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The Hermite—Joubert Problem and a
Conjecture of Brassil and Reichstein

Khoa Dang Nguyen

Abstract. We show that Hermite’s theorem fails for every integer n of the form 31 + 3¥2 + 3%3 with
integers k; > ky > k3 > 0. This confirms a conjecture of Brassil and Reichstein. We also obtain new
results for the relative Hermite-Joubert problem over a finitely generated field of characteristic 0.

1 Introduction
The Hermite-Joubert problem in characteristic 0 is as follows:

Question 1.1  Let n > 5 be an integer. Let E/F be a field extension with char(F) = 0
and [E:F] = n. Can one always find an element 0 # § € E such that Trg/p(5) =
TI'E/F(83) =0?

The answer is “yes” when # = 5 and n = 6 thanks to results by Hermite [Her61]
and Joubert [Jou67] in the 1860s. Modern proofs of these results can be found in
[Cor87, Kra06]. When # has the form 3 for an integer k > 0 or the form 3k 4 3k
for integers k; > k, > 0, Reichstein [Rei99] shows that Question 1.1 has a negative
answer. The reader is referred to [BR97, Rei99, RY02] for further developments and
open questions inspired by the Hermite-Joubert problem. This paper is motivated by
results and questions in a recent paper by Brassil and Reichstein [BR] in which the
case n = 3% + 3k2 4 355 for integers k; > k, > k3 > 0 is studied. Our first main result
is the following theorem.

Theorem 1.2 When n = 3k +3k2 4 3k for integers ky > k > k3 > 0, Question 1.1 has
a negative answer.

In fact, we will prove a more precise result (see Theorem 3.1) answering a conjecture
of Brassil and Reichstein [BR, Conjecture 14.1]. As in [BR], we can also consider the
relative version of Question 1.1 in which F contains a given base field Fy; in particular,
Question 1.1 corresponds to the case Fy = Q. Our second result is the following (see
Theorem 2.3 for a more precise result):

Theorem 1.3  Let Fy be a finitely generated field of characteristic 0. There is a finite
subset & of N x N depending on Fy such that the following holds. For every integer n
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of the form 3k 4 3k2 4 3ks for integers ky > ky > k3 > 0 with (ky — ks, ky — k3) ¢ 8,
Question 1.1 relative to the base field Fy has a negative answer.

2 Proof of Theorem 1.3

Throughout this section, Fy is a finitely generated field of characteristic 0. An abelian
group G is said to be of finite rank if Q ®7, G is a finite dimensional vector space over
Q. We start with the following result, which might be of independent interest.

Proposition 2.1 Let P(Zy,7Z,,73) € Fy[Z1,Z>, Z3] be a homogeneous polynomial
defining a geometrically irreducible plane curve with geometric genus g > 1. Let G be a
finite rank subgroup of Fy . Then the system of equations:

P(ZI’ ZZ: Z3) = 0)
le+)/Zz+Z3 =0

has only finitely many solutions (x, y,[Z1:Z,:Z5]) with x,y € G, [Z1:Z2:Z3] €
]PZ(F()), and Z]ZzZ:), % 0.

Proof If g >2,then by Faltings’ theorem [Fal91,Fal94] (see also [Lan83, Chapter 6]),
there are only finitely many [z;:2,:23] € P2(F,) such that P(zy, 23, z3) = 0. For such
a [z1:22:23] with 212,23 # 0, the equation xz; + yz, + z3 = 0 has only finitely many
solutions (x, ¥) € G x G (see, for instance, [BG06, Chapter 5]).

Now assume that g = 1. Let € denote the elliptic curve defined by P(Z;, Z5, Z3) = 0
after choosing a point O¢ € E(F) as the identity; we can assume E(Fy) # &, since the
proposition is vacuously true otherwise. Let I' := G x G x E(Fy ), which is a finite rank
subgroup of the semi-abelian variety S := Gy, x Gy, x € [Lan83, Chapter 6]. Let (x, y)
denote the coordinates of G, x G, and let V be the subvariety of S defined by the
equation xZ; + yZ, + Z3 = 0. We are now studying the set V N T. Pick [z1:2;5:23] € €
with 212523 # 0, since the line z1x + 2,y + z; = 0 is not a translate of an algebraic
subgroup of G, x G, we have that V is not a translate of an algebraic subgroup of
Gm x Gy x €. By the Mordell-Lang conjecture, proved by Faltings [Fal91, Fal94],
McQuillan [McQ95], and Vojta [Voj96], we have that V N T is the union of a finite set
and finitely many sets of the form (y + C) N T where y € T, C is an algebraic subgroup
of S with dim(C) =L andy+Cc V.

