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T H E n-INSERTIVE S U B G R O U P S OF U N I T S

DAVID DOLZAN

Let R be a finite ring. Let us denote its group of units by G = G[R) and its Jacobson
radical by J = J(R). Let n be an arbitrary integer. We prove that R is an n-insertive
ring if and only if G is an n-insertive group and show that every n-insertive finite ring
is a direct sum of local rings. We prove that if n is a unit, then the local ring R is
n-insertive if and only if its Jacobson group 1 + J is n-insertive and find an example
to show that this is not true if n is a non-unit.

1. INTRODUCTION

Many properties of finite rings follow from the properties of their groups of units.
For example, it was shown in [1] that a finite ring is commutative if and only if its
group of units is commutative. The notion of commutativity can be generalised to the
notion of n-insertiveness, as shown below. In this paper, we study the link between the
n-insertiveness of a finite ring and the n-insertiveness of its group of units.

So, let R be a finite ring with identity 1 ^ 0 . Denote the group of units of R by
G = G(R) and the Jacobson radical of R by J = J(R).

If n is an integer, we call R an n-insertive ring if, for a,b £ R and ab = n, we have
arb = nr for every r 6 R. Let H be a subgroup of G. We call H an n-insertive group if,
for a,b € R and ab = n, we have agb — ng for every g € H.

LEMMA 1 . 1 . G is l-insertive if and only if G is commutative.

PROOF: Assume that G is 1-insertive. Choose a € G and denote 6 = a"1. Since G
is 1-insertive, we have ab = 1 and agb = g for every g € G. Therefore ag = gb~l = ga for
every g £ G, so G is commutative.

On the other hand, if G is commutative, then R is commutative by a corollary of

[1, Theorem 3.2]. This implies that R, and then of course also G, is 1-insertive. D

We know by [3, Lemma 1] that R is 1-insertive if and only if R is commutative. A

corollary of [1, Theorem 3.2] tells us that R is commutative if and only if G is commu-

tative. So, the above lemma implies that G is 1-insertive if and only if R is 1-insertive.

We prove that for every integer n the following holds: G is n-insertive if and only

if R is n-insertive. We prove this by studying the structure of n-insertive rings, showing
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that every n-insertive ring (for an arbitrary integer n) is a direct sum of local rings. We
also show that the converse of this statement is false. Namely, we find a local ring that
is not n-insertive for any integer n.

The group 1 + J is a normal subgroup of G, called the Jacobson group. We study
whether the n-insertiveness of 1 + J is equivalent to the n-insertiveness of R. Obviously,
the answer is negative in general (consider for example the full matrix ring over some
finite field). However, we prove that the answer is affirmative if R is a local ring and n is a
unit. We also find an example of a non n-insertive local ring R with a n-insertive Jacobson
group (for every integer non-unit n in R), thus proving that the above equivalence does
not hold for an arbitrary n, even in the class of local rings.

2. THE PROPERTIES OF n-INSERTIVE RINGS

THEOREM 2 . 1 . Let n be an arbitrary integer. If G is n-insertive, then R is a
direct sum of local rings.

PROOF: Assume that R is a directly indecomposable ring. Assume also that R is
not local. Then there exists a non-trivial idempotent e\ & R. Denote e2 — 1 — e\. Since
R is indecomposable, we either have e\Re2 ^ 0 or e2Rei ^ 0, otherwise we would be able
to decompose R as R = e\Rei © e2Re2. We can assume without any loss of generality
that e\xe2 ^ 0 for some x € R. Now, (ei + ne2){nei + e2) = n, so by our assumption
(ei + ne2)g(nei + e2) = ng for every g € G. Clearly, 1 + e\xe2 € G, since (eixe2)

2 = 0.
But (ei + ne2)(l + eixe2)(nei + e2) — n + eixe2l therefore (n - l)eixe2 = 0. We can
therefore conclude that n — 1 $ G. However, R is indecomposable, therefore it is a p-ring
for some prime number p. Since n — 1 is a multiple of p, we can conclude that n has
to be prime to p, and thus n must be a unit. Let us show that G is then 1-insertive.
Choose a,b € R such that ab = 1 and choose g € G. Then a(bn) = n and therefore
agbn = gn, so agb = g, because n is a unit. So, Lemma 1.1 implies that G is Abelian and
therefore R is commutative by [1, Theorem 3.2]. This, together with the existence of ei,
is a contradiction with the indecomposability of R. Therefore, we can conclude that R
is indeed a local ring. D

