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DICKSON POLYNOMIALS OF THE SECOND KIND 
THAT ARE PERMUTATIONS 

STEPHEN D. COHEN 

ABSTRACT. It is known that the Dickson polynomial of the second kind 
E,-=o (^~il)(—^)l^l~21 permutes the elements of the finite prime field ¥p (p odd) when 
n + 1 = ±2 to each of the moduli p, \{p — 1) and \{p+\). Based on numerical evi
dence it has been conjectured that these congruences are necessary for the polynomial 
to permute F^. The conjecture is established here by a new method. 

1. Introduction. Let F^ denote the finite field of order a prime power q = pk. 
For any positive integer n we shall consider the Dickson polynomial of the second kind 
(DPSK)/W(JC), defined by 

[n/2] / A . 

a i ) /»(*)= E ( . Vi)1**-21, 

as a polynomial in ¥q[x]. For properties of DPSK (and a slight generalisation of these) 
see [2], [3], [4], [6] and [7]. In particular, in his thesis Matthews [6] observed that, if q 
is odd and n satisfies the system of congruences 

f n + 1 = ±2 (mod/?), 
(1.2) J n + l = ± 2 ( m o d £ t e - l ) ) , 

\n + \ EE ±2 (mod ±(#+1)), 

then/„ is a permutation polynomial (PP) of F^, i.e. induces a permutation of ¥q. Indeed 
(1.2) implies that/„(— x) = —fn(x) (n is odd) and/„(x) = ±x for all x in ¥q. 

Actually, when p = 3 or 5 and q is composite (k > 2) there are examples of DPSK 
fn known which are PP for which (1.2) does not hold; see [3] and [7]. On the other 
hand, when q = p, an odd prime, it has been conjectured in these papers and featured as 
problem P4 in the list [4] of outstanding unsolved problems that, if/n is a PP of ¥q, then 
necessarily (1.2) holds. The evidence had been almost entirely numerical because DPSK 
are awkward to treat. But now we are able to prove the conjecture by a new method. 

THEOREM 1. Suppose thatfn is a PP of ¥p, where p is an odd prime. Then 

f n + 1 = ±2 (mod/?), 
(1.3) \ / t+ l = ±2 (mod£(p - l ) ) , 

[w + 1 = ±2(mod£0?+l)). 
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226 STEPHEN D. COHEN 

The proof of Theorem 1 is theoretical. Nevertheless, in order to complete the argu
ment, it was necessary to compute the resultants of various pairs of polynomials and pay 
special attention to those primes p (> 5) for which these were zero, i.e., the polynomi
als have a common root in F^. For this purpose, the number-theoretical package PARI 
(developed by C. Batut, D. Bernardi, H. Cohen and M. Olivier) was most useful and the 
awkward prime values eliminated without the need to make a direct check that/„ is not 
a PP of Vp for any pair (p, n) not satisfying (1.3). 

Whilst it is a sensible and unanswered question to ask when/n can be a PP of F^ when 
q is even, we shall assume from now on that q is odd. Further, because a PPfn of F^ is 
also a PP of ¥p, our results and methods have preliminary consequences for composite 
odd q. But, in the main, we shall suppose q — p, an odd prime. 

2. Basic results. As is well-known, in studying DPSK it is illuminating to substitute 
x = u + iTx mfn{x). Thus, identically, 

u11 + un-2 + un'4 + • • • + u'{n-2) + u'n 

while 

(2.3) /„(2) = n + l, /„(-2) = ( - l ) , , (n+l ) . 

In the above connection we partition F^ into three sets S\, 52, So comprising those x G F^ 
for which the quadratic character of x2 — 4 in F^ is +1, — 1 and 0, respectively. Thus 

(2.4) S{ 

(2.5) 52 - [x 

(2.6) 

In the subsequent treatment, for x G S\ U52, u will be as described in (2.4) or (2.5) while, 
if x G 53, we take u = ±1 , respectively. Note that 0 G S\ or 52 accordingly as q = 1 or 
— 1 (mod 4), respectively, and that/n(0) = 0. 

From now on we assume thatfn is a PP of Fq, where q = pk is odd. Hence n is odd 
and/„(—2) = —{n + 1) in (2.3). For any divisor d of q2 — 1 we write Q for a primitive 
d-th root of unity (in F^). 

