T. Konno and S. Tanno Nagoya Math. J. Vol. 151 (1998), 91–97

GEODESICS AND KILLING VECTOR FIELDS ON THE TANGENT SPHERE BUNDLE

TATSUO KONNO AND SHUKICHI TANNO

Abstract. We show that any Killing vector field on the unit tangent sphere bundle with Sasaki metric of a space of constant curvature $k \neq 1$ is fiber preserving by studying some property of geodesics on the bundle. As a consequence, any Killing vector field on the unit tangent sphere bundle of a space of constant curvature $k \neq 1$ can be extended to a Killing vector field on the tangent bundle.

§1. Introduction

Let (T_1M, g^S) be the unit tangent sphere bundle with Sasaki metric g^S of a Riemannian manifold (M, g). A Killing vector field Z on (T_1M, g^S) is called fiber preserving if each (local) isometry ϕ_t generated by Z maps each fiber into a fiber. If (M(k), g) is a space of constant curvature k, then geodesic flow vector ξ of $(T_1M(k), g^S)$ is a Killing vector field if and only if k = 1 (cf. Tanno [6]). It is important to notice that ξ is not fiber preserving.

In this paper we obtain the following:

THEOREM A. Let $(T_1M(k), g^S)$ be the unit tangent sphere bundle of a space (M(k), g) of constant curvature k. If $k \neq 1$, then any Killing vector field on $(T_1M(k), g^S)$ is fiber preserving.

One of the authors [3] proved that any Killing vector field Z on the unit tangent sphere bundle (T_1M, g^S) of a Riemannian manifold (M, g) can be extended to a Killing vector field on the tangent bundle (TM, g^S) if Z is fiber preserving. So, by Theorem A we have the following:

THEOREM B. Any Killing vector field on the unit tangent sphere bundle $(T_1M(k), g^S)$ of a space (M(k), g) of constant curvature $k \neq 1$ can be extended to a Killing vector field on the tangent bundle $(TM(k), g^S)$.

To prove Theorem A we study some property of geodesics on $(T_1M(k), g^S)$ in §2. As for basic geometry on the tangent bundle or tangent sphere bundle, cf. Dombrowski [1], Sasaki [5], etc.

Received March 21, 1997.

§2. Geodesics in $(T_1M(k), g^S)$

Let (T_1M, g^S) be the unit tangent sphere bundle with Sasaki metric g^S of a Riemannian manifold (M, g). By π we denote the projection from T_1M to M. Let $\tilde{C} = \{(x(\sigma), y(\sigma)); 0 \leq \sigma \leq l\}$ be a curve in (T_1M, g^S) with arc-length parameter σ , where $y(\sigma) \in T_{x(\sigma)}M, g(y(\sigma), y(\sigma)) = 1$. It is a geodesic if and only if

(2.1)
$$(\nabla_{x'} x')(\sigma) = -R(y(\sigma), (\nabla_{x'} y)(\sigma))x'(\sigma), (\nabla_{x'} \nabla_{x'} y)(\sigma) = \rho(\sigma)y(\sigma)$$

hold for some function $\rho(\sigma)$, where ∇ (*R*, resp.) denotes the Riemannian connection (Riemannian curvature tensor, resp.) of (M,g), and $x'(\sigma) = dx(\sigma)/d\sigma$ (cf. Sasaki [5], II, p.152).

Geodesics on the unit tangent sphere bundle $(T_1S^2(1), g^S)$ of a unit 2-sphere $(S^2(1), g)$ were studied by Klingenberg and Sasaki [2]. For a unit *m*-sphere $(S^m(k), g), m \ge 3$, and for more general (M(k), g), we have the following (cf. Nagy [4]):

THEOREM C. Let $(T_1M(k), g^S)$ be the unit tangent sphere bundle of a space (M(k), g) of constant curvature k, and let $\tilde{C} = \{(x(\sigma), y(\sigma)); 0 \le$ $\sigma \le l\}$ be a geodesic with arc-length parameter σ in $(T_1M(k), g^S)$. By $C = \{x(\sigma)\}$ we denote the projection $\pi \tilde{C}$ of \tilde{C} . Then $||x'||^2 = 1 - c^2$ is constant, where $0 \le |c| \le 1$.

- (i) If |c| = 1, i.e., C reduces to a point, then \tilde{C} is a (piece of) great circle in a fiber and y is rotated in a 2-plane at x(0).
- (ii) If 0 < |c| < 1, then we have the following:
- (ii-a-1) The geodesic curvature κ of C is constant.