EXAMPLE 2.2. The converse of the above statement is false. Let p be a prime number
and let R be a ring of all 4 x 4 upper triangular matrices with entries from GF{pT), such
that their entries on the (main) diagonal are constant. Obviously, G is a non-Abelian
group. Therefore G is not 1-insertive and then G is also not n-insertive for any integer
n, prime to p, by the proof of Theorem 2.1. If we take p = 3, we have
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So, for p = 3, R is a local ring, but G is not n-insertive for some integers n (specifically

0 = 0,3,6, . . . ) .

COROLLARY 2 . 3 . Let n be an arbitrary integer. Then R is n-insertive if and

only if G is n-insertive.

PROOF: Since G(Ri © R2) = G(Ri) x G(R2), it suffices to prove the corollary only
for directly indecomposable rings. So, assume that R is directly indecomposable and that
G is n-insertive. Let us prove that R is n-insertive. Assume that ab = n for some a, 6 G R
and choose r G R. By Theorem 2.1, R/J is a field and therefore R/J is generated by its
units. But then R is also generated by its units, as was proved in [2, Lemma 4.5]. Thus,
r = U\ + • • • + Uk and arb = au\b + • • • + aukb — n{u\ + • • • + Uk) = nr, because G is

n-insertive. U

3. THE n-INSERTIVENESS OF THE JACOBSON GROUP

In this section, we examine if the n-insertiveness of R is perhaps also equivalent
to the n-insertiveness of the Jacobson group 1 + •/. Obviously, in general, the answer
is negative, because the Jacobson group of a full matrix ring over some finite field is
trivial, and therefore 1-insertive, but the ring itself is non-commutative and therefore not
1-insertive. However, we shall examine this question in the class of all finite local rings
and find that the answer is positive, at least for those integers n that are units in R.

For a subset SCR, let C(S) = {x € R; xs = sx for every s G 5} denote the
centraliser of S in R.

LEMMA 3 . 1 . Let R be an arbitrary finite ring and n an arbitrary integer. Ifn is

a unit in R, then 1 + J is n-insertive if and only if J C C(G).

PROOF: Assume 1 + J is n-insertive and choose a G G. Then naa~l = n, therefore
na(l +j)a~l — n(l + j) for every j G J, thus n(aja~l - j) = 0. Since n is a unit, we can
conclude that aj — ja for every j € J.

Conversely, if J C C(G), then a(l + j)b — (1 + j)ab for every a,b G G and every
j 6 J, so 1 + J is indeed n-insertive. D

THEOREM 3 . 2 . Let R be a finite local ring and n an arbitrary integer. Ifn is a

unit in R, then the following are equivalent:

1. R is n-insertive.

2. 1 + J is n-insertive.

3. R is commutative.
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PROOF: If n is a unit and R is n-insertive, then R is also 1-insertive and thus
commutative by [3, Lemma 1]. So, it suffices to prove that the n-insertiveness of 1 + J

implies the commutativity of R. Let us therefore assume that 1 + J is n-insertive. We
know that, since R is a finite local ring, the units of the factor field RjJ form a cyclic

k

group, generated by some element g + J of order k. Then G — (J (gl + J). By the
x=i

previous lemma we conclude that all elements in J are also in the centraliser of G, thus

1 + J is a commutative group, so J is commutative as well. Thus G is an Abelian group
and therefore R is a commutative ring by the corollary of [1, Theorem 3.2]. D

The next example shows that this theorem does not hold if n is not a unit.

EXAMPLE 3.3. If 5 is a ring, then let S{x, y, z} denote the polynomial ring over 5 in
non-commuting variables. Let us examine the ring

R =
(x1 + 1, y3, z3, yz, zy, yx - xz, zx - xy)'

Clearly, this is a finite ring, such that all of its non-units form the unique maximal ideal
J — (y,z), therefore R is a local ring. We notice that J3 = 0, therefore 1 + J is a
O-insertive group, since ab = 0 implies a, b E J. However, R is not a 0-insertive ring,
because we have yz = 0, but yxz = xz2 ^ 0, because x is a unit and z2 ^ 0. The same
argument also implies that 1 + J is n-insertive and R is not n-insertive for every integer
n which is a non-unit in R.
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