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The category of toric stacks

Isamu Iwanari

Abstract

In this paper, we show that there is an equivalence between the 2-category of smooth
Deligne–Mumford stacks with torus embeddings and actions and the 1-category of
stacky fans. To this end, we prove two main results. The first is related to a combinatorial
aspect of the 2-category of toric algebraic stacks defined by I. Iwanari [Logarithmic
geometry, minimal free resolutions and toric algebraic stacks, Preprint (2007)]; we
establish an equivalence between the 2-category of toric algebraic stacks and the
1-category of stacky fans. The second result provides a geometric characterization of
toric algebraic stacks. Logarithmic geometry in the sense of Fontaine–Illusie plays a
central role in obtaining our results.

1. Introduction and main results

The equivalence between the category of toric varieties and the category of fans is a fundamental
theorem for toric varieties, and provides a fruitful bridge between the fields of algebraic geometry
and combinatorics. It is also useful in various contexts; a typical and most beautiful application,
for example, is the toric minimal model program (see [Rei83]). Since simplicial toric varieties
have quotient singularities in characteristic zero, a natural problem is to find such an equivalence
in the stack-theoretic context. Let k be an algebraically closed base field of characteristic zero.
Consider a triple (X , ι : Gd

m ↪→X , a : X ×Gd
m→X ), where X is a smooth Deligne–Mumford

stack of finite type, separated over k, which satisfies the following properties.

(i) The morphism ι : Gd
m ↪→X is an open immersion identifying Gd

m with a dense open substack
of X . (We shall refer to Gd

m ↪→X as a torus embedding.)

(ii) The morphism a : X ×Gd
m→X is an action of Gd

m on X which is an extension of the action
Gd
m on itself. (We shall refer to it as a torus action.)

(iii) The coarse moduli space X for X is a scheme.

We shall refer to such a triple as a toric triple. Note that if X is a scheme, then X is a smooth
toric variety. A 1-morphism of toric triples

(X , ι : Gd
m ↪→X , a : X ×Gd

m→X )→ (X ′, ι′ : Gd′
m ↪→X ′, a′ : X ′ ×Gd′

m→X ′)
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The category of toric stacks

is a morphism f : X →X ′ such that the restriction of f to Gd
m induces a morphism Gd

m→Gd′
m

of group k-schemes and the diagram

X ×Gd
m

f×(f |Gdm )
//

a
��

X ′ ×Gd′
m

a′
��

X
f // X ′

commutes in the 2-categorical sense. A 2-isomorphism g : f1→ f2 is an isomorphism of
1-morphisms.

Our main goal is to prove the following.

Theorem 1.1. There exists an equivalence between the 2-category of toric triples and the
1-category of stacky fans. (See Definition 2.1 for the definition of stacky fans.)

The non-singular fans form a full subcategory of the category of stacky fans. Thus our
equivalence includes the classical equivalence between smooth toric varieties and non-singular
fans (see Remark 4.5).

To obtain Theorem 1.1, we need to consider the following two problems.

(i) Construction of toric triples X(Σ,Σ0) associated to a stacky fan (Σ, Σ0) (which we
shall refer to as the associated toric algebraic stack) and the establishment of an
equivalence between the groupoid category Hom(X(Σ1,Σ0

1),X(Σ2,Σ0
2)) and the discrete

category Hom((Σ1, Σ0
1), (Σ2, Σ0

2)) associated to the set of morphisms.

(ii) Geometric characterization of toric algebraic stacks associated to stacky fans.

For the first problem, the construction was given in [Iwa07a] (see also [Iwa06]). In this work,
given a stacky fan (Σ, Σ0), the associated toric algebraic stack X(Σ,Σ0) was defined by means
of logarithmic geometry. In characteristic zero, it is a smooth Deligne–Mumford stack and has
a natural torus embedding and a torus action, i.e. a toric triple. Let us denote by Torst the
2-category whose objects are toric 1-morphism of two toric algebraic stacks f : X(Σ,Σ0)→X(∆,∆0)

in Torst is a torus-equivariant 1-morphism (cf. Definitions 2.1, 2.3 and 2.6). A 2-morphism
g : f1→ f2 is an isomorphism of 1-morphisms. Then, the following is our answer to the first
problem.

Theorem 1.2. Working over a field of characteristic zero, there exists an equivalence of
2-categories

Φ : Torst
∼−→ (1-category of stacky fans)

which makes the diagram

Torst
Φ //

c

��

(category of stacky fans)

��
Simtoric

∼ // (category of simplicial fans)

commutative. Here Simtoric is the category of simplicial toric varieties (morphisms in Simtor are
those that are torus-equivariant), and c is the natural functor which sends the toric algebraic
stack X(Σ,Σ0) associated to a stacky fan (Σ, Σ0) to the toric variety XΣ (cf. Remarks 2.8 and 3.4).
The 1-category of stacky fans is regarded as a 2-category.
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I. Iwanari

In Theorem 1.2, the difficult issue is to show that the groupoid of torus-equivariant
1-morphisms of toric algebraic stacks is equivalent to the discrete category of the set of the
morphisms of stacky fans. For two algebraic stacks X and Y, the classification of 1-morphisms
X →Y and their 2-isomorphisms is a hard problem even when X and Y have very explicit
groupoid presentations. Groupoid presentations of stacks are ill-suited to dealing with such
problems. To overcome this difficulty, our idea is to use the modular interpretation of toric
algebraic stacks in terms of logarithmic geometry (see § 2). A certain type of resolution of
monoids (called (Σ, Σ0)-free resolutions) plays a role similar to monoid algebras arising from
cones in classical toric geometry; by virtue of this notion, we obtain Theorem 1.2 by reducing it
to a certain problem concerning log structures on schemes. As a corollary of Theorem 1.2, we
show also that every toric algebraic stack admits a smooth torus-equivariant cover by a smooth
toric variety (see Corollary 3.10).

The second problem is the geometric characterization. Remembering that we have a geometric
characterization of toric varieties (see [KKMS73]), we wish to obtain a similar characterization
of toric algebraic stacks. Our geometric characterization of toric algebraic stacks is given in the
following theorem.

Theorem 1.3. Assume that the base field k is algebraically closed in characteristic zero. Let
(X , ι : Gd

m ↪→X , a : X ×Gd
m→X ) be a toric triple over k. Then there exist a stacky fan (Σ, Σ0)

and an isomorphism of stacks

Φ : X ∼−→X(Σ,Σ0)

over k which satisfy the following properties.

(i) The restriction of Φ to Gd
m ⊂X induces an isomorphism Φ0 : Gd

m
∼→ Spec k[M ]⊂X(Σ,Σ0)

of group k-schemes. Here N = Zd, M = HomZ(N, Z), Σ is a fan in N ⊗Z R, and Spec k[M ]
↪→X(Σ,Σ0) is the natural torus embedding (see Definition 2.3).

(ii) The diagram

X ×Gd
m

m

��

Φ×Φ0// X(Σ,Σ0) × Spec k[M ]

a(Σ,Σ0)

��
X Φ // X(Σ,Σ0)

commutes in the 2-categorical sense, where a(Σ,Σ0) : X(Σ,Σ0) × Spec k[M ]→X(Σ,Σ0) is the
torus action functor (see § 2.2).

Moreover, such a stacky fan is unique up to isomorphisms.

The essential ingredient in the proof of Theorem 1.3 is a study of (étale) local structures of
the coarse moduli map X →X. We first show that X is a toric variety and then determine the
local structure of X →X by applying the logarithmic Nagata–Zariski purity theorem which was
independently proven by Mochizuki and by Kato.

It is natural and interesting to consider a generalization of our work to positive characteristics.
Unfortunately, our proof does not seem to be applicable to the case of positive characteristics;
for instance, we impose the assumption of characteristic zero in order to apply the log purity
theorem. Furthermore, in positive characteristics, toric algebraic stacks as defined in [Iwa07a]
are not necessarily Deligne–Mumford stacks; in fact, they happen to be Artin stacks. Thus, in
such a generalized framework, the formulation would need to be modified (see Remark 4.4).
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The category of toric stacks

Informally, Theorem 1.1 implies that the geometry of toric triples could be encoded by the
combinatorics of stacky fans. It would be interesting to investigate the geometric invariants of
toric triples from the viewpoint of stacky fans. In this direction, we have demonstrated in [Iwa07b]
the relationship between integral Chow rings of toric triples and (classical) Stanley–Reisner rings,
in which a non-scheme-theoretic phenomenon arises. In another direction, Theorem 1.2 has a
nice place in the study of toric minimal model programs from a stack-theoretic and derived
categorical perspective.

The paper is organized as follows. In § 2 we recall basic definitions concerning toric algebraic
stacks as well as some results that we will use in §§ 3 and 4. In § 3 we present the proof of
Theorem 1.2 and its corollaries. In § 4 we give the proof of Theorem 1.3. Finally, in § 5 we discuss
the relationships between our work and that of Borisov, Chen and Smith [BCS05] modeling the
quotient construction by Cox [Cox95a], as well as the recent papers [FMN07] and [Per08] by
Fantechi, Mann, Nironi and Perroni.

We shall systematically use the language of logarithmic geometry, which we assume that
readers are familiar with at the level of [Kat88].

1.1 Notations and conventions

(i) We fix a Grothendieck universe U with {0, 1, 2, 3, . . .} ∈U , where {0, 1, 2, 3, . . .} is the
set of all finite ordinals. We consider only monoids, groups, rings, schemes and log schemes
which belong to U .

(ii) A variety is a geometrically integral scheme of finite type which is separated over a field.

(iii) Toric varieties. Let N ∼= Zd be a lattice of rank d and let M = HomZ(N, Z). If Σ is a
fan in NR =N ⊗Z R, we denote the associated toric variety by XΣ. We usually write
iΣ : TΣ := Spec k[M ] ↪→XΣ for the torus embedding. If k is an algebraically closed field,
then by applying Sumihiro’s theorem [Sum75, Corollary 3.11], just as in [KKMS73, ch. 1],
we obtain the following geometric characterization of toric varieties. Let X be a normal
variety which contains an algebraic torus (i.e. Gd

m) as a dense open subset. Suppose that
the action of Gd

m on itself extends to an action of Gd
m on X. Then there exist a fan Σ and

an equivariant isomorphism X ∼=XΣ.

(iv) Logarithmic geometry. All monoids are assumed to be commutative with unit. For a monoid
P , we denote by P gp the Grothendieck group of P . A monoid P is said to be sharp if
whenever p+ p′ = 0 for p, p′ ∈ P , we have p= p′ = 0. For a fine sharp monoid P , an element
p ∈ P is said to be irreducible if whenever p= q + r for q, r ∈ P , we have either q = 0 or
r = 0. In this paper, a log structure on a scheme X means a log structure (in the Fontaine–
Illusie sense [Kat88]) on the étale site Xet. We usually denote simply byM a log structure
α :M→ OX on X, and by M̄ the sheaf M/O∗X . Let R be a ring. For a fine monoid P ,
the canonical log structure on SpecR[P ], denoted by MP , is the log structure associated
to the natural injective map P →R[P ]. If there is a homomorphism of monoids P →R
(here we regard R as a monoid under multiplication), we denote by Spec (P →R) the log
scheme with underlying scheme SpecR and the log structure associated to P →R. For a
toric variety XΣ, we denote by MΣ the fine log structure OXΣ

∩ iΣ∗O∗TΣ
↪→ OXΣ

on XΣ;
we shall call this log structure the canonical log structure on XΣ. We refer to [Iwa07a] for
further properties and notation relating to toric varieties, monoids and log schemes, which
are needed in what follows.
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(v) Algebraic stacks. We follow the conventions in ([LM00]). For a diagram X
a→ Y

b← Z, we
denote by X ×a,Y,b Z the fiber product (a and b are often omitted if no confusion seems
likely to arise). Let us review some facts about coarse moduli spaces of algebraic stacks.
Let X be an algebraic stack over a scheme S. A coarse moduli space (or map) for X is
a morphism π : X →X to an algebraic space over S such that: (i) π is universal among
morphisms from X to algebraic spaces over S; (ii) for every algebraically closed S-field K
the map [X (K)]→X(K) is bijective, where [X (K)] denotes the set of isomorphism classes
of objects in the small category X (K). The fundamental existence theorem for coarse moduli
spaces (which we refer to as the Keel–Mori theorem [KM97]) can be stated as follows (this
version is sufficient for our purposes). Let k be a field of characteristic zero. Let X be
an algebraic stack of finite type over k with finite diagonal. Then there exists a coarse
moduli space π : X →X, where X is of finite type and is separated over k, which satisfies
the following additional properties: (a) π is proper, quasi-finite and surjective; (b) for any
morphism X ′→X of algebraic spaces over k, X ×X X ′→X ′ is a coarse moduli space
(cf. [AV02, Lemmas 2.3.3 and 2.2.2]).

2. Preliminaries

In this section, we recall the basic definitions and properties from [Iwa07a] concerning toric
algebraic stacks and stacky fans. We fix a base field k of characteristic zero.

2.1 Definitions

In this paper, all fans are assumed to be finite, though the theory in [Iwa07a] applies also in the
case of infinite fans. For a fan Σ, we denote the set of rays by Σ(1).