(ii-a-2) C satisfies
(2.2)
$$\nabla_{x'}\nabla_{x'}x' = -k^2c^2\nabla_{x'}x'.$$

(ii-b-1) If k = 0, then $\kappa = 0$ and we have parallel orthonormal vector fields $\{E_1, E_2\}$ along C such that

(2.3)
$$y(\sigma) = \cos c\sigma \cdot E_1(\sigma) + \sin c\sigma \cdot E_2(\sigma).$$

(ii-b-2) If $k \neq 0$ and $\kappa = 0$, then we have parallel orthonormal vector fields $\{E_1, E_2, x'/||x'||\}$ along C such that y is of the form (2.3).

92

- (ii-b-3) If $k \neq 0$ and $\kappa \neq 0$, then we have parallel orthonormal vector fields $\{E_1, E_2\}$ along C such that y is of the form (2.3).
- (ii-c) The angle $\theta(\sigma)$ between $y(\sigma)$ and $x'(\sigma)$ is given by

(2.4)
$$\cos \theta(\sigma) = \left[\alpha / \sqrt{1 - c^2} \right] \sin[(1 - k)c\sigma + \beta]$$

where α and β are constant. α^2 is given by (2.9) and $\alpha = 0$ for (ii-b-2).

(iii) If c = 0, then $C = \{x(\sigma)\}$ is a geodesic with arc-length parameter σ , and y is a parallel vector field along C.

Proof. By (2.1) the equations of geodesic in $(T_1M(k), g^S)$ is given by

(2.5)
$$\nabla_{x'}x' = -kby + ka\nabla_{x'}y, \qquad \nabla_{x'}\nabla_{x'}y = \rho y,$$

where we have put

(2.6)
$$a = a(\sigma) = g(x', y), \quad b = b(\sigma) = g(x', \nabla_{x'}y),$$

and we sometimes omit the parameter σ from the expression for simplicity. We put

(2.7)
$$c^2 = c^2(\sigma) = g(\nabla_{x'}y, \nabla_{x'}y).$$

By g(y, y) = 1, we have $g(y, \nabla_{x'} y) = 0$ and

$$g(\nabla_{x'}y, \nabla_{x'}y) + g(y, \nabla_{x'}\nabla_{x'}y) = 0, \qquad \text{i.e.,} \quad c^2 + \rho = 0.$$

Differentiating (2.7) and using $(2.5)_2$ we see that c is constant.

Let X be a tangent vector at a point of (M(k), g). By X^H or X^V we denote the horizontal lift or vertical lift of X to $(TM(k), g^S)$ or $(T_1M(k), g^S)$. Since the tangent vector field T of \tilde{C} is expressed as

$$T = \left(\frac{dx}{d\sigma}, \frac{dy}{d\sigma}\right) = x'^{H} + (\nabla_{x'}y)^{V},$$

we have $1 = ||T||^2 = ||x'||^2 + c^2$. Therefore $||x'||^2 = 1 - c^2$ is constant, and the parameter σ of $C = \{x(\sigma)\}$ is proportional to the arc-length.

If |c| = 1, i.e., ||x'|| = 0, then \tilde{C} is a geodesic in a fiber. Since each fiber is totally geodesic and isometric to a unit (m-1)-sphere, it is a (piece of) great circle. So, y is expressed as $y(\sigma) = \cos \sigma \cdot e_1 + \sin \sigma \cdot e_2$ for some orthonormal vectors $\{e_1, e_2\}$ at x(0).

Next we assume 0 < |c| < 1. Calculating $a' = \nabla_{x'} a$ and $b' = \nabla_{x'} b$, we obtain

(2.8)
$$a' = (1-k)b, \quad b' = -(1-k)ac^2.$$

Operating $\nabla_{x'}$ to $(2.5)_1$ twice, we obtain (2.2). By $(2.5)_1$ we obtain

$$\|\nabla_{x'}x'\|^2 = k^2(c^2a^2 + b^2).$$

By (2.8) we can show that $c^2a^2 + b^2$ is constant, and the geodesic curvature κ ;

$$\kappa^2 = k^2 (c^2 a^2 + b^2) / (1 - c^2)^2.$$

of C is constant. This proves (ii-a-1) and the first part of (ii-b-1). By (2.8) again, we have

$$a(\sigma) = \alpha \sin[(1-k)c\sigma + \beta], \qquad b(\sigma) = c\alpha \cos[(1-k)c\sigma + \beta],$$

where α and β are constant. Here, α^2 is expressed as

(2.9)
$$\alpha^2 = (c^2 a^2 + b^2)/c^2$$
 $(\alpha^2 = (1 - c^2)^2 \kappa^2/c^2 k^2, \text{ if } k \neq 0).$

The angle $\theta(\sigma)$ between $y(\sigma)$ and $x'(\sigma)$ is given by $\cos \theta(\sigma) = g(x'/||x'||, y) = a(\sigma)/\sqrt{1-c^2}$ and we obtain (2.4).

