DICKSON POLYNOMIALS OF THE SECOND KIND THAT ARE PERMUTATIONS

STEPHEN D. COHEN

Abstract

It is known that the Dickson polynomial of the second kind $\sum_{i=0}^{[n / 2]}\binom{n-i}{i}(-1)^{i} x^{n-2 i}$ permutes the elements of the finite prime field \mathbb{F}_{p} (p odd) when $n+1 \equiv \pm 2$ to each of the moduli $p, \frac{1}{2}(p-1)$ and $\frac{1}{2}(p+1)$. Based on numerical evidence it has been conjectured that these congruences are necessary for the polynomial to permute \mathbb{F}_{p}. The conjecture is established here by a new method.

1. Introduction. Let \mathbb{F}_{q} denote the finite field of order a prime power $q=p^{k}$. For any positive integer n we shall consider the Dickson polynomial of the second kind (DPSK) $f_{n}(x)$, defined by

$$
\begin{equation*}
f_{n}(x)=\sum_{i=0}^{[n / 2]}\binom{n-i}{i}(-1)^{i} x^{n-2 i}, \tag{1.1}
\end{equation*}
$$

as a polynomial in $\mathbb{F}_{q}[x]$. For properties of DPSK (and a slight generalisation of these) see [2], [3], [4], [6] and [7]. In particular, in his thesis Matthews [6] observed that, if q is odd and n satisfies the system of congruences

$$
\left\{\begin{array}{l}
n+1 \equiv \pm 2(\bmod p), \tag{1.2}\\
n+1 \equiv \pm 2\left(\bmod \frac{1}{2}(q-1)\right), \\
n+1 \equiv \pm 2\left(\bmod \frac{1}{2}(q+1)\right),
\end{array}\right.
$$

then f_{n} is a permutation polynomial (PP) of \mathbb{F}_{q}, i.e. induces a permutation of \mathbb{F}_{q}. Indeed (1.2) implies that $f_{n}(-x)=-f_{n}(x)$ (n is odd) and $f_{n}(x)= \pm x$ for all x in \mathbb{F}_{q}.

Actually, when $p=3$ or 5 and q is composite ($k \geq 2$) there are examples of DPSK f_{n} known which are PP for which (1.2) does not hold; see [3] and [7]. On the other hand, when $q=p$, an odd prime, it has been conjectured in these papers and featured as problem P4 in the list [4] of outstanding unsolved problems that, if f_{n} is a PP of \mathbb{F}_{q}, then necessarily (1.2) holds. The evidence had been almost entirely numerical because DPSK are awkward to treat. But now we are able to prove the conjecture by a new method.

THEOREM 1. Suppose that f_{n} is $a \operatorname{PP}$ of \mathbb{F}_{p}, where p is an odd prime. Then

$$
\left\{\begin{array}{l}
n+1 \equiv \pm 2(\bmod p) \tag{1.3}\\
n+1 \equiv \pm 2\left(\bmod \frac{1}{2}(p-1)\right) \\
n+1 \equiv \pm 2\left(\bmod \frac{1}{2}(p+1)\right) .
\end{array}\right.
$$

The proof of Theorem 1 is theoretical. Nevertheless, in order to complete the argument, it was necessary to compute the resultants of various pairs of polynomials and pay special attention to those primes $p(>5)$ for which these were zero, i.e., the polynomials have a common root in \mathbb{F}_{p}. For this purpose, the number-theoretical package PARI (developed by C. Batut, D. Bernardi, H. Cohen and M. Olivier) was most useful and the awkward prime values eliminated without the need to make a direct check that f_{n} is not a PP of \mathbb{F}_{p} for any pair (p, n) not satisfying (1.3).

Whilst it is a sensible and unanswered question to ask when f_{n} can be a PP of \mathbb{F}_{q} when q is even, we shall assume from now on that q is odd. Further, because a $\operatorname{PP} f_{n}$ of \mathbb{F}_{q} is also a PP of \mathbb{F}_{p}, our results and methods have preliminary consequences for composite odd q. But, in the main, we shall suppose $q=p$, an odd prime.
2. Basic results. As is well-known, in studying DPSK it is illuminating to substitute $x=u+u^{-1}$ in $f_{n}(x)$. Thus, identically,

$$
\begin{align*}
f_{n}\left(u+\frac{1}{u}\right) & =u^{n}+u^{n-2}+u^{n-4}+\cdots+u^{-(n-2)}+u^{-n} \tag{2.1}\\
& =\frac{u^{n+1}-\frac{1}{u^{n+1}}}{u-\frac{1}{u}}, \quad u \neq \pm 1, \tag{2.2}
\end{align*}
$$

while

$$
\begin{equation*}
f_{n}(2)=n+1, \quad f_{n}(-2)=(-1)^{n}(n+1) . \tag{2.3}
\end{equation*}
$$

In the above connection we partition \mathbb{F}_{q} into three sets S_{1}, S_{2}, S_{0} comprising those $x \in \mathbb{F}_{q}$ for which the quadratic character of $x^{2}-4$ in \mathbb{F}_{q} is $+1,-1$ and 0 , respectively. Thus

$$
\begin{gather*}
S_{1}=\left\{x=u+\frac{1}{u}, \text { where } u \in \mathbb{F}_{q} \backslash\{0, \pm 1\}\right\}, \tag{2.4}\\
S_{2}=\left\{x=u+\frac{1}{u}, \text { where } u(\neq \pm 1) \in \mathbb{F}_{q^{2}} \text { and } u^{q+1}=1\right\}, \tag{2.5}\\
S_{3}=\{ \pm 2\} . \tag{2.6}
\end{gather*}
$$

In the subsequent treatment, for $x \in S_{1} \cup S_{2}, u$ will be as described in (2.4) or (2.5) while, if $x \in S_{3}$, we take $u= \pm 1$, respectively. Note that $0 \in S_{1}$ or S_{2} accordingly as $q \equiv 1$ or $-1(\bmod 4)$, respectively, and that $f_{n}(0)=0$.