Assume that y + C is a translate of an algebraic subgroup satisfying the above prop-
erties. If the map C — & is nonconstant, then C has genus 1 and, hence the map
C — G x Gy, is constant, since there cannot be a nontrivial algebraic group homo-
morphism from C to G,. Consequently, y + C has the form {(y1,y,)} x &, where
(y1,92) € Gy x Gy Since y + C c V, we have that y1Z; + y2Z, + Z3 = 0 for ev-
ery [Z1:Z,:Z3] € &, a contradiction. Therefore, the map C — & must be constant;
in other words, C has the form C; x {O¢}, where C; is an algebraic subgroup of
Gm x Gy with dim(C;) = 1. Write y = (yx,yy,ye) with (yx,y,) € G x G and
ve =t [21:22:23]) € E(Fp). Since y + C c V, the translate of C; by (y«,yy) is given
by the equation Z1x + Z,y + z3 = 0. Equivalently, the algebraic group C; is given by
the equation y;'Z;x + y;IZZ y +z3 = 0. This is possible only when z,2,7z; = 0, and we
complete the proof. ]
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Example 2.2 Consider the system of equations
Z} +75+973 =0,
3aZ1 + 3b22 + Z3 =0

with a,b € Z and [Z,:Z,:Z3] € P*(F,). Proposition 2.1 implies that there are only
finitely many solutions outside the set {(m, m, [1: —1:0]) : m € Z}. Later on, when
Fy = Q, we will show that there does not exist any solution satisfying a > b > 0
confirming another conjecture of Brassil-Reichstein [BR, Conjecture 14.3].

Let n > 2 be an integer. We recall the definition of “the general field extension”
E,/F, of degree n over the base field Fy from [BR, p.2]. Set L, := Fo(x1,...,%,), Fy =
LZ”’ and E,, = Lﬁ"*l = F,(x1) where xi, ..., x, are independent variables, S,, acts on
L, by permuting x1, ..., x, and S,,_; acts on L,, by permuting x5, . .., x,. Theorem 1.3
follows from the next theorem.

Theorem 2.3  There is a finite subset 8 of N x N depending only on Fy such that
for every integer n of the form 3% + 32 1 3% with integers ky > ky > ks > 0 and
(ki—ks, ky—ks) ¢ 8, the following holds. For every finite extension F' [ F,, of degree prime
to 3, there does not exist 0 # 8 € E' := F'®, E,, such that Trg,jp(8) = Trgyp (8%) = 0.
In particular, there does not exist 0 # 8 € E,, such that Trg, /g, (8) = Trg, /5, (6°) = 0.

Proof From [BR, Theorem 1.4 and Remark11.3],and put a; = k;—k3 and a, = k,—k3,
it suffices to prove that the system of equations

370 432734+ 73 =0,
3a1Z1 + 3a2Z2 + Z3 =0
has only finitely many solutions (ay, a,[Z1:Z,:Z3]), where [Z,:Z,:Z5] € P*(F,)
and a; > a, > 0 are integers.
Write a; = 3q; + r; with q; € Z and r; € {0,1,2} for i = 1,2. It suffices to show that
for every fixed pair (r;, ;) € {0,1,2}2, the system of equations
370 +3775 + 73 =0,
9q121 + 9q222 + Z3 =0
has only finitely many solutions (q1, g2, [Z1:Z2:Z3]), where [ Z1: Z,: Z3] € P2(Fy), q
and g, are integers, and 3q; + 1 > 3g, + 1, > 0. This last condition implies q; > g, > 0.
By Proposition 2.1, it remains to consider solutions satistying Z;Z,Z; = 0. If Z5 =
0, we have —(Z,/Z,)* = 3", -Z,/Z; = 91792, and hence 6 < 6(q, — q2) = 1 — 2,
a contradiction. Similarly, if Z, = 0, we have 6 < 6g; = ry, contradiction. Finally,
if Z; = 0, we have 64, = r,, which implies g, = r, = 0 (otherwise, 6 < 64, = 1),
contradicting the condition 3¢, + r, > 0. This completes the proof. ]

3 Proof of Theorem 1.2

Throughout this section, let Fy = Q. Let E,;/ F,, be the general field extension of degree
n over Fy = Q as in the previous section. Theorem 1.2 follows from the next theorem.
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Theorem 3.1  For every n of the form 3% + 3% + 3K with integers k; > ky > k3 > 0
and for every finite extension F'[F, of degree prime to 3, there does not exist 0 # 8 €
E' := F' ®p, E, such that Trgi g/ (8) = Trgyp(8°) = 0. In particular, there does not
exist 0 # 8 € E,, such that Trg, /5, (8) = Trg, /r, (6%) = 0.