Now we define vector fields E_1 and E_2 along C by

$$E_1(\sigma) = \cos c\sigma \cdot y(\sigma) - \sin c\sigma \cdot (\nabla_{x'}y)(\sigma)/c,$$
$$E_2(\sigma) = \sin c\sigma \cdot y(\sigma) + \cos c\sigma \cdot (\nabla_{x'}y)(\sigma)/c.$$

Then E_1 and E_2 are parallel orthonormal vector fields along C, and define a parallel 2-plane field Π along C. y is rotated in Π as

$$y(\sigma) = \cos c\sigma \cdot E_1(\sigma) + \sin c\sigma \cdot E_2(\sigma).$$

This proves (ii-b-1) and (ii-b-3). If $k \neq 0$ and $\kappa = 0$, then a = b = 0. So, $\{E_1, E_2, x'/||x'||\}$ are orthonormal and we have (ii-b-2).

Finally, if
$$c = 0$$
, then we have $\nabla_{x'} y = 0$, $\nabla_{x'} x' = 0$ and (iii).

https://doi.org/10.1017/S0027763000025186 Published online by Cambridge University Press

94

\S **3.** The converse of Theorem C

THEOREM D. Let (M(k), g) be a space of constant curvature k. The converse of two cases (i) and (iii) of Theorem C is trivial. So, let $C = \{x(\sigma); 0 \le \sigma \le l\}$ be a curve of constant geodesic curvature κ with $||x'||^2 = 1 - c^2, 0 < |c| < 1$. Assume that C satisfies

(3.1)
$$\nabla_{x'}\nabla_{x'}x' = -k^2c^2\nabla_{x'}x'.$$

(ii*-1) If k = 0, then we assume $\kappa = 0$. Let $\{E_1, E_2\}$ be parallel orthonormal vector fields along C and define a vector field y along C by

(3.2)
$$y(\sigma) = \cos c\sigma \cdot E_1(\sigma) + \sin c\sigma \cdot E_2(\sigma).$$

Then $\tilde{C} = \{(x(\sigma), y(\sigma))\}$ is a geodesic in $(T_1M(k), g^S)$.

(ii*-2) If $k \neq 0$ and $\kappa = 0$, then let $\{E_1, E_2, x'/||x'||\}$ be parallel orthonormal vector fields along C. Define y by (3.2). Then $\tilde{C} = \{(x(\sigma), y(\sigma))\}$ is a geodesic in $(T_1M(k), g^S)$.

(ii*-3) If $k \neq 0$ and $\kappa \neq 0$, then let $e_1 = (\nabla_{x'} x')(0)/(1-c^2)\kappa$ and

$$e_2 = (\nabla_{x'} \nabla_{x'} x')(0) / kc(1-c^2)\kappa.$$

Define $\{E_1, E_2\}$ along C by parallel translation of e_1 and e_2 . Next we define y by

(3.3)
$$y(\sigma) = \cos(c\sigma + \gamma) \cdot E_1(\sigma) + \sin(c\sigma + \gamma) \cdot E_2(\sigma)$$

for constant γ . Then $\tilde{C} = \{(x(\sigma), y(\sigma))\}$ is a geodesic in $(T_1M(k), g^S)$.

Proof. First we prove (ii*-1) and (ii*-2). By $\kappa = 0$ we have $\nabla_{x'}x' = 0$. By (3.2) we obtain $\nabla_{x'}\nabla_{x'}y = -c^2y$ and, using $g(x', y) = g(x', \nabla_{x'}y) = 0$ for (ii*-2), we have (2.5).

