112). Reading the noise kernels off that equation, we may now treat the gen-
eration of inhomogeneities with noise arising from one interacting quantum field.

We are interested in finding the power spectrum of perturbations to the infla-
ton field up to � and λ2 order. To carry this out, we split the system field as
φ< = φ0(η) + ϕ<, where we identify φ0(η) as a classical background field which
satisfies the slow-roll conditions. The power spectrum of the field fluctuations
ϕ< may be expressed as Pϕ(k) = 2π2k−3Δ2

ϕ(k), with Δ2
ϕ(k) defined by

〈ϕ<(x)ϕ<(x′)〉 =
∫

d3k
Δ2

ϕ(k)
4πk3

exp(−ik · r) (15.66)

where r ≡ x − x′.
Expanding the semiclassical Langevin equation up to linear order in the mode

amplitude of interest ϕ<(�k), we obtain

φ′′
0(η) + 2H̃φ′

0(η) + 4λa2φ3
0(η) = 0 (15.67)

ϕ′′
<(�k, η) + [k2 + 12λa2φ2

0(η)]ϕ<(�k, η) + 2H̃ϕ′
<(�k, η) = −ξ2(�k, η)

a2
φ0(η)

(15.68)
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466 Nonequilibrium quantum processes in the early universe

where terms which do not contribute to the power spectrum up to order � have
been discarded. The term with the ξ3 noise source gives a zero contribution
due to our approximations and the orthogonality of the Fourier modes. Note the
presence of the ξ2 noise source, which is instrumental to the decoherence process.

A general solution ϕ< to equation (15.68) is made up of two parts: a part
ϕq
< which is a solution to the homogeneous equation (i.e. without the source

term on the right-hand side) and a particular solution ϕξ
< with vanishing initial

conditions. Namely, ϕ<(�k, η) = ϕξ
<(�k, η) + ϕq

<(�k, η). The first part is made up
of “intrinsic fluctuations” which coincide with the quantum fluctuations of the
free field. The second part is sometimes called “induced fluctuations” referring
to the influences from the environment. Under some reasonable approximations
the result is analogous to that for the linear quantum Brownian motion (QBM)
[Zha90, HuPaZh92, HuPaZh93a, PaHaZu93, Paz94, HalYu96, KUMS97]. Corre-
spondingly the quantity Δ2

ϕ(k) has two contributions:

Δ2
ϕ(k) = Δ2

ϕq (k) + Δ2
ϕξ(k) (15.69)

Because in equation (15.68) the dissipation kernel is assumed to be small, the first
part follows an almost unitary evolution of the initial density matrix, yielding
the usual result for the case of the free field: Δ2

ϕq (k) = (H/2π)2 (1 + k2η2). The
second part is due to the ξ2 noise source and can be expressed as

Δ2
ϕξ(k) = −λ2 144

π2
k3

∫ η

ηi

dη1

∫ η

ηi

dη2 a4(η1)a4(η2)

×φ0(η1)φ0(η2)h(k, η, η1)h(k, η, η2)

×ReGΛ2
F (η1, η2,�k) (15.70)

where

h(k, η, η′) ≡ 1
a(η)a(η′)

[
sin[k(η − η′)]

k

(
1 +

1
k2ηη′

)
− cos[k(η − η′)]

k2ηη′
(η − η′)

]
(15.71)

On the other hand, the usual contribution Δ2
ϕq (k) is independent of k for a fixed

value of kη, corresponding to a nearly scale-invariant spectrum, whereas Δ2
ϕξ(k)

depends on k and Λ.
Thus, concerning the influence of the environment on the power spectrum

for some modes in the system, the results of Lombardo and Nacir [LomNac05]
indicate that the contribution to the spectrum from the unitary evolution of
the Bunch–Davies initial condition dominates over the contribution from the
system–environment interaction.

15.2.4 Structures from interaction with other fields

In this last subsection we turn to structure formation from colored noise gen-
erated from coarse graining some other quantum field(s) the inflaton interacts
with, using the two-field model discussed in Chapter 5. We report on the findings
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15.2 Structure formation: Effect of colored noise 467

of Wu et al. [WuNgLeeLeeCha06], who show that the inflaton fluctuations driven
by the colored noise are strongly dependent on the onset of inflation and become
scale-invariant asymptotically at small scales. These induced fluctuations would
grow with time only in a certain intrinsic time-scale. For this proposal to work,
one needs to assume that the gravitational perturbations associated with the pas-
sive (or induced) quantum field fluctuations can become larger than the active
(or intrinsic) fluctuations. Some mechanism should be present to suppress the
active fluctuations for this assumption to be valid. Only in the (hitherto not eas-
ily explicable) case when the induced fluctuations contribute a significant portion
to the density perturbation would they cause a suppression of the density power
spectrum on large scales which shows up as a depression of low-l multipoles in
CMB. Of special interest to colored-noise induced structure formation is that the
observed low CMB quadrupole may open a window on the physics of the first
few e-foldings of inflation.

Consider an inflaton field Φ with potential V (Φ) coupled to a massive scalar
quantum field Ψ described by the Lagrangian

L =
−1
2

gμν∂μΦ ∂νΦ +
−1
2

gμν∂μΨ ∂νΨ − V (Φ) −
(
m2

Ψ

2
Ψ2 +

g2

2
Φ2Ψ2

)
(15.72)

where V (Φ) is the inflaton potential that complies with the slow-roll conditions
and g is a coupling constant between Φ and Ψ. Thus, we can approximate the
spacetime during inflation by a de Sitter metric given by equation (15.6). We
can rescale a so that at the initial time of the inflation era, ηi = −1/H. In
the influence functional approach [HuPaZh93b, CalHu94, CalHu95, CalGon97,
KUMS97, Lee04, LomNac05], the environmental field Ψ is traced out up to
the one-loop level. Assuming also that the quantum field has gone through the
quantum-to-classical transition, the Langevin equation for Φ is given by:

Φ′′ + 2aHΦ′ −∇2Φ + a2
[
dV (Φ)/dΦ + g2〈Ψ2〉Φ

]
− g4a2Φ

×
∫

d4x′a4(η′)θ(η − η′) iG−(x, x′)Φ2(x′) =
Φ
a2

ξ (15.73)

where the prime denotes differentiation with respect to η. As we will see later,
the quantum fluctuations of Φ will contribute to the mass correction of Ψ at
one loop. The dissipation term in this Langevin equation is actually divergent.
Wu et al. removed the divergence by using the regularization method that sets
the ultraviolet cut-off Λ = HeHt. They found that this term only contributes a
mass correction of about 10−2g4φ̄2

0 to m2
ϕeff (defined after equation (15.76)) as

well as a small friction term of order 10−2g4φ̄2
0aφ̇/H to equation (15.73). As we

have seen before, the environment field Ψ engenders dissipative dynamics in the
inflaton field Φ via the kernel G− and produces a multiplicative colored noise ξ

with correlator

〈ξ(x)ξ(x′)〉 = g4a4(η)a4(η′)G+(x, x′) (15.74)
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468 Nonequilibrium quantum processes in the early universe

The kernels G± in equations (15.73) and (15.74) can be constructed from the
Green’s function of Ψ with respect to a particular choice of the initial vacuum
state to be specified. They were derived in Chapter 5:

G±(x, x′) = 〈Ψ(x)Ψ(x′)〉2 ± 〈Ψ(x′)Ψ(x)〉2 (15.75)

To focus on noise-generated structure, in the solution of equation (15.73), one
can first ignore the dissipative term.

Following the stochastic inflation paradigm, after sufficient decoherence, we
can decompose Φ(η, �x) = φ̄(η) + ϕ(η,x) into a mean field φ̄ and a fluctuation
field ϕ which obeys the linearized Langevin equation

ϕ′′ + 2aHϕ′ −∇2ϕ + a2m2
ϕeffϕ = φ̄ξ/a2 (15.76)

where the effective mass is defined as m2
ϕeff = d2V (φ̄)/dϕ2 + g2〈Ψ2〉 and the time

evolution of φ̄ is governed by V (φ̄). The equation of motion for Ψ from which
we construct its Green’s function can be read off from its quadratic terms in the
Lagrangian (15.72) as

Ψ′′ + 2aHΨ′ −∇2Ψ + a2m2
ΨeffΨ = 0 (15.77)

where m2
Ψeff = m2

Ψ + g2(φ̄2 + 〈ϕ2
q〉). Here 〈ϕ2

q〉 denotes the active or intrinsic
quantum fluctuations with a scale-invariant power spectrum given by Δq

k =
H2/(4π2). Let us decompose

Υ(x) =
∫

dk

(2π)
3
2
Yk(η) eik·x (15.78)

where Υ = ϕ, ξ, and correspondingly Y = ϕk, ξk

Ψ(x) =
∫

dk

(2π)
3
2

[
bkψk(η) eik·x + h.c.

