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BESOV-TYPE CHARACTERISATIONS FOR THE BLOCH SPACE

KAREL STROETHOFF

We will prove local and global Besov-type characterisations for the Bloch space and the
little Bloch space. As a special case we obtain that the Bloch space consists of those
analytic functions on the unit disc whose restrictions to pseudo-hyperbolic discs (of fixed
pseudo-hyperbolic radius) uniformly belong to the Besov space. We also generalise the
results to Bloch functions and little Bloch functions on the unit ball in C m . Finally we
discuss the related spaces BMOA and VMOA.

1. INTRODUCTION

Let D = { z £ C : \Z\ < 1} denote the open unit disc in the complex plane. For an
analytic function / on D we set

The Bloch space B is the set of all analytic functions / on D for which | |/ | |0 < <x>.
Even though ||.||B is not a norm, we will refer to ||/| |B as the Bloch norm of the function
/ . The quantity |/(0)| + | | / | | s defines a norm on the linear space B which, equipped
with this norm, is a Banach space (see, for example, [1]). For A £ D let the Mobius
function <p\: D —• D be defined by

1 - Xz

For an analytic function / on D and a point A £ D, we will call fo>p\ — f(X) a Mobius
transform of function / . An important property of the Bloch space is that it is invariant
under Mobius transforms, that is if / 6 B and A 6 D, then / o <px — /(A) £ B. This is
immediate from the definition of the Bloch norm: for analytic / on D and A £ D

In [8] Rubel and Timoney showed that the Bloch space B is in some sense maximal
among all Mobius-invariant Banach spaces of analytic functions on D.
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406 K. Stroethoff [2]

For a point A £ D and 0 < r < 1 the pseudo-hyperbolic disc D(X, r) with pseudo-

hyperbolic centre A and pseudo-hyperbolic radius r is defined by D(\, r) = y^(rD).

The pseudo-hyperbolic disc Z?(A, r) is also a euclidean disc: its euclidean centre and

euclidean radius are ( l - r2) A / ( l - r2 |A|2) and (l - |Aj2)r/(l - r2|A|2) , respectively

(see [6]).

Let A denote the normalised Lebesgue area measure on D, and for a Lebesgue
measurable set K C D, let \K\ denote the measure of K with respect to A. It follows
immediately that:

HO2 ,
(l-r2\X\2)

Two quantities Af and Bf , both depending on an analytic function / on D, are
said to be equivalent, written as Af ~ Bf , if there exists a finite positive constant G
not depending on / such that for every analytic function / on D we have:

- B f ^ A f ^ C B f .

If the quantities Af and Bf are equivalent, then in particular we have Af < oo if and
only if Bf < oo.

Our point of departure is the following theorem which is part of a theorem taken
from Axler [4], where several other quantities equivalent to the Bloch norm are given.

THEOREM I. Let 0 < p < oo and let 0 < r < 1. Then for an analytic function f
on the unit disc D the following quantities are equivalent:

(A) | | / | | 8 ;

(B) sup (/D I/M*)) ~ / W dA(z))1/p;

(C) sup (l/(\D(A, r)|) JD{X p) |/(z) - /(A)|p d^(z))1 / P;

(D)
A6D

Whereas quantities (B) and (C) in Theorem I are expressed for general p in (0, oo),
quantity (D) is given only for the special case that p = 2. The question arises whether
quantity (D) in Theorem I can be replaced by a more general quantity depending upon
p and specialising to the above (D) in the case where p — 2.

Quantities (C) and (D) are local as opposed to quantity (B) which is global; this
leads to another question: is there a global version of quantity (D)?
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[3] Bloch space 407

These questions will be answered in Theorem 1, where we will also give equivalent
quantities involving higher derivatives of the function.

Contained in the Bloch space is the little Bloch space Bo , which is by definition

the set of all analytic functions / on D for which ( l — \z\ )f'(z) —> 0 as |z| —> 1—.

The equivalences of Theorem I carry over to the little Bloch space. Several de-
scriptions of this space are given in the following theorem which is part of a theorem
in Axler [4], where one can find several additional characterisations for the little Bloch
space.