Next, we show (ii*-3). Since $\nabla_{x'}x'/(1-c^2)\kappa$ is a unit vector field along C, we see that $\nabla_{x'}x'$ and $\nabla_{x'}\nabla_{x'}x'$ are orthogonal. Using (3.1), we obtain

$$g(\nabla_{x'}\nabla_{x'}x', \nabla_{x'}\nabla_{x'}x') = k^2 c^2 g(\nabla_{x'}x', \nabla_{x'}x')$$

and $\nabla_{x'} \nabla_{x'} x' / kc(1-c^2)\kappa$ is a unit vector field along C. Therefore, $\{e_1, e_2\}$ and hence parallel vector fields $\{E_1, E_2\}$ are orthonormal. Then $\{(x(\sigma), y(\sigma))\}$ defined by (3.3) satisfies (2.5)₂. By the differential equation (3.1) we have

$$(\nabla_{x'}x')(\sigma)/(1-c^2)\kappa = \cos kc\sigma \cdot E_1(\sigma) + \sin kc\sigma \cdot E_2(\sigma).$$

By (3.3) and $\nabla_{x'} y/c = -\sin(c\sigma + \gamma)E_1 + \cos(c\sigma + \gamma)E_2$, we obtain

(3.4)
$$\nabla_{x'} x' = (1 - c^2) \kappa \cos[(1 - k)c\sigma + \gamma] y$$
$$- (1 - c^2) \kappa \sin[(1 - k)c\sigma + \gamma] \nabla_{x'} y/c.$$

We put a = g(x', y) and $b = g(x', \nabla_{x'}y)$. By (3.4) and $\nabla_{x'}\nabla_{x'}y = -c^2y$, we obtain

$$\begin{aligned} a' &= (1-c^2)\kappa\cos[(1-k)c\sigma+\gamma] + b, \\ b' &= -c(1-c^2)\kappa\sin[(1-k)c\sigma+\gamma] - c^2a. \end{aligned}$$

Solving the above with $a(0) = g(x'(0), y(0)) = -[(1-c^2)\kappa/kc] \sin \gamma$. we get

$$a = -[(1-c^2)\kappa/kc]\sin[(1-k)c\sigma + \gamma],$$

$$b = -[(1-c^2)\kappa/k]\cos[(1-k)c\sigma + \gamma].$$

So, (3.4) is rewritten as $\nabla_{x'}x' = -kby + ka\nabla_{x'}y$.

§4. Proof of Theorem A

Assume that a Killing vector field Z on $(T_1M(k), g^S)$ is not fiber preserving. Let $\{\phi_t\}$ be a (local) 1-parameter group of local isometries generated by Z. Since each fiber is totally geodesic in $(T_1M(k), g^S)$ and isometric to a unit (m-1)-sphere, we can choose a great circle $\tilde{C} = \{(x(\sigma), y(\sigma)); 0 \leq$ $\sigma \leq 2\pi\}$ of length 2π in a fiber, such that $\phi_t \tilde{C}$ is not contained in a fiber for t with $0 < t < \varepsilon$. Here we can assume that the domain of definition of ϕ_t contains the fiber containing \tilde{C} . In this case, for small t with $0 < t < \varepsilon$, $C_t = \pi \phi_t \tilde{C}$ is a small closed curve, and it can not be a geodesic in (M(k), g). We have $0 < |c_t| < 1$. By Theorem C, (ii-b-1), and (2.9) we see that $k \neq 0$ and $\alpha_t \neq 0$. By (ii-c) we see that the angle $\theta_t(\sigma)$ between $y_t(\sigma)$ and C_t is given by

$$\cos \theta_t(\sigma) = [\alpha_t / \sqrt{1 - c_t^2}] \sin[(1 - k)c_t \sigma + \beta_t].$$

As $t \to 0$, we have $|c_t| \to 1$. So we have many small t such that $(1-k)c_t$ is not an integer. This means $\theta_t(\sigma) \neq \theta_t(\sigma + 2\pi)$ for such t. This is a contradiction to the fact that \tilde{C}_t is a closed geodesic for any t.

References

- P. Dombrowski, On the geometry of the tangent bundle, J. reine angew. Math., 210 (1962), 73-88.
- W. Klingenberg and S. Sasaki, On the tangent sphere bundle of a 2-sphere, Tôhoku Math. J., 27 (1975), 49-56.
- [3] T. Konno, Killing vector fields on tangent sphere bundles, Kodai Math. J., 21 (1998), 61-72.
- [4] P. T. Nagy, Geodesics on the tangent sphere bundle of a Riemannian manifold, Geom. Dedicata, 7 (1978), 233-243.
- [5] S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds I, Tôhoku Math. J., 10, (1958), 338-354, II, ibid., 14 (1962), 146-155.
- [6] S. Tanno, Killing vectors and geodesic flow vectors on tangent bundles, J. reine angew. Math., 282 (1976), 162-171.

Tatsuo Konno Mathematical Institute Tôhoku University Aoba-ku Sendai 980-8578 Japan 94m05@math.tohoku.ac.jp

Shukichi Tanno Department of Mathematics Tokyo Institute of Technology Meguro-ku Tokyo 152-8551 Japan