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THE JOLY TOPOLOGY AND THE
MOSCO-BEER TOPOLOGY REVISITED

DOMINIQUE AZE AND JEAN-PAUL PENOT

Some extensions to the non reflexive case of continuity results for the Legendre-
Fenchel transform are presented following an approach due to J.-L. Joly. We
compare the topology introduced by J.-L. Joly and the Mosco-Beer topology in-
troduced by G. Beer. In particular, in the case of the space of closed proper convex
functions defined on the dual of a normed vector space they coincide.

1. INTRODUCTION AND NOTATIONS

The continuity of the Legendre-Fenchel transform represents a crucial property for
convergence questions dealing with optimisation problems in duality. Wijsman [16,
17] pointed out this fact for his "infimal convergence" in finite dimensional spaces.
Mosco [11, 12] extended this result to reflexive Banach spaces for the convergence he
introduced. The corresponding fact in general Banach spaces for the stronger bounded
Hausdorff topology has been studied by Walkup and Wets in [15], Attouch and Wets
[2], Beer [6], Penot [13]. However this topology is so strong that an increasing sequence
of finite dimensional subspaces {Xn) whose union is dense in a separable Banach space
cannot converge to X .

It is the purpose of the present paper to consider this question for a topology close
to the Mosco topology as introduced by Beer in [3] (we call it the Mosco-Beer topology
henceforth). The reason why we look for a modification of this topology lies in the fact
it has been shown by Beer and Borwein [7] that outside the class of reflexive Banach
spaces the Mosco-Beer topology does not have the pleasant properties one would expect:
it is not Hausdorff and the Legendre-Fenchel transform is not continuous. Our strategy
consists in examining anew a proposal made by Joly [9, 10] which, by brute force,
makes bicontinuous the Legendre-Fenchel transform and in proving that this proposal
has decent properties and coincides with the Mosco-Beer topology for convex functions
on reflexive Banach spaces. We also show that the Joly topology is well suited for
optimisation problems (Propositions 1.1 and 2.4)

Given a topological space P, a subset T of P, a point 0 of P in the closure of T
and given a family of subsets (Ct)t€T of a topological space (X, r) parametrised by T,
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354 D. Aze and J-P. Penot [2]

the Kuratowski-Painleve limit inferior (respectively superior) of the family (Ct)t^T as
t goes to 0 is the set denoted by liminf Ct (respectively l imsupCt) of x £ X such that

each neighbourhood of x meets Ct eventually (respectively frequently). Equivalently,

x £ l imsupCt if and only if there exist a net (U)ieI converging to 0 in T and a net
t—o

ixi)iei converging to x in X such that X{ £ C^ for each i, and x £ liminf Ct if and

only if for each net (<t)ie/ converging to 0 in T there exists a subnet (tj)j£J and a

net {xj)-£j converging to x in X such that Xj £ C^. for each j £ J. In the case

when X is metrisable and the sets Ct are closed, one has x £ liminf Ct (respectively

x £ l imsupCt) if a n < i only if lim sup d(x,Ct) — 0 (respectively liminf d[x,Ct) — 0).
t-0 t-0 *—°

We say that C = lim Ct if lim sup Ct C C C lim inf Ct.
t—o t—o '-»°

Given a function / defined on a set X with values in K U { + o o } , we denote by
E(f) C X x R its epigraph, E(f) = {(x,r) £ X x R : f(x) ^ r} and by S(f,r) =

{x £ X : f(x) ^ r} its sublevel sets. The indicator function of a subset .4. C -X" is the
function %A denned by IA(X) = 0 if x £ A and M(:E) = +oo if x ^A.

We denote by C(X) the set of closed convex subsets of a normed vector space
(X, || . ||) whose closed unit ball is denoted by B and dual space by X*. The closed
ball with centre x and radius r is denoted by B(x,r). We say that two normed vector
spaces X, Y are in duality (respectively in metric duality) if they are coupled by a
bilinear function (.,.) in such a way that the mappings x i—> (a:,-) and y i—> (•,!/)
are embeddings (respectively isometric embeddings) of X into Y* and of Y into X*.

We denote by Cy(X) the set of cr(X,F)-closed nonempty convex subsets of X and
we adopt an analogous definition for Cx{Y). In the sequel Affy (X) stands for the
set of mappings x i—» (x,y) - r, where (y,r) £ Y xR and TY{X) (T(X) if there
is no ambiguity on Y, TQ(X) if Y = X*) denotes the set of proper functions on X
whose epigraphs belong to C y x i ( X x R ) , with an analogous definition for Aff^ (Y)

and F j t ( ^ ) - The sets TY{X) and Tx{Y) are connected by a one to one mapping £ ,
namely the Legendre-Fenchel transform, defined by £ ( / ) = /* where

r(y) = suP{{x,y)-f(x):x£X}.

