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GEODESICS AND KILLING VECTOR FIELDS
ON THE TANGENT SPHERE BUNDLE

TATSUO KONNO AND SHUKICHI TANNO

Abstract. We show that any Killing vector field on the unit tangent sphere
bundle with Sasaki metric of a space of constant curvature k φ 1 is fiber preserv-
ing by studying some property of geodesies on the bundle. As a consequence,
any Killing vector field on the unit tangent sphere bundle of a space of constant
curvature k φ\ can be extended to a Killing vector field on the tangent bundle.

§1. Introduction

Let (T\M,gs) be the unit tangent sphere bundle with Sasaki metric gs

of a Riemannian manifold (M,g). A Killing vector field Z on (T\M,gs)
is called fiber preserving if each (local) isometry φt generated by Z maps
each fiber into a fiber. If (M(k),g) is a space of constant curvature k, then
geodesic flow vector ξ of (T\M(k)Jg

s) is a Killing vector field if and only if
k = 1 (cf. Tanno [6]). It is important to notice that ξ is not fiber preserving.

In this paper we obtain the following:

THEOREM A. Let (TιM(k)1g
s) be the unit tangent sphere bundle of a

space (M(k),g) of constant curvature k. If k φ 1 ; then any Killing vector
field on {T\M{k),gs) is fiber preserving.

One of the authors [3] proved that any Killing vector field Z on the
unit tangent sphere bundle (T\M,gs) of a Riemannian manifold (M, g) can
be extended to a Killing vector field on the tangent bundle (TM,gs) if Z
is fiber preserving. So, by Theorem A we have the following:

THEOREM B. Any Killing vector field on the unit tangent sphere bun-
dle (TιM(k),gs) of a space (M(k),g) of constant curvature k φ 1 can be
extended to a Killing vector field on the tangent bundle (TM(k),gs).

To prove Theorem A we study some property of geodesies on (TχM(fc),
gs) in §2. As for basic geometry on the tangent bundle or tangent sphere
bundle, cf. Dombrowski [1], Sasaki [5], etc.
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§2. Geodesies in {TιM{k),gs)

Let (TιM,gs) be the unit tangent sphere bundle with Sasaki metric
gs of a Riemannian manifold (M, g). By π we denote the projection from
TXM to M. Let C = {(x(σ),y(σ));Q < σ < 1} be a curve in (TιM,gs)

with arc-length parameter σ, where ?/(σ) £ Tx^M^g(y(σ)^y(σ)) = 1. It is
a geodesic if and only if

(Vβ,s)(σ)

(Vx/VίC/y)(σ)=p(σ)J/(σ)

hold for some function p(σ), where V (i?, resp.) denotes the Riemannian
connection (Riemannian curvature tensor, resp.) of (M, g), and x'(σ) —

dx(σ)/dσ (cf. Sasaki [5], II, p.152).
Geodesies on the unit tangent sphere bundle (TιS2(l),gs) of a unit

2-sphere (52(1),^) were studied by Klingenberg and Sasaki [2]. For a unit
m-sphere (5m(fc),^), m > 3, and for more general (M(fc),^), we have the
following (cf. Nagy [4]):

THEOREM C. Let (TιM(k),gs) be the unit tangent sphere bundle of

a space (M(k)^g) of constant curvature k, and let C = {(x(σ),y(σ)); 0 <
σ < 1} be a geodesic with arc-length parameter σ in (TχM(k),gs). By

C = {x(σ)} we denote the projection πC of C. Then \\xf\\2 = 1 — c2 is

constant, where 0 < \c\ < 1.

(i) // \c\ — 1, i.e., C reduces to a point, then C is a (piece of) great circle

in a fiber and y is rotated in a 2-plane at x(0).

(ii) If 0 < \c\ < 1, then we have the following:

(ii-a-1) The geodesic curvature K of C is constant.

(ii-a-2) C satisfies

(2.2) VxιVxιVxιχ' = -k2c2Vx'x'.

(ii-b-1) If k = 0, then K = 0 and we have parallel orthonormal vector

fields {j?i,2?2} along C such that

(2.3) y{σ) = coscσ E\{σ) + sincσ ^ ( σ ) .