From now on we assume that f_{n} is a PP of F_{q}, where $q=p^{k}$ is odd. Hence n is odd and $f_{n}(-2)=-(n+1)$ in (2.3). For any divisor d of $q^{2}-1$ we write ζ_{d} for a primitive d-th root of unity (in $\mathbb{F}_{q^{2}}$).

Lemma 2. \quad does does not divide $n+1$.
Proof. If $p \mid n+1$, then, by (2.3), $f_{n}(2)=f_{n}(-2)=0$ which means f cannot be a permutation.

Lemma 3. Let g be the highest common factor of $n+1$ and $q^{2}-1$. Then

$$
g= \begin{cases}2, & \text { if } q \equiv \pm 1(\bmod 8) \\ 2^{s}, s \geq 1, & \text { if } q \equiv \pm 3(\bmod 8)\end{cases}
$$

Proof. Suppose that $d(>1)$ is an odd divisor either of $(n+1, q-1)$ or of $(n+1, q+1)$. Then $x=\zeta_{d}+\zeta_{d}^{-1} \in S_{1}$ or S_{2}, respectively, and, in either case, $f(x)=0$ but $x \neq 0$, by (2.2), a contradiction. Similarly, if $q \equiv \pm 1(\bmod 8), x=\zeta_{8}+\zeta_{8}^{-1}(\neq 0) \in S_{1} \cup S_{2}$ and $4 \mid n+1$, then $\zeta_{8}^{2(n+1)}=1$ and $f_{n}(x)=0$, a contradiction.

Lemma 4. Let h be the highest common factor of $n(n+2)$ and $q^{2}-1$. Then

$$
h= \begin{cases}1, & \text { if } p=3 \\ 3, & \text { otherwise. }\end{cases}
$$

Proof. Suppose $d(>3)$ is a divisor either of $(n, q-1)$ or $(n, q+1)$. (In particular, d is odd). Put $x_{i}=\zeta_{d}^{i}+\zeta_{d}^{-i}, i=1,2$. Then x_{1} and x_{2} both belong to S_{1} or S_{2}, respectively, and are unequal since $d>3$. Moreover, by (2.2), $f_{n}\left(x_{1}\right)=f_{n}\left(x_{2}\right)=1$, a contradiction.

Similarly, if $d(>3)$ is a divisor of $(n+2, q-1)$ or $(n+2, q+1)$ then

$$
f_{n}\left(x_{1}\right)=f_{n}\left(x_{2}\right)=-1, \quad x_{1} \neq x_{2} .
$$

We conclude that $h \mid 3$. On the other hand, if $p \neq 3$, then $3 \mid q^{2}-1$ and hence $3 \nmid n+1$ by Lemma 3; thus $3 \mid n(n+2)$ and $h=3$. The result follows.

From now on we assume that $q=p$ is an odd prime. In fact, if $p=3$, then $3 \not \backslash n+1$ by Lemma 2 and consequently (1.3) holds. We therefore suppose that $p \geq 5$.
3. Proof of first congruence. As noted above, assume that $p(\geq 5)$ is prime. Define $\xi=\zeta_{p-1}, \eta=\zeta_{p+1}$. Then, by (2.4) and (2.5)

$$
\begin{align*}
& S_{1}=\left\{\xi^{i}+\xi^{-i}, 1 \leq i \leq \frac{1}{2}(p-3)\right\}, \tag{3.1}\\
& S_{2}=\left\{\eta^{j}+\eta^{-j}, 1 \leq j \leq \frac{1}{2}(p-1)\right\} . \tag{3.2}
\end{align*}
$$

In particular, if $p \equiv 1(\bmod 4)$, then 0 is the member of S_{1} with $i=(p-1) / 4$ in (3.1), while, if $p \equiv 3(\bmod 4)$, then 0 is the member of S_{2} with $j=(p+1) / 4$ in (3.2).

Lemma 5. $\quad n+1 \equiv \pm 2(\bmod p)$.
Proof. Since f_{n} is a PP of \mathbb{F}_{p} with $f_{n}(0)=0$,

$$
\prod_{x \in \mathbb{F}_{p}} f_{n}(x)=-1,
$$

by Wilson's theorem. Hence, if A is defined to be the product

$$
A=\prod_{\substack{x \in S_{1} \cup S_{2} \\ x \neq 0}} f_{n}(x)
$$

over non-zero members of $S_{1} \cup S_{2}$, then, by (2.3),

$$
\begin{equation*}
A=\frac{1}{f_{n}(2) f_{n}(-2)}=\frac{1}{(n+1)^{2}} \tag{3.3}
\end{equation*}
$$

(which, of course, is consistent with Lemma 2). Now, write

$$
A_{1}=\Pi_{1} \frac{\xi^{i(n+1)}-\xi^{-i(n+1)}}{\xi^{i}-\xi^{-i}}
$$

where Π_{1} signifies a product $\prod_{\substack{(p-3) / 2 \\ i=1 \\(i \neq(p-1) / 4)}}^{\substack{\text { a }}}$ over all i from 1 to $(p-3) / 2$ but excluding $i=(p-1) / 4$ if $p \equiv 1(\bmod 4)$. Similarly, set

$$
A_{2}=\Pi_{2} \frac{\eta^{j(n+1)}-\eta^{-j(n+1)}}{\eta^{j}-\eta^{-j}}
$$

where Π_{2} signifies a product $\prod_{\substack{(p-1) / 2 \\ j=1 \\(\neq(p+1) / 4)}}^{\substack{\text { a }}}$ over all j from 1 to $(p-1) / 2$ but excluding $j=(p+1) / 4$ if $p \equiv 3(\bmod 4)$. Then evidently $A=A_{1} A_{2}$.