Definition 2.1. Let N ∼= Zd be a lattice of rank d and let M = HomZ(N, Z) be the dual lattice.
A stacky fan is a pair (Σ, Σ0), where Σ is a simplicial fan in NR =N ⊗Z R and Σ0 is a subset of
|Σ| ∩N called the free-net of Σ, which has the following property (♠):

(♠) for any cone σ in Σ, σ ∩ Σ0 is a submonoid of σ ∩N which is isomorphic to Ndim σ and
is such that for any element e ∈ σ ∩N , there exists a positive integer n with n · e ∈ σ ∩ Σ0.

A morphism f : (Σ in N ⊗Z R, Σ0)→ (∆ in N ′ ⊗Z R,∆0) is a homomorphism of Z-modules
f :N →N ′ which satisfies the following two properties:
• for any cone σ in Σ, there exists a cone τ in ∆ such that f ⊗Z R(σ)⊂ τ ;
• f(Σ0)⊂∆0.

There exists a natural forgetting functor

(category of stacky fans)→ (category of simplicial fans), (Σ, Σ0) 7→ Σ.

It is essentially surjective but not fully faithful. Given a stacky fan (Σ, Σ0) and a ray ρ in Σ(1),
the initial point Pρ of ρ ∩ Σ0 is said to be the generator of Σ0 on ρ. Let Qρ be the first point of
ρ ∩N and let nρ be the natural number such that nρ ·Qρ = Pρ; then the number nρ is said to
be the level of Σ0 on ρ. Note that Σ0 is completely determined by the levels of Σ0 on rays of Σ.
Each simplicial fan Σ has the canonical free-net Σ0

can whose level on every ray in Σ is one.
If Σ and ∆ are non-singular fans, then a usual morphism of fans Σ→∆ amounts to a

morphism of stacky fans (Σ, Σ0
can)→ (∆,∆can). In other words, the category of non-singular

fans is a full subcategory of the category of stacky fans.
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The category of toric stacks

Let us give an example. Let σ be a two-dimensional cone in (Z · e1 ⊕ Z · e2)⊗Z R = R⊕2 that
is generated by e1 and e1 + 2e2, and let σ0 be a free submonoid of σ ∩ (Z · e1 ⊕ Z · e2) that is
generated by 2e1 and e1 + 2e2. Note that σ0 ∼= N⊕2. Then (σ, σ0) forms a stacky fan. The level
of σ0 on the ray R≥0 · e1 (respectively, R≥0 · (e1 + 2e2)) is 2 (respectively, 1).

Let P be a monoid and let S ⊂ P be a submonoid. We say that S is close to P if for any
element e in P there exists a positive integer n such that n · e lies in S. The monoid P is said to
be toric if P is a fine, saturated and torsion-free monoid.

Let P be a toric sharp monoid and d the rank of P gp. A toric sharp monoid P is said to
be simplicially toric if there exists a submonoid Q of P generated by d elements such that Q is
close to P .

Definition 2.2. Let P be a simplicially toric sharp monoid and d the rank of P gp. The minimal
free resolution of P is an injective homomorphism of monoids

i : P −→ F,

with F ∼= Nd, which has the following properties.

(i) The submonoid i(P ) is close to F .

(ii) For any injective homomorphism j : P →G such that j(P ) is close to G and G∼= Nd, there
exists a unique homomorphism φ : F →G such that j = φ ◦ i.

We remark that, by [Iwa07a, Proposition 2.4] or Lemma 3.3, there exists a unique minimal
free resolution for any simplicially toric sharp monoid. Next, we recall the definition of toric
algebraic stacks [Iwa07a]. Immediately after Remark 2.8 we shall give another definition of
toric algebraic stacks, which is a more direct presentation in the terms of logarithmic geometry.

Definition 2.3. The toric algebraic stack associated to a stacky fan (Σ in N ⊗Z R, Σ0) is a
stack X(Σ,Σ0) over the category of k-schemes whose objects over a k-scheme X are triples
(π : S →OX , α :M→OX , η : S →M) such that the following properties hold.

(i) S is an étale sheaf of submonoids of the constant sheaf M on X determined by M =
HomZ(N, Z) such that for every point x ∈X, we have Sx ∼= Sx̄; here Sx (respectively, Sx̄)
denotes the Zariski (respectively, étale) stalk.

(ii) π : S →OX is a map of monoids, where OX is a monoid under multiplication.

(iii) For s ∈ S, π(s) is invertible if and only if s is invertible.

(iv) For each point x ∈X, there exists some σ ∈ Σ such that Sx̄ = σ∨ ∩M .

(v) α :M→OX is a fine log structure on X.

(vi) η : S →M is a homomorphism of sheaves of monoids such that π = α ◦ η and, for each
geometric point x̄ on X, η̄ : S̄x̄ = (S/(invertible elements))x̄→M̄x̄ is isomorphic to the
composite

S̄x̄
r
↪→ F

t
↪→ F,

where r is the minimal free resolution of S̄x̄ and t is defined as follows.

Each irreducible element of F canonically corresponds to a ray in Σ (see Lemma 2.4 below).
Let us denote by eρ the irreducible element of F which corresponds to the ray ρ. Then define
t : F → F by eρ 7→ nρ · eρ, where nρ is the level of Σ0 on ρ. We shall refer to t ◦ r : S̄x̄→ F as the
(Σ, Σ0)-free resolution at x̄ (or the (Σ, Σ0)-free resolution of S̄x̄ = Sx̄/(invertible elements)).
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A set of morphisms from (π : S →OX , α :M→OX , η : S →M) to (π′ : S ′→OX , α′ :M′
→OX , η′ : S ′→M′) over X is, in the case where (S, π) = (S ′, π′), the set of isomorphisms of
log structures φ :M→M′ such that φ ◦ η = η′ : S = S ′→M′, and is an empty set if (S, π) 6=
(S ′, π′). With the natural notion of pull-backs, X(Σ,Σ0) is a fibered category.

By [AMRT75, theorem on p. 10], Homk-schemes(X, XΣ)∼= {all pairs (S, π) on X satisfying
(i), (ii), (iii) and (iv)}. Hence there exists a natural functor π(Σ,Σ0) : X(Σ,Σ0) −→XΣ which
simply forgets the data α :M→OX and η : S →M. Moreover, α :M→OX and η : S →M are
morphisms of the étale sheaves, and thus X(Σ,Σ0) is a stack with respect to the étale topology.
Objects of the form (π :M → OX , O

∗
X ↪→ OX , π :M → O∗X) determine a full subcategory of

X(Σ,Σ0), i.e. the natural inclusion i(Σ,Σ0) : TΣ = Spec k[M ] ↪→X(Σ,Σ0). This commutes with the
torus embedding iΣ : TΣ ↪→XΣ.

Lemma 2.4. With notation as in Definition 2.3, let e be an irreducible element in F and let
n be a positive integer such that n · e ∈ r(S̄x̄). Let m ∈ Sx̄ be a lifting of n · e. Suppose that
Sx̄ = σ∨ ∩M ⊂M . Then there exists a unique ray ρ ∈ σ(1) such that 〈m, ζρ〉> 0, where ζρ is
the first lattice point of ρ and 〈•, •〉 is the dual pairing, which does not depend on the choice of
liftings. Moreover, this correspondence defines a natural injective map

{irreducible elements of F}→ Σ(1).

Proof. This is fairly elementary (and follows from [Iwa07a]), but we shall give the proof of the
completeness. Since the kernel of Sx̄→ S̄x̄ is σ⊥ ∩M , 〈m, vρ〉 does not depend upon the choice
of liftings m. Taking a splitting N ∼=N ′ ⊕N ′′ such that σ ∼= σ′ ⊕ {0} ⊂N ′R ⊕N ′′R, where σ′ is a
full-dimensional cone in N ′R, we may (and will) assume that σ is a full-dimensional cone, i.e. that
σ∨ ∩M is sharp. Let ι : σ∨ ∩M ↪→ σ∨ be the natural inclusion and r : σ∨ ∩M ↪→ F the minimal
free resolution. Then there exists a unique injective homomorphism i : F → σ∨ such that i ◦ r = ι.
By this embedding, we can regard F as a submonoid of σ∨. Since r : σ∨ ∩M ↪→ F ⊂ σ∨ is the
minimal free resolution and σ∨ is a simplicial cone, for each ray ρ ∈ σ∨(1) the initial point of ρ ∩ F
is an irreducible element of F . Since rkF gp = rk (σ∨ ∩M)gp = dim σ∨ = dim σ, each irreducible
element of F lies on one of rays of σ∨. This gives rise to a natural bijective map from the set
of irreducible elements of F to σ∨(1). Since σ and σ∨ are simplicial, we have a natural bijective
map σ∨(1)→ σ(1), ρ 7→ ρ?, where ρ? is the unique ray which does not lie in ρ⊥. Therefore, the
composite map from the set of irreducible elements of F to σ(1) is a bijective map, and our
claim follows. 2

Remark 2.5.

(i) The above definition works over arbitrary base schemes.

(ii) If Σ is a non-singular fan, then X(Σ,Σ0
can) is the toric variety XΣ.

2.2 Torus actions
The torus action functor

a(Σ,Σ0) : X(Σ,Σ0) × Spec k[M ]−→X(Σ,Σ0)

is defined as follows. Let ξ = (π : S →OX , α :M→OX , η : S →M) be an object in X(Σ,Σ0).
Let φ :M →OX be a map of monoids from a constant sheaf M on X to OX , i.e. an X-valued
point of Spec k[M ]. Here OX is regarded as a sheaf of monoids under multiplication. We define
a(Σ,Σ0)(ξ, φ) to be (φ · π : S →OX , α :M→OX , φ · η : S →M), where φ · π(s) := φ(s) · π(s) and
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φ · η(s) := φ(s) · η(s). Let h :M1→M2 be a morphism in X(Σ,Σ0) × Spec k[M ] from (ξ1, φ) to
(ξ2, φ), where ξi = (π : S →OX , α :Mi→OX , ηi : S →Mi) for i= 1, 2 and φ :M →OX is an
X-valued point of Spec k[M ]. We define a(Σ,Σ0)(h) to be h. We remark that this action commutes
with the torus action of Spec k[M ] on XΣ.

Definition 2.6. For i= 1, 2, let (Σi in Ni,R, Σ0
i ) be a stacky fan and X(Σi,Σ0

i )
the associated

toric algebraic stack. Put Mi = HomZ(Ni, Z). Let us denote by a(Σi,Σ0
i )

: X(Σi,Σ0
i )
× Spec k[Mi]

→X(Σi,Σ0
i )

the torus action. A 1-morphism f : X(Σ1,Σ0
1)→X(Σ2,Σ0

2) is torus-equivariant if the
restriction f0 of f to Spec k[M1]⊂X(Σ1,Σ0

1) defines a homomorphism of group k-schemes
f0 : Spec k[M1]→ Spec k[M2]⊂X(Σ2,Σ0

2) and the diagram

X(Σ1,Σ0
1) × Spec k[M1] f×f0 //

a
(Σ1,Σ

0
1)

��

X(Σ2,Σ0
2) × Spec k[M2]

a
(Σ2,Σ

0
2)

��
X(Σ1,Σ0

1)
f // X(Σ2,Σ0

2)

commutes in the 2-categorical sense. Similarly, we define the torus-equivariant (1-)morphisms
from a toric algebraic stack (or toric variety) to a toric algebraic stack (or toric variety). We
remark that π(Σ,Σ0) : X(Σ,Σ0)→XΣ is torus-equivariant.

2.3 Algebraicity

Now, let us recall some results which will be needed later.

Theorem 2.7 (see [Iwa07a, Theorem 4.5]). The stack X(Σ,Σ0) is a smooth Deligne–Mumford
stack of finite type that is separated over k, and the functor π(Σ,Σ0) : X(Σ,Σ0)→XΣ is a coarse
moduli map.

Remark 2.8. By [Iwa07a], we can define the toric algebraic stack X(Σ,Σ0) over Z. The stack
X(Σ,Σ0) is an (not necessarily Deligne–Mumford) Artin stack over Z. In characteristic zero, toric
algebraic stacks are always Deligne–Mumford.

Let f : X(Σ,Σ0)→X(∆,∆0) be a functor (not necessarily torus-equivariant). Then, by the
universality of coarse moduli spaces, there exists a unique morphism fc :XΣ→X∆ such that
fc ◦ π(Σ,Σ0) = π(∆,∆0) ◦ f .

Here we shall give another presentation of X(Σ,Σ0), which is more directly represented in
terms of logarithmic geometry; it is important for later proofs. Let (U , πU ) be the universal
pair on XΣ satisfying (i)–(iv) in Definition 2.3, corresponding to IdXΣ

∈Hom(XΣ, XΣ). It follows
from the construction in [AMRT75] that the log structure associated to πU : U → OXΣ

is the
canonical log structure MΣ on XΣ. By [Iwa07a, Proposition 4.4], the stack X(Σ,Σ0) is naturally
isomorphic to the stack XΣ(Σ0) over the toric variety XΣ, which is defined as follows. For
any morphism f : Y →XΣ, objects in XΣ(Σ0) over f : Y →XΣ are morphisms of fine log
schemes (f, φ) : (Y,N )→ (XΣ,MΣ) such that for every geometric point ȳ→ Y , φ̄ : f−1Ūȳ =
f−1M̄Σ,ȳ→ N̄ȳ is a (Σ, Σ0)-free resolution. (We shall call such a morphism (Y,N )→ (X,MΣ)
a Σ0-FR morphism.) A morphism (Y,N )/(XΣ,MΣ)→ (Y ′,N ′)/(XΣ,MΣ) in XΣ(Σ0) is a (XΣ,MΣ)-
morphism (α, φ) : (Y,N )→ (Y ′,N ′) such that φ : α∗N ′→N is an isomorphism.