THEOREM II. Let 0 < p < oo and let 0 < r < 1. Then for an analytic function
/ on tlie unit disc D the following statements are equivalent:

(a) / G Bo ;

(b) / D |/(V»A(Z)) - / (A)f dA(z) -> 0 as |A| -> 1 ;

(c) l/(\D(\,r)\)fD(Xr)\f(z)-f(\)\pdA(z)-,0 as | A | - > 1 - ;

The main results of this paper are Theorems 1 and 2 which are stated in the next
section. These theorems will be proved in Section 3. In Section 4 we will indicate
how the results can be generalised to give characterisations for Bloch functions and
little Bloch functions on the unit ball in Cn l . The paper ends with an open question
concerning the spaces BMOA and VMOA in Section 5.

2. BESOV-TYPE CHARACTERISATIONS

Our main result is the following theorem which relates the Bloch norm of an analytic
function with quantities involving integrals of the n th derivative of the function.

THEOREM 1. Let 0 < p < oo, 0 < r < 1, and n e N. Then for an analytic

function f on D the following quantities are equivalent:

(A) | | / | | 0 ;

(B) sup

(C) sup (/^A>p) |/(»)(z)|P (l - |,|2)nP~2<L4(z)Y/P + " E | /«(0) | ;
"GD \ / fc=l

(D) sup (yD |/<">(z)|p (l - \z\2) (l - M*) | 2 ) dA(z)

Remarks. (1) Of special interest are the cases where np — 2. For n = 1 and p = 2
quantity (B) specialises to quantity (D) of Theorem I, and quantity (C) gives a global
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version of quantity (D) of Theorem I:

* sup ( f \f'(z)\2 (l - M*)|2) 2dA(z)) .
AGO \Jo V ' )

(2) For n = 2 and p = 1 both quantities (B) and (C) specialise to the local
Besov-type equivalence

11/11* « ™P /
A6D Jc

The Besov space, the set of analytic functions on the unit disc whose second derivative
is integrable over D, is minimal among all Mobius-invariant Banach spaces of analytic
functions on D (see [2] or [3]). The above equivalence says that the Bloch space B is
the set of analytic functions on D whose restrictions to pseudo-hyperbolic discs (of a
fixed pseudo-hyperbolic radius) are uniformly in the Besov space.

For n = 2 and p = 1 quantity (D) specialises to the global Besov-type equivalence

B ~ sup / \f"{z)\ (l - \<px(z)fYdA(z)

(3) In the case that n — 1 quantities (C) and (D) are of interest because the
quantity

Jo\f'(z)\'{l-\z\t)'"'dA(z)

is invariant under Mobius transformations of / .
The equivalences of Theorem 1 carry over to the little Bloch space, as is shown in

the following theorem.

THEOREM 2. Let 0 < p < oo, 0 < r < 1, and n € N. Then for an analytic

function f on D the following statements are equivalent:

(a) fEB0;

(b) l/(|JD(A,r)|1~np/2) / r M A. r > | / ( n ) (z) |P dA(z) -> 0 as |A| -> 1 - ;

) -> 0 as |A| -» 1 - ;

(d) / | /^>(2) |P ( l - k | 2 )" P " 2 ( l - \Vx(z)\2)2dA(z) - 0 as |A| -» 1 - .

3. PROOFS

The proof of Theorem 1 will make use of the following lemma, which relates the
Bloch norm of an analytic function with quantities involving higher derivatives.
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LEMMA 3. Let n £ N. Then for an analytic function f on D tie following
quantities are equivalent:

(A) | | / | | 8 ;

(B)

PROOF: For n = 1 the equivalence of the two quantities is precisely the definition
of the Bloch norm. By induction it suffices to show that for a fixed n E N , for every
analytic function / on D the quantities

> | "(Bn ) sup (l - \z\2Y

and

( B n + 1 ) sup ( l - |z|2)

are equivalent.

For xv 6 D we have:

" + 1 + £ |/l*>(0)|
fci

(2) dt

i: \n+l (n+1)/

s u p ( 1 -

( 2\n

1 — |zu| ) and take the supremum over all iv G D, to get

sup (l -

Hence quantity (Bn) is less than or equal to 2n/n times (B n + J ).
For the converse, fix z € D and put r — (1 — |z|)/2. It is an easy consequence of

the Cauchy Integral Formula for the derivative of an analytic function that

(3) -z\=r).

