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Quantum chromodynamics: calculations

Calculations in QCD have been made in two ways: lattice simulations at low ener-

gies, and perturbative calculations at high energies. In this chapter we outline some

of the results obtained.

17.1 Lattice QCD and confinement

It was pointed out in Section 16.1 that, at low energies, a non-perturbative approach

to QCD is needed. ‘Lattice QCD’ is such an approach. The gluon fields are defined

on a four-dimensional lattice of points (nμ, n)a, where a is the lattice spacing and

the nμ are integers. Field derivatives are replaced by discrete differences. This gives

a ‘lattice regularised’ QCD. The lattice spacing corresponds to an ultraviolet cut-off,

since wavelengths < 2a cannot be described on the lattice. A lattice does not have

full rotational symmetry in space, but it is believed that nevertheless continuum

QCD corresponds to the limit a → 0. Current computing power allows lattices of

∼(36)4 points. The range of the strong nuclear force is ∼ 1 fm. To fit such a distance

comfortably on the lattice, we can anticipate that we shall not want a to be much

less than (2fm)/36 = 0.056fm (and hc/a > 3.5 GeV).

In the high energy perturbation theory described in Section 16.3, the renormal-

isation parameter λ and the dimensionless coupling parameter g are combined to

give a single physical parameter, �, having the dimensions of energy. The rela-

tionship between the effective coupling constant αs(Q2) and � in the lowest order

of perturbation theory is given by (16.25). In lattice QCD, the unphysical lattice

parameter a and the dimensionless coupling parameter g(a) combine to give a sin-

gle physical parameter �latt, having the dimensions of energy. In the lowest order
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of ‘lattice’ perturbation theory, as a → 0 then g(a) → 0,

g2 (a) = −16π2

11 1n
(
a2�2

latt

) (17.1)

(see Hasenfratz and Hasenfratz, 1985).

�latt is independent of a in the limit a → 0. This remarkable feature of the theory

is called dimensional transmutation.
Equation (17.1) may be compared with (16.25) with nf set equal to zero. It can

be shown theoretically (Dashen and Gross, 1981) that

�latt

�
= constant ≈ 1

30
. (17.2)

The precise value of the constant depends on the renormalisation scheme in which

� is defined, and the number of quark flavours included. �latt, or equivalently �,

is to be determined from experiment. We shall see in Section 17.3 that � is known

to be ∼ 300 MeV, so that �latt ∼ 10 MeV. We can then infer from equation (17.1)

that for a ∼ 0.056 fm, the coupling constant g should be of order 1.

Lattice QCD calculations have been made to compute the potential energy of

a fixed quark and an antiquark in a colour singlet state, as a function of their

separation distance. The form of this potential at short distances was discussed in

Section 16.4. Non-perturbative lattice calculations have been made in the quenched

approximation, excluding effects of virtual quark pair creation.

In the lattice calculations, distances are measured in units of a, and energies in

units of (1/a). A coupling constant g is chosen, and the quark and antiquark are

localised on lattice sites that are spatially fixed at a distance apart of r = |n|a, where

n is a set of three integers. The field energy E(r) generated by the quark–antiquark

pair is computed for a sequence of separation distances, and is found to be of the

form

E(r ) = 2A + Kr − 4

3

αlatt(r )

r
, (17.3)

where A and K are constants, and the factor (4/3) has been inserted to facilitate

comparison with the perturbation results of Section 16.4. The constant 2A can be

interpreted as a contribution to the rest energies of the quark and antiquark, and is

absorbed into their notional masses to leave an effective potential energy

V (r ) = Kr − 4

3

αlatt (r )

r
. (17.4)

The results of such a calculation by Bali and Schilling (1993) using a (32)4 lat-

tice are shown in Fig. 17.1. In this calculation g = 0.97. The term Kr dominates

at large distances. The constant K is called the string tension. In quenched QCD

on a lattice, with g fixed, there is only one energy parameter a−1 (or �latt). Hence
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168 Quantum chromodynamics: calculations

Figure 17.1 The colour singlet quark–antiquark potential as computed on a lattice.
For a fixed value of the coupling constant g (of order 1) V(r) is computed in lattice
units (r in units of a, V in units of 1/a). The computed points are fitted with a curve
of the form

V (r ) = 2A + Kr − (c/r ) + ( f/r2).

In this example g was fixed at 0.97. The calculation determined K = 0.0148;
K is the string tension in units of 1/a2. The phenomenology of cc̄ and b b̄ quark
systems suggests K ≈ (440 MeV)2. Taking this value determines a = 0.055 fm
and 1/a = 3.58 GeV. It also determines one point on the curve g(a) as a function
of a. The calculations must be repeated to compute a for several values of g to
check the extent to which the asymptotic form, like equation (17.1), is obeyed
(�latt is independent of a) in order to be confident of the continuum limit (Bali and
Schilling, 1993).

K has the dimensions of a−2. Bali and Schilling (1993) find K = 0.01475(29)a−2.

In Chapter 1, Fig. (1.5) shows the experimental spectra of the heavy quark systems

charmonium (c, c̄) and bottomonium (b, b̄). Many fits to these spectra have been

made using a Schrödinger equation with an interaction potential of the form (17.3).