Remark 2.9. Let (f, h) : (X,M)→ (Y,N ) be a morphism of log schemes. If h : f∗N →M is an
isomorphism, we say that (f, h) is strict.
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We refer to X(Σ,Σ0)
∼= XΣ(Σ0) as the toric algebraic stacks (or toric stacks) associated

to (Σ, Σ0).

Let us collect some technical results, Lemmas 2.10, 2.11 and 2.12 (cf. [Iwa07a,
Propositions 2.17, 2.18 and 3.5]), which we will apply to the proofs of Theorems 1.2 and 1.3.
Let (Σ, Σ0) be a stacky fan. Assume that Σ is a cone σ such that dim σ = rkN , i.e. it is full-
dimensional. Set P = σ∨ ∩M (M = HomZ(N, Z)). The monoid P is a simplicially toric sharp
monoid, and there is a natural isomorphism XΣ

∼= Spec k[P ].

Lemma 2.10. Let r : P → Nd be the minimal free resolution. Let us denote by eρ the irreducible
element in Nd which corresponds to a ray ρ in σ, and let t : Nd→ Nd be the map defined by
eρ 7→ nρ · eρ where nρ is the level of σ0 = Σ0 on ρ. Let (Spec k[P ],MP ) and (Spec k[Nd],MNd) be
toric varieties with canonical log structures, and let (π, η) : (Spec k[Nd],MNd)→ (Spec k[P ],MP )
be the morphism of fine log schemes induced by l := t ◦ r : P→Nd→Nd. Then (π, η) is a Σ0-FR
morphism.

Lemma 2.11. Let (q, γ) : (S,N )→ (Spec k[P ],MP ) be a morphism of fine log schemes, let
c : P →MP be a chart, and let s̄ be a geometric point on S. Suppose that there exists a morphism
ξ : Nd→ N̄s̄ such that the composite ξ ◦ l : P → N̄s̄ is equal to γ̄s̄ ◦ c̄s̄ : P → q−1M̄P,s̄→ N̄s̄ (with
notation as in Lemma 2.10). Assume that ξ : Nd→ N̄s̄ étale locally lifts to a chart. Then there
exists an étale neighborhood U of s̄ in which we have a chart ε : Nd→N such that the diagram

P

c

��

l // Nd

ε

��
q∗MP

γ // N

commutes and the composite Nd ε→N → N̄s̄ is equal to ξ.

Let l : P → Nd be the homomorphism in Lemma 2.10. Let us denote by G :=
((Nd)gp/lgp(P gp))D the Cartier dual of the finite group (Nd)gp/lgp(P gp). The finite group scheme
G naturally acts on Spec k[Nd] as follows. For a k-ring A, an A-valued point a : (Nd)gp/lgp(P gp)→
A∗ of G sends an A-valued point x : Nd→A (a map of monoids) of Spec k[Nd] to a · x : Nd→A,
n 7→ a(n) · x(n). Since G is étale over k (ch(k) = 0), the quotient stack [Spec k[Nd]/G] is a
smooth Deligne–Mumford stack [LM00, Proposition (10.13.1)] whose coarse moduli space is
Spec k[Nd]G = Spec k[P ], where k[Nd]G ⊂ k[Nd] is the subring of functions invariant under the
action of G. The quotient [Spec k[Zd]/G] is an open representable substack of [Spec k[Nd]/G],
which defines a torus embedding.

Proposition 2.12. There exists an isomorphism [Spec k[Nd]/G]→XΣ(Σ0) of stacks over
Spec k[P ] which sends the torus in [Spec k[Nd]/G] onto that of XΣ(Σ0). Moreover, the
natural composite Spec k[Nd]→ [Spec k[Nd]/G]→XΣ(Σ0) corresponds to (Spec k[Nd],MNd)→
(Spec k[P ],MP ).

2.4 Log structures on toric algebraic stacks

Let i(Σ,Σ0) : TΣ = Spec k[M ]→X(Σ,Σ0) denote the torus embedding. The complement D(Σ,Σ0) :=
X(Σ,Σ0) − TΣ with reduced closed substack structure is a normal crossing divisor (see [Iwa07a,
Theorem 4.17] or Proposition 2.12). The stack X(Σ,Σ0) has the log structure M(Σ,Σ0) arising
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from D(Σ,Σ0) on the étale site X(Σ,Σ0),et. Moreover, we have

M(Σ,Σ0) = OX(Σ,Σ0)
∩ i(Σ,Σ0)∗O

∗
TΣ
⊂ OX(Σ,Σ0)

,

where OX(Σ,Σ0)
∩ i(Σ,Σ0)∗O

∗
TΣ

denotes the subsheaf of OX(Σ,Σ0)
consisting of regular functions

on X(Σ,Σ0) whose restriction to TΣ is invertible. The coarse moduli map π(Σ,Σ0) : X(Σ,Σ0)

→XΣ induces a morphism of log stacks, (π(Σ,Σ0), h(Σ,Σ0)) : (X(Σ,Σ0),M(Σ,Σ0))→ (XΣ,MΣ).
Here h(Σ,Σ0) : π∗(Σ,Σ0)MΣ→M(Σ,Σ0) arises from the following natural diagram.

π−1
(Σ,Σ0)

MΣ

��

// M(Σ,Σ0)

��
π−1

(Σ,Σ0)
OXΣ

// OX(Σ,Σ0)

Similarly, a functor f : X(Σ,Σ0)→X(∆,∆0) such that f(TΣ)⊂ T∆ ⊂X(∆,∆0) naturally induces
the canonical homomorphism hf : f∗M(∆,∆0)→M(Σ,Σ0) which is induced by f−1M(∆,∆0)

→ f−1OX(∆,∆0)
→ OX(Σ,Σ0)

. We shall refer to this homomorphism hf as the homomorphism
induced by f .

The log structure M(Σ,Σ0) on XΣ(Σ0) = X(Σ,Σ0) has the following modular interpretation.
Let f : Y →XΣ(Σ0) = X(Σ,Σ0) be a morphism from a k-scheme Y , corresponding to a Σ0-FR
morphism (Y,MY )→ (XΣ,MΣ). We attach the log structureMY to f : Y →XΣ(Σ0), and this
gives rise to the log structureM′(Σ,Σ0) on XΣ(Σ0) = X(Σ,Σ0). We claim thatM(Σ,Σ0) =M′(Σ,Σ0).
To see this, first note the following observation. Let U →XΣ(Σ0) be an étale cover by a scheme
U and let pr1, pr2 : U ×XΣ(Σ0) U ⇒ U be the étale groupoid. A log structure on XΣ(Σ0) amounts
to a descent data (MU , pr∗1MU

∼= pr∗2MU ) whereMU is a fine log structure on U . Given a data
(MU , pr∗1MU

∼= pr∗2MU ), ifMU arises from a normal crossing divisor on U , thenMU ⊂ OU and
pr∗1MU = pr∗2MU ⊂ OU×XΣ(Σ0)U

. By Proposition 2.12, there is an étale cover f : U →XΣ(Σ0)

such that f∗M′(Σ,Σ0) arises from the divisor f−1(D(Σ,Σ0)). Then, from the above observation and
the equality f∗M(Σ,Σ0) = f∗M′(Σ,Σ0) ⊂ OU , we conclude that M′(Σ,Σ0) is isomorphic to M(Σ,Σ0)

up to a unique isomorphism. For generalities concerning log structures on stacks, we refer
to [Ols03, § 5].

Remark 2.13. The notion of stacky fans was introduced in [BCS05, § 3]. We should remark that
in [BCS05], given a stacky fan (Σ, Σ0) whose rays in Σ span the vector space NR, Borisov, Chen
and Smith constructed a smooth Deligne–Mumford stack over C whose coarse moduli space is
the toric variety XΣ, called the toric Deligne–Mumford stack. Their approach is a generalization
of the global quotient constructions of toric varieties due to D. Cox. However, it seems quite
difficult, using their machinery, to show that the 2-category (or the associated 1-category) of
toric Deligne–Mumford stacks in the sense of [BCS05] is equivalent to the category of stacky
fans. In § 5, we explain the relationship of our work with [BCS05].

3. The proof of Theorem 1.2

In this section, we shall prove Theorem 1.2. As in § 2, we continue to work over the fixed base
field k of characteristic zero. The proof proceeds in several steps.

Lemma 3.1. Let X(Σ,Σ0) and X(∆,∆0) be toric algebraic stacks arising from stacky fans
(Σ in N1,R, Σ0) and (∆ in N2,R,∆0), respectively. Let f : X(Σ,Σ0)→X(∆,∆0) be a functor
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such that f(TΣ)⊂ T∆ ⊂X(∆,∆0), and let fc :XΣ→X∆ be the morphism induced by f
(see Remark 2.8). Then there exists a natural commutative diagram of log stacks, as follows.

(X(Σ,Σ0),M(Σ,Σ0))
(f,hf )

//

V (π(Σ,Σ0),h(Σ,Σ0))

��

(X(∆,∆0),M(∆,∆0))

(π(∆,∆0),h(∆,∆0))

��
(XΣ,MΣ)

(fc,hfc )
// (X∆,M∆)

Proof. We use the same notation as in § 2.4. Note that fc commutes with torus embeddings.
We define hfc : f∗cM∆→MΣ to be the homomorphism induced by f−1

c M∆→ f−1
c OX∆

→ OXΣ
.

Since hf , hfc , h(Σ,Σ0) and h(∆,∆0) are induced by the homomorphisms of structure sheaves
(see § 2.4), h(Σ,Σ0) ◦ π∗(Σ,Σ0)hfc : (fc ◦ π(Σ,Σ0))∗M∆→M(Σ,Σ0) is equal to hf ◦ f∗h(∆,∆0) :
(π(∆,∆0) ◦ f)∗M∆→M(Σ,Σ0). Thus we have the desired diagram. 2

Proposition 3.2. With notation as in Lemma 3.1, if f is torus-equivariant, then the morphism
fc is torus-equivariant. Moreover, the morphism fc corresponds to the map of fans L : Σ→∆
such that L(Σ0)⊂∆0.

Proof. Clearly, the restriction of fc to TΣ induces a homomorphism of group k-schemes

TΣ→ T∆ ⊂X∆. Note that X(Σ,Σ0) × TΣ

f×(f |TΣ
)

−→ X(∆,∆0) × T∆

a(∆,∆0)−→ X(∆,∆0) is isomorphic to

X(Σ,Σ0) × TΣ

a(Σ,Σ0)−→ X(Σ,Σ0)
f→X(∆,∆0). Since X(Σ,Σ0) × TΣ (respectively, X(∆,∆0) × T∆) is a

coarse moduli space for X(Σ,Σ0) × TΣ (respectively, X(∆,∆0) × T∆), fc is torus-equivariant. Set
Mi = HomZ(Ni, Z) for i= 1, 2. Let L∨ :M2→M1 be the homomorphism of abelian groups
that is induced by the homomorphism of group k-schemes fc|TΣ

: TΣ→ T∆. The dual map
L :N1 = HomZ(M1, Z)→HomZ(M2, Z) =N2 yields the map of fans LR : Σ in N1,R→∆ in N2,R,
which corresponds to the morphism fc. To complete the proof of this proposition, it suffices to
show that L(Σ0)⊂∆0. To do this, we may assume that (Σ, Σ0) = (σ, σ0) and (∆,∆0) = (δ, δ0),
where σ and δ are cones. We need the following lemma.

Lemma 3.3. If σ is a full-dimensional cone, then the (σ, σ0)-free resolution (see Definition 2.3)
of σ∨ ∩M1 is given by

σ∨ ∩M1→{m ∈M1 ⊗Z Q | 〈m, n〉 ∈ Z≥0 for any n ∈ σ0}.

Proof. Let P := σ∨ ∩M1. We first give the proof for the case of σ0 = σ0
can. Assume that

σ0 = σ0
can. Let d be the rank of M1. Here M1 = P gp. Let S be a submonoid in σ ∩N1

which is generated by the first lattice points of rays in σ, that is, S = σ0
can and S ∼= Nd. Put

F := {h ∈M1 ⊗Z Q | 〈h, s〉 ∈ Z≥0 for any s ∈ S}. It is clear that F is isomorphic to Nd. Since
σ∨ ∩M1 = {h ∈M1 ⊗Z Q | 〈h, s〉 ∈ Z≥0 for any s ∈ σ ∩N1}, we have P ⊂ F ⊂M1 ⊗Z Q. We will
show that the natural injective map i : P → F is the minimal free resolution (see Definition 2.2).
Since the monoid σ ∩N1 is a fine sharp monoid, it has only finitely many irreducible elements
and is generated by these irreducible elements [Ols03, Lemma 3.9]. Let {ζ1, . . . , ζr} (respectively,
{e1, . . . , ed}) be irreducible elements of σ ∩N1 (respectively, F ). For each irreducible element ei
in F , we put 〈ei, ζj〉= aij/bij ∈Q with some aij ∈ Z≥0 and bij ∈ N. Then we have

(Π0≤j≤rbij) · ei(σ ∩N1)⊂ Z≥0,

and thus i : P → F satisfies property (i) of Definition 2.2. To show our claim, it suffices to
prove that i : P → F satisfies property (ii) of Definition 2.2. Let j : P →G be an injective
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homomorphism of monoids such that j(P ) is close to G and G∼= Nd. The monoid P has
the natural injection l : P →M1 ⊗Z Q. On the other hand, for any element e in G there
exists a positive integer n such that n · e ∈ j(P ). Therefore we have a unique homomorphism
α :G→M1 ⊗Z Q which extends l : P →M1 ⊗Z Q to G. We claim that there exists a sequence of
inclusions

P ⊂ F ⊂ α(G)⊂M1 ⊗Z Q.