]
(15.79)

where b†k and bk are creation and annihilation operators satisfying [bk, b
†
k′ ] =

δ(k − k′).
The solution to equation (15.76) is obtained as

ϕ�k = −i

∫ η

ηi

dη′φ̄(η′)ξ�k(η
′)
[
ϕ

(1)
k (η′)ϕ(2)

k (η) − ϕ
(2)
k (η′)ϕ(1)

k (η)
]

(15.80)

where the homogeneous solutions ϕ
(1),(2)
k are given by

ϕ
(1),(2)
k =

1
2a

(π|η|) 1
2H(1),(2)

ν (kη) (15.81)

Here H(1)
ν and H

(2)
ν are Hankel functions of the first and second kinds respectively

and ν2 = 9/4 −m2
ϕeff/H

2. In addition, we have from equation (15.77) that

ψk =
1
2a

(π|η|) 1
2

[
c1H

(1)
μ (kη) + c2H

(2)
μ (kη)

]
(15.82)

where the constants c1 and c2 are subject to the normalization condition, |c2|2 −
|c1|2 = 1, and μ2 = 9/4 −m2

Ψeff/H
2.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


15.2 Structure formation: Effect of colored noise 469

Low � WMAP modes and running spectral index

From this we can calculate the power spectrum of the perturbation δϕ. To main-
tain the slow-roll condition: m2

φeff = m2
ϕeff � H2 (i.e. ν = 3/2), we require that

g2 < 1 and m2
Ψ > H2. The latter condition limits the growth of 〈Ψ2〉 during infla-

tion to be less than about 10−2H2 [BunDav78, VilFor82, EnNgOl88]. Under this
condition, 〈ϕ2

q〉 grows linearly as H3t/4π2 [BunDav78, VilFor82, EnNgOl88] and
thus 〈ϕ2

q〉 � H2 after about 60 e-foldings (i.e. Ht � 60). Therefore, as long as
g2φ̄2 ≤ 2H2, one can conveniently choose m2

Ψeff = 2H2 (i.e. μ = 1/2) for which
Ψ takes a very simple form. Also, it was shown that when μ = 1/2 one can select
the Bunch–Davies vacuum (i.e. c2 = 1 and c1 = 0) [EnNgOl88]. Hence, using
equations (15.74) and (15.80), one obtains

〈ϕ�k(η)ϕ
∗
�k′(η)〉 =

2π2

k3
Δξ

k(η)δ(�k − �k′) (15.83)

where the noise-driven power spectrum is given by

Δξ
k(η) =

g4y2

8π4

∫ y

yi

dy1

∫ y

yi

dy2φ̄(η1)φ̄(η2)
sin y−
y1y2y−

× [sin(2Λy−/k)/y− − 1]F (y1)F (y2) (15.84)

where y− = y2 − y1, y = kη, yi = kηi = −k/H, Λ is the momentum cut-off intro-
duced in the evaluation of the ultraviolet divergent Green’s function in equa-
tion (15.75), and

F (x) =
(

1 +
1
xy

)
sin(x− y) +

(
1
x
− 1

y

)
cos(x− y) (15.85)

Note that the term sin(2Λy−/k)/y− � πδ(y−) when Λ � k, so Δξ
k(η) is insensi-

tive to Λ. Both φ̄(η1) and φ̄(η2) in equation (15.84) can be approximated as a
constant mean field φ̄0, since we are concerned with large scales at which the rate
of change of the mean field at horizon crossing, dφ̄/d ln k � −

√
−2εḢMPl/H,

where ε ≡ −Ḣ/H2 is the slow-roll parameter, is consistent with zero up to the
scale near the first CMB Doppler peak in WMAP measurements [Spe03]. A
plot by Wu et al. of Δξ

k(η) at the horizon-crossing time (defined by y = −2π)
versus k/H shows that the noise-driven fluctuations depend on the onset time
of inflation and approach asymptotically to a scale-invariant power spectrum
Δξ

k � 0.2g4φ̄2
0/(4π

2) at large k. Within the usual models of inflation, the possi-
ble interactions of the inflaton are too restricted for this effect to be observable;
however, the fact that interactions do affect the spectrum of primordial fluctua-
tions has some interest on its own.

On the other hand, if the effect of interactions is expected to be important,
then a nonperturbative evaluation of the influence functional becomes necessary.
We describe below a possible strategy [ZanCal07a].
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470 Nonequilibrium quantum processes in the early universe

15.2.5 Primordial spectrum from nonequilibrium

renormalization group

The basic idea of RG for systems in equilibrium (where time does not enter
in the description) is the coarse graining of the original system, i.e. the change
in the resolution with which the system is observed [WilKog74]. Given a system
with a range of scales which goes up to wavenumber Λ, if we are only interested
in scales up to wavenumber k < Λ, we can separate the original system in two
sectors: a lower wavenumber (soft) sector, with k′ < k, the relevant system, and
a higher wavenumber (hard) sector with k < k′ < Λ, the environment. Once this
division is done, the environment modes are eliminated from the description. In
equilibrium, this is achieved by computing the coarse-grained “in-out” effective
action for the lower sector, complemented with a rescaling of the fields and
momenta that restores the cut-off and the coefficient of the q2 term in the action
to their initial values. The elimination of the modes between Λ and k proceeds
by infinitesimal steps. In this way, the calculation involves only tree and one-loop
diagrams, and the resulting equations form a set of differential equations for the
parameters that define the effective action [WegHou73].

Essentially, the same scheme can be used for nonequilibrium systems. We want
to compute true expectation values at given times, not transition amplitudes
between “in” and “out” asymptotic states, far away in the future and in the past.
We want to follow the real and causal evolution of expectation values, for which
the usual “in-out” representation is not appropriate. A suitable description of
nonequilibrium systems is given within the “closed time path” (CTP) formalism.

It is important to stress two basic differences between the nonequilibrium
and equilibrium RG [Lit98]. The IF may be regarded as an action for a theory
defined on a “closed time path” (CTP) composed of a first branch (going from
the initial time t = 0 to a later time t = T when the relevant observations will be
performed – that is why we need the density matrix at T ) and a second branch
returning from T to 0. Thus each physical degree of freedom on the first branch
acquires a twin on the second branch – we say the number of degrees of freedom
is doubled. The IF is not just a combination of the usual actions for each branch,
but also admits direct couplings across the branches. The damping constant κ

and the noise constant ν are associated to two of those “mixed” terms. Therefore,
the structure of the IF (from now on, CTP action, to emphasize this feature) is
much more complex than the usual Euclidean or “in-out” action.

The second fundamental difference is the presence of the parameter T itself.
In nonequilibrium evolution, it is important to specify the time-scale over which
we shall observe the system. The CTP action contains this physical time-scale
T . From the point of view of the RG, this adds one more dimensional parameter
to the theory, much as an external field in the Ising model. Physically, because
time integrations are restricted to the interval [0, T ], energy conservation does
not hold at each vertex. This is of paramount importance regarding damping.
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15.2 Structure formation: Effect of colored noise 471

The RG for the CTP effective action (obtained by taking the limit T → ∞)
was studied by Dalvit and Mazzitelli [DalMaz96, Dal98]; see also [CaHuMa01]
and [Pol06, ZanCal07a, ZanCal06b].

In formulating a nonequilibrium RG, we must deal with the fact that the CTP
action may have an arbitrary functional dependence on the fields and be nonlocal
both in time and space. In principle, one can define an exact RG transformation
[DalMaz96], where all three functional dependencies are left open. However, the
resulting formalism is too complex to be of practical use. Fortunately, the special
properties of the application to thermalization allow for substantial simplifica-
tions.

The full RG equations for this theory is given in [ZanCal06b]. Here we shall
only highlight those aspects of the calculation most relevant to the application
to primordial fluctuation generation.

We shall work with the conformally scaled field χ = aΦ. For simplicity, we
shall treat χ as a field on flat spacetime. This only induces an error of order 1
in the amplitude of the fluctuations at horizon exit.

Let us call χ1(2) the field variable in the first (resp. second) branch of the CTP.
To write down the CTP action, it is best to introduce average and difference
variables

χ− = χ1 − χ2

χ+ =
(
χ1 + χ2

)
/2 (15.86)

In terms of these variables, a generic CTP action may be written as

SCTP = S0 + Sλ + Sother (15.87)

where S0 is the CTP action functional for a free massless field theory, Sλ

accounts for a λχ4-type self-interaction and Sother includes all other possible
terms. Momentum integrals are bounded by k = Λ. We shall assume that the
initial condition for the RG flow is Sother = 0 at the hard scale Λ, so that if it
appears at soft scales, it is as a consequence of the RG running itself. Note that
this is true, in particular, for the noise and dissipation terms.

To define the nonequilibrium RG we also need to specify the state of the
field at the initial time t = 0. For simplicity, we shall assume this is the vacuum
state for the free action S0. Observe that this is a nonequilibrium state for the
interacting theory.

The value λ0 of the coupling constant λ at the hard scale Λ may be used as the
small parameter in a perturbative expansion of the RG equation. To order λ2

0,
the RG equation for the quartic coupling decouples, and can be solved by itself.
The result is that at soft scales k, λ is both scale and T dependent. There is no
RG running if T = 0, while the usual textbook result is obtained as T → ∞. For
all values of T , λ is driven to zero as k → 0 [ZanCal06b]. Thus it is consistent to
assume that λ is uniformly small in the relevant scale range.
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472 Nonequilibrium quantum processes in the early universe

In particular, in order to compute the RG equations to order λ2, it will be
enough to use in the Feynman graphs the zeroth order propagators, which are
those of the massless free theory. The only exception is in computing the effective
mass, but this calculation is decoupled from the noise and dissipation terms
to order λ2. Observe that it is at the same time a huge simplification and a
strong limitation concerning the range of application of our results, as we expect
substantial shifts in the propagators when T approaches the relaxation time of
the theory.