We have

$$
\begin{equation*}
A_{1}=\prod_{1} \frac{\xi^{4 i((n+1) / 2)}-1}{\xi^{i n}\left(\xi^{2 i}-1\right)} \tag{3.4}
\end{equation*}
$$

Let $I=\left\{i=1, \ldots, \frac{1}{2}(p-3), i \neq(p-1) / 4\right\}$. As i ranges through $I, \xi^{2 i}$ takes all square values $(\neq 0, \pm 1)$ in \mathbb{F}_{p}. Further, by Lemma 3, the odd part of $\frac{1}{2}(n+1)$ is prime to $p-1$ and indeed $\left(\frac{1}{2}(n+1), p-1\right)=1$ when $p \equiv 1(\bmod 8)$. It follows that, when $p \equiv 1(\bmod 4)$, as i ranges through $I, \xi^{4 i((n+1) / 2)}$ takes all 4-th power values $(\neq 0,1)$ in \mathbb{F}_{p} twice over. On the other hand, when $p \equiv 3(\bmod 4)$, for $i \in I, \xi^{4 i(n+1) / 2)}$ takes all 4-th power values $(\neq 0,1)$ in \mathbb{F}_{p} (which is, incidentally, the same as saying that $\xi^{4 i(n+1) / 2)}$ takes all square values $(\neq 0,1)$ in \mathbb{F}_{p}). In every case

$$
\Pi_{1}\left(\xi^{4 i(n+1) / 2)}-1\right)=\Pi_{1}\left(\xi^{4 i}-1\right)
$$

and, consequently, by (3.4),

$$
\begin{equation*}
A_{1}=\prod_{1}\left(\xi^{2 i}+1\right) / \xi^{i n}=\prod_{1}\left(\xi^{i}+\xi^{-i}\right) / \xi^{i(n-1)} \tag{3.5}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
A_{2}=\prod_{2} \frac{\eta^{4 j((n+1) / 2)}-1}{\eta^{i n}\left(\eta^{2 j}-1\right)} \tag{3.6}
\end{equation*}
$$

Set $J=\left\{j=1, \ldots, \frac{1}{2}(p-1), j \neq(p+1) / 4\right\}$. By comparing the set of squares and 4-th powers $(\neq 0, \pm 1)$ of the set of $(p+1)$-st roots of unity (in $\left.\mathbb{F}_{p^{2}}\right)$ with $\left\{\eta^{2 j}, j \in J\right\}$ and $\left\{\eta^{4 j(n+1) / 2)}, j \in J\right\}$ and using Lemma 3 as before, we deduce analogously to (3.5) that

$$
\begin{equation*}
A_{2}=\prod_{2}\left(\eta^{j}+\eta^{-j}\right) / \eta^{j(n-1)} . \tag{3.7}
\end{equation*}
$$

Combining (3.5) and (3.7), we obtain

$$
\begin{equation*}
A=A_{1} A_{2}=\prod_{\substack{x \in S_{1} \cup S_{2} \\ x \neq 0}} x \prod_{1} \xi^{-i(n-1)} \prod_{2} \eta^{-j(n-1)} \tag{3.8}
\end{equation*}
$$

Suppose $p \equiv 1(\bmod 4)$. Then

$$
\Pi_{2} \eta^{j(n-1)}=\prod_{j=1}^{(p-1) / 2} \eta^{j(n-1)}=\left(\eta^{\frac{p+1}{2}}\right)^{\frac{(n-1)(p-1)}{4}}=1,
$$

since $n-1$ is even and $\eta=\zeta_{p+1}$. Further,

$$
\begin{aligned}
\prod_{1} \xi^{i(n-1)} & =\left\{\prod_{i=1}^{(p-3) / 2} \xi^{i(n-1)}\right\} \xi^{-(n-1)(p-1) / 4} \\
& =\xi^{(p-1)(p-3)(n-1) / 8)-((n-1)(p-1) / 4)}=\left(\xi^{p-1}\right)^{\frac{(n-1)(p-5)}{8}}=1
\end{aligned}
$$

since $\xi=\zeta_{p-1}$ and $8 \mid(n-1)(p-5)$.
A similar calculation is valid when $p \equiv 3(\bmod 4)$. For then

$$
\Pi_{1} \xi^{(n-1)}=\prod_{i=1}^{(p-3) / 2} \xi^{(n-1)}=\left(\xi^{\frac{p-1}{2}}\right)^{\frac{(n-1)-3}{4}}=1
$$

and

$$
\Pi_{2} \eta^{j(n-1)}=\left(\eta^{p+1}\right)^{\frac{(n-1)(p-3)}{8}}=1 .
$$

From (3.8) it follows that in every case

$$
\begin{equation*}
A=\prod_{\substack{x \in S_{1} \cup S_{2} \\ x \neq 0}} x=\frac{1}{4} \tag{3.9}
\end{equation*}
$$

by Wilson's theorem again. Comparing (3.3) and (3.9) we conclude that, in \mathbb{F}_{p},

$$
(n+1)^{2}=4
$$

which is equivalent to $n+1 \equiv \pm 2(\bmod p)$, as required. This completes the proof.
Finally in this section we remark that when $p=5$ or 7, Theorem 1 follows from Lemmas 3 and 5. Hence from now on we assume $p \geq 11$.
4. Normalisation. We continue to assume that f_{n} is a PP of \mathbb{F}_{p}. The motivation for the sequel is the following simple observation (related to the work of Brison [1]).