If we put α(G)∨ := {f ∈N1 ⊗Z Q | 〈p, f〉 ∈ Z≥0 for any p ∈ α(G)} ∼= Nd and F∨ := {f ∈N1 ⊗Z Q |
〈p, f〉 ∈ Z≥0 for any p ∈ F}= S ∼= Nd, then our claim is equivalent to saying that α(G)∨ ⊂ F∨.
However, this latter statement is clearly true. Indeed, the sublattice S is the maximal sublattice
of σ ∩N1 which is free and close to σ ∩N1. The sublattice α(G)∨ is also close to σ ∩N1, and
thus each irreducible generator of α(G)∨ lies on a ray of σ.

Finally, we consider the general case. Put Fcan := {h ∈M1 ⊗Z Q | 〈h, s〉 ∈ Z≥0 for any
s ∈ σ0

can} and F := {h ∈M1 ⊗Z Q | 〈h, s〉 ∈ Z≥0 for any s ∈ σ0}. (Note that the notation has
changed.) Then we have a natural injective map Fcan→ F , because σ0 ⊂ σ0

can. Given a ray
ρ ∈ σ(1), the corresponding irreducible element of Fcan (respectively, F ) (see Lemma 2.4) is
mρ ∈M1 ⊗Z Q (respectively,m′ρ ∈M1 ⊗Z Q) such that 〈mρ, ζρ〉= 1 (respectively, 〈m′ρ, nρζρ〉= 1)
and 〈mρ, ζξ〉= 0 (respectively, 〈m′ρ, ζξ〉= 0) for any ray ξ with ξ 6= ρ. Here, for each ray α, ζα
denotes the first lattice point of α and nα denotes the level of σ0 on α. The natural injection
Fcan→ F identifies mρ with nρm′ρ. Thus σ∨ ∩M1→ F is a (σ, σ0)-free resolution of σ∨ ∩M1. 2

We now continue the proof of Proposition 3.2. We shall assume that L(Σ0) * ∆0 and show
that such an assumption gives rise to a contradiction. First, we show a contradiction for the case
where σ and δ are full-dimensional cones. Set P := σ∨ ∩M1 and Q := δ∨ ∩M2. Note that since
σ and δ are full-dimensional, P and Q are sharp (i.e. unit-free). Let us denote by o (respectively,
o′) the origin of Spec k[P ] (respectively, of Spec k[Q]), which corresponds to the ideal (P ). Then
fc sends o to o′. Consider the composite α : Spec OSpec k[Nd],s̄→ Spec k[Nd]→ [Spec k[Nd]/G]∼=
X(Σ,Σ0) of natural morphisms (see Proposition 2.12), where s is the origin of Spec k[Nd]. Then,
by Lemma 3.1, there exists the following commutative diagram.

M2

L∨

��

Q= α−1π−1
(Σ,Σ0)

f−1
c M̄∆oo //

��

α−1f−1M̄(∆,∆0)

��
M1 P = α−1π−1

(Σ,Σ0)
M̄Σoo // α−1M̄(Σ,Σ0)

On the other hand, set F := {m ∈M1 ⊗Z Q | 〈m, n〉 ∈ Z≥0 for any n ∈ σ0} and F ′ :=
{m ∈M2 ⊗Z Q | 〈m, n〉 ∈ Z≥0 for any n ∈ δ0}. Then, by the above lemma, the (σ, σ0)-free res-
olution α−1π−1

(Σ,Σ0)
M̄Σ→ α−1M̄(Σ,Σ0) can be identified with the natural inclusion P := σ∨ ∩M1

↪→ F (the monoid α−1M̄(Σ,Σ0) can be canonically embedded into M1 ⊗Q). Similarly,
α−1π−1

(Σ,Σ0)
f−1
c M̄∆→ α−1f−1M̄(∆,∆0) can be identified with the natural inclusion Q= δ∨ ∩

M2 ↪→ F ′. The homomorphism α−1f−1M̄(∆,∆0)→ α−1M̄(Σ,Σ0) can be naturally embedded into
L∨ ⊗Q :M2 ⊗Q→M1 ⊗Q. However, the assumption L(Σ0) * ∆0 implies that L∨(F ′) * F ,
which gives rise to a contradiction. Next, consider the general case, i.e. where σ and δ are
not necessarily full-dimensional. Choose splittings Ni

∼=N ′i ⊕N ′′i (i= 1, 2), σ ∼= σ′ ⊕ {0} and
δ ∼= δ′ ⊕ {0} such that σ′ and δ′ are full-dimensional in N ′1,R and N ′2,R, respectively. Note that
X(σ,σ0)

∼= X(σ′,σ′0) × Spec k[M ′′1 ] and X(δ,δ0)
∼= X(δ′,δ′0) × Spec k[M ′′2 ]. Consider the sequence of

729

https://doi.org/10.1112/S0010437X09003911 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09003911


I. Iwanari

torus-equivariant morphisms

X(σ′,σ′0)
i→X(σ,σ0)

f→X(δ,δ0)
∼= X(δ′,δ′0) × Spec k[M ′′2 ]

pr1→X(δ′,δ′0),

where i is determined by the natural inclusion N ′1 ↪→N ′1 ⊕N ′′1 and pr1 is the first projection.
Notice that i and pr1 naturally induce isomorphisms i∗M(σ,σ0)

∼→M(σ′,σ′0) and pr∗1M(δ′,δ′0)
∼→

M(δ,δ0), respectively. Thus, the general case follows from the full-dimensional case. 2

Remark 3.4.

(1) By Proposition 3.2, there exists the natural functor

c : Torst→ Simtoric, X(Σ,Σ0) 7→XΣ

which sends a torus-equivariant morphism f : X(Σ,Σ0)→X(∆,∆0) to fc :XΣ→X∆, where
fc is the unique morphism such that fc ◦ π(Σ,Σ0) = π(∆,∆0) ◦ f .

(2) We can define a 2-functor

Φ : Torst→ (category of stacky fans), X(Σ,Σ0) 7→ (Σ, Σ0)

as follows. For each torus-equivariant morphism f : X(Σ,Σ0)→X(∆,∆0), the restriction
of f to the torus Spec k[M1]⊂X(Σ,Σ0) induces the homomorphism Φ(f) :N1→N2 that
defines a morphism of stacky fans Φ(f) : (Σ, Σ0)→ (∆,∆0) via Proposition 3.2. For
each 2-isomorphism morphism g : f1→ f2 (f1, f2 : X(Σ,Σ0) ⇒ X(∆,∆0) are torus-equivariant
morphisms), define Φ(g) to be IdΦ(f1). (Note that Φ(f1) = Φ(f2).)

In order to prove Theorem 1.2, we need to establish the following key proposition.

Proposition 3.5. Let ξ : (Σ in N1,R, Σ0)→ (∆ in N2,R,∆0) be a morphism of stacky fans. Let
(f, hf ) : (XΣ,MΣ)→ (X∆,M∆) be the morphism of log toric varieties induced by ξ : Σ→∆.
Let S be a k-scheme and let (α, h) : (S,N )→ (XΣ,MΣ) be a Σ0-FR morphism. Then there exist
a fine log structure A on S and morphisms of log structures a : α∗f∗M∆→A and θ : A →N
which make the diagram

α∗f∗M∆
a //

α∗hf
��

A

θ

��
α∗MΣ

h // N
commutative and make (f ◦ α, a) : (S,A )→ (X∆,M∆) a ∆0-FR morphism. The triple (A , a, θ)
is unique in the following sense: if there is another such triple (A ′, a′, θ′), then there exists a
unique isomorphism η : A →A ′ which makes the diagram (♣)

α∗f∗M∆

α∗hf

��

a //
a′

**TTTTTTTT A

ηvvmmmmmmmm

θ

��
A ′

θ′

((QQQQQQQQ

α∗MΣ
h // N

commutative.

We prove this first for the case of S = SpecR where R is a strictly Henselian local k-ring.
Note that if M is a fine saturated log structure on S = SpecR, then by [Ols03, Proposition 2.1]
there exists a chart M̄(S)→M on S. The chart induces an isomorphism M̄(S)⊕R∗ ∼→
M(S). If a chart of M is fixed, we usually abuse notation and write M̄(S)⊕R∗ for the log
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structure M. Similarly, we write simply M̄ for M̄(S). Before proving the proposition, we show
the following lemma.

Lemma 3.6. Set P := α−1M̄Σ(S), Q := α−1f−1M̄∆(S) and ι := α−1h̄f :Q→ P . Let γ :Q r→
Nr t→ Nr be the composite map where r is the minimal free resolution and t is a map defined
as follows: for the irreducible element eρ ∈ Nr that corresponds to a ray ρ in ∆, t sends eρ to
nρ · eρ, where nρ is the level of ∆0 on ρ. Then, there exists a unique homomorphism of monoids
l : Nr→ N̄ such that the diagram

Q
γ //

ι

��

Nr

l
��

P
h̄ // N̄

commutes.

Proof. The uniqueness of l follows from the fact that N̄ is free and that γ(Q) is close to Nr.
To show the existence of l, we may assume that Σ and ∆ are cones. Set σ = Σ, σ0 = Σ0, δ = ∆
and δ0 = ∆0. Choose splittings Ni

∼=N ′i ⊕N ′′i (i= 1, 2), σ ∼= σ′ ⊕ {0} and δ ∼= δ′ ⊕ {0} such that
dimN ′1 = dim σ′ and dimN ′2 = dim δ′. Then the projections N ′i ⊕N ′′i →N ′i (i= 1, 2) yield the
commutative diagram of log schemes

(Xσ,Mσ)
(f,hf )

//

��

(Xδ,Mδ)

��
(Xσ′ ,Mσ′)

(g,hg) // (Xδ′ ,Mδ′)

where the vertical arrows are strict morphisms induced by projections and (g, hg) is the
morphism induced by ξ|N ′1 :N ′1→N ′2. Thus we may assume that σ and δ are full-dimensional
in N1,R and N2,R, respectively. Then P ′ := σ∨ ∩M1 and Q′ := δ∨ ∩M2 are sharp (i.e. unit-
free). Let R1 : P ′→ Nm (respectively, R2 :Q′→ Nn) be the (σ, σ0)-free (respectively, (δ, δ0)-free)
resolution. Let f# :Q′→ P ′ be the homomorphism arising from f . Then, by the assumption
that ξ(Σ0)⊂∆0, there exists a homomorphism w : Nn→ Nm such that w ◦R2 =R1 ◦ f#. Taking
Lemma 2.10 into account, we see that our claim follows. 2

Proof of Proposition 3.5. By Lemma 3.6, there exists a unique homomorphism l : Nr→ N̄ .
By [Ols03, Proposition 2.1], there exists a chart cN̄ : N̄ →N . Then the maps cN̄ ◦ l and
cN̄ ◦ l ◦ γ induce the log structures Nr ⊕R∗ and Q⊕R∗, respectively. On the other hand, by
[Ols03, Proposition 2.1], there exists a chart c′Q :Q→ α∗f∗M∆. Let i :R∗ ↪→N be the canonical
immersion. Let us denote by j the composite map

Q
c′Q→ α∗f∗M∆

α∗hf→ MΣ
h→N (cN̄⊕i)−1

→ N̄ ⊕R∗ pr2→ R∗

and define a chart cQ :Q→ α∗f∗M∆ by Q 3 q 7→ c′Q(q) · j(q)−1 ∈ α∗f∗M∆ (here j(q) is viewed
as an element in α∗f∗M∆). We then have the commutative diagram
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N̄ ⊕R∗

cN̄⊕i

��

N̄ ⊕R∗

��

Q⊕R∗

cQ⊕i∆

��

Q⊕R∗
γ⊕IdR∗

//

��

Nr ⊕R∗

��

l⊕IdR∗

99sssssssss

α∗MΣ
h // N // N̄

α∗f∗M∆
//

α∗hf
99sssssssss

Q
γ // Nr

l

99sssssssssss

where i∆ :R∗ ↪→ α∗f∗M∆ is the canonical immersion. The map cQ ⊕ i∆ is an isomorphism,
and (γ ⊕ IdR∗) ◦ (cQ ⊕ i∆)−1 : α∗f∗M∆→ Nr ⊕R∗ makes f ◦ α : S→X∆ a ∆0-FR morphism.
Thus we have the desired diagram. Next, we prove uniqueness. As above, let us fix the chart
cN̄ : N̄ →N . Suppose that for λ= 1, 2, there exist a ∆0-FR morphism aλ : α∗f∗M∆→Aλ and
a morphism of log structures θλ : Aλ→N such that h ◦ α∗hf = θλ ◦ aλ. By the same argument
as for the proof of existence, we obtain a chart cQ :Q→ α∗f∗M∆ such that the image of the
composite