Because of the nonzero initial value of λ, other couplings will appear as a result
of the RG running. To order λ2, it is enough to consider quadratic, quartic and
six-point terms in the action. All these terms feed back into each other, so they
must be taken self-consistently. To compute the amplitude of the fluctuations at
horizon exit, however, it is enough to focus on the quadratic terms,

Sother → S2 [χ−, χ+] =
∫ T

0

dt1

∫ T

0

dt2

∫
ddk [v21(k; t1, t2) χ−(k, t1)χ+(−k, t2)

+ i v22(k; t1, t2) χ−(k, t1)χ−(−k, t2)] (15.88)

In principle, the induced quadratic terms will be oscillatory functions of Λt1,2.
However, by the time a mode reaches the horizon it becomes insensitive to high
frequencies. To focus on the slow dynamics, we may project out the mass, dissi-
pation and noise terms on which the oscillations are mounted.

To this end, we introduce two projectors. Given a function of two times
v(k; t1, t2), we define

Pv(k; t1, t2) = Pv(k) δ(t1 − t2) (15.89)

and, if v(k; t1, t2) = 0 for t2 > t1,

Qv(k; t1, t2) = Qv(k)
[
2
(

∂

∂t2
+ δ(t2) − δ(0)

)
δ(t1 − t2)

]
(15.90)

where

Pv(k) =
1
T

∫ T

0

dt1

∫ T

0

dt2 v(k; t1, t2) (15.91)

and

Qv(k) =
1
T

∫ T

0

dt1

∫ T

0

dt2 v(k; t1, t2) (t2 − t1) (15.92)

It is easy to verify that P2 = P, Q2 = Q, and that QP = PQ = 0. This proves
that the decomposition

v(k; t1, t2) = Pv(k; t1, t2) + Qv(k; t1, t2) + Δv(k; t1, t2) (15.93)

is unique. Defining

v0 = Pv21 (15.94)
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15.2 Structure formation: Effect of colored noise 473

and

v1 = Qv21 (15.95)

we extract from v21(k; t1, t2) two quantities: −v0(k), which acts as a momentum-
dependent mass squared term, and −v1(k)/2, which is equivalent to a damping
constant.

If we further expand in powers of wavenumber k

v0(k) = v0(0) + k
∂v0(0)
∂k

+
k2

2!
∂2v0(0)
∂k2

+ . . . (15.96)

the linear term vanishes from symmetry, and the appearance of the quadratic
term is prevented by performing a field rescaling as part of the RG transformation
(thus the field acquires an anomalous dimension). The net effect is then to induce
a mass term

m2 = −v0(0) (15.97)

and a damping constant

κ = −v1(0)/2 (15.98)

The noise kernel is obtained in a similar way from the imaginary part of the
CTP action, v22.

After these considerations, the relevant CTP action for long-wavelength, slowly
varying configurations reduces to

SCTP [χ−, χ+]=
∫ T

0

dt

∫
ddk

[
χ̇−(k, t) χ̇+(−k, t)−χ−(k, t)

(
k2 + m2

)
χ+(−k, t)

− 2κ χ−(k, t)χ̇+(−k, t) +
i

2
ν χ−(k, t)χ−(−k, t)

]
(15.99)

The flow of the RG drives the initial interacting theory towards the free theory
(15.99), and allows us to find a relation between expectation values associated
with each theory. The relation is

G (k, t, μ(Λ, T )) = (Λ/k)α(k,T )
G
(
Λ, (Λ/k)β(k,T )

t, μ(k, T )
)

(15.100)

On the left-hand side, G is the two-field expectation value computed for a mode
k at time t, and μ(Λ, T ) stands for the set of parameters which define the action
at scale Λ. In our case the only parameter is the coupling constant λ. On the
right-hand side, G is the expectation value of the theory defined by the set of
parameters μ(k, T ), reached after modes between k and Λ have been eliminated.
The relevant parameters in μ(k, T ) are m2(k, T ), κ(k, T ), and ν(k, T ). Finally,
the exponents α and β depend on the trajectory followed by the action when it
goes from scale Λ to k.

Now we connect to the original problem for the power spectrum of an interact-
ing inflaton field. We must feed the RG group equations with an initial condition
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474 Nonequilibrium quantum processes in the early universe

at scale Λ and then use the relation (15.100) to obtain the expectation value for
the mode k as it exits the horizon. The initial condition, in terms of the confor-
mal field, is given by the CTP action at scale Λ, where t has to be replaced by
the conformal time η. The mode k exits the horizon when

η = −k−1 (15.101)

If inflation starts at η∗, the time that the mode k spends inside the horizon is
given by

τk = −k−1 − η∗ (15.102)

For the physical field (subscript HE stands for horizon exit)

〈Φ(k, t)Φ(k, t)〉HE = k−2 G (k, τk, λ) (15.103)

From equation (15.100), identifying t and T with τk, we get

〈Φ(k, t)Φ(k, t)〉HE = k−2 (Λ/k)α(k,τk)

G
(
Λ, (Λ/k)β(k,τk)

τk,m
2(k, τk), κ(k, τk), ν(k, τk)

)
(15.104)

Here, the relevant elements of μ(k, τk) have been shown explicitly. The right-
hand side of equation (15.104) can be calculated using the G corresponding to
the action (15.99)

G
(
k, t,m2, κ, ν

)
=
(

2
k
− ν

κω2
0

)[
ω2

0

ω2
− κ2

ω2
cos(2ωt) +

κ

ω
sin(2ωt)

]
e−2κt +

ν

κω2
0

(15.105)

where ω2
0 = m2 + k2 and ω2 = ω2

0 − κ2 [ZanCal06b].
The expressions for m2, κ, and ν, and for the exponents α and β, as functions

of k and τk, are given in [ZanCal06b]. The main effects are introduced by the
mass term.

15.3 Reheating in the inflationary universe

We focus here on the so-called reheating regime when the universe began to
warm up due to particle creation from excitations of the vacuum fluctuations
of the inflaton field and other fields coupled to it. The back-reaction of created
particles results in the decay of the inflaton mean field and the turnover of the
universe from the inflationary state described by an approximate de Sitter solu-
tion to a radiation-dominated FLRW solution depicted in the so-called standard
model.

As stated before, the inflationary scenarios can generically be divided into
three eras: (1) entrance into a vacuum energy density dominated era, which can
be a metastable state of the Higgs field in a GUT era, where the universe begins
inflation; (2) a “slow roll” of the inflation field φ either from a relatively flat
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15.3 Reheating in the inflationary universe 475

effective potential V (φ), or from a simple φ2 potential, as in the new or chaotic
inflationary cosmology; (3) exiting the inflationary era and entering into an era
when the inflaton field undergoes rapid oscillations, where the vacuum energy
density is transformed into radiation via particle creation and the universe begins
to reheat to a radiation-dominated state.

One can also divide the reheating era roughly into two or even three stages,
preheating, heating and thermalization. In the preheating stage the domi-
nant effect is due to parametric particle creation [KoLiSt97]. Brandenberger,
Traschen and Shtanov [ShTrBr95], Kofman, Linde and Starobinsky [KoLiSt94]
and Boyanovsky et al. [BVHS96] first pointed out the importance of parametric
resonance at work in this stage. We have explained this mechanism of a rather
general nature in Chapter 4, e.g. the narrow and broad resonances. The ther-
malization process is a difficult and complex one. We discussed some aspects
of it in Chapter 12, but the reader should consult representative papers (e.g.
[BoVeSa05, Lin90, Muk05, BaTsWa06]) for a better understanding of the spe-
cific context of thermalization in post-inflationary reheating.

As explained earlier, since the purpose of these latter chapters is to illustrate
how the methods in NEqQFT we have learned can be applied to treat relevant
problems in different contexts, the discussions here on reheating are not meant
to be of a review nature, where ideally all ideas and approaches ought to be rep-
resented. We refer the readers to reviews [BaTsWa06] for a more balanced overall
perspective of the physical processes involved. For our more restricted aim here,
we shall only describe two examples where we have some first-hand experience in
which the full use of the methods of nonequilibrium quantum field theory plays
an essential role. These examples concern the back-reaction of the created par-
ticles on the inflaton field during preheating, and the generation of primordial
magnetic fields as a side-effect of reheating.

15.3.1 Case study I: Back-reaction of Fermi fields

during preheating

The earliest analysis of the reheating stage assumed that the decay of the infla-
ton field could be described perturbatively, by computing the absorption parts
of suitable Feynman graphs. That led to an apparent contradiction between the
theories of reheating and structure formation, since the latter places very strin-
gent limits on the possible couplings of the inflaton. Moreover, the generation
of heavy particles was strongly suppressed, against the expectation that heavy
bosons generated during reheating could play a role in baryogenesis.