If \iv — z\ = r, then |w| ^ \z\ + r = (1 + |z|)/2, so that by the maximum modulus
principle sup{|/<n>(w)| : \w - z\ = r} ^ sup{|/(")(tu)| : |w| = (l + |z|)/2}. Multiply
both sides of inequality (3) by (1 - \z\)n+1 = 2n + 1rn + 1 to get (1 - |z|)n+1 \f(n+l){z)\ ^
2"+1 sup{r" |/(n)(w)| : \w\ = (1 + \z\)/2). For |w| = (1 + \z\)/2 we have r = 1 - |w| ^
1 — |w| , so after we multiply by (1 + |z|)n (which is less than 2n + 1 ), we get

(4) sup { ( l
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Hence quantity (Bn+i) is less than or equal to 2 2 n + 2 times quantity (Bn). This
completes the induction and the lemma is proved. |

The equivalences of Lemma 3 carry over to the little Bloch space, as is shown in
the following lemma.

LEMMA 4. Let n G N. Then for an analytic function / on D tiie following

statements are equivalent:

(a) feB0;

(b) (l - \z\2y f(»)(z) ^ 0 as \z\-+I-.

PROOF: For n = 1 the equivalence of the two statements is precisely the definition

of the little Bloch space. By induction it suffices to show that for a fixed n G N, for

every analytic function / on D the statements (6n)(l — \z\ I f^n\z) —» 0 as \z\ —• 1 —

and (&n +i)(l - H 2 ) " / ( n + 1 ) ( z ) - » 0 a s \z\ -+ 1 - are equivalent.

Let n G N be fixed. That statement (6n) implies statement (6n+i) follows easily
from (4). For the converse suppose that / is an analytic function on D satisfying
condition (6n_|_i) . Let 0 < r < 1. Then as in the proof of Lemma 3, for w G D :

sup{(l - M)"+1 | / ("+ 1 ) (z) | : r M «S \z\ < 1}.
* n(l - |t

For e > 0, choose r G (0,1) such that ( l - \z\2} | / ( n + 1 ) ( 2 ) | < e whenever

r2 < \z\ < 1. It follows from the above inequality that (1 — |w|)n |/^n'(tu)| ^

£/n + (1 - \w\)n\f{n){rw)\ whenever r < \w\ < 1. Hence (l - \w\2)"f{n)(w) — 0

as \w\ —> 1—, that is, / satisfies (&„). This completes the induction, and the lemma is

proved. R

Before proving Theorems 1 and 2 we recall a few facts about the Mobius functions

f\ . First, the function (px is easily seen to be it own inverse under composition:

(<p\ o (px)(z) = z for all 2 G D.

The following identity can be obtained by straight forward computation:

A slightly different form in which we will apply the above identity is:

(6) 1 ^ f f 1 = MM , (A, x G D).

https://doi.org/10.1017/S0004972700003324 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003324


Bloch space 411

For A £ D , the substitution z = <p\(iv) results in the Jacobian change in measure given
by dA(w) = \tp'x(z)\2 dA(z). For a Lebesgue integrable or a non-negative Lebesgue
measurable function h on D we thus have the following change-of-variable formula:

(6) / h(V>x{w))dA(w)= dA(z).

PROOF OF THEOREM 1: Take 0 < p < oo, 0 < r < 1, and n £ N. By subhar-
monicity we have that for an analytic function j ou D:

dA(w).
r -/D(0,r)

Let / be an analytic function on D, and let A £ D. Applying the above inequality to
the function g = / (" ' o ip\, and using charge-of-variable formula (6), we get

dA(w)

r2 JD(\yr) 1-kl
dA(z)

16 dA(z),

where we used that (l - \y>x{z)\2)/(l ~
follows that

(7)

< 4/( l - |A|2) for z £ D. Using (1) it

i / p

By Lemma 3 it follows that quantity (A) is less than or equal to C times quantity (B).

That quantities (B) and (C) are equivalent is an immediate consequence of the fact

that ( l - \z\2) ss |D(A, r) | , whenever z £ D(X, r).