In the lowest energy states of heavy quark systems, the quark and antiquark are

slowly moving, so that a non-relativistic approximation is reasonable. The spec-

tra are well fitted with K = (440 MeV)2 = 1 GeV fm−1, α(r ) = constant = 0.39.
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Taking K = (440 MeV)2 fixes the lattice spacing a = 0.0544 fm, and a−1 =
3.62 GeV.

Equation (17.1) could now be used to estimate �latt. However, this equation (and

more sophisticated extensions to higher orders of lattice perturbation theory) hold

only in the limit a → 0. To extract �latt reliably, the calculations must be repeated

for different values of g. The corresponding values of a follow from the string

tension. The limit �latt as a → 0 may then be estimated. Bali and Schilling (1993)

found
√

K/�latt = 51.9+1.6
−1.8, which is consistent with the value

√
K/�latt = 49.6

(3.8) estimated by Booth et al. (1992) from results on a (36)4 lattice. Taking
√

K =
440 MeV gives �latt ≈ 8.5 MeV, and from (17.2) � ≈ 255 MeV.

At small r the attractive Coulomb-like term dominates. It is found that αlatt(r ) is

a slowly varying function of r that decreases with decreasing r, as expected from

perturbation theory (Section 16.3). The potential of Fig. 17.1 is well fitted with

αlatt (r ) = 0.236 − (0.0031 fm)/r.

This is to be compared with the value of α = e2/4π ≈ 1/137 of QED.

It is interesting to note that the linearly rising term in the potential is computed

in the quenched approximation. If quantum fluctuating quark fields were to be

included, the large potential energy available at large separation distances of the

fixed quark and antiquark pair would produce pairs of quarks and antiquarks. A

quark would migrate to the neighbourhood of the fixed antiquark to form a colour

singlet, and an antiquark would similarly form another singlet with the fixed quark,

resulting in two well separated mesons.

17.2 Lattice QCD and hadrons

Systems of quarks and antiquarks held together by the associated gluon field are

called hadrons (see Section 1.4). For example, the proton, the only stable hadron,

has up quark number two and down quark number one. Other systems, for example

mesons, are held together only transiently by their gluon field. As well as these

so-called valence quarks that define a system, a hadron contains quark–antiquark

pairs excited by the gluon field, and known as sea quarks.
So far, in our discussion of hadrons and confinement, sea quarks have been

neglected. Convincing calculations of hadron properties require their inclusion

especially uū. dd̄ and ss̄ pairs which because of their small masses with respect

to �QCD are readily excited by the gluon field Since the first edition of this book,

much progress in lattice QCD has been made to include these pairs.
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Quarks on the lattice require the introduction of quark masses. In the work of

Davies et al. (2004) calculations are made with mu = md (the isospin symmetry

limit: see Section 16.6). A mean mass (mu + md)/2 is introduced along with the

masses ms, mc, mb, and the strong coupling constant g: five parameters in all. With a

fixed value of g the lattice spacing a and the four quark masses are determined by fit-

ting the five experimentally determined masses m(bb̄1s) = 9.460 GeV, m(bb̄2s) =
10.023 GeV (see Figure 1.5), mπ = 0.139 GeV, mK = 0.496 GeV and mD =
1.867 GeV. The D+ meson D(cs̄) is the ground state of the cs̄ valence quark

system.

As in Section 17.1 the lattice spacing a is a function of g and so also are the quark

masses. The calculations have to be repeated for different values of g to extract �latt

and g(a) and the four quark masses which are also taken to be functions of a. They

can also be regarded as function of energy, hc/a. The fact that the strong coupling

constant and quark masses are functions of the energy at which they are measured

is a natural feature of QCD. The calculations give, at an energy of 2 GeV for the

light quarks

(
mu + md

2

)
(2 GeV) = 3.2 ± 0.4 MeV

ms (2 GeV) = 87 ± 8 MeV

mc = 1.1 ± 0.1 GeV

mb = 4.25 ± 0.15 GeV

and αs (Mz) = 0.121 ± 0.003.

mc and mb are quoted at their own mass scale and it is conventional to quote αs

at the scale of the Z boson. To find the parameters at different scales their energy

dependence is given by equations like (16.25).

Having values for the parameters of QCD its validity can be tested by confronting

independent experimental data with calculations. At present one is confined to

single hadrons that are stable to the strong interaction. Unstable particles or those

that are close to instability tend to fluctuate outside the lattice boundaries. Also the

baryons, and in particular the proton and neutron that carry u and d valence quarks

can not yet be reliably handled on the lattice. Nevertheless many particle properties

lend themselves to lattice calculations and the success in fitting data is impressive.

Figure 17.2 shows results taken from Davies et al. (2004). Ten calculations are

compared with experiment. The results are expressed as the calculated divided by

the experimental value. The experimental values are accurately known and the errors

that bracket the mean values indicate the estimated accuracy of the calculation. It

seems that with present computing power, theory and experiment agree to better
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Figure 17.2 Quantities calculated in lattice QCD divided by their experimental
values:

fπ = απ/
√

2 GFVud
see Section 9.2,

fK = αK/
√

2 GFVus
see Problem 9.10.

m� is the mass of the �(sss), the ground state of the baryon with s quark number
three.