(ii-b-2) If k φ 0 and K = 0 ; then we have parallel orthonormal vector

fields { S i , ^ , x'/lla:'!!} along C such that y is of the form (2.3).
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(ii-b-3) // k φ 0 and K φ 0, then we have parallel orthonormal vector

fields {ί/1,^2} along C such that y is of the form (2.3).

(ii-c) The angle θ(σ) between y(σ) and x'(σ) is given by

(2.4) cos θ(σ) = [α/\Λ - c2] sin[(l - k)cσ + β)

where a and β are constant, a2 is given by (2.9) and a — 0 for (ii-b-2).

(iii) If c — 0, then C — {x(σ)} is a geodesic with arc-length parameter σ,

and y is a parallel vector field along C.

Proof. By (2.1) the equations of geodesic in (T\M(k),gs) is given by

(2.5) ^χ'X — —kby -j- kaVx>y, V ^ Vx/y = py,

where we have put

(2.6) a = α(σ) = g(xf, y), b = b(σ) = ^(x ;, Vx/y),

and we sometimes omit the parameter σ from the expression for simplicity.

We put

(2.7) c2 = c2(σ)=g(Vx,y,Vx,y).

By g{y->y) — 1, we have g{y^χ'y) — 0

Differentiating (2.7) and using (2.5)2 w e s e e that c is constant.

Let X be a tangent vector at a point of (M(fc), g). By XH or Xv we de-

note the horizontal lift or vertical lift of X to (TM(k),gs) or

Since the tangent vector field T of C is expressed as

m ίdx dv

we have 1 = | |T | | 2 = ||x7 | |2 + c2. Therefore | |^ ; | | 2 = 1 — c2 is constant, and

the parameter σ of C — {x(σ)} is proportional to the arc-length.

If \c\ = 1, i.e., ||x'|| = 0, then C is a geodesic in a fiber. Since each

fiber is totally geodesic and isometric to a unit (m — l)-sphere, it is a (piece

of) great circle. So, y is expressed as y(σ) = cosσ e\ + sinσ β2 for some

orthonormal vectors {ei,e2} at x(0).
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Next we assume 0 < |c| < 1. Calculating a' — Vx>a and b1 = Vxώ, we

obtain

(2.8) α' = (l-]fc)δ, b' = -{l-k)ac2.

Operating Vx/ to (2.5)i twice, we obtain (2.2). By (2.5)i we obtain

By (2.8) we can show that c2a2 + b2 is constant, and the geodesic curvature

of C is constant. This proves (ii-a-1) and the first part of (ii-b-1). By (2.8)

again, we have

α(σ) = αsin[(l — k)cσ + /?], b(σ) = cαcos[(l — k)cσ + /?],

where a and β are constant. Here, a2 is expressed as

(2.9) a2 = (c2a2 + b2)/c2 {a2 = (1 - c2)2κ2/c2k2, if k φ 0).

The angle θ(σ) between y(σ) and x'(σ) is given by cos θ(σ) = ̂ (x'/Ux'H,

y) = a(σ)/y/l — c2 and we obtain (2.4).

Now we define vector fields EΊ and E2 along C by

E\(σ) = coscσ y(σ) — sincσ (V^y)(σ)/c,

) = sincσ y(σ) + coscσ (Vx/j/)(σ)/c.

Then J5Ί and £?2 are parallel orthonormal vector fields along C, and define

a parallel 2-plane field Π along C. y is rotated in Π as

y(σ) = coscσ E\(σ) + sincσ E2(σ).

This proves (ii-b-1) and (ii-b-3). If k φ 0 and K — 0, then a = b = 0. So,

{£7i, JE^JXVII^ΊI} are orthonormal and we have (ii-b-2).

Finally, if c = 0, then we have Vx*y = 0, Vx/χ' = 0 and (iii). Q
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§3. The converse of Theorem C

THEOREM D. Let (M(k),g) be a space of constant curvature k. The

converse of two cases (i) and (iii) of Theorem C is trivial. So, let C =

{x(σ); 0 < σ < / } be a curve of constant geodesic curvature K with \\xf\\2 =

1 — c 2 ,0 < \c\ < 1. Assume that C satisfies

(3.1) VxιVxιVxiχ' = -k2c2Vx,χ'.