For z £ D{\, T) we have ( l - \vx{z)\2\ > (l - r2f , thus

(8)
2 ) 2 dA(z)

D(X,r)
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and if follows that quantity (D) is greater than or equal to a constant times quantity (C).
To complete the proof we will show that quantity (D) is less than or equal a constant
times quantity (A). Again we make use of Lemma 3.

f{n)(z)\"(l - iA{z)

Thus quantity (D) is less than or equal to quantity (B) of Lemma 3, and the proof is
complete. fl

PROOF OF THEOREM 2: Take 0 < p < oo, 0 < r < l , and n e N. Let / be an
analytic function on D. That (d) implies (c) is a consequence of inequality (8). The
equivalence of statements (b) and (c) follows immediately from the fact that for z £

/ 2 \ 2

D(X, r) we have ( l — \z\ ) w \D(\, r)\. Inequality (7) together with Lemma 4 give

that (b) implies (a). To complete the proof we will show that (a) implies (d). Suppose

that (a) holds, that is / € Bo . By Lemma 4 we have that (l - |z |2)" | / (" '(z) | -> 0 as

\z\ —> 1—. Then it is easy to see that

(9) /
D\PD

uniformly in A. By Lemma 3 there is a constant C such that f 1 — \z\ ) | / ^

for every z € D. It follows from

/
D

<CP [
that for every p 6 (0, 1) we have

- \z\

(10) / /<->(*) (l - |z|2) ( l - |^A(Z) | 2) dA(z) -» 0 as |A| -> 1 - .

Combining (9) and (10) yields that (d) holds.
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4. GENERALISATIONS TO THE UNIT BALL IN Cm

Let m e N be fixed. For z, w £ Cm let

(z, w) = , and let ||z|| = (z, z)1'2.

Let Bm = {z G Cm: ||z|| < 1} denote the open unit ball. For a holomorphic function
/ : B,,, —> C we set

where V/ = (df/dzt, . . . , df/dzm) is the gradient of / . The Bloch space B(Bm)
is the set of all holomorphic functions / : Bm —> C for which ||/||B(Bm) < °° • ^ l e

quantity 1/(0)1 + ||/||g(Bm) defines a norm on the linear space B(Bm) which, equipped
with this norm, is a Banach space (see [10]).

For a multi-index a = (on, . . . , am) (each a^ a nonnegative integer) we write
\a\ = a\ + ... + am , and for a holomorphic function / : Bm —» C we write

A generalisation of Lemma 3 is the following result which was recently obtained by
Zhu [11]. His proof relies heavily on the boundedness of the Bergman projection. We
will indicate how the proof of Lemma 3 can be adjusted to give the result.

LEMMA 5. Let n G N. Then for a holomorphic function f: Bm —* C (he following
quantities are equivalent:

(A) l s ( B m )
(B) max sup (l - rf)" | | ^ + £

PROOF: For n = 1 the equivalence of the two quantities follows from the definition
of the Bloch norm and the inequalities

max
dfl|V/(z)||

By induction on n it suffices to show that for a given multi-index a with |a| = n
we have the equivalence

sup (l- |MlT dnf
max sup (l -

n+1 Qn+lf

dzkdz<
dnf
dz

(o)
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In the proof of Lemma 3 replace (2) by

dza

dn+1f

dzkdz«

which holds for all space w £ BTO, to arrive at the inequality

sup
to€BTO

(i-IHI2)' dnf
dz'

(w)
m2"

n
. dn

max sup 11 —

dt

n+1 8n+1

dzkdzc

For the converse, fix z £ B m , and let r = (1 — ||2| |)/2. By inequality (3)

dzkdz"
- sup{ dnf,

dzc : IUj = Zj(j ^ k ) , \wk - zk\= r } .

If WJ = Zj(j ^ k) and \wk — zk\ = r, then it is easily shown that ||to|
that by the same arguments as in the proof of Lemma 3 we get

\z\\ + r , so

n + l Qn+lf

dzkdza (*) ,2n+2 sup | (̂ 1 - || if I) J dnf
(w) }•

and the proof of the lenmia is complete. R

Contained in the Bloch space is the little Bloch space B0(Bm), the set of all holo-
morphic functions / : B m - » C for which (l - \\zf\ ||V/(«)|| ^ 0 as ||z|| -» 1 - . The
equivalences of Lemma 5 carry over to the httle Bloch space, as is shown in the following
lenmia. Since the proof is similar to that of Lemma 4 we omit it.