This seeming difficulty was overcome when it was realized that the decay of
the inflaton could proceed very efficiently through the parametric amplification
of matter fields, which is an essentially nonperturbative process. As a matter of
fact, in these new scenarios enough reheating is obtained even if the inflaton is
not coupled to any other field at all, other than the gravitational field.
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476 Nonequilibrium quantum processes in the early universe

While the basic mechanism of parametric amplification during reheating are
the broad and narrow resonances, they are also strongly affected by the expan-
sion of the universe [RamHu97b]. As we have seen in Chapter 4, the evolution
of the field under broad resonance may be described as a series of adiabatic
evolutions punctuated by nonadiabatic transitions. The growth factor from one
transition to the next depends on the accumulated phase of the field variable.
The dynamic geometrical background induces changes in this phase, because the
relevant parameters become time dependent, and thus affects the nature of reso-
nance. The general case becomes a sequence of different resonance regimes due to
the process of parametric resonance [KoLiSt97, GKLS97, ChNuMi05]. The non-
linearity of the inflaton oscillations also plays an important role. In the general
case, the oscillating inflaton field will have a full frequency spectrum, not limited
to a few narrow bands, and the amplification of the matter fields may be studied
by the methods of particle production from a time-dependent background, which
we have discussed in Chapters 4 and 8 [Bas98, ZMCB98, ZMCB99].

Eventually, all relevant matter field modes acquire high occupation numbers
and a classical treatment becomes possible [CalGra02]. This observation has been
key to progress in the analysis of the fully nonlinear regime, including inflaton
fragmentation and the so-called turbulent reheating stage [KhlTka96, KoLiSt97,
FelTka00, FeKoLi01, FelKof01, FGGKLT01, MicTka04, PFKP06]. We have dis-
cussed similar processes (albeit on nonexpanding spacetimes) in Chapter 12.

Nevertheless, the back-reaction of the created particles has a strong effect
on the inflaton even before the classical approximation becomes reliable. The
inflaton must be seen as an effectively open system – with all other matter fields
providing an environment – and its dynamics is subject to dissipation and noise
therefrom [Hu91, SinHu91, LomMaz96, DalMaz96, GreMul97].

It was earlier realized that a description of the inflaton dynamics based on the
1PI effective action (cf. Chapter 6) or similar constructs with a c-number inflaton
field as the sole argument is not satisfactory. For one, inflaton fluctuations play
a key role in the theory of structure formation and one should to follow their
evolution through the reheating stage. Most importantly, the equations of motion
as derived from the 1PI effective action are affected by secular terms and become
unreliable after several inflaton oscillations. We have found a similar problem in
the treatment of Bose–Einstein condensates in Chapter 13.

Although it is possible to extract useful information from these secular terms
through dynamical renormalization group analysis, it is best to improve the
model, by including the physical processes that cut off the growth of secular
terms. The most efficient way of accomplishing this is by going over to a 2PI
description (cf. Chapter 6), where the inflaton mean field and fluctuations are
treated self-consistently. The 2PI effective action implements the resummation
of secular terms, and also incorporates the basic processes that eventually could
lead to thermalization, as we have discussed in Chapter 12.
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15.3 Reheating in the inflationary universe 477

As a concrete example of the application of 2PIEA techniques to the descrip-
tion of preheating, we shall analyze the evolution of the inflaton field cou-
pled to N Fermi fields. Our treatment here follows [RaStHu98]. While Fermi
fields are subject to Pauli blocking which, unlike the stimulated emission of
Bose fields, opposes particle creation (cf. Chapter 4), the fact that most matter
fields in the standard model are fermionic makes them a proper subject of study
[KoLiSt97].

We consider a model of a scalar inflaton field Φ (with λΦ4 self-coupling) inter-
acting with a spinor field via Yukawa coupling. The system consists of the inflaton
mean field and variance, and the environment consists of the spinor field(s) Ψ.
We construct the CTP-2PI-CGEA, and derive from it the effective dynamical
equations for the inflaton field, taking into account its effect on the environment,
and back-reaction therefrom in a self-consistent manner.

This problem is a good example of how to apply many of the concepts and
techniques presented in earlier chapers. The first step is to derive a set of coupled
nonperturbative equations for the inflaton mean field and variance at two loops.
Only beginning at two loops will both the inflaton mean field and the inflaton
variance couple to the spinor degrees of freedom. They are damped by back-
reaction from fermion particle production. (Calculations using the 1PI effective
action will miss this important effect.) The equations of motion are real and
causal, and the gap equation for the two-point function is dissipative due to
fermion particle production.

As we emphasized in Chapter 9, there is a subtle yet important distinction
between the system–environment division in nonequilibrium statistical mechan-
ics and the system–bath division assumed in thermal field theory. In the latter,
one assumes that the propagators for the bath degrees of freedom are fixed,
finite-temperature equilibrium Green functions, whereas in the case of the CTP-
CGEA, the environmental propagators are slaved (in the sense of [CalHu95a])
to the dynamics of the system degrees of freedom, and are not fixed a priori to
be equilibrium Green functions for all time. This distinction is important for dis-
cussions of fermion particle production during reheating, because it is only when
the inflaton mean field amplitude is small enough for the use of perturbation
theory, that the system–bath split implicit in thermal field theory can be used.
Otherwise, one must take into account the effect of the inflaton mean field on
the bath (spinor) propagators.

As we saw in Chapter 6, the use of the closed time path (CTP) formalism
allows formulation of the nonequilibrium dynamics of the inflaton from an appro-
priately defined initial quantum state. At the onset of the reheating period, the
inflaton field’s zero mode typically has a large expectation value, whereas all
other fields coupled to the inflaton, as well as inflaton modes with momenta
greater than the Hubble constant, are to a good approximation in a vacuum state
[Bra85].

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


478 Nonequilibrium quantum processes in the early universe

The model consists of a scalar field Φ (the inflaton field) which is Yukawa-
coupled to a spinor field Ψ, in a curved, dynamical, classical background space-
time. The total action

S[Φ, Ψ̄,Ψ, gμν ] = SG[gμν ] + SF[Φ, Ψ̄,Ψ, gμν ] (15.106)

consists of a part depicting classical gravity, SG[gμν ], and a part for the matter
fields,

SF[Φ, Ψ̄,Ψ, gμν ] = SΦ[Φ, gμν ] + SΨ[Ψ̄,Ψ, gμν ] + SY[Φ, Ψ̄,Ψ, gμν ] (15.107)

whose scalar (inflaton), spinor (fermion), and Yukawa interaction parts are given
by

SΦ[Φ, gμν ] = −1
2

∫
d 4x

√−g

[
Φ(∇2 + m2 + ξR)Φ +

λ

12
Φ4

]
(15.108)

SΨ[Ψ̄,Ψ, gμν ] =
∫

d 4x
√−g

[
i

2
(
Ψ̄γμ∇μΨ − (∇μΨ̄)γμΨ

)
− μΨ̄Ψ

]
(15.109)

SY[Φ, Ψ̄,Ψ, gμν ] = −f

∫
d 4x

√−gΦΨ̄Ψ (15.110)

For this theory to be renormalizable in semiclassical gravity, the bare gravity
action SG[gμν ] of equation (15.106) should have the form [DeW75, BirDav82]

SG[gμν ] =
1

16πG

∫
d 4x

√−g
[
R− 2Λc + cR2 + bRαβRαβ + aRαβγδRαβγδ

]
(15.111)

In equations (15.108)–(15.110), m is the scalar field “mass” (with dimensions of
inverse length); ξ is the dimensionless coupling to gravity; μ is the spinor field
“mass,” with dimensions of inverse length; ∇2 is the Laplace–Beltrami operator
in the curved background spacetime with metric tensor gμν ; ∇μ is the covariant
derivative compatible with the metric;

√−g is the square root of the absolute
value of the determinant of the metric; λ is the self-coupling of the inflaton
field, with dimensions of 1/

√
�; and f is the Yukawa coupling constant, which

has dimensions of 1/
√

�. In equation (15.111), G is Newton’s constant (with
dimensions of length divided by mass); R is the scalar curvature; Rμν is the Ricci
tensor; Rαβγδ is the Riemann tensor; a, b, and c are constants with dimensions
of length squared; and Λc is the cosmological constant, which has dimensions
of inverse length squared. The curved spacetime Dirac matrices γμ satisfy the
anticommutation relation

{γμ, γν}+ = 2gμν1sp, (15.112)

in terms of the contravariant metric tensor gμν . The symbol 1sp denotes the
identity element in the Dirac algebra.

In four spacetime dimensions the terms with constants a, b, and c are related
by a generalized Gauss–Bonnet theorem [Che62], so we have the freedom to
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15.3 Reheating in the inflationary universe 479

choose a = 0. It is assumed that there is a definite separation of time-scales
between the stage of “preheating” (see, e.g. [RamHu97b]), and fermionic particle
production. In addition, the fermion field mass μ is assumed to be much lighter
than the inflaton field mass m, i.e. the renormalized parameters m and μ satisfy
m � μ.