LEMMA 2. p does does not divide n + 1. 

PROOF. lip\n + 1, then, by (2.3),/„(2) = fn(—2) = 0 which means/ cannot be a 
permutation. 

(2.1) 

(2.2) 

/„(« + - ] = 

x = u + -, where u G F^ \ {0, ±1} , 

r̂e u (^ ±1) 

53 = {±2}. 

u + - , where u (^ ±1) G ¥q2 and w^+1 = 1 ], 
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LEMMA 3. Let g be the highest common factor ofn + 1 and q2 — 1. Then 

2, ifq = ±l(mod&), 
2s

9s>l, ifq = ±3 (mod8). 

PROOF. Suppose that d (> 1 ) is an odd divisor either of («+1, g — 1 ) or of («+1, #+1 ). 
Then JC = £/ + Ql G 5i or 52, respectively, and, in either case,/(jc) = 0 but* ^ 0, by 
(2.2), a contradiction. Similarly, if q = ±1 (mod 8), x = <g + C%\^ 0) G 5j U 52 and 
4 | /i + 1, then ^ (n+1) = 1 and/n(jc) = 0, a contradiction. 

LEMMA 4. L̂ ^ h be the highest common factor ofn(n + 2) and q2 — 1. TTien 

3, otherwise. 

PROOF. Suppose <i (> 3) is a divisor either of (n, q — 1) or (n, q + 1). (In particular, 
J is odd). Put xi = Çj + (J', / = 1,2. Then xj and X2 both belong to S\ or 52, respectively, 
and are unequal since d > 3. Moreover, by (2.2),/„(;ci) =fn(x2) = 1, a contradiction. 

Similarly, if J (> 3) is a divisor of (n + 2, g — 1) or (n + 2, g + 1) then 

fn(X\) =fn(.X2) = - 1 , *1 7^ *2-

We conclude that h | 3. On the other hand, if p ^ 3, then 3 | q2 — 1 and hence 3 / n+1 
by Lemma 3; thus 3 | n(n + 2) and /i = 3. The result follows. 

From now on we assume that q = /? is an odd prime. In fact, if/? = 3, then 3 / n + 1 
by Lemma 2 and consequently (1.3) holds. We therefore suppose that/? > 5. 

3. Proof of first congruence. As noted above, assume that p (> 5) is prime. Define 
Z = Cp-u

,n= Ç,+i. Then, by (2.4) and (2.5) 

(3.1) 5, = ( r + n i < K ^ - 3 ) 

(3.2) S2= {T/ + T T U < 7 < ^ ( P - 1 ) } . 

In particular, if p = l(mod4), then 0 is the member of S\ with i = (p — l ) /4 in (3.1), 
while, if p = 3(mod4), then 0 is the member of 52 withy = (p + l ) /4 in (3.2). 

LEMMA5. n+\ = ±2 (mod/?). 

PROOF. Since fn is a PP of ¥p with/w(0) = 0, 

UMx) = -l, 

by Wilson's theorem. Hence, if A is defined to be the product 

A= EI fn(x) 
x£Si US2 

x^O 
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228 STEPHEN D. COHEN 

over non-zero members of S\ U 52, then, by (2.3), 

1 1 
(3.3) 

fn(2)fn(-2) (rc+1)2 

(which, of course, is consistent with Lemma 2). Now, write 

ùi(n+\) __ ù-i(n+\) 

Al = III 
e' - t-> 

where rii signifies a product n tL\ o v e r a il * fr°m 1 to (/? — 3)/2 but excluding 
(iy(p-u/4) 

i = (p— l ) /4 if/? = 1 (mod4). Similarly, set 

r>/(«+l) _ n-Kn+l) 