Q
cQ→ α∗f∗M∆

α∗hf→ α∗MΣ
h→N (cN̄⊕i)−1

→ N̄ ⊕R∗ pr2→ R∗

is trivial. By Lemma 2.11, cQ can be extended to a chart cλ : Nr = Āλ→Aλ such that cλ ◦ γ =
aλ ◦ cQ for λ= 1, 2. Then the composite pr2 ◦ (cN̄ ⊕ i)−1 ◦ θλ ◦ cλ : Nr→R∗ induces a character
chλ : (Nr)gp/γ(Q)gp→R∗. Note that if iλ denotes the canonical immersion R∗ ↪→Aλ for λ= 1, 2,
then cλ ⊕ iλ : Nr ⊕R∗→Aλ is an isomorphism. Let us denote by η : A1→A2 an isomorphism

of log structures, defined to be the composite A1
(c1⊕i1)−1

→ Nr ⊕R∗ ω→ Nr ⊕R∗ (c2⊕i2)→ A2, where
ω : Nr ⊕R∗ 3 (n, u) 7→ (n, ch1(n) · ch2(n)−1 · u) ∈ Nr ⊕R∗. Then it is easy to see that η : A1

→A2 is a unique isomorphism which makes all diagrams commutative. 2

Next, consider the case of a general k-scheme S. First, we shall prove the uniqueness
part. If there exists a diagram like (♣) but without η, then, by virtue of the spectrum
of a strictly Henselian local k-ring, for every geometric point s̄ on S there exists a unique
homomorphism ηs̄ : As̄→A ′s̄ which makes the diagram (♣) over Spec OS,s̄ commutative. Thus,
to prove uniqueness, it suffices to show that ηs̄ can be extended to an isomorphism on some étale
neighborhood of s̄ that makes the diagram (♣) commutative. To this end, put Q= α−1f−1M̄∆,s̄

and choose a chart cQ :Q→ α∗f∗M∆ on some étale neighborhood U of s̄ (the existence of
such a chart follows from [Ols03, Proposition 2.1]). We view the monoid Q as a submonoid
of Nr ∼= Ās̄

∼= Ā ′s̄ . Taking Lemma 2.11 and the existence of ηs̄ into account, after shrinking U ,

if necessary, we can choose charts Nr c→A and Nr c′→A ′ on U such that the restriction of c
(respectively, c′) to Q is equal to the composite a ◦ cQ (respectively, a′ ◦ cQ) and θ ◦ c= θ′ ◦ c′,
with notation as in (♣). Then charts c and c′ induce an isomorphism A →A ′ on U , which
makes the diagram (♣) commutative.

We now prove the existence of a triple (A , a, θ). For a geometric point s̄ on S, consider
the localization S′ = Spec OS,s̄. Set Q= α−1f−1M̄∆,s̄. Then, owing to the spectrum of a strictly
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Henselian local k-ring, there exist a log structure A on S′, a ∆0-FR morphism a : α∗f∗M∆,s̄

→A , and a diagram

Q
ā //

c

��

F
θ̄ //

c′

��

N̄s̄
c′′

��
α∗f∗M∆,s̄

a // A
θ // Ns̄

of fine log structures on S′ such that θ ◦ a= h ◦ hf . Here c, c′ and c′′ are charts, and F = Ā .
To prove the existence on S, it suffices, by the uniqueness, to show only that we can extend the
above diagram to some étale neighborhood of s̄. In some étale neighborhood U of s̄, there exist
charts c̃ :Q→ α∗f∗M∆ and c̃′′ : N̄s̄→N extending c and c′′, respectively, such that the diagram

Q
ā //

c̃
��

F
θ̄ // N̄s̄

c̃′′

��
α∗f∗M∆

h◦hf // N

commutes. Let Ã be the fine log structure associated to the prelog structure F θ̄→ N̄s̄
c̃′′→N → OU .

Then there exists a sequence of morphisms of log structures

α∗f∗M∆
ã−→ Ã

θ̃−→N ,

with ã ◦ θ̃ = h ◦ hf , which is an extension of α∗f∗M∆,s̄
a→A

θ→Ns̄. Since α∗f∗M∆→ Ã has
a chart by Q→ F , Lemma 2.10 allows us to conclude that (f ◦ α, ã : α∗f∗M∆→ Ã ) : (S, Ã )
→ (X∆,M∆) is a ∆0-FR morphism. This completes the proof of Proposition 3.5. 2

Proof of Theorem 1.2. Let Hom(X(Σ,Σ0),X∆,∆0)) be the category of torus-equivariant
1-morphisms from X(Σ,Σ0) to X(∆,∆0) (whose morphisms are 2-isomorphisms). Let
Hom((Σ, Σ0), (∆,∆0)) be the discrete category arising from the set of morphisms from (Σ, Σ0)
to (∆,∆0). We have to show that the natural map

Φ :Hom(X(Σ,Σ0),X(∆,∆0))→Hom((Σ, Σ0), (∆,∆0))

is an equivalence. This amounts to proving the following statement: if F : (Σ, Σ0)→ (∆,∆0) is a
map of stacky fans and (f, hf ) : (XΣ,MΣ)→ (X∆,M∆) denotes the torus-equivariant morphism
(with the natural morphism of the log structures) of toric varieties induced by F : Σ→∆, then
there exists a torus-equivariant 1-morphism

(f̃ , hf̃ ) : (X(Σ,Σ0),M(Σ,Σ0))→ (X(∆,∆0),M(∆,∆0))

(with the natural morphism of log structures) such that (f, hf ) ◦ (π(Σ,Σ0), h(Σ,Σ0)) =
(π(∆,∆0), h(∆,∆0)) ◦ (f̃ , hf̃ ), and it is unique up to a unique isomorphism. By Proposition 3.5,
for each object (α, h) : (S,N )→ (XΣ,MΣ) in XΣ(Σ0) we can choose a pair ((f ◦ α, g), ξ(α,h)),
where (f ◦ α, g) : (S,M)→ (X∆,M∆) is an object in X∆(∆0), i.e. a ∆0-FR morphism, and
ξ(α,h) :M→N is a homomorphism of log structures such that the diagram

α∗f∗M∆
g //

α∗hf
��

M
ξ(α,h)

��
α∗MΣ

h // N
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commutes. For each object (α, h) : (S,N )→ (XΣ,MΣ) ∈Ob(XΣ(Σ0)), we choose such a
pair (f̃((α, h)) : (S,M)→ (X∆,M∆) ∈Ob(X∆(∆0)), ξ(α,h) :M→N ). By the axiom of choice,
there exists a function Ob(XΣ(Σ0))→Ob(X∆(∆0)), (α, h) 7→ f̃((α, h)). Let (αi, hi) : (Si,Ni)
→ (XΣ,MΣ) be a Σ0-FR morphism for i= 1, 2. For each morphism (q, e) : (S1,N1)→ (S2,N2) in
XΣ(Σ0), define f̃((q, e)) : f̃((S1,N1)) := (S1,M1)/(X∆,M∆)→ f̃((S2,N2)) := (S2,M2)/(X∆,M∆)

to be (q, f̃(e)) : (S1,M1)→ (S2,M2) such that the diagram

M1

ξ(α1,h1) // N1

q∗M2

q∗ξ(α2,h2) //

f̃(e) 55kkkkkkkkk
q∗N2

e
66mmmmmmmmm

α∗1f
∗M∆

g1

OO

q∗g2

iiRRRRRRR
// α∗1MΣ

h1

OO

q∗h2

hhQQQQQQQ

commutes. Here, the ξ(αi,hi) are the homomorphisms chosen as above, and the uniqueness of such
a homomorphism f̃(e) follows from Proposition 3.5. This yields a functor f̃ : XΣ(Σ0)→X∆(∆0)
with a homomorphism of log structures ξ : f̃∗M(∆,∆0)→M(Σ,Σ0) (determined by the collection
{ξ(α,h)}); it gives rise to a lifted morphism (f̃ , ξ) : (X(Σ,Σ0),M(Σ,Σ0))→ (X(∆,∆0),M(∆,∆0)).
Because M(Σ,Σ0) ⊂ OX(Σ,Σ0)

on X(Σ,Σ0),et, we have that ξ : f̃∗M(∆,∆0)→M(Σ,Σ0) is the

homomorphism hf̃ induced by f̃ (see § 2.4). In addition, if f̃ ′ : X(Σ,Σ0)→X(∆,∆0) is another
lifting of f and ζ : f̃ → f̃ ′ is a 2-isomorphism, then ζ induces an isomorphism σ : f̃∗M(∆,∆0)

→ f̃
′∗M(∆,∆0) such that hf̃ = ξ = hf̃ ′ ◦ σ, where hf̃ ′ : f̃

′∗M(∆,∆0)→M(Σ,Σ0) is the homo-
morphism induced by f̃ ′. Therefore, for another lifting f̃ ′ : X(Σ,Σ0) = XΣ(Σ0)→X∆(∆0) =
X(∆,∆0) of f , the existence and uniqueness of the 2-isomorphism ζ : f̃ → f̃ ′ follows from Propo-
sition 3.5. Indeed, let (α, h) : (S,N )→ (XΣ,MΣ) be a Σ0-FR morphism and set f̃((α, h)) =
{(f ◦ α, g) : (S,M)→ (X∆,M∆)} and f̃ ′((α, h)) = {(f ◦ α, g′) : (S,M′)→ (X∆,M∆)} (these
are ∆0-FR morphisms). Then we have the commutative diagram

α∗f∗M∆

α∗hf

��

g //
g′

**TTTTTTTT M

hf̃

��
M′ hf̃ ′

((QQQQQQQQ

α∗MΣ
h // N

where hf̃ :M→N (respectively, hf̃ ′ :M
′→N ) denotes the homomorphism induced by hf̃ :

f̃∗M(∆,∆0)→M(Σ,Σ0) (respectively, hf̃ ′ : f̃
′∗M(∆,∆0)→M(Σ,Σ0)) (there is some abuse of

notation here). By Proposition 3.5, there exists a unique isomorphism of log structures
σ(α,h) :M→M′ which fits into the above diagram. Then we can easily see that the collection
{σ(α,h)}(α,h)∈XΣ(Σ0) defines a 2-isomorphism f̃ → f̃ ′. Conversely, by the above observation and
Proposition 3.5, a 2-isomorphism f̃ → f̃ ′ must be {σ(α,h)}(α,h)∈XΣ(Σ0) and thus the uniqueness
follows. Finally, we show that f̃ is torus-equivariant (see Definition 2.6). This follows from the
uniqueness (up to a unique isomorphism) of a lifting X(Σ,Σ0) × Spec k[M1]→X(∆,∆0) of the

torus-equivariant morphism XΣ × Spec k[M1] a→XΣ
f→X∆. Here a is the torus action, and by a

lifting of f ◦ a we mean a functor which commutes with f ◦ a via coarse moduli maps. Thus, the
proof of Theorem 1.2 is complete. 2

Theorem 1.2 and its proof imply the following results.
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Corollary 3.7. Let f :XΣ→X∆ be a torus-equivariant morphism of simplicial toric varieties.
Then a (not necessarily torus-equivariant) functor f̃ : X(Σ,Σ0)→X(∆,∆0) such that π(∆,∆0) ◦ f̃ =
f ◦ π(Σ,Σ0) is unique up to a unique isomorphism (if it exists).

Proof. This follows immediately from the proof of Theorem 1.2. 2

Corollary 3.8. Let f : X(Σ,Σ0)→X(∆,∆0) be a (not necessarily torus-equivariant) functor.
Then f is torus-equivariant if and only if the induced morphism fc :XΣ→X∆ of toric varieties
is torus-equivariant.

Proof. The ‘only if’ part follows from Proposition 3.2, and the proof of Theorem 1.2 gives the
‘if’ part. 2

Corollary 3.9. Let Σ and ∆ be simplicial fans and let (∆,∆0) be a stacky fan that is an
extension of ∆. Let F : Σ→∆ be a homomorphism of fans and let f :XΣ→X∆ be the associated
morphism of toric varieties. Then there exist a stacky fan (Σ, Σ0) that is an extension of Σ and a
torus-equivariant morphism f̃ : X(Σ,Σ0)→X(∆,∆0) such that π(∆,∆0) ◦ f̃ = f ◦ π(Σ,Σ0). Moreover,

if we fix such a stacky fan (Σ, Σ0), then f̃ is unique up to a unique isomorphism.

Proof. Theorem 1.2 immediately implies our assertion because we can choose a free-net Σ0 such
that F (Σ0)⊂∆0. 2

Corollary 3.10. Let (Σ, Σ0) be a stacky fan in NR and let X(Σ,Σ0) be the associated toric
algebraic stack. Then there exists a smooth surjective torus-equivariant morphism

p :X∆ −→X(Σ,Σ0),

where X∆ is a quasi-affine smooth toric variety. Furthermore, X∆ can be explicitly constructed.