We denote the quantum Heisenberg field operators of the scalar field Φ and
the spinor field Ψ by ΦH and ΨH, respectively, and the quantum state by |s〉. For
consistency with the truncation of the correlation hierarchy at second order,
we assume ΦH to have a Gaussian moment expansion in the position basis
[MazPaz89], in which case the relevant observables are the scalar mean field

φ̄(x) ≡ 〈s|ΦH(x)|s〉 (15.113)

and the mean-squared fluctuations, or variance, of the scalar field

〈s|Φ2
H(x)|s〉 − 〈s|ΦH(x)|s〉2 ≡ 〈s|ϕH

2(x)|s〉 (15.114)

where the last equality follows from the definition of the scalar fluctuation field

ϕH(x) ≡ ΦH(x) − φ̄(x) (15.115)

As discussed above, at the end of the preheating period, the inflaton variance
can be as large as the square of the amplitude of mean-field oscillations. On the
basis of our assumption of separation of time-scales and the conditions which
prevail at the onset of reheating, the initial quantum state |s〉 is assumed to be
an appropriately defined vacuum state for the spinor field.

The construction of the CTP-2PI-CGEA for the ΦΨ̄Ψ theory in a general,
curved, background spacetime closely parallels the construction of the CTP-2PI
effective action for the O(N) model discussed in Chapter 6 [LomMaz98]. Within
the spacetime manifold (whose dynamics must be determined self-consistently
through the semiclassical gravitational field equation), let M be defined as the
past domain of dependence of a Cauchy hypersurface Σ�, where Σ� has been
chosen to be far to the future of any dynamics we wish to study. We now define
a “CTP” manifold M as the union of the two copies of M corresponding to the
{+,−} time branches, with their last Cauchy hypersurfaces Σ� identified. As in
Chapter 6, we define an action functional on the closed time path manifold as
the difference of the actions evaluated on each branch. For a function Φ on M,
the restrictions of Φ to the + and − time branches are subject to the boundary
condition (Φ+)|Σ


= (Φ−)|Σ

at the hypersurface Σ�.

Following the general procedure in Chapter 6, we obtain the CTP-2PI-CGEA

Γ[φ̄, G, gμν ] = SΦ[φ̄] − i�

2
ln detGab − i�ln detFab + Γ2[φ̄, G]

+
i�

2

∫
M

d 4x
√−g

∫
M

d 4x′√−g′Aab(x′, x)Gab(x, x′)

(15.116)
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480 Nonequilibrium quantum processes in the early universe

where Aab is the second functional derivative of the scalar part of the classical
action SΦ, evaluated at φ̄,

iAab(x, x′) =
1√−g

(
δ2SΦ

δΦa(x)δΦb(x′)
[φ̄]
)

1√−g′

= −
[
cab(∇2

x + m2 + ξR(x)) + cabcd
λ

2
φ̄c(x)φ̄d(x)

]
δ(x− x′)√−g′

(15.117)

The symbol Fab denotes the one-loop CTP spinor propagator, which is defined
by

Fab(x, x′) ≡ B−1
ab (x, x′) (15.118)

where we are suppressing spinor indices, and the inverse spinor propagator Bab

is defined by

iBab(x, x′) =
1√−g

[
δ2(SΨ[Ψ̄,Ψ] + SY[Ψ̄,Ψ; φ̄])

δΨa(x)δΨ̄b(x′)

]
1√−g′

=
(
cab(iγμ∇′

μ − μ) − cabcfφ̄c(x′)
) δ(x′ − x)√−g

1sp (15.119)

It is clear from equation (15.119) that the use of the one-loop spinor propa-
gators in the construction of the CTP-2PI-CGEA represents a nonperturba-
tive resummation in the Yukawa coupling constant, which (as discussed above)
goes beyond the standard time-dependent perturbation theory. The boundary
conditions which define the inverses of equations (15.117) and (15.119) are the
boundary conditions at the initial data surface in the functional integral which in
turn define the initial quantum state |s〉. The one-loop spinor propagators Fab,
introduced in Chapter 10, are related to the expectation values of the spinor
Heisenberg field operators in the presence of the c-number background field φ̄.

Only diagrams which are two-particle irreducible with respect to cuts of scalar
lines contribute to Γ2. The distinction between the CTP-2PI, coarse-grained
effective action which arises here, and the fully two-particle irreducible effective
action (2PI with respect to scalar and spinor cuts) is due to the fact that we
only Legendre-transformed sources coupled to Φ; i.e. the spinor field is treated
as the environment.

We evaluate the functional Γ2[φ̄, G, gμν ] in a loop expansion, starting with
the two-loop term, Γ(2). The λΦ4 self-interaction leads to two terms in the two-
loop part of the effective action. They are the “setting sun” diagram, which is
O(λ2), and the “double bubble,” which is O(λ), respectively (cf. Chapter 6). The
Yukawa interaction leads to only one diagram in Γ(2)

if2

2
caa

′a′′
cbb

′b′′
∫

d 4x
√−g

∫
d 4x′√−g′Gab(x, x′)trsp [Fa′b′(x, x′)Fb′′a′′(x′, x)]

(15.120)
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15.3 Reheating in the inflationary universe 481

where the trace is understood to be over the spinor indices which are not shown,
and the three-index symbol cabc is defined as in Chapter 6.

We treat the λ self-interaction using the time-dependent Hartree–Fock approx-
imation [CoJaTo74], which is equivalent to retaining the O(λ) (double bubble)
graph and dropping the O(λ2) (setting sun) graph. We assume for the present
study that the coupling λ is sufficiently small that the O(λ2) diagram is unimpor-
tant on the time-scales of interest in the fermion production regime of the inflaton
dynamics. The mean-field and gap equations including both the O(λ) and the
O(λ2) diagrams have been derived in a general curved spacetime in [RamHu97a].

The (bare) semiclassical field equations for the two-point function, mean field,
and metric can be obtained from the CTP-2PI-CGEA by functional differentia-
tion with respect to Gab, φ̄a, and gμν , followed by identifications of φ̄ and gμν on
the two time branches [RamHu97b]. The field equation of semiclassical gravity
(with bare parameters) is

Gμν + Λcgμν + c (1)Hμν + b (2)Hμν = 8πG〈Tμν〉 (15.121)

where (1,2)Hμν are tensors constructed from the covariant derivatives of the
metric and connection forms (e.g. defined in [BirDav82]). The (unrenormalized)
quantum energy–momentum tensor is defined by

〈Tμν〉 =
2√−g

δΓ[φ̄, G, gμν ]
δgμν+

∣∣∣∣
φ̄+=φ̄−=φ̄ gμν

+ =gμν
− =gμν

(15.122)

The energy–momentum tensor 〈Tμν〉 is divergent in four spacetime dimensions,
and must be regularized via a covariant procedure [BirDav82, RamHu97b].

Making the two-loop approximation to the CTP-2PI-CGEA, where we take
Γ2 � �

2Γ(2), and dropping the O(λ2) diagram from Γ2, the mean-field equation
becomes (

∇2 + m2 + ξR(x) +
λ

6
φ̄2(x) +

λ�

2
G(x, x)

)
φ̄

+ �fTrsp[Fab(x, x)] − �
2g3Σ(x) = 0 (15.123)

where G(x, x) is the coincidence limit of Gab(x, x′), and Σ(y) is a (self-energy)
function defined by

Σ(y) = −2
∫

d4x
√−g

∫
d4x′√−g′ Re Trsp

[(
θ(x, x′)G(1)(x′, x)F (1)(x, x′)

− GR(x, x′)†FR(x, x′)
)
FR(y, x′)†FR(y, x)

]
(15.124)

where an index 1 refers to a Hadamard propagator (cf. Chapters 6 and 10), and
a subindex R to a retarded propagator. It is clear that the integrand vanishes
whenever x or x′ is to the future of y. The equation for Gab is given by

(G−1)ba(x, x′) = Aba(x, x′) +
iλ�

4
cbaG1(x, x)

δ(x− x′)√−g′

+ �f2caa
′a′′

cbb
′b′′Trsp [Fa′b′(x, x′)Fb′′a′′(x′, x)] (15.125)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


482 Nonequilibrium quantum processes in the early universe

Multiplying equation (15.125) through by Gab, performing a spacetime integra-
tion, and taking the 11 component, we obtain(

∇2 + m2 + ξR +
λ

2
φ̄2 +

λ�

4
G1(x, x)

)
GF (x, x′)

+�f2

∫
dx′′√−g′′K(x, x′′)GF (x′′, x′) = −i

δ(x− x′)√−g′

(15.126)

in terms of a kernel K(x, x′′) defined by

K(x, x′) = −iTrsp

[
FF (x, x′)2 − F+(x, x′)2

]
= Re Trsp [FR(x, x′)F1(x′, x)]

(15.127)

which shows that equation (15.126) is manifestly real and causal. The kernel
K(x, x′) is dissipative, and it reflects the back-reaction from fermionic particle
production induced by the time-dependence of the inflaton variance. Equation
(15.126) is therefore damped for modes above threshold, and this damping is
not accounted for in the 1PI treatments of inflaton dynamics (where only the
inflaton mean field is dynamical). As stressed above, the dissipative dynamics of
the inflaton two-point function can be important when the inflaton variance is
on the order of the square of the inflaton mean-field amplitude; such conditions
may exist at the end of preheating.

The set of evolution equations (15.123) for φ̄ and (15.126) for G is formally
complete to two loops. Dissipation arises due to the coarse graining of the spinor
degrees of freedom. These dynamical equations are valid in a general background
spacetime and are useful for reheating studies and more general purposes.

