THE n-INSERTIVE SUBGROUPS OF UNITS

David Dolžan

Abstract

Let R be a finite ring. Let us denote its group of units by $G=G(R)$ and its Jacobson radical by $J=J(R)$. Let n be an arbitrary integer. We prove that R is an n-insertive ring if and only if G is an n-insertive group and show that every n-insertive finite ring is a direct sum of local rings. We prove that if n is a unit, then the local ring R is n-insertive if and only if its Jacobson group $1+J$ is n-insertive and find an example to show that this is not true if n is a non-unit.

1. Introduction

Many properties of finite rings follow from the properties of their groups of units. For example, it was shown in [1] that a finite ring is commutative if and only if its group of units is commutative. The notion of commutativity can be generalised to the notion of n-insertiveness, as shown below. In this paper, we study the link between the n-insertiveness of a finite ring and the n-insertiveness of its group of units.

So, let R be a finite ring with identity $1 \neq 0$. Denote the group of units of R by $G=G(R)$ and the Jacobson radical of R by $J=J(R)$.

If n is an integer, we call R an n-insertive ring if, for $a, b \in R$ and $a b=n$, we have $a r b=n r$ for every $r \in R$. Let H be a subgroup of G. We call H an n-insertive group if, for $a, b \in R$ and $a b=n$, we have $a g b=n g$ for every $g \in H$.

Lemma 1.1. G is 1 -insertive if and only if G is commutative.

Proof: Assume that G is 1 -insertive. Choose $a \in G$ and denote $b=a^{-1}$. Since G is 1 -insertive, we have $a b=1$ and $a g b=g$ for every $g \in G$. Therefore $a g=g b^{-1}=g a$ for every $g \in G$, so G is commutative.

On the other hand, if G is commutative, then R is commutative by a corollary of [1 , Theorem 3.2]. This implies that R, and then of course also G, is 1 -insertive.

We know by [3, Lemma 1] that R is 1 -insertive if and only if R is commutative. A corollary of [1 , Theorem 3.2] tells us that R is commutative if and only if G is commutative. So, the above lemma implies that G is 1 -insertive if and only if R is 1 -insertive.

We prove that for every integer n the following holds: G is n-insertive if and only if R is n-insertive. We prove this by studying the structure of n-insertive rings, showing

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/07 \$A2.00+0.00.
that every n-insertive ring (for an arbitrary integer n) is a direct sum of local rings. We also show that the converse of this statement is false. Namely, we find a local ring that is not n-insertive for any integer n.

The group $1+J$ is a normal subgroup of G, called the Jacobson group. We study whether the n-insertiveness of $1+J$ is equivalent to the n-insertiveness of R. Obviously, the answer is negative in general (consider for example the full matrix ring over some finite field). However, we prove that the answer is affirmative if R is a local ring and n is a unit. We also find an example of a non n-insertive local ring R with a n-insertive Jacobson group (for every integer non-unit n in R), thus proving that the above equivalence does not hold for an arbitrary n, even in the class of local rings.

2. The properties of n-insertive rings

TheOrem 2.1. Let n be an arbitrary integer. If G is n-insertive, then R is a direct sum of local rings.

Proof: Assume that R is a directly indecomposable ring. Assume also that R is not local. Then there exists a non-trivial idempotent $e_{1} \in R$. Denote $e_{2}=1-e_{1}$. Since R is indecomposable, we either have $e_{1} R e_{2} \neq 0$ or $e_{2} R e_{1} \neq 0$, otherwise we would be able to decompose R as $R=e_{1} R e_{1} \oplus e_{2} R e_{2}$. We can assume without any loss of generality that $e_{1} x e_{2} \neq 0$ for some $x \in R$. Now, $\left(e_{1}+n e_{2}\right)\left(n e_{1}+e_{2}\right)=n$, so by our assumption $\left(e_{1}+n e_{2}\right) g\left(n e_{1}+e_{2}\right)=n g$ for every $g \in G$. Clearly, $1+e_{1} x e_{2} \in G$, since $\left(e_{1} x e_{2}\right)^{2}=0$. But $\left(e_{1}+n e_{2}\right)\left(1+e_{1} x e_{2}\right)\left(n e_{1}+e_{2}\right)=n+e_{1} x e_{2}$, therefore $(n-1) e_{1} x e_{2}=0$. We can therefore conclude that $n-1 \notin G$. However, R is indecomposable, therefore it is a p-ring for some prime number p. Since $n-1$ is a multiple of p, we can conclude that n has to be prime to p, and thus n must be a unit. Let us show that G is then 1 -insertive. Choose $a, b \in R$ such that $a b=1$ and choose $g \in G$. Then $a(b n)=n$ and therefore $a g b n=g n$, so $a g b=g$, because n is a unit. So, Lemma 1.1 implies that G is Abelian and therefore R is commutative by [1 , Theorem 3.2]. This, together with the existence of e_{1}, is a contradiction with the indecomposability of R. Therefore, we can conclude that R is indeed a local ring.