M = U2-————> 

where Y[2 signifies a product n^~ j=\ o v e r a ^7 fr°m 1 to (/? — l ) /2 but excluding 
0V(P+D/4) 

j={p+ l ) /4 if/? = 3 (mod 4). Then evidently A = AiA2. 
We have 

Mi((n+l)/2) _ i 

(3-4> Ai = niV(^--D • 
Let / = {/ = 1, . . . , \(p — 3),i^(p— l ) /4} . As / ranges through /, £2i takes all square 
values (^ 0, ±1) in Fp. Further, by Lemma 3, the odd part of ^(rc+1) is prime top— 1 and 
indeed ( |(n + \),p — l) = 1 when/? = 1 (mod 8). It follows that, when/? = 1 (mod4), 
as / ranges through/, £4*((n+1)/2) takes all 4-th power values (^ 0,1) in Fp twice over. On 
the other hand, when/7 = 3 (mod4), for / G /, £4'«"+1)/2) t a j , e s â\\ 4_m p 0 w e r values 
(^ 0,1) in ¥p (which is, incidentally, the same as saying that £4l(("+i)/2) takes all square 
values (^ 0,1) in ¥p). In every case 

n 1 (^ ( - + i ) / 2 ) - i ) = rii(^4, '-i) 

and, consequently, by (3.4), 

0.5) Ai = n^2 '+Die = nitf+rv^" -0-
Similarly, 

4j((n+\)/2) _ i 

(3.6) M = U?——T- • 
112 rfn(rfi - 1) 

Set / = {j = 1 , . . . , \{p — 1) J T̂  (p + l ) /4} . By comparing the set of squares and 4-th 
powers (^ 0, ±1) of the set of (p + l)-st roots of unity (in F^) with {rj2jJ G J} and 
^4/((n+i)/2)? y ^ jj ancj u s m g Lemma 3 as before, we deduce analogously to (3.5) that 

(3.7) ^2 = n 2 ( ^ + 7 / " W Xn-l) 
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Combining (3.5) and (3.7), we obtain 

t-/(n-I)TT „-j(n-\) (3.8) A=A{A2 = fi xIliC'^IliV-
xes{us2 

Suppose p = 1 (mod 4). Then 

n2^-')=<Tï/>-,)=(^)fc!^ = i. 
7=1 

since n — 1 is even and r\ — Ç+\. Further, 

r(P-3)/2 , 
TT £/(/i-1) _ I TT £i(/ i- l) l£-(n-l)(p-l)/4 

^ /=1 ' 

= £((p-l)(p-3)(n-l)/8)-((/i-l)(p-l)/4) _ / ^ - h ^ " ' ^ _ J 

since £ = < _̂i and 8 | (n — \){p — 5). 
A similar calculation is valid when/? = 3 (mod4). For then 

n1c*-,) = °n)V- ,) = (^)fc!^ = i 
and 

From (3.8) it follows that in every case 

(3.9) A= \\x = 1 
xes[us2 ^ 

X^O 

by Wilson's theorem again. Comparing (3.3) and (3.9) we conclude that, in F^, 

(rc+l)2 = 4 

which is equivalent to n + 1 = ±2 (mod/?), as required. This completes the proof. 
Finally in this section we remark that when p = 5 or 7, Theorem 1 follows from 

Lemmas 3 and 5. Hence from now on we assume p > 11. 

4. Normalisation. We continue to assume that/n is a PP of F^. The motivation for 
the sequel is the following simple observation (related to the work of Brison [1]). 

LEMMA 6. Let Fn be a function from ¥p into itself such that 

(4.1) F„(x) = ±fn(x) VxeFp. 

Then, ifp > 5, 

(4.2) £ (F„(x))2r = 0, r = l , . . . i ( p - 3 ) . 
xef„ l 
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PROOF. Since/n is a PP, for any s = 1,.. . ,p — 2, by Lemma 7.3 of [5], 

(4.3) £(/»(*))* = E* s = o. 

In particular, taking s = 2r, r = 1, . . . , \{p — 3) in (4.3), we see that (4.2) holds with 

Fn — fn. But for any Fn satisfying the hypothesis, (F„(JC)) = (/„(i)) and the result 
follows. 

Now set N = n + 1. The restriction that p > 11 comes into play in the next result. 

LEMMA 7. Suppose p > 11. Then 

A ^ 0 , ± l ( m o d ^ ( p - 1 ) ) , 

A f ^ 0 , ± l (mod-(p+l) ) . 

In fact, ifp = 1 (mod 4), r/^rc (p — l ) /4 doe^ no? divide N, and, ifp = 3 (mod 4), f/ze/i 
(p + l ) /4 dc^s ftttf divide N. 

