Orbital Evolution of the Kuiper Belt

Charles Morgan and Andrew Prentice
School of Mathematical Sciences, Monash University, 3800 Australia

Abstract

The observed distribution of trans-Neptunian objects (TNOs) implies that they originally orbited in a narrow ring of radius 41 AU . The mass of the largest TNO was around $1-4 \times 10^{26} \mathrm{~g}$.

Scattering by the largest TNO forms the stable low inclination ($i \leqq 8^{\circ}$) population (Fig 1a). However, most TNOs remain in the 40-42 AU unstable zone or are scattered into the chaotic fringes of the $2: 3$ Neptune resonance, where their inclinations and eccentricities fluctuate increasingly until they are scattered by Neptune (Fig 1b). Thus 2 distinct populations emerge from the initial ring. The $2: 3$ resonance is the main route to the Neptune scattered population. Stabilization of a small fraction of the TNOs passing through gives the Plutinos.

Figure 1. (a) Simulated development of the classical ($i \leq 8^{\circ}$) population with weak planetary perturbation. The 1:2 resonance would limit expansion. (b) Real planetary perturbation gives both high and low inclination populations. The orbital stability map is adapted from Duncan, Levison, \& Budd (1995) and Malhotra (1996).

References

Duncan, M., Levison, H., \& Budd M. 1995 AJ, 110, 3073
Malhotra, R. 1996 AJ, 111, 504