Example 2.2. The converse of the above statement is false. Let p be a prime number and let R be a ring of all 4×4 upper triangular matrices with entries from $G F\left(p^{r}\right)$, such that their entries on the (main) diagonal are constant. Obviously, G is a non-Abelian group. Therefore G is not 1 -insertive and then G is also not n-insertive for any integer n, prime to p, by the proof of Theorem 2.1. If we take $p=3$, we have

$$
\left[\begin{array}{llll}
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]=0, \text { but }
$$

$$
\left[\begin{array}{llll}
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \neq 0
$$

So, for $p=3, R$ is a local ring, but G is not n-insertive for some integers n (specifically $n=0,3,6, \ldots$).

Corollary 2.3. Let n be an arbitrary integer. Then R is n-insertive if and only if G is n-insertive.

Proof: Since $G\left(R_{1} \oplus R_{2}\right)=G\left(R_{1}\right) \times G\left(R_{2}\right)$, it suffices to prove the corollary only for directly indecomposable rings. So, assume that R is directly indecomposable and that G is n-insertive. Let us prove that R is n-insertive. Assume that $a b=n$ for some $a, b \in R$ and choose $r \in R$. By Theorem 2.1, R / J is a field and therefore R / J is generated by its units. But then R is also generated by its units, as was proved in [2, Lemma 4.5]. Thus, $r=u_{1}+\cdots+u_{k}$ and $a r b=a u_{1} b+\cdots+a u_{k} b=n\left(u_{1}+\cdots+u_{k}\right)=n r$, because G is n-insertive.

3. The n-insertiveness of the Jacobson group

In this section, we examine if the n-insertiveness of R is perhaps also equivalent to the n-insertiveness of the Jacobson group $1+J$. Obviously, in general, the answer is negative, because the Jacobson group of a full matrix ring over some finite field is trivial, and therefore 1-insertive, but the ring itself is non-commutative and therefore not l-insertive. However, we shall examine this question in the class of all finite local rings and find that the answer is positive, at least for those integers n that are units in R.

For a subset $S \subseteq R$, let $C(S)=\{x \in R ; x s=s x$ for every $s \in S\}$ denote the centraliser of S in R.

Lemma 3.1. Let R be an arbitrary finite ring and n an arbitrary integer. If n is a unit in R, then $1+J$ is n-insertive if and only if $J \subseteq C(G)$.

Proof: Assume $1+J$ is n-insertive and choose $a \in G$. Then naa ${ }^{-1}=n$, therefore $n a(1+j) a^{-1}=n(1+j)$ for every $j \in J$, thus $n\left(a j a^{-1}-j\right)=0$. Since n is a unit, we can conclude that $a j=j a$ for every $j \in J$.

Conversely, if $J \subseteq C(G)$, then $a(1+j) b=(1+j) a b$ for every $a, b \in G$ and every $j \in J$, so $1+J$ is indeed n-insertive.

THEOREM 3.2. Let R be a finite local ring and n an arbitrary integer. If n is a unit in R, then the following are equivalent:

1. R is n-insertive.
2. $1+J$ is n-insertive.
3. R is commutative.

Proof: If n is a unit and R is n-insertive, then R is also 1 -insertive and thus commutative by [3, Lemma 1]. So, it suffices to prove that the n-insertiveness of $1+J$ implies the commutativity of R. Let us therefore assume that $1+J$ is n-insertive. We know that, since R is a finite local ring, the units of the factor field R / J form a cyclic group, generated by some element $g+J$ of order k. Then $G=\bigcup_{i=1}^{k}\left(g^{i}+J\right)$. By the previous lemma we conclude that all elements in J are also in the centraliser of G, thus $1+J$ is a commutative group, so J is commutative as well. Thus G is an Abelian group and therefore R is a commutative ring by the corollary of [1 , Theorem 3.2].

The next example shows that this theorem does not hold if n is not a unit.
Example 3.3. If S is a ring, then let $S\{x, y, z\}$ denote the polynomial ring over S in non-commuting variables. Let us examine the ring

$$
R=\frac{\mathbb{Z}_{3}\{x, y, z\}}{\left(x^{2}+1, y^{3}, z^{3}, y z, z y, y x-x z, z x-x y\right)}
$$

Clearly, this is a finite ring, such that all of its non-units form the unique maximal ideal $J=(y, z)$, therefore R is a local ring. We notice that $J^{3}=0$, therefore $1+J$ is a 0 -insertive group, since $a b=0$ implies $a, b \in J$. However, R is not a 0 -insertive ring, because we have $y z=0$, but $y x z=x z^{2} \neq 0$, because x is a unit and $z^{2} \neq 0$. The same argument also implies that $1+J$ is n-insertive and R is not n-insertive for every integer n which is a non-unit in R.

References

[1] J.-A. Cohen and K. Koh, 'The group of units in a compact ring', J. Pure Appl. Algebra 54 (1988), 167-179.
[2] I. Stewart, 'Finite rings with a specified group of units', Math. Z. 126 (1972), 51-58.
[3] L.Q. Xu and W.M. Xue, 'Minimal non-commutative n-insertive rings', Acta Math. Sin. (Engl. Ser.) 19 (2003), 141-146.

Department of Mathematics
University of Ljubljana
Jadranska 19
Ljubljana 1000
Slovenia

[^0]: Received 29th June, 2006