Lemma 6. Let F_{n} be a function from \mathbb{F}_{p} into itself such that

$$
\begin{equation*}
F_{n}(x)= \pm f_{n}(x) \quad \forall x \in \mathbb{F}_{p} . \tag{4.1}
\end{equation*}
$$

Then, if $p \geq 5$,

$$
\begin{equation*}
\sum_{x \in \mathbb{F}_{p}}\left(F_{n}(x)\right)^{2 r}=0, \quad r=1, \ldots, \frac{1}{2}(p-3) . \tag{4.2}
\end{equation*}
$$

Proof. Since f_{n} is a PP, for any $s=1, \ldots, p-2$, by Lemma 7.3 of [5],

$$
\begin{equation*}
\sum_{x \in \mathbb{F}_{p}}\left(f_{n}(x)\right)^{s}=\sum_{x \in \mathbb{F}_{p}} x^{s}=0 . \tag{4.3}
\end{equation*}
$$

In particular, taking $s=2 r, r=1, \ldots, \frac{1}{2}(p-3)$ in (4.3), we see that (4.2) holds with $F_{n}=f_{n}$. But for any F_{n} satisfying the hypothesis, $\left(F_{n}(x)\right)^{2 r}=\left(f_{n}(x)\right)^{2 r}$ and the result follows.

Now set $N=n+1$. The restriction that $p \geq 11$ comes into play in the next result.
Lemma 7. Suppose $p \geq 11$. Then

$$
\begin{aligned}
& N \not \equiv 0, \pm 1\left(\bmod \frac{1}{2}(p-1)\right), \\
& N \not \equiv 0, \pm 1\left(\bmod \frac{1}{2}(p+1)\right) .
\end{aligned}
$$

In fact, if $p \equiv 1(\bmod 4)$, then $(p-1) / 4$ does not divide N, and, if $p \equiv 3(\bmod 4)$, then $(p+1) / 4$ does not divide N.

Proof. If $p \equiv 1(\bmod 4)$, then, by Lemma $3,((p-1) / 4, N)$ divides 2 and $\left(\frac{1}{2}(p+1), N\right)=1$. Thus, since $p \neq 5$ or $9,(p-1) / 4 \not \backslash N$ and $\frac{1}{2}(p+1) \not \backslash N$. Similarly, if $p \equiv 3(\bmod 4)$, then $\left(\frac{1}{2}(p-1), N\right)=1$ and $((p+1) / 4, N)$ divides 2 ; thus $\frac{1}{2}(p-1) \not \backslash N$ and $(p+1) / 4 \not \backslash N$ because $p \neq 3,7$.

Suppose $N \equiv \pm 1\left(\bmod \frac{1}{2}(p-1)\right)$. Then $\left.\frac{1}{2}(p-1) \right\rvert\, n(n+2)$ and hence, by Lemma 4, $\left.\frac{1}{2}(p-1) \right\rvert\, 3$. This is impossible because $p \neq 3,7$. Similarly, $N \equiv \pm 1\left(\bmod \frac{1}{2}(p+1)\right)$ implies $\left.\frac{1}{2}(p+1) \right\rvert\, 3$ which fails because $p \neq 1,5$. This completes the proof.

Next, for $p \geq 11$, by Lemma 7, we may define unique integers M, L by

$$
\begin{align*}
N & \equiv \pm M\left(\bmod \frac{1}{2}(p-1)\right), \quad 2 \leq M \leq(p-3) / 4 \tag{4.4}\\
N & \equiv \pm L\left(\bmod \frac{1}{2}(p+1)\right), \quad 2 \leq L \leq(p-1) / 4 \tag{4.5}
\end{align*}
$$

Granted Lemma 5, it is evident that Theorem 1 is equivalent to the assertion that

$$
\begin{equation*}
M=L=2 \tag{4.6}
\end{equation*}
$$

We now relate these last definitions to Lemma 6.
Set $m=M-1$, where $1 \leq m \leq(p-7) / 4$, and $\ell=L-1$, where $1 \leq \ell \leq(p-5) / 4$. (Note that m and ℓ may be even or odd). Define a mapping F_{n} from \mathbb{F}_{p} into itself by

$$
F_{n}(x)= \begin{cases}f_{m}(x), & x \in S_{1}, \tag{4.7}\\ f_{\ell}(x), & x \in S_{2}, \\ x, & x \in S_{0}\end{cases}
$$

Lemma 8. For F_{n} defined by (4.7), (4.1) holds.
Proof. By Lemma 5,

$$
F_{n}(x)= \pm f_{n}(x), \quad x \in S_{0}
$$

Suppose $x=u+u^{-1} \in S_{1}$, where $u^{p-1}=1$. From (4.4)

$$
N \equiv \frac{1}{2} \delta(p-1) \pm M(\bmod (p-1)), \quad \delta=0 \text { or } 1
$$

Then

$$
f_{n}^{2}(x)=\left(\frac{u^{N}-u^{-N}}{u-u^{-1}}\right)^{2}=\left(\frac{u^{ \pm M}-u^{\mp M}}{u-u^{-1}}\right)^{2}=f_{m}^{2}(x),
$$

since $u^{\delta(p-1) / 2}=u^{-\delta(p-1) / 2}= \pm 1$. Thus

$$
F_{n}^{2}(x)=f_{m}^{2}(x), \quad x \in S_{1} .
$$

Similarly, if $x=u+u^{-1} \in S_{2}$, where $u^{p+1}=1$, we see from (4.5) that

$$
N \equiv \frac{1}{2} \varepsilon(p-1) \pm L(\bmod (p+1)), \quad \varepsilon=0 \text { or } 1,
$$

and hence

$$
f_{n}^{2}(x)=\left(\frac{u^{ \pm L}-u^{\mp L}}{u-u^{-1}}\right)^{2}=f_{\ell}^{2}(x)
$$

since $u^{\varepsilon(p+1) / 2}=u^{-\varepsilon(p+1) / 2}= \pm 1$. Thus

$$
F_{n}^{2}(x)=f_{n}^{2}(x), \quad x \in S_{2},
$$

and the result follows.
Lemma 9. Let $\xi=\zeta_{p-1}, \eta=\zeta_{p+1}$. Then, for each $r=1, \ldots, \frac{1}{2}(p-3)$,

$$
\begin{equation*}
\sum_{i=0}^{p-2}\left[f_{m}\left(\xi^{i}+\xi^{-i}\right)\right]^{2 r}+\sum_{j=0}^{p}\left[f_{\ell}\left(\eta^{j}+\eta^{-j}\right)\right]^{2 r}+2^{2 r+2}=2\left(M^{2 r}+L^{2 r}\right) . \tag{4.8}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\sum_{i=0}^{p-2}\left[f_{m}\left(\xi^{i}+\xi^{-i}\right)^{2 r}\right] & =\sum_{\substack{i=1 \\
i \neq(p-1) / 2}}^{p-2}\left[f_{m}\left(\xi^{i}+\xi^{-i}\right)^{2 r}\right]+\left[f_{m}(2)\right]^{2 r}+\left[f_{m}(-2)\right]^{2 r} \\
& =2 \sum_{x \in S_{1}}\left[f_{m}(x)\right]^{2 r}+2 M^{2 r} .
\end{aligned}
$$