As explained in [BR, Chapter 14], Theorem 3.1 follows from another conjecture of
Brassil and Reichstein [BR, Conjecture 14.3].

Conjecture 3.2 (Brassil, Reichstein) The system of equations
Z}+73+973 =0,
321 +3"2,+ 23 =0
has no solution (a, b,[Z;:Z,:Z5]), where a > b > 0 are integers and [Z1:Z,:Z3] €

PA(Q).

In Example 2.2, we explained why there are only finitely many solutions
(a,b,[Z1:Z,:Z5]). This follows from Proposition 2.1, which uses the Mordell-Lang
conjecture proved by Faltings, McQuillan, and Vojta. On the other hand, to prove
that there is no solution, we need a different method using effective estimates. In fact,
we establish a slightly stronger result than the statement of Conjecture 3.2.

Theorem 3.3  The only solution (w, b,[Z,:Z,:Z3]) of the system
(3.1) Z2+73+973 =0,
(32) WZI + 3bZZ + Z3 =0

withw,beZ, b > 0,3 | w, and [Z,: Z,: Z5] € P*(Q) is (0,0, [2:1:1]).

We now spend the rest of this paper proving Theorem 3.3. From (3.1), we cannot
have Z,Z, = 0. If Z; = 0, then Z;/Z, = -1 and (3.2) gives w = 3P violating the
condition 3°*! | w. Let (W,E, [Z1:Z,:23]) be a solution, and we can assume that Z;, Z,,
and 73 are nonzero integers with ged(Z),%,,23) = L.

From gcd(z1,%2,23) = 1, we have 3 + Z1Z; and 73 = 3%Z, for some integer z4 with

3 + Z;. Hence, we have 2 | 33%*223 — 23 and Z, | Z4 — 2. This implies
(3.3) z |37 -1

We now have

(3.4) 25 +923| = 73] < 3°°*°.

A result of Bennett [Ben97, Theorem 6.1] gives

1 | ey 0.24
(3.5) 25 + 923 > gmax{|zz|,|3z3|} :
Combining (3.4) and (3.5), we have
(3.6) max { [2], |323|} < 377203
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This is our first step. Our next step is to give a lower bound for a quantity that
is closely related to max{|z;|,|323|}, and such a lower bound is much larger than
3%7:56430 when b is large. This will yield a strong upper bound on b.

Sincez?-Z12,+23 = (Z1+22)*—3%1Z, we have that gcd(2,+22, 20~ 2122+ 25 ) € {1,3}
depending on whether 3 divides Z; +Z,. Moreover, if 3 | Z, +Z,, then 9 + 22 -Z,Z, + 2.
Therefore, (3.1) gives

(B.7) 51+2, = 3"a?, -7 +Z2 =3, af=Zs 3taP, ged(a,pf) =1

We wish to write the cubic curve given by equation (3.1) into the standard Weier-
strass form y? = x> + Ax + B. We have:

1 3
(3.8) Z(Z‘ +Z,) + Z(Zl + Zo)(Z1 - 2,)* = =973,
1 3 1
—+ZVI=9U%, VI=1nU’--
4 4 3
with U = Z:f%z and V = ZIZ Overall, we have
127 12(Z,-Z
(3.9) y?=x>-48, x=12U= = y:12V:M.
Zl + ZZ Z] + Zz

Let & be the elliptic curve given by the equation y* = x* — 48. By a result of Selmer
[Sel51, p. 357] as noted in [BR, Section 14], we have that €(Q) is cyclic and generated
by the point G = (4,4). For every P € £(Q), let x(P) denote its x-coordinate.

By (3.8) and (3.9), the solution (W,Z, [Z1:2,:23]) gives the point (X, ) € £(Q)
with
-12z; 12-3baB 4P

3.10 X= = = .
(3.10) Zi+2, 3%btlg3 3242

Let N > 1 such that X = x([N]G). Let | - |5 denote the 3-adic absolute value on Q. By
inspecting the powers of 3 that appear in the denominator of x(G), x([2]G), ... we
observe that N can be bounded below due to [X]; = 32°. Indeed, we have the following
proposition.

Proposition 3.4  For n € N, write n = 3™ € with gcd(n, £) = 1. Then we have
x([n]G)]s = 3*".
Proof Wehave G = (4,4), [2]G = (28,-148), and [3]G = (73/9,595/27).