Proof. Without loss of generality, we may suppose that rays of Σ span the vector space NR.
Set Ñ =

⊕
ρ∈Σ(1) Z · eρ. Define a homomorphism of abelian groups η : Ñ −→N by eρ 7→ Pρ,

where Pρ is the generator of Σ0 on ρ (see Definition 2.1). Let ∆ be a fan in ÑR that consists
of cones γ such that γ is a face of the cone

⊕
ρ∈Σ(1) R≥0 · eρ and ηR(γ) lies in ∆. If ∆0

can

denotes the canonical free-net (see Definition 2.1), then η induces the morphism of stacky fans
η : (∆,∆0

can)→ (Σ, Σ0). Note that X(∆,∆0
can) is the quasi-affine smooth toric variety X∆. Let

p :X∆→X(Σ,Σ0) be the torus-equivariant morphism induced by η (see Theorem 1.2). Since the
composite q := π(Σ,Σ0) ◦ p :X∆→X(Σ,Σ0)→XΣ is surjective and π(Σ,Σ0) is the coarse moduli
map, it follows from [LM00, Proposition 5.4(ii)] that p is surjective. It remains to show that p
is smooth; this is an application of Kato’s notion of log smoothness. From the construction of
η and Lemmas 2.10 and 3.3, we can easily see that the induced morphism (q, hq) : (X∆,M∆)
→ (XΣ,MΣ) is a Σ0-FR morphism. Moreover, by [Kat88, Theorem 3.5], (q, hq) is log smooth
(ch(k) = 0). Using the modular interpretation of XΣ(Σ0) (see § 2), there exists a 1-morphism
p′ :X∆→X(Σ,Σ0) which corresponds to (q, hq). Theorem 1.2 and Corollary 3.7 then imply that
p′ coincides with p, and thus the morphism (p, hp) : (X∆,M∆)→ (X(Σ,Σ0),M(Σ,Σ0)) is a strict
morphism. Here hp is the homomorphism induced by p. The following lemma implies that p
is smooth. 2

Lemma 3.11. Let (X,M) be a log scheme and (f, h) : (X,M)→ (X(Σ,Σ0),M(Σ,Σ0)) a strict
1-morphism. If the composite

(π(Σ,Σ0), h(Σ,Σ0)) ◦ (f, h) : (X,M)→ (XΣ,MΣ)

is formally log smooth, then f :X →X(Σ,Σ0) is formally smooth.
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Proof. It suffices to show the lifting property as given in [Ols03, Definition 4.5]. Let i : T0→ T be
a closed immersion of schemes defined by a square zero ideal. Let a0 : T0→X and b : T →X(Σ,Σ0)

be a pair of 1-morphisms such that f ◦ a0
∼= b ◦ i. We have to show that there exists a 1-morphism

a : T →X such that a ◦ i= a0 and f ◦ a∼= b. There exists the commutative diagram

(T0, a
∗
0M)

i
��

a0 // (X,M)

(f,h)
��

(T, b∗M(Σ,Σ0))
b //

))SSSSSSSSSSSSSS
(X(Σ,Σ0),M(Σ,Σ0))

(π(Σ,Σ0),h(Σ,Σ0))

��
(XΣ,MΣ)

where i, b and a0 denote induced strict morphisms (we abuse notation here). Since
(π(Σ,Σ0), h(Σ,Σ0)) ◦ (f, h) is formally log smooth, there exists a morphism

(a, v) : (T, b∗M(Σ,Σ0))→ (X,M)

such that a0 = a ◦ i. Thus it suffices to prove that b∼= f ◦ a, which is equivalent to showing that
(a, v) is a strict morphism, since XΣ(Σ0) = X(Σ,Σ0) is the moduli stack of ∆0-FR morphisms
into (XΣ,MΣ). To see this, we need to show that for any geometric point t̄→ T , v̄t̄ : (a−1M̄)t̄→
(b∗M(Σ,Σ0)/O

∗
T )t̄ is an isomorphism: let ι : P → Nr be an injective homomorphism of monoids

such that ι(P ) is close to Nr, and let e : Nr→ Nr be an endomorphism such that ι= e ◦ ι; then
e is an isomorphism and the lemma is proved. 2

4. A geometric characterization theorem

The aim of this section is to give proofs of Theorems 1.3 and 1.1. In this section, except in
Lemma 4.1, we work over an algebraically closed base field k of characteristic zero.

Lemma 4.1. Let S be a normal Deligne–Mumford stack that is locally of finite type and
separated over a locally noetherian scheme. Let p : S → S be a coarse moduli map. Then S
is normal.

Proof. Our assertion is étale local on S, hence we may assume that S is the spectrum of a strictly
Henselian local ring. Set S = SpecO. In this situation, by [AV02, Lemma 2.2.3] there exist a
normal strictly Henselian local ring R, a finite group G and an action m : SpecR×G→ SpecR
such that the quotient stack [SpecR/G] is isomorphic to S and RG =O (here RG is the invariant
ring). Let n : SpecA→ SpecO be the normalization of SpecO in the function field Q(O).
Let us denote by q : SpecR→ SpecO (respectively, pr1 : SpecR×G→ SpecR) the composite
SpecR→S → S = SpecO (respectively, the natural projection). Then, by universality of the
normalization, there exists a unique morphism q̃ : SpecR→ SpecA such that n ◦ q̃ = q. Note
that q̃ ◦ pr1 (respectively, q̃ ◦m) is the unique lifting of q ◦ pr1 (respectively, q ◦m). Since
q ◦ pr1 = q ◦m, we have q̃ ◦ pr1 = q̃ ◦m. This implies that A⊂O =RG, and thus we conclude
that S is normal. 2

Proposition 4.2. Let (X , ι : Gd
m ↪→X , a : X ×Gd

m→X ) be a toric triple over k. Then the
complement D := X −Gd

m with reduced closed substack structure is a divisor with normal
crossings, and the coarse moduli space X is a simplicial toric variety over k.
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Proof. First, we shall prove that X is a toric variety over k. Observe that the coarse moduli
scheme X is a normal variety over k, i.e. it is normal, of finite type and separated over k. Indeed,
according to the Keel–Mori theorem, X is locally of finite type and separated over k. Since X is
of finite type over k and the underlying continuous morphism |X | → |X| (cf. [LM00, Définition
(5.2)]) of the coarse moduli map is a homeomorphism, X is of finite type over k by [LM00,
Corollaire (5.6.3)]. Since X is smooth over k, by Lemma 4.1 X is normal. Since ι : Gd

m ↪→X ,
the coarse moduli space X contains Gd

m as a dense open subset. The torus action X ×Gd
m→X

gives rise to a morphism of coarse moduli spaces a0 :X ×Gd
m→X, because X ×Gd

m is a coarse
moduli space for X ×Gd

m. Moreover, by the universality of coarse moduli spaces, it is an action
of Gd

m on X. Therefore X is a toric variety over k.
Next, we prove that the complement D is a divisor with normal crossings. Set Gd

m = Spec k[M ]
(with M = Zd) and XΣ =X, where Σ is a fan in N ⊗Z R (N = HomZ(M, Z)). Let x̄→XΣ

be a geometric point on XΣ and put O := OXΣ,x̄ (the étale stalk). Consider the pull-back
XO := X ×XΣ

O → Spec O by Spec OXΣ,x̄→XΣ. Clearly, our assertion is an étale local issue on
XΣ and thus it suffices to show that D defines a divisor with normal crossings on XO . By [AV02,
Lemma 2.2.3], there exist a strictly Henselian local k-ring R and a finite group Γ acting on
SpecR such that XO

∼= [SpecR/Γ]. We have a sequence of morphisms

SpecR
p→ [SpecR/Γ] π→ Spec O.

The composite q := π ◦ p is a finite surjective morphism. If U denotes the open subscheme of
Spec O which is induced by the torus embedding Gd

m ⊂XΣ, then the restriction q−1(U)→ U
is a finite étale surjective morphism. Let us denote by MO the pull-back of the canonical log
structure MΣ on XΣ to Spec O. Then, by virtue of the log Nagata–Zariski purity theorem
[Moc99, Theorem 3.3] (see also [Hos06, Remark 1.10]), the complement SpecR− q−1(U) (or,
equivalently, D) defines a log structure on SpecR (we denote this log structure byMR), and the
finite étale surjective morphism q−1(U)→ U extends to a Kummer log étale surjective morphism

(q, h) : (SpecR,MR)→ (Spec O,MO).

Let Ô be the completion of O along its maximal ideal. Let us denote by

(q̂, ĥ) : (T,MR|T )→ (Spec Ô,MÔ :=MO |Ô)

the pull-back of (q, h) by Spec Ô → Spec O. Then, by [Kat94, Theorem 3.2], the log scheme
(Spec Ô,MO |Ô) is isomorphic to

Spec (P → k(x̄)[[P ]][[Nl]]),

where k(x̄) is the residue field of x̄→XΣ, P := M̄Ô,x̄→ k(x̄)[[P ]][[Nl]] (p 7→ p), and l is a non-
negative integer. (Strictly speaking, [Kat94] treats only the case of Zariski log structures, but the
same proof applies to étale log structures.) By taking a connected component of T if necessary,
we may assume that T is connected. Note that, since the connected scheme T is finite over
Spec Ô, T is the spectrum of a strictly Henselian local k-ring. Let Q be the stalk of M̄R|T at a
geometric point t̄→ T lying over the closed point t of T . Then, by [Hos06, Proposition A.4], the
Kummer log étale cover (q̂, ĥ) has the form

Spec (Q→ Z[Q]⊗Z[P ] k(x̄)[[P ]][[Nl]]) // Spec (P → k(x̄)[[P ]][[Nl]]),

defined by P = M̄Ô,x̄→ (M̄R|T )t̄ =Q, IdNl : Nl→ Nl and the natural map Q→ Z[Q]⊗Z[P ]

k(x̄)[[P ]][[Nl]]. (Note that Z[Q]⊗Z[P ] k(x̄)[[P ]]∼= k(x̄)[[Q]] because Q→ P is Kummer.) Since T
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is regular, Q is free, i.e. Q∼= Nr for some non-negative integer r. This implies that D is a divisor
with normal crossings.

Finally, we shall show that the toric variety XΣ is simplicial. To this end, let us assume that Σ
is not simplicial and show that this assumption gives rise to a contradiction. By the assumption,
there exists a geometric point α : x̄→XΣ such that the number of irreducible components of the
complement D :=XΣ −Gd

m on which the point x̄ lies is greater than the rank rkM̄gp
Σ,x̄ of M̄gp

Σ,x̄.
Let r be the number of irreducible components of D on which the point x̄ lies. Put P := M̄Σ,x̄.
By the same argument as above, there exist a strictly Henselian local k-ring R and a sequence
of Kummer log étale covers

(SpecR, p∗MD)
p→ (X ×XΣ

Spec OXΣ,x̄,MD)→ (Spec OXΣ,x̄,MΣ|Spec OXΣ,x̄
),

where MD is the log structure induced by D and the left morphism is a strict morphism.
Moreover, the pull-back of the composite SpecR→ Spec OΣ,x̄ (which is a finite morphism) by
the completion Spec ÔΣ,x̄→ Spec OΣ,x̄ along the maximal ideal is of the form

Spec k(x̄)[[Nr]][[Nl]]→ Spec k(x̄)[[P ]][[Nl]],

because π−1(D)red = D and D is a normal crossing divisor on the smooth stack. Here π : X →XΣ

is the coarse moduli map, and for each irreducible component C of D, π−1(C)red is an irreducible
component of D because the underlying continuous map |π| : |X | → |X| (cf. [LM00, Définition
(5.2)]) is a homeomorphism. However,

dim Spec k(x̄)[[Nr]][[Nl]]> dim Spec k(x̄)[[P ]][[Nl]] = rkP gp + l,

which is a contradiction. 2

Proof of Theorem 1.3. We shall construct a morphism from X to some toric algebraic stack and
show that it is an isomorphism with the desired properties.

Step 1. We first construct a morphism from X to some toric algebraic stack. Set Gd
m =

Spec k[M ] (with M = Zd) and N = HomZ(M, Z). By Proposition 4.2, we can put X =XΣ,
where Σ is a simplicial fan in N ⊗Z R; let us denote by π : X →XΣ the coarse moduli
map. By [Iwa07a, Theorem 3.3(2)] and [Iwa07a, Proposition 4.4], there exists a morphism
φ : X →X(Σ,Σ0

can) such that π ∼= π(Σ,Σ0
can) ◦ φ. For a ray ρ ∈ Σ(1), we denote by V (ρ) the

corresponding irreducible component of D =XΣ − Spec k[M ], where Spec k[M ]⊂XΣ is the torus
embedding, i.e. the torus-invariant divisor corresponding to ρ. Then V (ρ) := π−1

(Σ,Σ0
can)

(V (ρ))red

(respectively, W (ρ) := π−1(V (ρ))red) is an irreducible component of the normal crossing divisor
X(Σ,Σ0

can) − Spec k[M ] (respectively, D = X −Gd
m). Since π(Σ,Σ0

can) and π are coarse moduli maps,
we have φ−1(V (ρ))red = W (ρ). For each ray ρ ∈ Σ(1), let nρ ∈ N be the natural number such that

φ−1(V (ρ)) = nρ ·W (ρ).