Similarly,

$$
\sum_{j=0}^{p}\left[f_{\ell}\left(\eta^{j}+\eta^{-j}\right)\right]^{2 r}=2 \sum_{x \in S_{2}}\left[f_{\ell}(x)\right]^{2 r}+2 L^{2 r}
$$

On the other hand, by Lemmas 6 and 8 and the definition (4.7) we have

$$
\sum_{x \in S_{1}}\left[f_{m}(x)\right]^{2 r}+\sum_{x \in S_{2}}\left[f_{\ell}(x)\right]^{2 r}+2^{2 r+1}=0
$$

and the result follows.
The virtue of (4.8) is that we may expand $\left[f_{t}\left(z+z^{-1}\right)\right]^{2 r}(t=m$ or $\ell)$, by means of (2.1), in powers of z (positive and negative) and use the facts that ξ and η generate cyclic groups in the following form (as in Lemma 7.3 of [5]).

Lemma 10. For any integer s

$$
\begin{aligned}
& \sum_{i=0}^{p-2} \xi^{i s}= \begin{cases}0, & \text { if }(p-1) \nmid s, \\
-1, & \text { if }(p-1) \mid s ;\end{cases} \\
& \sum_{j=0}^{p} \eta^{j s}= \begin{cases}0, & \text { if }(p+1) \nmid s, \\
+1, & \text { if }(p+1) \mid s .\end{cases}
\end{aligned}
$$

5. First deductions. Let D be the difference $D=M-L$ and P the product $P=M L$. To prove (4.6) (and hence Theorem 1) it suffices to show that $D=0$ and $P=4$ as members of \mathbb{F}_{p}. (Note that $M \neq-2$ in \mathbb{F}_{p} since otherwise $p-2 \leq(p-3) / 4$, by (4.4)). In this section we shall study the consequences of selecting $r=1$ or 2 in Lemma 9.

First suppose $r=1$. Then (4.8) can be written

$$
\begin{equation*}
\sum_{i=0}^{p-2} f_{m}^{2}\left(\xi^{i}+\xi^{-i}\right)+\sum_{j=0}^{p} f_{\ell}^{2}\left(\eta^{j}+\eta^{-j}\right)+16=2\left(M^{2}+L^{2}\right) \tag{5.1}
\end{equation*}
$$

Expand $f_{t}^{2}\left(z+z^{-1}\right)(t=m, \ell)$ by (2.1) to obtain

$$
\begin{equation*}
f_{t}^{2}\left(z+z^{-1}\right)=z^{2 t}+2 z^{2(t-1)}+\cdots+t z^{2}+(t+1)+t z^{-2}+\cdots+z^{-2 t} . \tag{5.2}
\end{equation*}
$$

Since $2 m \leq(p-7) / 2<p-1$ and $2 \ell \leq(p-5) / 2<p+1$, it follows from Lemma 10 that when (5.2) is substituted in (5.1) (with $t=m$ and $z=\xi$ and with $t=\ell$ and $z=\eta$) only the constant term yields a non-zero contribution to the sums on the left side of (5.1). Specifically, we obtain, as an equation in \mathbb{F}_{p},

$$
-M+L+16=2\left(M^{2}+L^{2}\right)
$$

which may be written

$$
\begin{equation*}
M^{2}+L^{2}+\frac{1}{2}(M-L)=8 \tag{5.3}
\end{equation*}
$$

or

$$
(4 M+1)^{2}+(4 L-1)^{2}=130,
$$

or, as a relation in \mathbb{F}_{p} between P and D,

$$
\begin{equation*}
P=4-\frac{D}{4}-\frac{D^{2}}{2} . \tag{5.4}
\end{equation*}
$$

Now take $r=2$ in (4.8): this produces

$$
\begin{equation*}
\sum_{i=0}^{p-2} f_{m}^{4}\left(\xi^{i}+\xi^{-i}\right)+\sum_{j=0}^{p} f_{\ell}^{4}\left(\eta^{j}+\eta^{-j}\right)+64=2\left(M^{4}+L^{4}\right) \tag{5.5}
\end{equation*}
$$

Square (5.2) to obtain

$$
\begin{equation*}
f_{t}^{4}\left(z+z^{-1}\right)=z^{4 t}+4 z^{4 t-2}+\cdots+c+\cdots+z^{-4 t} \tag{5.6}
\end{equation*}
$$

where

$$
\begin{aligned}
c & =2\left(1^{2}+2^{2}+\cdots+t^{2}\right)+(t+1)^{2} \\
& =\frac{T\left(2 T^{2}+1\right)}{3}, \quad T=t+1 .
\end{aligned}
$$

Since $4 m \leq p-7<p-1$ and $4 \ell \leq p-5<p+1$, we again need only take account of the constant term in (5.6) when substituting in (5.5). Accordingly, by Lemma 10 , in \mathbb{F}_{p} we have

$$
\begin{equation*}
M^{4}+L^{4}+\frac{M^{3}-L^{3}}{3}+\frac{M-L}{6}=32 \tag{5.7}
\end{equation*}
$$

in terms of D and P this becomes

$$
\begin{equation*}
D^{4}+4 P D^{2}+2 P^{2}+\frac{D^{3}}{3}+P D+\frac{D}{6}=32 \tag{5.8}
\end{equation*}
$$