(ii*-l) // k = 0; then we assume K — 0. Let {Eι,E2} be parallel
orthonormal vector fields along C and define a vector field y along C by

(3.2) y{σ) = coscσ Eχ(σ) + sincσ E2(σ).

Then C = {(x(σ),y(σ))} is a geodesic in {T\M(k),gs).
(ii*-2) // k φ 0 and K = 0; then let {Ei,E2,x

t/\\x'\\} be parallel or-
thonormal vector fields along C. Define y by (3.2). Then C = {(x(σ), y(σ))}
is a geodesic in (TιM(k),gs).

(ii*-3) IfkφO and κφθ, then let e\ = (Vx/χ/)(0)/(l - c2)κ and

e2 = (Vx,Vx,x')(0)/kc(l - c2)κ.

Define {JEΊ, E2} along C by parallel translation of e\ and e2. Next we define
V by
(3.3) y[σ) = cos(cσ + 7) ^i(σ) + sin(cσ + 7) E2(σ)

for constant 7. Then C = {(x(σ),y(σ))} is a geodesic in (T\M(k),gs).

Proof. First we prove (ii*-l) and (ii*-2). By /c = 0we have Vx/χf = 0.
By (3.2) we obtain Vx/Vx>y = -c2y and, using g(x',y) = g{x',^x>y) — 0
for (ii*-2), we have (2.5).

Next, we show (ii*-3). Since Vxιχ'/(I — c2)κ is a unit vector field along
C, we see that Vxιχ' and VxιVxiχ' are orthogonal. Using (3.1), we obtain

and VxtVxtχ
f/kc(l — c2)κ is a unit vector field along C. Therefore, {ei, e2}

and hence parallel vector fields {Eι,E2} are orthonormal. Then {(x(σ)1

y(σ))} defined by (3.3) satisfies (2.5)2. By the differential equation (3.1)
we have

- c2)κ — cos kcσ E\{σ) + sinA:cσ E2(σ).
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By (3.3) and Vxry/c = — sin(cσ + y)Ey+ cos(cσ + 7)^2, we obtain

(3.4) Va /x' = (1 - c2)κ cos[(l - k)cσ + j]y

— (1 — c2)/csin[(l — k)cσ + 7]Vx/?//c.

We put a = g(x\y) and b = g(xf, Vxιy). By (3.4) and Vx/Vx/τ/ = -c2y, we

obtain

a = (1 - c2)/c cos[(l - fc)cσ + 7 ] + 6,

6; = - c ( l - c2)/ΐsin[(l - fc)cσ + 7] - c2a.

Solving the above with α(0) = ^(a:/(0),y(0)) = —[(1 — c2)κ/kc] sin7. we get

a = -[(1 ~ c2)κ/kc] sin[(l - fc)cσ 4- 7],

6 = -[(1 - c2)κ/k] cos[(l - fc)cσ + 7].

So, (3.4) is rewritten as Vxtχ
f = —kby + kaVx>y. •

§4. Proof of Theorem A

Assume that a Killing vector field Z on {T\M(k),gs) is not fiber pre-

serving. Let {φt} be a (local) 1-parameter group of local isometries gener-

ated by Z. Since each fiber is totally geodesic in (TχM(A ), gs) and isometric

to a unit (m — l)-sphere, we can choose a great circle C = {(x(σ), y(σ))]0 <

σ < 2π} of length 2π in a fiber, such that φtC is not contained in a fiber

for t with 0 < t < ε. Here we can assume that the domain of definition of

φt contains the fiber containing C. In this case, for small t with 0 < t < ε,

Ct — πφtC is a small closed curve, and it can not be a geodesic in (M(fc), #).

We have 0 < \ct\ < 1. By Theorem C, (ii-b-1), and (2.9) we see that k ψ 0

and cat φ 0. By (ϋ-c) we see that the angle θt(σ) between yt(&) and Ct is

given by

cos(9ί(σ) = [at/yjl-c2] sin[(l - k)ctσ + βt)

As t —> 0, we have \ct\ —» 1. So we have many small t such that (1 — k)ct

is not an integer. This means θt(σ) φ θt(σ + 2π) for such t. This is a

contradiction to the fact that Ct is a closed geodesic for any t. Q
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