A classical way to define topologies on a subset S of the power set 2X of a set X is to

use the sets

A~ = {C £ S : A n C ? 0}

and A+ = {C £ S : C C A}

where A runs over some family A C 2X . The topologies A~ and A+ are the weakest
topologies on S containing respectively the families {A~ : A £ A} and {A+ : A £ A}.
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In the sequel we shall mainly deal with S = CY(X) where X, Y are normal vector
spaces in metric duality, in particular when Y = X* (in which case we write C(X))

and when X — Y* (in such a case we write C*{Y*) for CY(X)). We identify a function
/ with its epigraph E(f) so that, for W C X x R, / £ W~ means E(f) D W ^ 0.

We also recall that the topology of bounded hemiconvergence or the bounded-

Hausdorff topology TBH is the weakest topology on CY(X) which makes continuous
the functions er(A,.) and er(.,A) for r £ R+, .A £ Cy(X), where

er(i4,C) = sup{d(x,C) : x € AHrB},

and d{x,C) = ini{d{x,y) : y £ C},

(see [1, 6, 11, 13, 14]). Let us introduce the topologies we intend to study in this paper.
We define them either on C(X) or on To(X). Considering the mappings / i—> E(f)
from To[X) into C(X x R) and C >—> ic from C(X) into To(X) as embeddings shows
that these two possibilities immediately induce a topology on the other space.

DEFINITION 1.1: Let X be a normed vector space (n.v.s.).

(a) The Mosco-Beer topology TM is the topology defined on C(X) by TJ^VT^

with T^ = O~ ,TM = W+ where O (respectively W) denotes the fam-
ily of open subsets of X (respectively of complements X\K, K weakly
compact).

(b) The dual Mosco-Beer topology rj^ is defined on the set C*(X*) :=
CX{X*) of to*-closed convex subsets of X* by O~ V W*+ where W*
stands for the family of complements of w*-compact subsets of X* .

Let us mention the following lemma whose proof mimics the one of Lemma 5.4 in

[8]-

LEMMA 1 . 1 . Let X, Y be n.v.s. in duality. Assume that bounded subsets of

X are relatively o~(X,Y)-compa.ct. Let We be the family of complements of o~(X,Y)-

compact convex subsets of X. Then the topologies Ŵ £ and W+ coincide on Cy{X).

DEFINITION 1.2: Let X, Y be normed vector spaces in duality. The Joly topology
TJ is the weakest topology on Fy(X) which makes continuous the mappings E : f •—>
E{f) and E* : / .—> E{f*) from TY(X) into (C{X x R),O~) and {C(Y x R),O~)
respectively.

Equivalently, the Joly topology is the weakest topology on TY(X) for which / i—>
E(f) and / i—• E o £( / ) are lower semicontinuous multifunctions. Let us give a still
more concrete description of this topology, first in terms of convergence, then in terms
of open sets.

LEMMA 1 .2 . A net (/,-)i6/ of TY(X) converges to f £ FY(X) if and only if for

any x £ dom f, y £ dom f*, there exists a subnet {fj)€J, a net (a:^). J with limit
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x, a. net (2/j),-6J with limit y such that

Uminf//(»,-) ^ / ' ( y ) .

Using the fact that the conjugate function of the indicator function of a cone C is
the indicator function of the polar C° of C we get the following

COROLLARY 1 . 1 . A parametrised family (C i ) t 6 T of closed convex cones in

CY{X) converges to C E Cy{X) tor TJ if and only if

C C liminf Ct,

C° CliminfCf.
(-.0 l

Let us give a still more concrete description of this topology. Let fl be an open
subset o f l x R , let / € E'1^') and let (x,s) 6 E{f) n 0,. Let U be an open
neighbourhood of x and let si < s < 52 be such that U x (s i ,^ ) C fi. Identifying /
with E(f) one has

f E(U x(-oo,s2)y,

and since E{h) HU x (-oo,s2) ^ 0 implies that E(h) n fi ^ 0 one gets

/ € S - 1 (n- ) D S-1 (([/ x (-oo,j2))") .