3m� − mN is a combination of ground state baryon masses �(ssu) and the
neutron N(ddu).

The other mass differences are between states of the cc̄ and bb̄ mesons (Davies
et al., 2004 ).

than 4%. There is no reason here to doubt the validity of QCD as the theory of

strong interactions.

17.3 Perturbative QCD and deep inelastic scattering

One of the first applications of perturbative QCD was to the Q2 dependence of

the parton distribution functions of the proton. In the parton model of inelastic
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Figure 17.3 The proton structure function F2(x, Q2). The experimental points are
fitted with curves generated by the evolution equations with � = 205 MeV. To
aid reading in the left-hand section, the data have been scaled by the given factors,
so for example at x = 0.18 the graph is of 2F2(0.18, Q2). (Taken from Physics
Letters B223, Benvenuti, A. C. et al. Test of QCD and a measurement of � from
scaling violations in the proton structure factor F2(x, Q2) at high Q2 (Benvenuti
et al., p. 490), with kind permission of Elsevier Science-NL, Sara Burgerhartstraat
25, 1005 kv Amsterdam, The Netherlands.)

electron–proton scattering (Appendix D), the proton is described by parton distri-

bution functions pi (x, Q2), where

Q2 = −qμqμ = (p − p′)2 − (E − E ′)2,

qμ = (E − E ′, p − p′) is the energy and momentum transferred in the inelastic

electron scattering, and x = Q2/[2M(E − E ′)] where M is the proton mass. The

partons are identified as quarks, antiquarks and gluons. Typically, at a fixed value

of Q2, say Q2
0, distribution functions pi (x, Q2

0) are extracted from the data, the

number of distribution functions being determined by the number of distinct data

sets. At this stage the extraction of the distribution functions is merely a matter of

curve fitting: although the functions pi (x, Q2
0) should be a consequence of QCD, the

problem of establishing their form theoretically is immensely difficult. However,

given these distribution functions, and provided Q2
0 is large enough, perturbative

QCD can be used to predict how they evolve with changing Q2. This evolution
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Figure 17.4 e+e− annihilation to a quark–antiquark pair with no gluon radiative
corrections.

is described by the equations of Altarelli and Parisi (1977), which take account

perturbatively of the quark–gluon interactions.

As an example, Fig. 17.3 shows experimental data on the related structure

function F2(x, Q2) defined in Appendix D, taken by the BCDMS collaboration

(Benvenuti et al., 1989). Also shown are the theoretical predictions, at fixed values

of x, of the QCD evolution as a function of Q2. The data are precise and the shapes

of all the curves are given by the single parameter �. Fits to the data determine

� = 205 ± 80 MeV, from which one can infer, using (16.25) with nf = 5, that

αs(Mz
2) = 0.115 ± 0.007.

17.4 Perturbative QCD and e+e− collider physics

The basic Feynman diagrams for hadron production in e+e− colliding beam exper-

iments are shown in Fig. 17.4. In the range 10 GeV to 40 GeV, electromagnetic

processes dominate. The data were discussed in Section 1.7.

Around 90 GeV, close to the centre of mass energy for Z production, the weak

interaction dominates. The hadronic decays of the Z were discussed in Chapter

15, using perturbation theory. However, there are additional contributions to the

cross-section arising from gluon radiation, for example the processes illustrated in

Fig. 17.5.

The modification is simply expressed (see Particle Data Group, 1996). If the

hadron production cross-section without gluon radiative corrections is denoted by

σ0 then (to order α3
s ) the cross-section σ with corrections is

σ = f σ0,

with

f = 1 + αs

π
+ 1.411

(αs

π

)2

− 12.8
(αs

π

)3

, (17.5)
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Figure 17.5 The lowest order gluon radiative corrections to quark–antiquark pair
production by e+e− annihilation.

and αs(Q2) taken at Q2 equal to the square of the centre of mass energy. For example,

taking αs(M2
z ) = 0.115 ± 0.007 from Section 17.3 gives f = 1.038 ± 0.003. This

is the value of f used in Chapter 15. Alternatively, the best fit to the hadronic

decays of the Z would suggest f = 1.041 ± 0.003, which gives αs(M2
z ) = 0.123 ±

0.007 and � = 310 ± 90 MeV. The consistency of the theory between the two

very different experimental regimes: electron–proton scattering and Z decays, from

which these estimates are obtained, is impressive.
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Figure 17.6 A three-jet event recorded by the JADE detector at the PETRA e+e−
collider, DESY.

The hadrons produced in most e+e− annihilations at high energies appear in

two back to back jets associated with the originating qq̄ pair. Gluon radiation

contributing to the f factor is mostly confined to be within the associated quark or

antiquark jet. However, according to perturbative QCD it is also possible for a gluon

to be radiated into a distinct region of phase space and appear as a third distinct jet.

Figure 17.6 is an example of such a three-jet event. Measurements of these three-

and even four-jet events gives further strong support to the theory of QCD.
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