Let (Σ, Σ0) be the stacky fan whose level on each ray ρ is nρ. If MD denotes the log structure
associated to D , the morphism of log stacks (π, hπ) : (X ,MD)→ (XΣ,MΣ) (see § 2.4) is a Σ0-FR
morphism since D is a normal crossing divisor and (π(Σ,Σ0

can), h(Σ,Σ0
can)) : (X(Σ,Σ0

can),M(Σ,Σ0
can))

→ (XΣ,MΣ) is a Σ0
can-FR morphism. Then there exists a strict morphism of log stacks

Φ : (X ,MD)−→ (X(Σ,Σ0),M(Σ,Σ0))

over (XΣ,MΣ), which is associated to the Σ0-FR morphism (π, hπ). By the construction of Φ,
the restriction of Φ to Gd

m ⊂X induces an isomorphism Gd
m
∼→ Spec k[M ]⊂X(Σ,Σ0) of group

k-schemes.
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We will prove that Φ is an isomorphism in steps 2 and 3.

Step 2. Observe that, in order to show that Φ is an isomorphism, it suffices to prove that for each
closed point x̄ := Spec k→XΣ, the pull-back Φx̄ : X ×XΣ

Spec OXΣ,x̄→X(Σ,Σ0) ×XΣ
Spec OXΣ,x̄

by Spec OXΣ,x̄→XΣ is an isomorphism (here OXΣ,x̄ is the étale stalk). Indeed, assume that Φx̄ is
an isomorphism for every closed point x̄= Spec k→XΣ. Then, by [Con07, Theorem 2.2.5], Φ
is representable. Moreover, Φ is finite; this can be seen as follows. Note that X is separated over k,
thus Φ is separated. In addition, Φ is clearly of finite type. Since π and π(Σ,Σ0) are coarse moduli
maps (and, in particular, proper), it follows from [Ols06, Proposition 2.7] that Φ is a proper and
quasi-finite surjective morphism, i.e. a finite surjective morphism (see [LM00, Corollary A.2.1]).
Whether or not Φ is an isomorphism is an étale local issue on XΣ; thus, by [DG61, ch. IV
8.8.2.4], we can conclude that Φ is an isomorphism because Φ is a finite representable
morphism. Therefore, we need to prove that Φx̄ : X ×XΣ

Spec OXΣ,x̄→X(Σ,Σ0) ×XΣ
Spec OXΣ,x̄

is an isomorphism for each closed point x̄= Spec k→XΣ. For simplicity, put O := OXΣ,x̄, X ′ :=
X ×XΣ

Spec OXΣ,x̄ and X ′
(Σ,Σ0) := X(Σ,Σ0) ×XΣ

Spec OXΣ,x̄. Set α : Spec O →XΣ. WriteM,M′D
and M′(Σ,Σ0) for the log structures α∗MΣ, (α×XΣ

X )∗MD and (α×XΣ
X(Σ,Σ0))∗M(Σ,Σ0) on

Spec O, X ′ and X ′
(Σ,Σ0), respectively. Clearly, we may assume that Σ is a simplicial cone σ and

that XΣ = Spec k[P ]×k Gl
m, where P = (σ∨ ∩M)/(invertible elements) and l is a non-negative

integer. In addition, by replacing σ with a face if necessary, we can suppose that the closed point
x̄ lies on the torus orbit of the point (o, 1) ∈ Spec k[P ]×k Gl

m. Here o ∈ Spec k[P ] is the origin
and 1 ∈Gl

m is the unit point. Thus we may assume that x̄= (o, 1).

Step 3. Here we prove that Φx̄ is an isomorphism. To this end, we first give an explicit
representation of (X ′,M′D) as a form of quotient stack. By [AV02, Lemma 2.2.3] and [Ols06,
Theorem 2.12], there exist a d-dimensional strictly Henselian regular local k-ring R (here
d := dimXΣ), a finite group Γ acting on R which is isomorphic to the stabilizer group of any
geometric point on X lying over x̄, and an isomorphism

X ′ ∼= [SpecR/Γ]

over Spec O. Furthermore, the action of Γ on the closed point of SpecR is trivial, and
the invariant ring RΓ is the image of O ↪→R. Note that if AutSpec O(SpecR) denotes the
group of automorphisms of SpecR over Spec O, the natural homomorphism of groups Γ→
AutSpec O(SpecR) is injective because X ′ is generically representable. Let us denote by p :
SpecR→ [SpecR/Γ] the natural projection and put M′D ,R := p∗M′D . Consider the composite
SpecR→ [SpecR/Γ]→ Spec O. This composite induces the morphism of log schemes

(f, h) : (SpecR,M′D ,R)→ (Spec O,M),

whose underlying morphism SpecR→ Spec O is finite and surjective. Let W be the open
subscheme α−1(Gd

m)⊂ Spec O (Gd
m ⊂XΣ). Then the restriction f−1(W )→W is a finite étale

surjective morphism. By virtue of the log Nagata–Zariski purity theorems ([Moc99, Theorem 3.3]
and [Hos06, Remark 1.10]), (f, h) is a Kummer log étale cover (ch(k) = 0). Now put O =
k{P, t1, . . . , tl} ⊂ k[[P ]][[t1, . . . , tl]], where k{P, t1, . . . , tl} is the (strict) Henselization of the
Zariski stalk of the origin of Spec k[P, t1, . . . , tl]. Consider the homomorphism P = M̄s̄→ F :=
M̄′D ,R,t̄, where s̄→ Spec O and t̄→ SpecR are geometric points lying over the closed points of
Spec O and SpecR, respectively. Then, by [Hos06, Proposition A.4], (f, h) is of the form

Spec (F → k[F ]⊗k[P ] k{P, t1, . . . , tl})−→ Spec (P → k{P, t1, . . . , tl}),
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where the underlying morphism and homomorphism of log structures are naturally
induced by P → F and ti 7→ ti. Here F → k[F ]⊗k[P ] k{P, t1, . . . , tl} and P → k{P, t1, . . . , tl}
are the natural homomorphisms. As observed in [Sti02, Proposition 3.1.9], the group
Aut(Spec O,M)((SpecR,M′D ,R)) of automorphisms of (SpecR,M′D ,R) over (Spec O,M) is
naturally isomorphic to G := Homgroup(F gp/P gp, k∗). Here an element g ∈G acts on k[F ]⊗k[P ]

k{P, t1, . . . , tl} by f 7→ g(f) · f for any f ∈ F . The natural forgetting homomorphism
Aut(Spec O,M)((SpecR,M′D ,R))→AutSpec O(SpecR) is an isomorphism. The injectivity is
clear from the action of G, and the surjectivity follows from the fact that M′D ,R =
{s ∈ OSpecR| s is invertible on f−1(W )} and that M= {s ∈ OSpec O | s is invertible on W}.
Furthermore, since the category of Kummer log étale coverings is a Galois category
(see, e.g., [Hos06, Theorem A.1]), the injective morphism Γ→G= AutSpec O(SpecR) =
Aut(Spec O,M)((SpecR,M′D ,R)) is surjective and hence bijective. Indeed, if it were not surjective,
then the Kummer log étale cover (or its underlying morphism) (SpecR,M′D ,R)/Γ→ (Spec O,M)
would not be an isomorphism and thus we would obtain a contradiction to RΓ = O. Since
any local ring that is finite over a Henselian local ring is also Henselian, we have k[F ]⊗k[P ]

k{P, t1, . . . , tl} ∼= k{F, t1 . . . , tl}, where k{F, t1, . . . , tl} is the (strict) Henselization of the
Zariski stalk of the origin of Spec k[F, t1, . . . , tl]. Hence there exists an isomorphism of log stacks

(X ′,M′D)∼= ([Spec k{F, t1, . . . , tl}/G],MF )

over (Spec O,M), where MF is the log structure on [Spec k{F, t1, . . . , tl}/G] induced by the
natural chart F → k{F, t1, . . . , tl}. In particular, the morphism

([Spec k{F, t1, . . . , tl}/G],MF )→ (Spec O,M)

is isomorphic to (X ′,M′D) as a Σ0-FR morphism over (Spec O,M). By using this form,
we will prove next that Φx̄ is an isomorphism. Note that the morphism Φx̄ : X ′→X ′

(Σ,Σ0)

over Spec O is the morphism associated to the Σ0-FR morphism (X ′,M′D)→ (Spec O,M).
Thus, what we have to show is that [Spec k{F, t1, . . . , tl}/G]/Spec O is the stack whose
objects over S→ Spec O are Σ0-FR morphisms (S,N )→ (Spec O,M) and whose morphisms
are strict (Spec O,M)-morphisms between them (see § 2.3). By Proposition 2.12, the stack
([Spec k[F ]/G]×k Gl

m)/Spec k[P ]×kGlm represents the stack whose objects over S→ Spec k[P ]×k
Gl
m are Σ0-FR morphisms (S,N )→ (Spec k[P ]×k Gl

m,NP ) and whose morphisms are strict
(Spec k[P ]×k Gl

m,NP )-morphisms between them. Here we abuse notation and write NP for the
log structure associated to the natural map P → k[P ]⊗k Γ(Gl

m, OGlm) ( i.e. the canonical log
structure on XΣ = Spec k[P ]×k Gl

m); G acts on Spec k[F ] in the same way as above. Consider
the cartesian diagram

[Spec k{F, t1, . . . , tl}/G]

��

// [Spec k[F ]/G]×k Gl
m

��
Spec k{P, t1, . . . , tl} // Spec k[P ]×k Gl

m

where the lower horizontal arrow is α : Spec O → Spec k[P ]×k Gl
m. This diagram implies our

assertion, so we conclude that Φx̄ is an isomorphism.
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Step 4. In this final step, we show that the diagram

X ×Gd
m

Φ×Φ0

��

m // X

Φ
��

X(Σ,Σ0) × Spec k[M ]
a(Σ,Σ0)// X(Σ,Σ0)

commutes. Let Ψ : X(Σ,Σ0) × Spec k[M ]→X ×Gd
m be a functor such that (Φ× Φ0) ◦Ψ∼= Id

and Ψ ◦ (Φ× Φ0)∼= Id. Notice that both Φ ◦m ◦Ψ and a(Σ,Σ0) are liftings of the torus action
XΣ × Spec k[M ]→XΣ. We then have Φ ◦m ◦Ψ∼= a(Σ,Σ0), because a lifting (as a functor)
X(Σ,Σ0) × Spec k[M ]→X(Σ,Σ0) of the torus action XΣ × Spec k[M ]→XΣ is unique up to a
unique isomorphism (see Corollary 3.7). Thus Φ ◦m∼= a(Σ,Σ0) ◦ (Φ× Φ0), and this completes
the proof of Theorem 1.3. 2

Proof of Theorem 1.1. This follows from Theorems 1.2 and 1.3. 2

Let X be an algebraic stack. For a point a : SpecK→X with an algebraically closed field
K, the stabilizer group scheme is defined to be pr1 : SpecK ×(a,a),X ×X ,∆ X → SpecK, where
∆ is diagonal. If X is Deligne–Mumford, then the stabilizer group scheme is a finite group. The
proof of Theorem 1.3 immediately implies the following.

Corollary 4.3. Let X be a smooth Deligne–Mumford stack that is separated and of finite
type over k. Suppose that there exists a coarse moduli map π : X →XΣ to a toric variety such
that π is an isomorphism over TΣ. Let V (ρ) denote the torus-invariant divisor corresponding to
a ray ρ, and suppose that the order of stabilizer group of the generic point on π−1(V (ρ)) is nρ.
Then there exists an isomorphism X →X(Σ,Σ0) over XΣ, where the level of Σ0 on ρ is nρ for
each ρ.

Proof. By the proof of Theorem 1.3, there exist some stacky fan (Σ, Σ0) and an isomorphism
X ∼= X(Σ,Σ0) over XΣ. Moreover, if the level of Σ0 on ρ is n, then by [Iwa07a, Proposition 4.13]
the stabilizer group of the generic point on the torus-invariant divisor on X(Σ,Σ0) corresponding
to ρ is of the form µn = SpecK[X]/(Xn − 1). Our claim follows. 2

Remark 4.4. By virtue of Theorem 1.3, we can handle toric triples, regardless of their
constructions, by using the machinery of toric algebraic stacks [Iwa07a] and various approaches
(see § 5).

One reasonable generalization of a toric triple to the case of positive characteristics might be
a smooth tame Artin stack with finite diagonal that is of finite type over an algebraically closed
field and which satisfies properties (i), (ii) and (iii) given in the introduction. (For the definition
of tameness, see [AOV08]; since the stabilizer group of each point on a toric algebraic stack is
diagonalizable, every toric algebraic stack is a tame Artin stack.) Indeed, toric algebraic stacks
as defined in [Iwa07a] are toric triples in this sense, in arbitrary characteristic. We conjecture
that the geometric characterization theorem holds also for positive characteristics.

Remark 4.5. Let us denote by Torst the 2-category of toric algebraic stacks or, equivalently
(by Theorem 1.1), the 2-category of toric triples (see § 1). Let us denote by Smtoric (respectively,
Simtoric) the category of smooth (non-singular) toric varieties (respectively, simplicial toric
varieties) whose morphisms are torus-equivariant. From the results obtained so far, we have
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the following commutative diagram (picture).

Torst
∼ //

��

(category of stacky fans)

��

Smtoric
i

""EE
EE

EE
EE

EE
E

ι

<<yyyyyyyyyyy ∼ // (category of non-singular fans)

a

44hhhhhhhhhhhhhhhhhhhhh

b

**VVVVVVVVVVVVVVVVVVVVV

Simtoric
∼ // (category of simplicial fans)

Here a(Σ) = (Σ, Σ0
can) and b(Σ) = Σ for a non-singular fan Σ, the functors ι and i are natural

inclusion functors, and the functors ι, i, a and b are fully faithful. All horizontal arrows are
equivalences.