PROOF. If p = 1 (mod4), then, by Lemma 3, ((p - l ) /4 ,# ) divides 2 and 
(|(p + \),N) = 1. Thus, since p ^ 5 or 9, (p - l ) /4 / W and \(p + 1) / /V. Sim
ilarly, ifp = 3 (mod4), then Q(p - l),iv) = 1 and ((p + l ) /4 ,# ) divides 2; thus 
± ( p - 1) / N a n d ( p + l ) / 4 / N because p ^ 3,7. 

Suppose N = ±1 (mod ^(p — 1)). Then \(p> — 1) | n(n + 2) and hence, by Lemma 4, 
^(p — 1) | 3. This is impossible because p ^ 3,7. Similarly, Af = ±1 (mod J>(p + 1)) 
implies ^(p + 1) | 3 which fails because p ^ 1 , 5 . This completes the proof. 

Next, for p > 11, by Lemma 7, we may define unique integers M, L by 

(4.4) N = ±M (mod )-(p - 1)), 2 < M < (p - 3)/4, 

(4.5) 7V = ±L(mod- (p+ l ) ) , 2 < L < ( p - l ) / 4 , 

Granted Lemma 5, it is evident that Theorem 1 is equivalent to the assertion that 

(4.6) M = L = 2. 

We now relate these last définitions to Lemma 6. 
Set w = M - l , where 1 < m < (p-7) /4 ,and £ = L - 1 , where 1 < £ < ( p - 5 ) / 4 . 

(Note that m and £ may be even or odd). Define a mapping Fn from F^ into itself by 

f/mW, xeS\, 
(4.7) Fn(x)=lft(x), xeS2, 

[x, x G So-

LEMMA 8. For Fn defined by (4.7), (4.1) holds. 

PROOF. By Lemma 5, 

Fn{x) == ±/„(*), * £ S0. 
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Supposex = u + u l G Si, where up l — 1. From (4.4) 

TV = -S(p - 1) ±M(mod(p ~ 1)), <S = 0 or 1. 

Then 

/*(*)=( — = — =ffa), 
\ u — u [ J V u — u l J 

since w^-1}/2 = a ^ " 1 ) / 2 = ±1. Thus 

Similarly, if x = w + M -1 G 52, where up+l = 1, we see from (4.5) that 

N = ^e(p -1)±L (mod(p + 1)), e = 0 or 1, 

and hence 
o /U±L — UTL\2 o 

since u£(p+l)/2 = u-
£{p+X)l2 = ±1 . Thus 

F2
n(x)=ffa), xeS2, 

and the result follows. 

LEMMA 9. L^ £ = ^_ i , 77 = (^+i. Then, for each r = 1, . . . , |(/? — 3), 

(4. 8) E W ' + rÔl2r + E^(^ ' + TO]2' + 22"2 = 2(M2' + L2r). 
/=0 )=0 

PROOF. 

E Vm(? + r f ' ) 2 r ] = £ [/m(£'' + r ' " ) 2 1 + [/m(2)]2r + \fm(-2)fr 

i=0 i=i 
¥(p-D/2 

= 2 ^ [ / m ( i ) f + 2M2r. 
xes] 

Similarly, 

hftirj + V~j)]2r = 2 £ [/<W]2r + 2L2r. 
j=o xes2 

On the other hand, by Lemmas 6 and 8 and the definition (4.7) we have 

E[^W] 2 r +E^W] 2 r + 22r+1=o 
xeS\ • xes2 

and the result follows. 
The virtue of (4.8) is that we may expand \ft{z + z~l)]2r (t = m or £), by means of 

(2.1), in powers of z (positive and negative) and use the facts that £ and 77 generate cyclic 
groups in the following form (as in Lemma 7.3 of [5]). 
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LEMMA 10. For any integer s 

P
V V = JO, if(p-l)Xs, 

h \-h if(p-D\s; 
r ,s= (0, if{p+\))(s9 

5. First deductions. Let D be the difference D = M—L and P the product P = ML. 
To prove (4.6) (and hence Theorem 1) it suffices to show that D = 0 and P = 4 as 
members of ¥p. (Note that M ^ —2 in F^ since otherwise/? — 2 < (p — 3)/4, by (4.4)). 
In this section we shall study the consequences of selecting r = 1 or 2 in Lemma 9. 