15.3.2 Case study II: Primordial magnetic field generation

Given the difficulties in constructing a suitable model of the reheating stage,
to further elucidate its physics it helps to investigate other physical processes
coexisting with the reheating of the universe which could have produced an
observable imprint either on the CMB or today’s large-scale structures.

The two processes most studied are the generation of spin-two and spin-one
fields. The former concerns the possible processing of primordial gravitational
fluctuations on super-horizon scales, while the latter addresses the feasibility
of generating primordial magnetic fields during reheating. Gravitational fluc-
tuations ought to have influenced the spectrum and polarization of the CMB,
while a primordial magnetic field could serve as a seed for the magnetic fields
observed today in cosmological structures, and should also have affected the
CMB [Dod03, Lon98].

Fields with a strength of about a millionth of the Earth’s magnetic field are
observed both in galaxies and clusters of galaxies. There are at least three good
reasons to believe these fields have a cosmological origin. First, the fact that
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15.3 Reheating in the inflationary universe 483

they extend over huge scales. Second, fields are also observed at high red-shift,
when dynamo mechanisms have less time to operate. This strongly suggests the
field was “already there,” though at the time of writing it is unclear exactly how
fast dynamo amplification can be [BraSub05]. Third, that in any case “local”
mechanisms such as a “galactic dynamo” could amplify an existing seed field,
but not create a field from nothing [GraRub01].

The same reasons of scale make it tempting to place the origin of the field in the
inflationary era (for primordial but not inflationary mechanisms see [BoVeSi03b,
BoVeSi03a, Vac01, VilLea82]). However a large enough magnetic field is not
expected to be generated during inflation because of the conformal invariance of
the Maxwell field.5

We give a semiquantitative discussion here (adopting natural units (� = c =
kB = 1)). As in Chapter 7, the field is described by a vector potential Aμ; we
rescale the field by the gauge coupling constant, so that the curved space free
Lagrangian density reads

L =
−√−g

4
FμνFμν (15.128)

with the abelian field tensor equation (7.5) Fμν = ∂μAν − ∂νAμ. If we assume a
conformally flat FLRW metric written in conformal coordinates (η, �x) (cf. Section
4.6.2), then in four spacetime dimensions the conformal factor drops out of the
free action.

The inhomogeneous Maxwell equations for a field driven by a current

Jμ =
1√−g

δSm

δAμ
(15.129)

are given by

F νμ
;ν = −Jμ (15.130)

During the radiation-dominated era, the current is induced by the Lorentz force
acting on the charged plasma, so we have a constitutive relation

Jμ = σFμνuν (15.131)

where

uμ = aη0μ (15.132)

is the 4-velocity of the plasma in conformal coordinates. The conductivity is
σ ∝ T (see below) [GioSha00], so the combination σ̄ = aσ is independent of the
scale factor. Since we already noted that the free action is independent of the

5 For the sake of discussion, we gloss over the fact that properly speaking we should not be
concerned with a Maxwell field, but rather with a spin-one field which becomes
electromagnetic after electroweak symmetry breaking.
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484 Nonequilibrium quantum processes in the early universe

scale factor in four spacetime dimensions, the result is that a drops from the
Maxwell equations, which read

Ai,i = 0 (15.133)

A0 = 0 and

Aj,00 + σ̄Aj,0 −Aj,ii = 0 (15.134)

For each Fourier mode, the corresponding amplitude behaves as a damped har-
monic oscillator. If the comoving wavenumber k < σ̄/2, the mode is overdamped.
There is a fast decaying component

ffast = e−σ̄η (15.135)

and a slow decaying component

fslow = e−k2η/σ̄ (15.136)

For long enough wavelengths we may approximate fslow = 1. The boundary con-
ditions are that at the beginning of the radiation-dominated era there are no
fields, so Aj (0) = 0. From the constitutive relation we get

Aj,0 (0) = −a2 (0)
σ̄

Jj (0) (15.137)

and so once ffast decays the field settles down to a time-independent value

Aj (∞) = −Jj (0)
σ2 (0)

(15.138)

Associated with the free action there is an energy–momentum tensor (15.122)

Tμν = FλμF
λ
ν − 1

4
gμνFλσF

λσ (15.139)

and an energy density

ρ = Tμνu
μuν (15.140)

In the asymptotic regime, ρ scales as a−4. Therefore the ratio r between the
energy density of the coherent Maxwell field and the total energy density of
radiation is constant, provided the cosmic expansion is adiabatic. Disregarding
the entropy generated during particle annihilations, we may say r is constant
up to our times. A value of r = 10−8 is strong enough to originate the galac-
tic fields without further dynamo amplification [TurWid88]. The lowest value
of r that could seed the galactic field through dynamo amplification is hard to
estimate, as it depends on the details both of the galaxy formation process and
of the cosmological model (i.e. the amount of dark energy or the space curva-
ture) [DaLiTo99]. A primordial field should also leave an imprint on the cosmic
microwave radiation, but present data only provide upper bounds [YIKM06].

To put these numbers in perspective, we may ask which value of r could
be expected for fields coherent over a physical scale Lphys, given thermal
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15.3 Reheating in the inflationary universe 485

equilibrium conditions. Since in the Rayleigh–Jeans part of the spectrum we
may assume equipartition, the energy density associated with modes k < L−1

phys

is TtodayL
−3
phys, and so r ≈ (LphysTtoday)

−3. Using Ttoday = 10−4eV, we get
LphysTtoday ≈ 1024 (Lphys/1 Mly). For a galaxy cluster-size scale, r is way below
the interesting range. In this section, we shall use a subindex “today” to indicate
that a quantity is evaluated at the present time (we assume atoday = 1). Simi-
larly, “reh” will denote the end of reheating, and “equiv” the time of equivalence
between matter and radiation.

More generally, r remains constant when both the coherent magnetic field
and the thermal cosmic background evolve in a conformally invariant way. So to
increase the value of r, we must break conformal invariance. In their seminal work
on magnetic field generation [TurWid88], Turner and Widrow have considered a
number of possible conformal symmetry-breaking mechanisms.

The hardest way to break the symmetry is to add to the action a direct cou-
pling of the Maxwell field to curvature, such as, for example, RμνAμAν . How-
ever, this term breaks gauge along with conformal symmetry, and it is hard to
generate in a natural way. Gauge symmetric terms such as f (R)FμνFμν are
more appealing, partly because they arise naturally from radiative corrections
in a curved spacetime. Nevertheless, Mazzitelli and Spedalieri [MazSpe95] have
observed that, after proper resummation of the leading quantum corrections, the
dependence on curvature is at most logarithmic, and so it is hard to achieve effi-
cient magnetic field generation. A similar conclusion, in a wider set of problems,
has been reached recently by Weinberg [Wei05a, Wei06].

Over and above the details of each mechanism, we must consider that the
quantity r generated during inflation may well be diluted at reheating. During
reheating the density of radiation increases by a factor of at least e4N , where N

is the number of e-foldings. Unless the coherent field is also amplified, r decreases
by the same amount.

When we consider the generation of magnetic fields during reheating, a new
possibility opens up. The abrupt changes in metric during this stage may result
in abundant particle creation of charged species. This would generate stochas-
tic currents (recall Chapter 8), which eventually decay onto the Maxwell field
[CaKaMa98].

Before we evaluate whether such a mechanism is feasible, let us observe the
following. Because the inflaton is a gauge singlet, we do not expect it will decay
directly into charged species. Therefore, the model assumes these charged par-
ticles are created from the gravitational field, which in turn responds to the
changes in the equation of state of the inflaton [PeeVil99].

Spin 1/2 particles such as electrons would be conformally invariant at the high
energies prevalent during inflation, so they are not created in large numbers. We
must seek a fundamental charged scalar field, of which there is none in the
standard model. There are suitable candidates in supersymmetric extensions of
the standard model, however [KCMW00].
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486 Nonequilibrium quantum processes in the early universe

An alternative which appeals only to known and proven physics is to replace
the charged field by the gravitational field itself. Inflation generates tensor gravi-
tational fluctuations, and therefore an inflationary universe is not strictly speak-
ing conformally flat. The evolution of these gravitational fluctuations may result
in amplification of the Maxwell field [BaTsWa06, BPTV01, TsaKan05]. How-
ever, due to the weakness of the gravitational couplings, it is hard to achieve the
desired efficiency.