5. Related work

In this section we discuss the relationship of our results with [BCS05], [FMN07] and [Per08]. We
work over the complex number field C. If no confusion seems likely to arise, we refer to toric
triples as toric stacks.

First, let us recall the stacky fans introduced in [BCS05]. Let N be a finitely generated abelian
group, Σ a simplicial fan in N ⊗Z Q, and N̄ the lattice, i.e. the image of N →N ⊗Z Q. For any
b ∈N , we denote by b̄ the image of b in N̄ . Let {ρ1, . . . , ρr} be the set of rays of Σ, and let
{b1, . . . , br} be the set of elements of N such that each b̄i spans ρi. The set {b1, . . . , br} gives rise
to the homomorphism β : Zr→N . The triple Σ = (N, Σ, β : Zr→N) is called a stacky fan. If N
is free, then we say that Σ is reduced. Every stacky fan Σ has the natural underlying reduced
stacky fan Σred = (N̄ , Σ, β̄ : Zr→ N̄), where N̄ =N/(torsion) is the lattice and β̄ is defined to
be the composite Zr→N → N̄ .

Let Σ = (N, Σ, β) be a reduced stacky fan. Let β≥0 : Zr≥0→N be the map induced by the
restriction of β. The intersection β≥0(Zr≥0) ∩ |Σ| forms a free-net of Σ. The pair (Σ, β≥0(Zr≥0) ∩
|Σ|) is a stacky fan in the sense of Definition 2.1. Conversely, every stacky fan (Σ, Σ0) according
to Definition 2.1 is obtained from a unique reduced stacky fan Σ = (N, Σ, β). This gives rise to
a one-to-one bijective correspondence between reduced stacky fans and stacky fans in the sense
of Definition 2.1. To avoid confusion, in this section a stacky fan in the sense of Definition 2.1
will be referred to as a ‘framed stacky fan’.

Let Σ = (N, Σ, β) be a stacky fan. Assume that the rays span the vector space N ⊗Z Q.
In [BCS05], by modelling the construction of D. Cox [Cox95a], the toric Deligne–Mumford
stack X (Σ) is constructed as a quotient stack [Z/G]. There exists a coarse moduli map
π(Σ) : X (Σ)→XΣ.

Suppose that Σ is reduced and let (Σ, Σ0) be the corresponding framed stacky fan. Then we
have the following result.

Proposition 5.1. There exists an isomorphism

X(Σ,Σ0)
∼−→X (Σ)

of algebraic stacks over XΣ.

Proof. We will prove this proposition by applying the geometric characterization of Theorem 1.3
and Corollary 4.3. Let d be the rank of N . The stack X (Σ) is a smooth d-dimensional
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Deligne–Mumford stack that is separated and of finite type over C, and its coarse moduli
space is the toric variety XΣ (see [BCS05, Lemma 3.1 and Propositions 3.2 and 3.7]). From
the quotient construction, X (Σ) has a torus embedding Gd

m→X (Σ). Owing to Corollary 4.3,
to prove our proposition it suffices to check that the order of the stabilizer group at the
generic point of π(Σ)−1(V (ρi)) is equal to the level of Σ0 on ρi; here V (ρi) is the torus-
invariant divisor corresponding to ρi. To this end, we may assume that Σ is a complete fan;
then [BCS05, Proposition 4.7] implies that the order of the stabilizer group at the generic point
of π(Σ)−1(V (ρi)) is the level nρi of ρi. 2

Remark 5.2. The explicit construction of X (Σ) plays no essential role in the proof of
Proposition 5.1, and the proof uses only some intrinsic properties. This shows the flexibility
of our results. If a new approach to this subject (i.e. a new construction) is proposed in the
future, the category of toric triples should provide a useful bridge. We believe that it is good to
have various approaches at one’s disposal and to be free to choose whichever approach is most
suited to a given situation.

Let Σ = (N =N ′ ⊕ Z/w1Z⊕ · · · ⊕ Z/wtZ, Σ, β) be a stacky fan such that N ′ is a free abelian
group, and let Σred be the associated reduced stacky fan. There is a morphism X (Σ)→X (Σred)
which is a finite abelian gerbe. This structure is obtained by a simple technique called ‘taking
nth roots of an invertible sheaf’, which is explained as follows. Recall the notion of the stack of
roots of an invertible sheaf (see, for example, [Cad07]). Let X be an algebraic stack and L an
invertible sheaf on X. Let P :X →BGm be the morphism to the classifying stack of Gm that
corresponds to L. Let l be a positive integer and fl :BGm→BGm the morphism associated to
l : Gm→Gm : g 7→ gl. Then the stack of lth roots of L is defined to be X ×P,BGm,fl BGm. The
reason for this stack being called the ‘stack of lth roots’ is that it has the following modular
interpretation: objects of X ×P,BGm,fl BGm over a scheme S are triples (S→X,M, φ :M⊗l→
L), where M is an invertible sheaf on S and φ is an isomorphism. A morphism of triples is
defined in a natural manner. The first projection X ×P,BGm,fl BGm→X forgets the data M
and φ. We write X(L1/l) for the collection of stacks of lth roots of L. In [JT07, Proposition 2.9
and Remark 2.10] and [Per08, Proposition h3.1] it was observed, and shown, that X (Σ) is a finite
abelian gerbe over X (Σred) which is obtained by using the stacks of roots of invertible sheaves.
In light of Proposition 5.1, this can be stated as follows.

Corollary 5.3. Let (Σ, Σ0) be the framed stacky fan that corresponds to Σred. Let bi,j ∈
Z/wjZ be the image of bi ∈N in Z/wjZ. (We may regard bi,j as an element of {0, . . . , wj − 1}.)
Let Ni be an invertible sheaf on X(Σ,Σ0) which is associated to the torus-invariant divisor

corresponding to ρi. Let Lj =⊗iN
⊗bi,j
i . Then X (Σ) is isomorphic to

X(Σ,Σ0)(L
1/w1

1 )×X(Σ,Σ0)
· · · ×X(Σ,Σ0)

X(Σ,Σ0)(L1/wr
r ).

It is known that every separated normal Deligne–Mumford stack is a gerbe over a Deligne–
Mumford stack that is generically a scheme. We will consider an intrinsic characterization of
toric Deligne–Mumford stacks in the sense of [BCS05] from the viewpoint of gerbes. Since
the construction in [BCS05] employed the idea of Cox, we need to impose the assumption that the
rays {ρ1, . . . , ρr} span the vector space N ⊗Z Q. In order to fit in with [BCS05], we consider
the following condition on toric stacks (toric triples): a toric stack (triple) X is said to be full if
X has no splitting X ′ ×Gp

m such that X ′ is a toric stack and p is a positive integer.
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Let X be an algebraic stack. We say that an algebraic stack Y →X is a polyroots gerbe
over X if it has the form of the composite

X (L1/n1

1 )(L1/n2

2 ) · · · (L1/nk
k )→X (L1/n1

1 )(L1/n2

2 ) · · · (L1/nk−1

k−1 )→ · · · →X ,

where Li is an invertible sheaf on X (L1/n1

1 )(L1/n2

2 ) · · · (L1/ni−1

i−1 ) for i≥ 2 and L1 is an invertible

sheaf on X . For example, if La and Lb are invertible sheaves on X and Y = X (L1/n
a )×X

X (L1/n′

b ), then Y is the composite X (L1/n
a )(Lb|

1/n′

X (La))→X (La)→X and therefore is a
polyroots gerbe over X .

Proposition 5.4. A toric Deligne–Mumford stack in the sense of [BCS05] is precisely
characterized as a polyroots gerbe over a full toric stack (i.e. a full toric triple in our sense).

Proof. Note first that by Corollary 5.3 every toric Deligne–Mumford stack X (Σ) is a polyroots
gerbe over some toric stack X(Σ,Σ0), so X (Σ) is a polyroots gerbe over X(Σ,Σ0). Since the
condition on Σ that rays span the vector space N ⊗Z Q is equivalent to the condition that
X(Σ,Σ0) is full, every toric Deligne–Mumford stack X (Σ) is a polyroots gerbe over a full toric
stack (triple). Thus we will prove the converse; it suffices to show that for any toric Deligne–
Mumford stack X (Σ) and any invertible sheaf L on it, the stack X (Σ)(L1/n) is also a toric
Deligne–Mumford stack in the sense of [BCS05]. Here n is a positive integer. Note that X (Σ) is
the quotient stack [Z/G], where G is a diagonalizable group and Z is an open subset of an affine
space Aq such that the codimension of the complement Aq − Z is greater than one. Therefore, the
Picard group Aq is naturally isomorphic to that of Z, and so every invertible sheaf on Z is trivial,
i.e. every principal Gm-bundle on Z is trivial. Hence every principal Gm-bundle on [Z/G] has the
form [Z ×Gm/G]→ [Z/G], where the action of G on Z ×Gm arises from the action of G on Z
and some character λ :G→Gm. Let α : [Z/G]→BGm be the morphism induced by Z→ Spec C
and λ :G→Gm. Notice that α : [Z/G]→BGm is the composite [Z/G]→BG→BGm, where the
first morphism is induced by the G-equivariant morphism Z→ Spec C and the second morphism
is induced by λ :G→Gm. Let l : Gm→Gm, g 7→ gl, and let G̃ :=G×λ,Gm,l Gm. Then we obtain
the diagram

G //

��

BG̃

��

// BGm

fl
��

[Z/G] // BG // BGm

where the square on the left is a cartesian diagram and the vertical morphism on the right is
induced by l : Gm→Gm. Then, by [Jia08, Corollary 1.2], G is a toric Deligne–Mumford stack.
Since [Z ×Gm/G]∼= [Z/G]×α,BGm Spec C, the morphism α corresponds to the principal Gm-
bundle [Z ×Gm/G]→ [Z/G]. Thus, if G ∼= [Z/G]×α,BGm,fl BGm, our claim follows. It therefore
suffices to check that the square on the right is also a cartesian diagram. Indeed, there
exists a natural isomorphism Bµl ∼= Spec C×BGm,l BGm, and so we have Bµl ∼= Spec C×BG
(BG×BGm,fl BGm). Moreover, there exists a natural isomorphism Bµl ∼= Spec C×BG BG̃,
because the kernel of G̃→G is µl. Consider the natural morphism BG̃→BG×BGm,fl BGm over
BG. Its pull-back by the flat surjective morphism Spec C→BG is an isomorphism Bµl→Bµl.
Hence BG̃∼=BG×BGm,fl BGm and our proof is complete. 2

Now we discuss how our work relates to [FMN07]. In [FMN07], Fantechi, Mann and Nironi
generalized the notion of toric triples defined in this paper. In order to fit in with the framework
of [BCS05], they introduced the ‘DM torus’, a torus with a trivial gerbe structure, and considered
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actions of DM tori on algebraic stacks. Following the point of view that ‘toric objects’ should be
characterized by torus embeddings and actions, they discuss a geometric characterization of toric
Deligne–Mumford stacks in the sense of [BCS05] by means of smooth Deligne–Mumford stacks
with DM torus embeddings and actions (see [FMN07, Theorem II]). Specifically, the embeddings
and actions of DM tori provide gerbe structures on toric triples, as discussed above.

An older version of this paper was posted on the arXiv server in December 2006, containing
proofs of the main results presented here; [FMN07] appeared on the arXiv in August 2007.

Finally, we discuss the relation of our work to [Per08]. In [Per08], Perroni studied
2-isomorphism classes of all 1-morphisms between toric Deligne–Mumford stacks in the sense
of [BCS05]. The method and description are parallel to those in [Cox95b, § 3]. Let X (Σ) and
X (Σ′) be toric Deligne–Mumford stacks, and suppose that X (Σ) is proper over C. Perroni
gave a description of 2-isomorphism classes of 1-morphisms from X (Σ) to X (Σ′) in terms
of homogeneous polynomials of X (Σ) (for details, see [Per08, § 5]). Assume that Σ and
Σ′ are reduced. If the morphism f̃ : X (Σ)→X (Σ′) associated to a system of homogeneous
polynomials (cf. [Cox95b, Theorem 5.1]) induces a torus-equivariant morphism f :XΣ→XΣ′ ,
then by Corollary 3.7 and 3.8 f̃ is a torus-equivariant morphism. In other words, if (Σ, Σ0)
and (Σ′, Σ

′0) denote framed stacky fans corresponding to Σ and Σ′, respectively, then the
morphism Σ→ Σ′ of fans corresponding to f :XΣ→XΣ′ induces (Σ, Σ0)→ (Σ′, Σ

′0), and
through isomorphisms X(Σ,Σ0)

∼= X (Σ) and X(Σ′,Σ′0)
∼= X (Σ′) the morphism X(Σ,Σ0)→X(Σ′,Σ′0)

associated to (Σ, Σ0)→ (Σ′, Σ
′0) can be identified with f̃ .
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Moc99 S. Mochizuki, Extending families of curves over log regular schemes, J. Reine Angew. Math.

511 (1999), 43–71.
Ols03 M. Olsson, Logarithmic geometry and algebraic stacks, Ann. Sci. École Norm. Sup. 36 (2003),
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