First suppose r = 1. Then (4.8) can be written 

(5.1) £/m(£'' + Cl) + E / ' W + TO + 16 = 2(M2 + L2). 
i=0 7=0 

Expand/2(z + z"1) (f = m, £) by (2.1) to obtain 

(5.2) /2(z + z~l) = z2t + 2z2{t-{) + • • • + tz2 + (f + 1) + rz"2 + • • • + z"2r. 

Since 2m < (p - 7)/2 < p - 1 and 21 < (p - 5)/2 < p + 1, it follows from Lemma 10 
that when (5.2) is substituted in (5.1) (with t = m and z = £ and with f = £ and z — r]) 
only the constant term yields a non-zero contribution to the sums on the left side of (5.1). 
Specifically, we obtain, as an equation in ¥p, 

-M + L+ 16 = 2(M2 + L2) 

which may be written 

(5.3) M2 + L2 + -(M-L) 

or 

2 

(4M+1)2 + ( 4 L - l ) 2 = 130, 

or, as a relation in ¥p between P and D, 

D D2 

(5.4) P = 4 - 4 - T -

Now take r = 2 in (4.8): this produces 

(5.5) £ / £ ( £ ' + r ' ' ) + £,fe(rf + T ; ) + 64 = 2(M4 + L4). 
i=0 j=0 

Square (5.2) to obtain 

(5.6) ^ ( z + z- i ) = z4' + 4z4/-2 + . . . + c + . . . + z-4/> 
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where 
c = 2(l2 + 22 + '-' + t2) + (t+l)2 

= r ( 2 r 2 + 1 ) , T=t+l. 
3 

Since Am <p — 1 <p— 1 and At <p — 5 < /? + 1, we again need only take account of 
the constant term in (5.6) when substituting in (5.5). Accordingly, by Lemma 10, in Fp 

we have 

(5.7, „ < t t « + ^ t ^ = 32; 
3 o 

in terms of D and P this becomes 

(5.8) D4 + 4PD2 + 2P2 + ^ - + P D + ^ =32 . 
3 6 

Eliminating P from (5.8) by means of (5.4) we deduce that 

12D4 + 16D3 - 189£>2 - AD = 0. 

Hence either D = 0 (so that, from (5.4), P = A and we are finished) or, as an equation in 
Fp, 

(5.9) 12D3 + 16£>2 - 189D - 4 = 0. 

If (5.9) is insoluble in F^ the proof is complete. Obviously, however, for infinitely 
many primes /?, (5.9) has a solution in ¥p. Thus we require also to investigate (4.8) when 
r = 3. The details follow in the next section. 

6. Further working. Since p> 11 we may take r — 3 in Lemma 9. The algebraic 
manipulation, however, becomes considerably greater. Moreover, the normalisation of 
Section 4 no longer guarantees that we need only have regard for the constant term in 
the expansion of/,6; the coefficient of z±(p±V) may also be significant. Nevertheless, with 
some effort, we are able to show that no further values of r are required to ensure that 
D = 0. We proceed with the details. 

When r — 3, (4.8) becomes 

(6.1) EfmiC + r ) + Zffirf + r]~j) + 256 = 2(M6 + L6). 

We require some facts on the expansion of/f(z + z_1). 

LEMMA 11. For any non-negative even integer j < 6t let q denote the coefficient of 
-é {or ofz~i) in the expansion offf(z + Z~l). Then 

^ 7Tiir* + 5r2-f4) 
(6.2) c0 = — , T=t+\. 

https://doi.org/10.4153/CJM-1994-009-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-009-8


234 STEPHEN D. COHEN 

Further, ifj > At and J — ^(àt —j), then 

(y+l)(y + 2)(7+3)(/ + 4)(7+5) /7 + 5 
(6.3) c/ = 120 V 5 

PROOF. Cube (5.2). The constant term arises from products 

{a + \){b + l)z4'-2(fl+*>. (c + l)z~(2t-2c\ 0<a,b,c<t, 

where 4/1 — 2{a + /?) — 2̂  + 2c = 0 (/.<?. c = a + Z? — t) together with those obtained by 
substituting zT1 for z. This yields 

c0 = 6 ]T (a+l)(b+l)(a + b-t+l)-6J2(a+l)2(t+l) + (t+\)3 

0<a,b<t a=0 
a+b>t 

and leads to (6.2) with some calculation. (The reader might care to verify a few cases by 
means of computer algebra, for example). 