LEMMA 6. Let n £ N . Then for a holomorphic function f : Bm —* C the following
statements are equivalent:

(a) / e flo(Bm)n;

(b) (l - | N 2 ) n 0 ( z ) - 0 as ||z|| - 1 - (|a| = n).

For A £ Bm let the Mobius transformation <p\: Bm —> Bm be defined by

A - PXZ - Qxz

l - ( 2 , A)

where P\z = (z, A)A/ ||A|| , and Q\z = z — P\z(z £ Bm). As in the one-dimensional
case B(Bm) is invariant under Mobius transforms, that is, if / £ B(Bm) and A £ B m ,
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then / o (p\ — /(A) G B(Bm) • This is surprising since the Bloch norm as defined above

does not appear to be invariant under Mobius transforms (see [10]).

For a point A 6 B m and 0 < r < 1 the pseudo-hyperbolic ball B(X, r) with

pseudo-hyperbolic centre A and pseudo-hyperbolic radius r is defined by B(X, r) =

<P\(rBm). The pseudo-hyperbolic ball B(X, r) is an ellipsoid (see Section 2.2.7 in [9]).

Let V denote the normalised Lebesgue measure on B m and for a Lebesgue mea-

surable set K C B m , let |it'| denote the measure of K with respect to V. In Section

2.2.7 of [9] it is shown that

)I f • - w X V
As in the one-dimensional case, the map <p\ is easily seen to be it own inverse

under composition: (<p\ o <^A)(z) = z for all z € B m . Even though the Mobius trans-
formations are far more complicated than in the one-dimensional case, the following
identity holds:

,(z,AeBm).

The real Jacobian of f\ at z £ Bm is

m+l

Thus, for a Lebesgue integrable or non-negative Lebesgue measurable function h on
Bm we have the change-of-variable formula:

r / i II i \ n 2 \

>)= Mz) — T-T2—
JB(\,r) \ 1 - ||z|| )

m + l

(11) / h{<px{w))dV{w)= f h ( z ) ( l ^ } Z J } I dV(z).
JB(0,r) J \ 1 \\\\ J

Using change-of-variable formula (11) instead of (6) and Lemma 5 instead of Lemma 3
in the proof of Theorem 1 it can be shown that this theorem generalises to the following
result:

THEOREM 7. Let 0 < p < oo, 0 < r < 1, and n £ N . Then for a holomorphic

function f: B m —* C the following quantities are equivalent:

(A) ll/llB(Bm);
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I /P

( 0 )

(D) max sup

1/p

I /P

Remark . Of special interest are the cases where np = m + 1. Then both quantities

(B) and (C) give the following equivalence:

max sup
dnf

{*) dV(z)

E
\P\<n

(0)

The theorem and the above equivalence say then that the Bloch space B(Bm) is the
set of holomorphic functions / : Bm —> C whose restrictions to pseudo-hyperbolic balls
(of a fixed pseudo-hyperbolic radius) are uniformly in the Sobolev p-space of order n

(the set of those functions whose partial derivatives of order less than or equal n are
p-integrable).

It is clear that the equivalences in the above theorem carry over to the little Bloch
space to give the following result:

THEOREM 8. Let 0 < p < oo, 0 < r < 1, and n e N. Tien for a holomorpliic
function f: Bm —* C the following statements are equivalent:

(a) / 6 0o(Bm);

A / \&(*)\'&(*) ~* « « ll̂ ll - 1 " (H = ")/

0 as ||A|| _ 1 - (|«| = n);
m+l

5. T H E SPACE BMOA AND VMOA

In this section we will relate some of the earlier results to the spaces BMOA and
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VMOA, and formulate an open question. First let us recall how these spaces can be
defined. For an analytic function / on D we set

The space BMOA ("Bounded Mean Oscillation," see [5]) is the set of all analytic
functions / on D for which H/HBMOA < °° • Contained in BMOA is the subspace
VMOA ("Vanishing Mean Oscillation"), the set of all analytic functions / on D for
which | | / o tpx — / ( ^ ) I I H 2 —* 0 as I-M —• 1—• Paley's integral inequalities ([6], Lemma
3.2) and a change-of-variable give us that for every analytic function / on D.