In the following we shall give an estimate of the field strength to be expected
from particle creation of a charged, minimally coupled scalar field φ by the end
of the reheating period. We decompose the field into its real and imaginary parts
Φ = (φ1 + iφ2) /

√
2. The current is

Jμ = Jμ
1 + Jμ

2 (15.141)

where

J1μ = e (φ1∂μφ2 − φ2∂μφ1) (15.142)

J2μ = −e2Aμ

(
φ2

1 + φ2
2

)
(15.143)

In a linearized analysis we set J2 = 0. Each field is decomposed into modes

φi =
∫

d3k

(2π)3
eikx φik (15.144)

where

φik = φkaik + φ∗
ka

+
i−k (15.145)

leading to a mode decomposition of the current. The spatial components become

J1 = ie

∫
d3k

(2π)3
eikx

∫
d3q

(2π)3
[2q − k]φ1k−qφ2q (15.146)

while the charge density is

J10 = −ie

∫
d3k

(2π)3
eikx

∫
d3q

(2π)3
[ω2q − ω1k−q]φ1k−qφ2q (15.147)

where

ωik =
i

φik

dφik

dt
(15.148)

We are interested in the current averaged over a comoving scale L

J1L = ie

∫
d3k

(2π)3
WL [k]

∫
d3q

(2π)3
[2q − k]φ1k−qφ2q (15.149)

where WL is a window function. If the initial state of the field is the vacuum, it
is clear that 〈J1L〉 = 0, but

〈
J2

1L

〉
= e2

∫
d3k

(2π)3
WL [k]2

∫
d3q

(2π)3
[2q − k]2 |φq|2 |φk−q|2 (15.150)
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To see the meaning of this equation, let us consider (and reject) the case of a
conformally coupled field. For conformal coupling, we simply have (cf. Chapter 4)

|φq|2 =
1

2a2q
(15.151)

It would seem that
〈
J2

1L

〉
is dominated by very short modes. However, since

short modes are supposed to thermalize during reheating, they cannot possibly
be described within a linear theory. There must be a comoving cut-off Λ which
marks the limit of the linearized approximation. Assuming however Λ � L−1,
we see that the dominant contribution to

〈
J2

1L

〉
comes from modes where q ≈

Λ � k ≈ L−1. The integrals decouple, and we get

〈
J2

1L

〉
≈ e2Λ3

a4L3
(15.152)

Under the same approximations, the mean square value of the charge density
vanishes.

To transform this into an estimate for the Maxwell field, we need the value
of σ at the end of reheating. The usual estimate for the conductivity is σ ≈
e2nτ/m, where n and m are the density and rest mass of the dominant charge
carriers, and τ a typical mean free time. If the dominant carriers are just electrons
and positrons, then prior to annihilation we have n ≈ T 3. If we assume that
reheating ends as soon as thermal equilibrium is reached, then at that time we
may approximate τ by the effective age of the universe τ ≡ H−1 = mPT

−2
reh .

To conclude, we evaluate the asymptotic vector potential from (15.138) and
the corresponding energy density from (15.140), where we use the result that a
space derivative is ∂ ≈ L−1

ρ ≈
〈
J2

1L

〉
reh

a4L2σ4
reh

≈ 1
a4

[
m4Λ3H4

reh

a4
rehL

5e6T 12
reh

]
(15.153)

Combining these estimates we get

r ≈
(

m

mP e3/2

)4(
Treh

mP

)3( Λ
arehHreh

)3( 1
LTtoday

)5

(15.154)

which is far worse than our previous estimate based on equilibrium conditions.
It is clear from this analysis that to obtain a larger value of r we must amplify

the scalar field fluctuations far above the conformal value. During the radiation-
dominated era the scalar curvature vanishes and any scalar field is conformally
invariant as long as it is effectively massless. But during inflation the behavior
is totally different, because while the conformal fields evolve as a−1 throughout,
the minimal fields freeze upon horizon exit and remain constant until the scalar
curvature is suppressed enough during reheating. To see this, let us return to the
mode equation (15.8). We write the mode functions as

φk =
fk
a3/2

(15.155)
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Using the Friedmann equation H2 = ρ/m2
P , the continuity equation ρ̇ =

−3H (ρ + p) and the equation of state p = γρ, we transform the mode equation
into (4.22)

d2fk
dt2

+ Ω2
k(t)fk(t) = 0 (15.156)

where

Ω2
k(t) =

k2

a2
+ m2 (t) +

9
4
H2γ (15.157)

and we allow for the possibility of a time-dependent mass, for example, due to
thermal corrections (cf. Chapter 10). During inflation γ = −1. Ω2

k starts positive
and becomes negative upon horizon exit. Outside of the horizon there is a growing
mode which remains frozen because the growth of the WKB solution just matches
the a−3/2 suppression, and a decaying mode which soon becomes irrelevant. At
some point during reheating γ becomes positive and Ω2

k changes sign again;
we say the mode “thaws.” Neglecting the decaying solution and assuming a long
enough wavelength, we have immediately after thawing the q-number amplitudes

φik = AkF (t)
[
aik + a+

i−k

]
(15.158)

where |Ak| is of the order of magnitude of the amplitude at horizon exit. Observe
that the time-dependent part F (t) is essentially mode-independent: the field is
performing “Sakharov” oscillations [Sak66]. This implies the vanishing of the
induced charge density.

As a first approximation, we may assume that all modes thaw at the same time
at the end of reheating. As compared with the conformal case, the minimally cou-
pled mode amplitudes are amplified by a factor areh/aexit = arehHreh/k, where
we assume that reheating is fast enough that the Hubble rate remains approxi-
mately time-independent throughout.

Our estimate for the current at reheating now reads〈
J2

1L

〉
reh

≈ e2H4
reh

4

∫
d3k

(2π)3
WL [k]2

∫
d3q

(2π)3
[2q − k]2

1
q3

1
(|k − q|)3

(15.159)

The q integral is dominated by peaks at q = 0 and q = k. They both contribute
the same, as they are transformed into each other by the change of variables
q → k − q. So it is enough to evaluate the contribution from q � k〈

J2
1L

〉
reh

≈ e2H4
reh

4

∫
d3k

(2π)3
WL [k]2

k

∫
dq

q
(15.160)

We evaluate the logarithmic integral as ln [qmax/qmin], where the q’s are the
longest and shortest modes to leave the horizon during inflation. Therefore∫

dq

q
≈ N (15.161)

where N is the number of e-foldings. We obtain〈
J2

1L

〉
reh

≈ e2NH4
reh

4L2
(15.162)
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The improved estimate for r is

r ≈ N

(
m

mP e3/2

)4(
Treh

mP

)4( 1
LTtoday

)4

(15.163)

which is still a very small number.
Although prospects are understandably bleak, our argument has a loophole

[Fin00]. This is the neglect of the “London” current (15.143). Because of this
term, the heavily amplified long-wavelength modes of the scalar field act as
a Landau–Ginzburg order parameter in a superconductor [Tin96]. As in the
Meissner effect, the photon acquires a (here time-dependent) mass. Kandus et al.
have shown that an exponential growth of the Maxwell field during reheating as a
consequence of parametric amplification is possible [CalKan02]. However, in this
case the actual growth factor is sensitive to the details of the reheating scenario,
and so it is not possible to obtain generally valid estimates such as the above.

At the end of this discussion, we reach a situation remarkably similar to our
description of early thermalization in RHICs in Chapter 14. Both the genera-
tion of a primordial magnetic field during reheating and ultrafast equilibration
after the collision are demonstrably beyond the possibilities of weakly interact-
ing fields, but could be allowed because of exponential instabilities in strongly
nonlinear scenarios. In either problem, we do not have answers yet, but it is
clear that finding those answers will require the full application of the meth-
ods of nonequilibrium field theory, whose basic principles we have attempted to
present in this book.
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cosmològiques, Ph.D. Thesis, University of Barcelona (2001).
[RouVer99] A. Roura and E. Verdaguer, Mode decomposition and renormalization in

semiclassical gravity, Phys. Rev. D 60, 107503 (1999).
[Rub60] R.J. Rubin, Statistical dynamics of simple cubic lattices. Model for the study of

Brownian motion, J. Math. Phys. 1, 309 (1960).
[Rub61] R.J. Rubin, Statistical dynamics of simple cubic lattices. Model for the study of

Brownian motion. II, J. Math. Phys. 2, 373 (1961).
[Rue76] D. Ruelle, A measure associated with Axiom-A attractors, Am. J. Math, 98, 619

(1976).
[RueEck85] D. Ruelle and J.P. Eckmann, Ergodic theory of chaos and strange attractors,

Rev. Mod. Phys. 57, 617 (1985).
[RueSin86] D. Ruelle and Ya.G. Sinai, From dynamical systems to statistical mechanics and

back, Physica A 140, 1 (1986).
[Sac99] S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge,

1999).
[SaiUed03] H. Saito and M. Ueda, A consistent picture of a collapsing Bose–Einstein

condensate, J. Phys. Soc. Japan 72 (Suppl. C), 127 (2003).
[Sak66] A.D. Sakharov, The initial stage of an expanding universe and the appearance of a

nonuniform distribution of matter, Sov. Phys. JETP 22, 241 (1966).
[SalBon91] D.S. Salopek and J.R. Bond, Stochastic inflation and nonlinear gravity, Phys.

Rev. D 43, 1005 (1991).
[SanMig89] J.M. Sancho and M. San Miguel, Langevin equations with colored noise, in Noise

in Nonlinear Dynamical Systems: Theory Experiment, Simulation, vol 1, ed. F. Moss
and P.V.E. McClintock (Cambridge University Press, Cambridge, 1989), pp. 110–160.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
Downloaded from https://www.cambridge.org/core. IP address: 3.22.42.179, on 29 Apr 2024 at 07:04:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/8C6D7E585852342B43C9C9EF778EDA74
https://www.cambridge.org/core


524 References

[SanShl02] L. Santos and G. Shlyapnikov, Collapse dynamics of trapped Bose–Einstein
condensates, Phys. Rev. A 66, 011602(R) (2002).