Eliminating P from (5.8) by means of (5.4) we deduce that

$$
12 D^{4}+16 D^{3}-189 D^{2}-4 D=0
$$

Hence either $D=0$ (so that, from (5.4), $P=4$ and we are finished) or, as an equation in \mathbb{F}_{p},

$$
\begin{equation*}
12 D^{3}+16 D^{2}-189 D-4=0 \tag{5.9}
\end{equation*}
$$

If (5.9) is insoluble in \mathbb{F}_{p} the proof is complete. Obviously, however, for infinitely many primes p, (5.9) has a solution in \mathbb{F}_{p}. Thus we require also to investigate (4.8) when $r=3$. The details follow in the next section.
6. Further working. Since $p \geq 11$ we may take $r=3$ in Lemma 9. The algebraic manipulation, however, becomes considerably greater. Moreover, the normalisation of Section 4 no longer guarantees that we need only have regard for the constant term in the expansion of f_{t}^{6}; the coefficient of $z^{ \pm(p \pm 1)}$ may also be significant. Nevertheless, with some effort, we are able to show that no further values of r are required to ensure that $D=0$. We proceed with the details.

When $r=3$, (4.8) becomes

$$
\begin{equation*}
\sum_{i=0}^{p-2} f_{m}^{6}\left(\xi^{i}+\xi^{-i}\right)+\sum_{j=0}^{p} f_{\ell}^{6}\left(\eta^{j}+\eta^{-j}\right)+256=2\left(M^{6}+L^{6}\right) \tag{6.1}
\end{equation*}
$$

We require some facts on the expansion of $f_{t}^{6}\left(z+z^{-1}\right)$.
LEMMA 11. For any non-negative even integer $j \leq 6 t \operatorname{let} c_{j}$ denote the coefficient of $z^{j}\left(\right.$ or of $\left.z^{-j}\right)$ in the expansion of $f_{t}^{6}\left(z+z^{-1}\right)$. Then

$$
\begin{equation*}
c_{0}=\frac{T\left(11 T^{4}+5 T^{2}+4\right)}{20}, \quad T=t+1 \tag{6.2}
\end{equation*}
$$

Further, if $j \geq 4 t$ and $J=\frac{1}{2}(6 t-j)$, then

$$
\begin{equation*}
c_{j}=\frac{(J+1)(J+2)(J+3)(J+4)(J+5)}{120}=\binom{J+5}{5} \tag{6.3}
\end{equation*}
$$

Proof. Cube (5.2). The constant term arises from products

$$
(a+1)(b+1) z^{4 t-2(a+b)} \cdot(c+1) z^{-(2 t-2 c)}, \quad 0 \leq a, b, c \leq t
$$

where $4 t-2(a+b)-2 t+2 c=0$ (i.e. $c=a+b-t)$ together with those obtained by substituting z^{-1} for z. This yields

$$
c_{0}=6 \sum_{\substack{0 \leq a, b \leq t \\ a+b \geq t}}(a+1)(b+1)(a+b-t+1)-6 \sum_{a=0}^{t}(a+1)^{2}(t+1)+(t+1)^{3}
$$

and leads to (6.2) with some calculation. (The reader might care to verify a few cases by means of computer algebra, for example).

For (6.3) the restriction that $j \geq 4 t$ means that all relevant terms are products

$$
(a+1)(b+1)(c+1) a^{6 t-2(a+b+c)}, \quad 0 \leq a, b, c \leq t
$$

where $j=6 t-2(a+b+c)$. Thus

$$
c_{j}=\sum_{\substack{0 \leq a, b, c \leq t \\ a+b+c=J}}(a+1)(b+1)(c+1)
$$

which leads to (6.3) after further calculation.
In a discussion of (6.1), if $m<(p-1) / 6$ and $\ell<(p+1) / 6$ (i.e. $M<(p+5) / 6$ and $L<(p+7) / 6$), only the constant terms in $f_{t}^{6}\left(z+z^{-1}\right), t=m, \ell$, matter. We deal with this situation in case (i) below. When other values of $M(\leq(p-3) / 4)$ or L $(\leq(p-1) / 4)$ are involved (as permitted by (4.4) and (4.5)) we also need to take into account the coefficients of $z^{ \pm(p-1)}$ and/or of $z^{ \pm(p+1)}$, respectively. This occurs in cases (ii) and (iii).

CASE (i). $m<(p-1) / 6, \ell<(p+1) / 6$.
In this case, by Lemma 10 and (6.2), (6.1) yields

$$
\begin{equation*}
M^{6}+L^{6}+\frac{1}{2}\left\{\frac{M\left(11 M^{4}+5 M^{2}+4\right)}{20}-\frac{L\left(11 L^{4}+5 L^{2}+4\right)}{20}\right\}=128 \tag{6.4}
\end{equation*}
$$

Plainly (6.4) can be written as a polynomial relation (of degree 6 in D). Eliminating P by means of (5.4) we derive a polynomial in D of degree 6 and zero constant term. Specifically, this shows that either $D=0$ or

$$
\begin{equation*}
960 D^{5}+1564 D^{4}-18560 D^{3}-10435 D^{2}+60220 D+2816=0 \tag{6.5}
\end{equation*}
$$

(after multiplication by -640 to make the coefficients integral). (Again this could be checked by computer algebra).

The proof is therefore complete in this case unless p is a prime for which the polynomials in (5.9) and (6.5) have a common root D. In fact, by means of the package PARI, we calculated this resultant to be

$$
17,921,557,947,801,600=2^{13} \cdot 3^{2} \cdot 5^{2} \cdot 5569 \cdot 1,745,927
$$

(its prime decomposition). Thus there is a common root when $p(\geq 11)=p_{1}=5569$ or $p_{2}=1,745,927$.