For (6.3) the restriction that y > At means that all relevant terms are products 

(a + \)(b + l)(c + l)a6t-2(a+b+c\ 0<a,b,c<t, 

where j = 6t — 2(a + b + c). Thus 

cj= Y, (f l+l)(&+l)(c+l) 

which leads to (6.3) after further calculation. 
In a discussion of (6.1), if m < (p — l ) /6 and I < (p + l ) /6 {i.e. M < (p + 5)/6 

and L < (p + 7)/6), only the constant terms in/r
6(z + z~x), t — m, £, matter. We 

deal with this situation in case (i) below. When other values of M (< (p — 3)/4) or L 
(<(/?— l)/4) are involved (as permitted by (4.4) and (4.5)) we also need to take into 
account the coefficients of z±{p~l) and/or of z±{p+x\ respectively. This occurs in cases (ii) 
and (iii). 

CASE (i). m<(p- l ) / 6 , 1 < (p + l ) /6 . 

In this case, by Lemma 10 and (6.2), (6.1) yields 

(6.4) M ^ + ^ + M M ( 1 1 M 4 + 5M2 + 4 ) - L ( 1 1 L 4 + 5L2 + 4)Ul28. 
21 20 20 J 

Plainly (6.4) can be written as a polynomial relation (of degree 6 in D). Eliminating 
P by means of (5.4) we derive a polynomial in D of degree 6 and zero constant term. 
Specifically, this shows that either D — 0 or 

(6.5) 960D5 + 1564D4 - 18560D3 - 10435D2 + 60220D + 2816 = 0 
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(after multiplication by —640 to make the coefficients integral). (Again this could be 
checked by computer algebra). 

The proof is therefore complete in this case unless/? is a prime for which the polyno
mials in (5.9) and (6.5) have a common root D. In fact, by means of the package PARI, 
we calculated this resultant to be 

17,921,557,947,801,600 = 213.32.52.5569. 1,745,927 

(its prime decomposition). Thus there is a common root when/7 (> 11) = p\ = 5569 or 
p2 = 1,745,927. 

Suppose p — p\. Again using PARI we found the common root to be D — 14 (or 
—5555 if, as positive integers, M < L) so that (as a member of ¥p), P — 2687. Hence 
D2 + 4P — (M + L)2 = 5375 in ¥p. But 5375 is a non-square in FP]. Hence integers M, L 
do not exist with (M + L)2 = 5375 (in ¥p). Thus no exceptional PP/„ arises in this way. 

The possibility that/7 = /?2 can be discarded in similar fashion. In this case the com
mon root is D = 94,134 which means that, in ¥p, P = 1,407,182 and D2 + 4P = 
(M + L)2 = 1,021,378, a non-square in ¥P2. This completes case (i). 

CASE(ii). ( / 7 - l ) / 6 < m < ( / 7 - 7 ) / 4 , ( / 7 + l ) / 6 < i < (p-5)/4. (Hence/? > 17). 
By Lemma 10, (4.8) with r = 3 now yields 

(6.6) ^ + 1* + i(c0(m) - cod)) + cp-xim) - cp+l(i) = 128, 

where q(t) is the coefficient of zj (and of z~j) in/J6(z + z~l). In deriving (6.4) in case (i) 
the term cp-\(m) — cp+\(£) was zero, but in this case, by (6.3) we have 

(6.7) 1 2 0 c / ? _ 1 ( m ) - ( 3 M - ^ ) ( 3 M - i ) ( 3 M + ^ ) ( 3 M + ^ ) ( 3 M + ^ ) 

and 

(6.8) 1 2 0 ^ , ( 0 = ( 3 L - f ) ( 3 L - | ) ( 3 L - l ) ( 3 L + I ) ( 3 L + | ) . 