Claim 1 Assume that P = [k]G for some k > 1and k # 3. If [x(P)|; = 1, then
|x(P+[3]G)|; =1

Proof of Claim 1 Write P = (xp, yp). Since |xp|; = 1and y3 = x} — 48, we have

lyp|s =1. Let
595 595 _ 73
A_yP 27 _ X gp
= 73> V= 73
Xp— o Xp— &
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From [Sil09, p. 54], the x-coordinate of P + [3]G is

273 _—xp+ Bxp+ B+ yp — 0yp - 48
g T (xp— 2)2
9
This proves Claim 1, since
s 73, 5329, 1190 48‘ _|( 73)2‘ a .
Xp 9Xp 81 Xp+)p 27 yp s Xp 5 ,= 8L

By induction, Claim 1 shows that |x([n]G)|5; = 1if 3 + n. By induction again, it
remains to prove the following claim.

Claim 2  Assume that P = [k]G with k > 1. If [x(P)|; > 1, then |x([3]P)|s =
9|x(P)ls.
Proof of Claim 2 Write P = (xp, yp). From [Sil09, pp. 105-106], consider

vs = 3x* - 576x = 3x(x° —192)

V2 =2y,

vy = 2y(2x° —1920x° —192%),

Yoy = 4y (2x° - 1920x° - 192%) = 4(x” - 48)(2x°® - 1920x° - 192%),
b3 = xY3 — Yoy = x° + 4608x° +110592x° — 7077888,
¢3  x° +4608x° +110592x> — 7077888
2

flx) =25 = )

V3 9x2(x3 - 192)?
so that x([3]P) = f(xp). This proves Claim 2, since

|xp + 4608x5 +110592x3 — 7077888|3 = |x 3|3,

1
|9xf,(x}3) - 192)2|3 = §|x§\3. [ ]

Let h denote the absolute logarithmic Weil height on P'(Q) and let & denote the
Néron-Tate canonical height on &(Q); see [Sil09, Chapter 8]. We have A = -3 x 212
and j = 0. Then a result of Silverman [Sil90, p. 726] gives

(3.11) 213 < h(P) - %h(x(P)) <2.222.
__ We calculate the point [25]G explicitly; then apply (3.11) for this point and use
h([25]G) = 625h(G) to obtain
(3.12) 0.25 < h(G).
From (3.11) and (3.12), we have
(3.13) h(X) > 2h([N]G) - 4.444 > 0.5N? — 4.444.
From (3.10) and (3.13), we have

(1) o

max { [12z3], |21 + 2|} = max {[4p],[32*a?[} > "®) > eOSN -4.444

>
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From (3.3) and (3.6), we have

(3.15)

max { |21 + 23], |1223|}

Equations (3.14) and (3.15) give

0.5N? — 4.444 < (36.5b + 30.5) In(3).

< 337.5h+31.5 )

175

Proposition 3.4 together with [X]; = 32? imply 3% | N. Together with (3.6), we have

Hence, b < 3. We check the following cases:
(i) b=0.502z |8and N? < 76, which gives N € {1,...,8}.

320 < N2 < 81b + 76.

(ii) b=1Soz |242,3| N and N? < 157, which give N € {3,6,9,12}.
(iii) b=2.S0z | 6560,9| N and N* < 238, which give N = 9.

(N, b) x([N]G) a B
(2,0) 28 1 7

(3,0) 2 6 73

(3,1) z 2 73

(4,0) gz 37 2443
(5,0) e 179 296221
(6,0) A 7140 48833569
(6,1) 18833503 2380 48833569
(7,0) 23ps30087704 11989 59583971941
(8,0) Do 8324963 | 73228413829123
(9,1) s 109083462 | 587359...
(9,2) e 36361154 587359. ..
(12.1) | sl | 6oigq... | 445071,

Table 1
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Since we can replace (z1, 22, z3) by (-z1, —22, —23 ), we always choose a > 0. The
pair («, B) is determined using x([N]G) = %, 34 af,and ged(a, §) = 1.

The case N = 1and b = 0 gives x(G) = 4 = %,hencea =f=1Lz21+72 =3,
2% —Z1Z, + 2% = 3,71 | 8. Overall, we have the solution (0,0, [2:1:1]).

For other values of (N, b), from (3.3) and (3.7), we have:

|fzvl| <32b+2 and |272| <33b+1|a3|+32b+2_

Then using

—— 1, SO

2127 = g( (Z] + 22)2 - (Zl — 2127 + Z%)) = 36b+1066 - ﬁ3,
we have
(3.16) 32b+2(33b+1|“3| + 32b+2) N |36b+1a6 _ ﬁ3|

We can readily check that (3.16) fails for the data in table 1, and this finishes the proof.
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