It ensues that the Joly topology is generated by the sets:

E-\U x (-oo)5)) = {/ e IY(X) : E(f) nUx (-00,3) ^ 0},

(EoQ-'iV x (-oo.a)) = {/ 6 Ty(X) : £?(/*) n V x (-00,3) ? 0},

where a £ R and U (respectively V) is an open subset of X (respectively Y). Let us
set

and ]V,s[ = (Eo£)-\V x(-oo,s)),

so that [17, s] = {/ £ IY(X) : 3 x £ U, f{x) < s},

}V, a[ = {/ € r y ( J f ) : 3 y € V, 3 t < s, E(f) C !?,,«},

where £>j,|t = {(x,?1) £ X x R : (x, y) ^ r + t}.
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Using the embedding z : C i—> ic j we obtain

f {C G CY{X) :3X£U, ic(x) <s} = U~ for 3 € P = (0, +oo) ,
i {[U,s]) = <

^ 0 otherwise,

and

r ^ V . a l ) = {C£ CY(X) :3yeV, ac{y) < a},

where <xc denotes the support function of C, o~c = (*c)*- Thus TJ — TJ V rj" where
T J = 0~ is the lower-Vietoris topology and rj" is generated by the sets

{C £CY{X) : inf <JC < s)

where V is an open set of Y and s £ R .

The following property follows easily from the definition of TJ and shows the rele-

vance of the Joly topology for optimisation problems.

PROPOSITION 1 . 1 . Let X, Y be normed vector spaces in duality. The Joly
topology TJ is the weakest topology on Fy(X) such that for each open subset U
(respectively V) of X (respectively Y), the functions f i—» infy / and f i—> infv /*
are upper semicontinuous.

PROOF: The weakest topology on TY{X) such that for each open subset U (re-
spectively V) of X (respectively Y), the functions / i—> inf \j f and / i—> infv/*
are upper semicontinuous is generated by the sets

{/€ rY{X):mif <s} = [U,s],

{ferY{X):intCU)<s}=]V,a[,

hence the result. D

Observe that, from the very definition of the Joly topology, the Legendre-Fenchel
transform £ is an homeomorphism from (Fy(X),Tj) onto (TX{Y),TJ). Therefore it
will be useful only if one disposes of workable characterisations of this topology.

2. IDENTIFICATION OF THE JOLY TOPOLOGY

The definition of the Joly topology is sensible as shown by the following result.

PROPOSITION 2 . 1 . (Compare with [9, 10] and [4, Theorem 3.4]j. The Joly
topology TJ induces on the space Affy (X) of Y-afRne functions on X the topology
transported by the isomorphism a : (y,r) i—> (.,y) — r of Y x R onto Affy {X).

PROOF: Let (yo,ro) G Y x R and let U be an open subset of X x R such that
"•(yo,ro) G U~. Let (xo,so) £ U be such that (zo,2/o) — >"o ^ «o and let e > 0
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be such that B(xo,e) x [s0 — e,s0 + e] C U. Then for r £ [r0 — e/2,r0 + e/2] and

y £ -Brt/0,2~1(||x0|| + l ) - 1 e j we have (xo,y) - r ^ s0 + e, hence a(y,r) £ U~ .

Now let V be an open subset of YxR such that [a(yo,ro)]* £ V~ . Let (zo,'<o) £ V

be such that [a(i/o,ro)]*(zo) ^ to- Since

KJ/O,T-O)]*(ZO) = *{i,o}(zo) + r 0 ,

we have zo = 2/o and ro ^ <o and for (y,r) close enough to (yo,r0) we have

(y,t0 +r -r0) = (yo,k) + (y~yo,r - r0) E V

and {y,r + t0 - r0) = (y, [a{y,r)}*{y) + t0 - r0) 6 E([a(y,r)}*),

so that [a(y,r)}* £ V~ . Thus we have shown that a(.,.) is continuous from K x R onto

Now let (yo,n>) 6 Y x R and let e > 0 be given. Setting V — intB(yo,e) x
(ro — e,ro + e) what precedes shows that for any (y,r) E Y x K with [a(j/,r)]* 6 V~
we have y G int B(yo,e) and r < rQ + e. If moreover for

U = int 5 (0 , (2 HJ/OII + 2e)"1e) x (-r0 - e/2, - r 0 + e/2)

we have a(y,r) £ U~ then we can find (xo,'o) £ U with (y,xo) — r ^ <o and hence

r > -|(ajo,»>| -U Z - ( | | y o | | + £ ) ( 2 | | y o | | + 2 e ) " 1 e + r 0 - e / 2 > r 0 - e.