(12) UWBMOA * ™P ( / l/'(z)|2 (l - \<Px(z)\2)dA(z)) ,
AGD \JD X ' /

and

(13) / G VMOA <=*> f / \f'(z)f ( l - \<px(z)\2)dA(z) ^ 0 as |A| -» 1-] .
Li/D J

The Bloch space and BMOA share many analogous properties, as do the little Bloch
space and VMOA. The equivalence

1/2

B * "«P ( I I/'WI2 ( l - \<Px(z)\2YdA(z))
AeD w o v ' I

in Theorem 1 should be compared with equivalence (12) for H/HBA/CM • Clearly, BMOA

is contained in the Bloch space and VMOA in the little Bloch space. The above
comparison leads us to the following open question:

Question. Let 0 < p < oo and let / be an analytic function on D. Are the following
true?

(i) / € BMOA ^ sup /D \f'(z)f (l - \z\2Y~2(l - \M*)\2)dA{z) < oo;
AeD \ / \ /

(ii) / G VMOA

[/D I/'(*)IP (l - I2!2)""' il - \v^)\2)dA(z) - 0 as
We do not know an answer to the above question. The classical results of Littlewood

and Paley ([7], Theorems 5 and 6, page 54) and a change-of-variables give a partial
answer, depending on p: for an analytic function / on D and 0 < p < 2 the conditions
in (i) and (ii) are sufficient for containment in BMOA and VMOA, respectively; for
2 ^ p < oo the conditions in (i) and (ii) are necessary for / to belong to BMOA and
VMOA, respectively. These implications can also be proved directly using Theorem 1.
We omit the details.

The following theorem gives sufficient conditions for containment in the spaces

BMOA and VMOA.
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THEOREM 9. Let 0 < p < oo, 0 < cr < 1. Then for an analytic function f on D
we have the following two implications:

(i) sup / „ \f{z)\p ( l - \z\2Y~2(l - \Vx{z)\2)'dA(z) < oo implies that f e

(») /D l/ '(*)l* ( l - \z\2Y(l ~ Wx{z)\2YdA{z) -> 0 as |A| -» 1 - impiies
(hat / G VMOA.

PROOF: Let 0 < <T < 1. First we will prove that both statements hold for p > 2.
Let / be analytic on D. Writing /? = p + c — 2, and using Holder's inequality with
index p / 2 , which has conjugate index p/(p — 2) , we have

\f'(z)\P (l - |.|2) V(z))2 / P .(7 (l - W2)^dA{z)\

thus

where C is a constant depending only on p and cr. Now let A £ D, and replace /
by its Mobius transform / o <p\ — /(A). Making use of identity (5) and the change-
of-variable formula (6) we see that the integral at the right hand side of the above
inequality transforms into

It follows that

J/'(,)|p(l-|2|2) (l - |VA(^)|2) dA(z)J ,
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and, in view of (12) and (13), both statements follow immediately.

If 0 < p < 2, then we have

L \f{z)\2(l-\<px{z)\2)dA{z)

\f'(z)\p (l - \z\2)'~'(l ~ \<Px(z)\2YdA(z).

Since the conditions in statements (i) and (ii) imply that / 6 B (by Theorem 1), both
statements (i) and (ii) follow at once from the above inequality. This completes the
proof of this theorem. |

Theorem 9 and our question preceeding it should be compared with the following
theorem.

THEOREM 10. Let 0 < p < oo, 1 < T; < oo. Then for an analytic function f on

D we have:

(i)

(")

I I / I I B ̂

/ e

a s |A|

a s u p

Bo

-> 1 -

We omit the proof, which is obtained by minor modifications of the one given for
Theorem 1. In fact, a more general formulation, involving n t h derivatives, is possible,
but since we want to stress the analogy with the previous theorem and the question
preceding it we have restricted ourselves to the above formulation.
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