[Sato81] K. Sato, Cosmological baryon-number domain structure and the first order phase
transition of a vacuum, Phys. Lett. 99B, 66 (1981).
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gap equation, 297, 326, 356, 364
gapless theory, 402
gauge covariant derivative operator, 214
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Gaussian approximation, 379
Gell-Mann–Low boundary condition, 189
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ghost number, 218
Gibbs–Duhem relation, 346, 348, 418
gluon branching, 438
gluon emission, 366
gluon joining, 366
gluon splitting, 366
Goldstone theorem, 440
Gorkov equations, 379
grand canonical ensemble, 291
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Gross–Pitaevskii equation, 379, 393, 406
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Hanbury-Brown/Twiss (HBT) correlations,
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Hanbury-Brown/Twiss (HBT) puzzle, 437
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hard thermal loops, 306
Hartree approximation, 378
Hartree–Fock–Bogoliubov approximation,

380, 393, 407
Hawking effect, 125
Hawking radiation, 125, 136
healing length, 398, 409
heat conductivity, 351, 370
heat equation, 370
heat transfer, 349
Heisenberg equation, 61
Hessian, 318
Hilbert transform, 174
homogeneous functions, 346
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Hugenholtz–Pines theorem, 392, 402
hydrodynamics, 349

ideal fluid, 349
inflationary cosmology, 448
inflaton field, 281
influence action, 69, 151
influence functional, 60
initial time singularity, 207
instantaneous diagonalization, 105
integrability conditions, 358
intensive parameters, 346
intensive quantities, 347
inverse temperature vector, 348
inverted harmonic oscillator, 266
irreversibility, 3
irrotational fluid, 418
isospin, 439
Israel–Stewart theory, 385

Kadanoff–Baym equations, 315, 323, 353,
378

Keldysh representation, 317, 320
kernel

dissipation, 71
noise, 71, 187

Kibble–Zurek mechanism, 274
Killing field, 348
kinetic freeze-out, 433
Klein–Gordon equation, 96
Kolmogorov 1941 theory, 383
Kramers–Kronig relations, 174, 319
Kramers–Moyal equation, 47, 79

quantum, 81
Kramers–Moyal expansion, 37, 64
Krook–Bhatnager–Gross kinetic equation, 58
Kubo–Martin–Schwinger (KMS) theorem,

222, 294, 313, 369, 377
Bose–Einstein statistics, 295
Fermi–Dirac statistics, 303

Kugo–Hata ansatz, 222

Landau damping, 299, 410
Landau kinetic equation, 385
Landau–Lifshitz prescription, 349, 352
Landau–Pomeranchuk–Migdal effect, 366,

438
Langevin equation, 45, 73, 75, 157, 167, 368
Langevin theory, 7, 29
Laplace–Beltrami operator, 122
Large Hadron Collider (LHC), 429
large N approximation, 378
lattice QCD, 380
leading logs, 328
Lehman representation, 296
Levi-Civita connection, 338
linear entropy, 264
linear response theory, 293, 312, 367, 401
linear sigma model, 440
Liouville equation, 48, 50, 255
Liouville–von Neumann equation, 61
local Lorentz transformation, 342
long-range coherence, 422, 423
loop expansion, 190
Lorentz force, 333
Loschmidt paradox, 18
loss process, 324
Lyapunov exponent, 6

M theory, 367
magneto-optical traps, 391
Markov processes, 35
mass renormalization, 327
mass shell, 320
mass-shell condition, 309
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mass-shell constraint, 333, 341
master equation, 73, 282, 284

quantum functional, 158
Matsubara contour, 292
Maxwell action, 300
Maxwell field tensor, 301
mean field approximation, 379
mean free time, 363
mesons, 429
microcanonical ensemble, 11
MINIMAX, 439
Minkowski modes, 98
mixing system, 12
modes

hard, 305
soft, 305
ultrasoft, 305

molecular chaos, 14, 52, 53
Mott transition, 391

N representation, 261
Nakanishi–Lautrup field, 218
natural frequency, 259
Navier–Stokes equation, 349, 352
Noether’s theorem, 397
noise

colored, 156
multiplicative, 157

nonabelian charge, 336
nonabelian plasmas, 365
nonadiabaticity parameter, 113
noncondensate band, 415
nonequilibrium quantum field theory, 3
nonequilibrium renormalization group, 385,

470
nonequilibrium statistical mechanics, 3
nonlinear sigma model, 440
nonrelativistic thermodynamics, 346
normal density, 399
normal neighborhood, 338
Novikov identity, 44, 46
numerical simulations, 374

ohmic bath, 78
one-body density matrix, 422
one-loop approximation, 393, 407
Onsager’s principle, 368
optical lattices, 391
Ornstein–Zernike approximation, 376

parabolic cylinder functions, 110
parallel transport, 342
parametric amplification, 382
parametric resonance, 118
particle creation

in dynamical spacetime, 121
in external fields, 106

particle model, 97
particle number, 346
particle number conserving formalism, 393,

420
particle–hole pair, 423
parton saturation, 437
Pauli blocking, 378
Pauli matrices, 398
persistent structure, 21
phase transition

quantum , 270
second order, 271
slow-rollover, 283

Φ-derivable theories, 392, 402
phonon, 409
pion bunching, 436
pions, 429
Poincaré recurrence, 17
Poisson bracket, 47, 320
Popov approximation, 393, 407
potential

φ4, 95
ϕ3, 177
contact, 398

pre-thermalization, 381
preheating, 381, 475
pressure, 346
primordial magnetic fields, 482
probability theory, 31
projection operator, 20, 256
propagator

advanced, 172
almost translation invariant, 315
Dyson, 152, 171
Feynman, 152, 171
for Dirac fields, 302
Hadamard, 172
Jordan, 172
negative frequency, 152, 171
positive frequency, 171
retarded, 172
thermal, 294
translation invariant, 315

proton, 429
pseudo-rapidity, 431
pseudo-scalars, 429

QCD energy scale, 429
quantum information processing, 391
quantum open systems, 26
quantum-to-classical transition, 281
quark condensate, 430
quark–gluon liquid, 374, 430
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quark–gluon plasma, 430
quarks, 430
quasi-condensates, 422
quasi-particle approximation, 320
quench, 271

instantaneous, 274
slow, 274
transition time, 272, 276

quench time, 274

random variables, 32
rapidity, 431
rapidity plateau, 431
Rayleigh–Jeans spectrum, 365, 383, 384
reduced density matrix, 150
reheating, 380, 475
relativistic heavy ion collisions (RHICs), 365,

429
renormalization group, 470
response function, 293
Riemann normal coordinates, 338
Riemann tensor, 338
Rindler coordinates, 444
rotation operator, 132
rotation parameters, 133

scattering length, 398, 409
Schrödinger equation, 60, 63
Schwinger–Dyson equation, 297, 316
screening, 298
screening length, 298
second law, 346, 349, 351
second viscosity, 351
secular terms, 382
self-energies, 318
shear stress, 363, 364
shear viscosity, 351, 365, 370
Slavnov–Taylor identities, 226
spectral density, 144
speed of sound, 349, 359
spin connection, 343
spin diffusion, 367
spinodal decomposition, 278, 380,

446
squeeze operator

single mode, 134
two mode, 132

squeeze parameter, 99, 133
Stefan–Boltzmann law, 357
stimulated production, 114
stochastic Gross–Pitaevskii equation, 393,

415
stochastic inflation, 281, 450, 452
stochastic processes, 34
structure constants, 214, 337

structure formation, 281, 457
effect of colored noise, 457, 458

subfluctuant variable, 264
sum rules, 366
Super Proton Synchroton (SPS), 429
superfluctuant variable, 264
superfluid velocity, 419
superfluidity, 391
susceptibility, 369
symmetry-breaking approach to BEC, 397
symmetry nonrestoration, 298
symmetry restoration, 298

inverse, 298

tadpole, 297
Takahashi–Ward identities, 226
temperature, 346
thermal density matrix, 291
thermal pressure, 357
thermal state, 291
thermalization, 374
thermo field dynamics, 292
thermodynamic forces, 43
thermodynamic limit, 420
thermodynamic potential, 346, 348, 351, 357
thermodynamics, 346
time reversal invariance, 328
time-dependent Ginzburg–Landau equation,

379
Tonks gas, 391
topological defects, 374
trace anomaly, 366, 380
transition probability, 54
transport equation, 358

covariant, 341
on an abelian background, 333
on nonabelian backgrounds, 336

transport functions, 353
transversal momentum, 431
transverse mass, 434
trap potential, 398
triangle inequality, 254
Trotter formula, 61
truncation, 51
turbulent cascade, 384, 439
turbulent thermalization, 383
two-fluid hydrodynamics, 393
two-loops approximation, 393, 410
type II superconductor, 379

uncertainty relation, 265
Unruh effect, 125

Van Vleck–Morette determinant, 339
vierbein, 342
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viscosity coefficients, 370
Vlasov equation, 10, 326, 379

quantum, 117
volume, 346
von Neumann entropy, 253, 255,

261

wave splitting, 438
weakly nonideal fluid, 349

Weibel instability, 438
Wigner function, 63, 330

reduced, 75
Wigner functional, 160
Wigner transform, 330
Wong equations, 337, 385, 439
Wronskian, 97

Zeroth law, 346
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