Thus (y,r) £ V whenever (y,r) is such that a(y,r) £ U~ and [a(j/,r)]* £ V~. As
a{yo>To) £ U~ and [a(i/o,^o)]* £ V~ we conclude that the mapping a"1 is continuous
from (Affy {X),TJ) onto Y x R. D

An important property of the Joly topology is the following. It is in sharp contrast
with what occurs in general for the Mosco-Beer topology.

PROPOSITION 2 . 2 . For any pair (X,Y) of n.v.s. in duality the topological

space (Ty(X), TJ ) is Hausdorff.

PROOF: Let / , g be distincts elements of r o (X) . Interchanging / and g if
necessary, we can find x £ X, r £ R such that f(x) <r< g(x). Since g E Fy(X), we
can find (y,t) £ Y x R such that

fl(-) > < • . » ) - '
and r < (x, y) — i.

Since (x,y,t) 1—» (x,y) — ( i s continuous we can find e > 0 such tha t

r < {x,y) -t,
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for each (x,y) € B(x,e) x B(y,e), t G [ i - e , t + e]. Let

W =intB(x,e) x (-oo,r),

Z =mt B{y,e) x (t-e,t + e).

Since (y,t) G E(g*) and (x,f(x)) G E(f) we have g* G Z~ and / G W". Now
W~ and (Eo£)"1(Z~) are disjoint since if h £ W~ Ci{E o C)~1{Z~) we can find
x £ int -B(x,e), y G int B(y,e), r < r, i G (< - e,i + e) such that

h{x) ^ r,

t>h*(y)> (x,y)-r,

a contradiction with our choice of e which ensures that

r < r < (x,y) — t .

D
COROLLARY 2 . 1 . Let X be a Banach space with dual space Y. If the Joly

topology TJ and the Mosco-Beer topology TM coincide on TY{X) then X is reflexive.

PROOF: This follows from the preceding proposition and from [7, Theorem 4.2]
asserting that TM is not Hausdorff when X is not reflexive. D

We will see later that the converse is true. An interesting property of the Joly
topology is given in Proposition 2.4 which completes Proposition 1.1. In order to prove
it, we shall need the following lemma. We present a proof for the sake of completeness.

LEMMA 2 . 1 . [5, Lemma 2.1] Let f G TY(X) and let M be a convex
<T{X x R,Y x R)-compact subset of X x R such that E(f) D M = 0. Then there
exists (y,t) G E(f*) and s > t such that (x,y) — r > s for each (x,r) G M. Moreover,

{Mc)+ = {g<E TY(X) : E(g) D M = 0}

is open in TJ .

PROOF: Observe that since E(f) - M is convex, cr(X x R,Y x R)-closed and
stable by addition of elements of {0} x K+, it is the epigraph of some h G Fy(X) such
that (0,0) £ E{h). Thus there exist y G Y and e > 0 such that h{.) > (.,y) + 2e.
Setting s = inf{(y, x) — r : (x,r) G M} — £ and t = s — e, we get the first assertion of
the lemma since for any {x,r) G M and any (u,p) G E(f) we have p — r ^ /i(« — z) ^
(u — x,y) + 2e, hence

t = mi{(x,y) -r-2e:(x,r)eM}2 snp{{u,y) - f(u) : u G X} = f(y).
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Now let V* be a neighbourhood of y such that \{x,z — y)\ < e for any z £ V*,(x,r) £
M. Then ]V*,s[ is a neighbourhood of / since E(f) C DVtt := {(x,r) £ XxR,(x,y) <
r + <} is equivalent to (y,t) £ £(/*) and for any g €]V*,s[ we can find z £ V*,q £ R

with g < s, E[g) C D2,, C Dz%, and D,i# n Af = 0 so that ]V,s[C (M c ) + . D

Taking into account the way the Mosco-Beer topology is generated we deduce from
the preceding lemma and from Lemma 1.1 the following result.

COROLLARY 2 . 2 .

(a) The Joly topology TJ on TY{X) is stronger than the topology O~ VWj
where WQ is the family of complements of cr(X x M.,Y x K)-compact
convex subsets of X x l .

(b) The Joly topology TJ is stronger on Fy(X) than the Mosco-Beer topology
TM with Y = X*, X reflexive and is stronger on Tx{Xm) than the dual
Mosco-Beer topology T^ .

Let us mention the following comparison result.