Suppose $p=p_{1}$. Again using PARI we found the common root to be $D=14$ (or -5555 if, as positive integers, $M<L$) so that (as a member of \mathbb{F}_{p}), $P=2687$. Hence $D^{2}+4 P=(M+L)^{2}=5375$ in \mathbb{F}_{p}. But 5375 is a non-square in $F_{p_{1}}$. Hence integers M, L do not exist with $(M+L)^{2}=5375$ (in \mathbb{F}_{p}). Thus no exceptional $\operatorname{PP} f_{n}$ arises in this way.

The possibility that $p=p_{2}$ can be discarded in similar fashion. In this case the common root is $D=94,134$ which means that, in $\mathbb{F}_{p}, P=1,407,182$ and $D^{2}+4 P=$ $(M+L)^{2}=1,021,378$, a non-square in $\mathbb{F}_{p_{2}}$. This completes case (i).

CASE (ii). $(p-1) / 6 \leq m \leq(p-7) / 4,(p+1) / 6 \leq \ell \leq(p-5) / 4$. (Hence $p \geq 17)$.
By Lemma 10, (4.8) with $r=3$ now yields

$$
\begin{equation*}
M^{6}+L^{6}+\frac{1}{2}\left(c_{0}(m)-c_{0}(\ell)\right)+c_{p-1}(m)-c_{p+1}(\ell)=128 \tag{6.6}
\end{equation*}
$$

where $c_{j}(t)$ is the coefficient of z^{j} (and of z^{-j}) in $f_{t}^{6}\left(z+z^{-1}\right)$. In deriving (6.4) in case (i) the term $c_{p-1}(m)-c_{p+1}(\ell)$ was zero, but in this case, by (6.3) we have

$$
\begin{equation*}
120 c_{p-1}(m)=\left(3 M-\frac{3}{2}\right)\left(3 M-\frac{1}{2}\right)\left(3 M+\frac{1}{2}\right)\left(3 M+\frac{3}{2}\right)\left(3 M+\frac{5}{2}\right) \tag{6.7}
\end{equation*}
$$

and

$$
\begin{equation*}
120 c_{p+1}(\ell)=\left(3 L-\frac{5}{2}\right)\left(3 L-\frac{3}{2}\right)\left(3 L-\frac{1}{2}\right)\left(3 L+\frac{1}{2}\right)\left(3 L+\frac{3}{2}\right) . \tag{6.8}
\end{equation*}
$$

It follows that there is a polynomial $G(x)$ (where $1920 G$ has integral coefficients) such that the difference $c_{p-1}(m)-c_{p+1}(\ell)$ has the form

$$
3\left(M G\left(M^{2}\right)-L G\left(L^{2}\right)\right)+\frac{5}{2}\left(G\left(M^{2}\right)+G\left(L^{2}\right)\right)
$$

and so can be expressed as a polynomial in D and P. When this is calculated explicitly, multiplied by -640 and added to D times the left hand side of (6.5), we deduce from (6.6) that D satisfies (over \mathbb{F}_{p}) the sextic
(6.9) $960 D^{6}+1888 D^{5}-18560 D^{4}-11200 D^{3}+72640 D^{2}+92203 D-32175=0$.

Note that, this time, since $p \geq 17$, (6.9) does not allow the conclusion $D=0$. Indeed, the proof is complete in this case unless p is a prime for which the polynomials in (5.9) and (6.9) have a common root D. Their resultant is

$$
40,096,467,800,319,150,683,136 \quad\left(=4.0 \cdots \times 10^{22}\right)
$$

which has prime decomposition

$$
2^{10} \cdot 3^{2} \cdot 29 \cdot 4217 \cdot 6709 \cdot 5,302,787,933=2^{10} \cdot 3^{2} p_{1} p_{2} p_{3} p_{4}
$$

say, where $p_{1}(=29), \ldots, p_{4}$ are the remaining primes (in increasing order). By further use of PARI we calculate that the common root D in the four cases is

$$
\left\{\begin{array}{l}
D=6 \text { in } \mathbb{F}_{p_{1}}, \tag{6.10}\\
D=2333 \text { in } \mathbb{F}_{p_{2}}, \\
D=1592 \text { in } \mathbb{F}_{p_{3}}, \\
D=4,295,621,420 \text { in } \mathbb{F}_{p_{4}} .
\end{array}\right.
$$

When, for example, $p=p_{1}$, this means that $D=6$ if the integer M exceeds L and $D=-23$ if M is less than L and similarly in the other cases. On the other hand, the range of values assumed by m and ℓ in this case implies that $|m-\ell|=|M-L|=$ $|D|<p / 12$. Yet, in each case in (6.10), the positive integers D and $p_{j}-D$ both exceed $p_{j} / 12, j=1, \ldots, 4$. We conclude that for no prime p does (5.9) and (6.9) have a common root with the corresponding m, ℓ in the indicated ranges. Hence the proof in this case is complete.

CASE (iii). (a) $(p-1) / 6 \leq m \leq(p-7) / 4, \ell<(p+1) / 6(p \geq 19)$, or
(b) $m<(p-1) / 6,(p+1) / 6 \leq \ell \leq(p-5) / 4(p \geq 17)$.

This time, in addition to the cubic equation (5.9) satisfied by D over \mathbb{F}_{p}, the condition derived from (4.8) with $r=3$ analogous to (6.5) or (6.9) naturally involves M or L as well as D; it is not easy to eliminate explicitly M or L. Accordingly we define the non-zero integer Q by

$$
Q= \begin{cases}M, & \text { if (a) holds } \\ -L, & \text { if (b) holds. }\end{cases}
$$

Then certainly (since we can assume $D \neq 0$)

$$
\begin{cases}0<D<Q<p / 4, & \text { if (a) holds }, \\ -p / 4<Q<D<0, & \text { if (b) holds. }\end{cases}
$$

In this case (4.8) with $r=3$ implies that an equation like (6.6) is valid except that the term $-c_{p+1}(\ell)$ is omitted when (a) holds and the term $c_{p-1}(m)$ is omitted when (b) holds. Further we see from (6.7) and (6.8) that the term $c_{p-1}(m)$ or $-c_{p+1}(\ell)$ (respectively) which remains takes the form

$$
\left\{\left(3 Q-\frac{3}{2}\right)\left(3 Q-\frac{1}{2}\right)\left(3 Q+\frac{1}{2}\right)\left(3 Q+\frac{3}{2}\right)\left(3 Q+\frac{5}{2}\right)\right\} / 120
$$

in either case. Multiplying through by 1280 , we derive (in analogy to (6.9)) the equation

$$
\begin{equation*}
f(Q, D)=0 \tag{6.12}
\end{equation*}
$$

over \mathbb{F}_{p}, where

$$
\begin{aligned}
f(Q, D)= & 2592 Q^{5}+2160 Q^{4}-720 Q^{3}-600 Q^{2}+18 Q+15 \\
& -\left(1920 D^{6}+3128 D^{5}-37120 D^{4}-20870 D^{3}+120440 D^{2}+5632 D\right)
\end{aligned}
$$

Moreover,

$$
4 Q^{2}-4 Q D=4 P=16-D-2 D^{2}
$$

by (5.4). Hence in \mathbb{F}_{p},

$$
\begin{equation*}
g(Q, D)=0, \tag{6.13}
\end{equation*}
$$

where

$$
g(Q, D)=4 Q^{2}-4 Q D+2 D^{2}+D-16 .
$$

For reference we also write the trinomial equation (5.9) as

$$
h(D)=0 .
$$

Suppose there are integers $D=D_{0}, Q=Q_{0}$ (subject to (6.11)) satisfying (5.9), (6.12) and (6.13). Then $f\left(Q, D_{0}\right)$ and $g\left(Q, D_{0}\right)$ have a common root in \mathbb{F}_{p}, namely $Q=Q_{0}$. Thus the resultant of f and g as polynomials in Q with coefficients in $\mathbb{F}_{p}[D]$ (which resultant is a polynomial in D), itself has a root $D=D_{0}$. Now, very conveniently, PARI could calculate the resultant of f and g as $R(D)$, where

$$
\begin{aligned}
& R(D)=3774873600 D^{12}+13573816320 D^{11}-131528622080 D^{10} \\
&-340313128960 D^{9}+1704016117760 D^{8}+2064134430720 D^{7} \\
&-9471958415360 D^{6}+1591540812800 D^{5}+21370601518080 D^{4} \\
&-22233526876160 D^{3}-6079909376000 D^{2}+2590552673280 D \\
&-5045962521600 .
\end{aligned}
$$

Next, since the polynomials h and R have a common root $D=D_{0}$ in \mathbb{F}_{p}, their resultant must be zero in the field. Again PARI was sufficient to calculate this resultant (ignoring its sign) as

$$
13,117,496,913,601,213,844,923,052,653,971,935,231,744,566,886,400,000,
$$

a number with 53 digits and prime decomposition

$$
2^{49} 3^{6} 5^{5} 11 p_{1} p_{2} p_{3}
$$

where

$$
p_{1}=31, p_{2}=424,928,167, p_{3}=70,588,464,402,288,705,233 .
$$

From the above, the proof is complete unless $p=p_{1}, p_{2}$ or p_{3}. We treat each of these in turn beginning with a calculation of D_{0}. First, when $p=p_{1}=31$ then $D_{0}=9$ and neither possibility indicated in (6.11) can hold. Next, when $p=p_{2}$

$$
D_{0}=380,858,452=-44,069,715,
$$

which (by (6.11)) means that $D<0$, i.e. (b) holds and $Q=-L$. Further, the roots L of $f\left(-L, D_{0}\right)$ in \mathbb{F}_{p} are $124,277,976$ and $424,928,167$ neither of which yields a value of L compatible with (b). Finally, when $p=p_{3}$,

$$
D_{0}=55,163,881,953,837,280,929
$$

which again is consistent with (6.11) only if (b) holds and $Q=-L$. In fact, the common root of $f\left(Q, D_{0}\right)$ and $g\left(Q, D_{0}\right)$ was calculated to be

$$
Q=-L=1,763,423,151,823,514,026,
$$

which, of course, can only lead to a value of L outside the permitted range.
In summary, we see from the above that there are no "freak" values of p and n for which (4.2) holds for $r \leq 3$. Had there been, while, in principle, it would have been possible to use (4.8) with $r=4$, in practice it would have been a daunting task to accomplish this even for a particular n and prime p (of the order of p_{3} above, say). Thus, with some relief, we can say that the proof of the conjecture is complete.

References

1. O. J. Brison, On group permutation polynomials, Portugal. Math. 50(1993), 365-383.
2. M. Fried and R. Lidl, On Dickson polynomials and Rédei functions, Proc. Salzburg Conf., Contributions to General Algebra 5, Springer-Verlag Hölder-Pichler-Tempsky, Wien, 1987, 139-149.
3. N. S. James and R. Lidl, Permutation polynomials on matrices, Linear Algebra Appl. 96(1987), 181-190.
4. R. Lidl and G. L. Mullen, When does a polynomial over a finite field permute the elements of the field?, Amer. Math. Monthly 95(1988), 243-246.
5. R. Lidl and H. Niederreiter, Finite Fields, Encyclo. Math. Appls. 20, Addison-Wesley, Reading, Massachusetts, 1983.
6. R. W. Matthews, Permutation polynomials in one and several variables, Ph.D. Dissertation, University of Tasmania, 1982.
7. G. L. Mullen, Dickson polynomials over finite fields, Adv. in Math. (Beijing) 20(1991), 24-32.

Department of Mathematics
University of Glasgow
Glasgow G12 8QW
Scotland