PROPOSITION 2 . 3 . The Joly topology TJ on TY(X) is weaker than the topol-

ogy of bounded hemiconvergence (or bounded Hausdorff topology or Attouch-Wets

topology TBH)-

PROOF: Let {ft)t^.T be a parametrised family in Ty{X) which converges to / for
TBH in the sense that (E(ft))t€T converges to E(f) in (CYX]R(X X R),TBH)- Then
we have

£(/)Climinf £( / , ) .

Since the Legendre-Fenchel transform is continuous with respect to TBH [1> 6, 13] we
also have (/t*)16T converges to /* for TBH and E(f*) C liminf E(ff). D

PROPOSITION 2 . 4 . For any cr(X,Y)-compact convex subset K of X, the

function f i—> inf K f is lower semicontinuous on TY(X) endowed with Tj. In the

case Y = X*, X reflexive or X = Y* this result holds true for any cr(X, Y) compact

subset K of X.

PROOF: This assertion follows from Lemma 1.1 and Lemma 2.1 by observing that

the set of / £ TY(X) with iniK f > s is the set (Mc)+ with M = K x {s}. D

The following theorem extends a result of Beer and Pai [8, Theorem 3.1] to the
nonrefiexive case.

THEOREM 2 . 1 . For any n.v.s. Y with dual space X = Y* the Joly topology TJ

and the dual Mosco-Beer topology T^ coincide on Fy(X).

PROOF: By Corollary 2.2, it suffices to prove that T^ is stronger than TJ. This
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amounts to showing that for any open subset V of Y, r f R the set

is open in r^. Let g 6 fi and let f = g*. Thus there exists yo £ V with /(yo) < »"•

Choose e £ (0,1), a 6 R with B(yo,e) C V and

(1) /(yo) < 5 < / ( y o ) + e < r .

Since g = / * , our choice of s ensures

(i) g(x) > (x,y0) - s for each a: G X,

(ii) there exists xo £ X with (7(20) < (zo,yo) — s + e.

Let

4̂ = i?(xo,ro) with To = max(3, ||so||)

and let K = (A x R)(~l Gr(a0) where a0 = (.,yo) - s.

Then A" is a <r(X, F)-compact convex subset o f l x R and E{g) C A"c by (i). By (ii)

there is an open neighbourhood U of xo contained in xo + B such that for each x £ U

we have

g{x0) - e < <x,y0) - 5.

Let us show that the T^-neighbourhood

N = (Kc)+ n {U x ( -oo , 5 (x 0 ) + e))~

of 5 is contained in fi. Let h £ N and let xi £ U with /i(xi) < p(zo) + £ • Since the

<r(X, y)-compact convex set K is disjoint from E(h), using Lemma 2.1 we can find
1*) such that .fiT h'es below the graph of (.,yi) — ri • This means that

(2) (.,yo) - s + iA

Taking conjugates and observing that

((-,yo) - s + iA)* = {iA)*{. - yo) + s,

(iA)* = (ir

we get for each y £ X
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(iii) s +r0 ||y-yo|| + (xo,y-yo) > n + r0 \\y - yi\\ + {xo,y-yi).

Now, by our choice of (yi,r\) € E(h*), we have

(zi,2/i) ~n ^ h(x1) < g(x0) + £,

and by definition of U 3 + g(xo) — £ < {xi,yo},

which entails

(3) a - n < (xi,y0 - y i ) + 2e,

so t h a t , using (iii) with y = yo we get

T-o H2/1 — 2/01| < a - n + (KO,2/I - y o ) -

Hence from (3) r0 ||yi — 3/01| ^ (x\ - xo,yo - yi) + 2e.

Since ||zi — zo|| ^ 1 and 3 ^ TQ it ensues that 2 ||yo — 3/11| ^ 2e. Therefore yi £ V

and, as 0 € A, we derive from (2) that

— S < —7-1

thus from (1) r± < s < r

hence ( y i , n ) e (V x ( -00,r)) D E(h*), and h£tl. U

COROLLARY 2 . 3 . Let X be a Ba-nach space with dual space Y. Then the Joly

topology TJ and the Mosco-Beer topology TM coincide if and only if X is reflexive.

PROOF: This follows from Theorem 2.1 and Corollary 2.2. D

COROLLARY 2 . 4 . For any n.v.s, X the Legendre-Fenchel transform C is con-

tinuous from (TX{X*),TM) into (rx>{X),7M) with TM = O+ V W£ .

PROOF: This follows from the fact that TJ and T^ coincide on Tx(X*) (Theorem

2.1), that C is continuous from (TX{X*),TJ) into (TX'{X),TJ) and that TM is weaker

than TJ (Corollary 2.2, (a)). D
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