It follows that there is a polynomial G(x) (where 1920G has integral coefficients) such 
that the difference cp-\(m) — cp+\(£) has the form 

3(MG(M2) - LG(L2)) + -(G(M2) + G(L2)) 

and so can be expressed as a polynomial in D and P. When this is calculated explicitly, 
multiplied by —640 and added to D times the left hand side of (6.5), we deduce from 
(6.6) that D satisfies (over F )̂ the sextic 

(6.9) 960Z)6 + 1888D5 - 18560D4 - 11200Z)3 + 72640D2 + 92203Z) - 32175 = 0. 

Note that, this time, sincep > 17, (6.9) does not allow the conclusion D = 0. Indeed, 
the proof is complete in this case unless p is a prime for which the polynomials in (5.9) 
and (6.9) have a common root D. Their resultant is 

40,096,467,800,319,150,683,136 ( = 4 . 0 - - - x 1022) 
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which has prime decomposition 

210.32.29.4217.6709.5,302,787,933 - 210.32p{p2P3P4, 

say, where p\ (= 29),... ,/?4 are the remaining primes (in increasing order). By further 
use of PARI we calculate that the common root D in the four cases is 

(6.10) 

D = 6inFP] , 
D = 2333 in ¥P2, 
D= 1592inFP3, 
D = 4,295,621,420 in F P4-

When, for example, p = p\, this means that D = 6 if the integer M exceeds L and 
D = —23 if M is less than L and similarly in the other cases. On the other hand, the 
range of values assumed by m and I in this case implies that \m — t\ — \M — L\ — 
\D\ < p/12. Yet, in each case in (6.10), the positive integers D and pj — D both ex
ceed pj/12, j = 1, . . . , 4. We conclude that for no prime p does (5.9) and (6.9) have a 
common root with the corresponding m, I in the indicated ranges. Hence the proof in 
this case is complete. 

CASE (iii). (a) (p - l ) /6 < m < (p - 7)/4, I < (p + l ) /6 (p > 19), or 

(b) m < (p - l ) /6 , (p + l ) /6 < I < (p - 5)/4 (p > 17). 
This time, in addition to the cubic equation (5.9) satisfied by D over Fp, the condition 
derived from (4.8) with r — 3 analogous to (6.5) or (6.9) naturally involves M or L as well 
as D; it is not easy to eliminate explicitly M or L. Accordingly we define the non-zero 
integer Q by 

M, if (a) holds, 
Q i -L , if (b) holds. 

Then certainly (since we can assume D ^ 0) 

0 < D < Q < p/4, if (a) holds, 
- p / 4 < Q < D< 0, if (b) holds. 

In this case (4.8) with r — 3 implies that an equation like (6.6) is valid except that the 
term — cp+\ (£) is omitted when (a) holds and the term cp-\(m) is omitted when (b) holds. 
Further we see from (6.7) and (6.8) that the term cp_ i (m) or — cp+\ (£) (respectively) which 
remains takes the form 

3e-i)(*-^)M(*+i)(*+i)i/'» 
in either case. Multiplying through by 1280, we derive (in analogy to (6.9)) the equation 

(6.12) /(G,D) = 0, 

over Fp, where 

/(G,D) = 2592g5 + 2160Q4 - 720Q3 - 600Q2 + 18Q+ 15 

- (1920D6 + 3128D5 - 37120D4 - 20870D3 + 120440D2 + 5632D). 
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Moreover, 
4Ô2 - 4QD = 4P = 16 - D - 2D2 

by (5.4). Hence inFp, 

(6.13) g(Q,D) = 0, 

where 

g(Q, D) = AQ2 - 4QD + 2D2 + D - 16. 

For reference we also write the trinomial equation (5.9) as 

h(D) = 0. 

Suppose there are integers D = D0, Q — Qo (subject to (6.11)) satisfying (5.9), (6.12) 
and (6.13). Then/(g, Do) and g(Q, D0) have a common root in ¥p, namely Q = Q0. Thus 
the resultant off and g as polynomials in Q with coefficients in ¥P[D] (which resultant 
is a polynomial in £)), itself has a root D = Do. Now, very conveniently, PARI could 
calculate the resultant off and g as R(D), where 

R(D) = 3774873600£>12+ 13573816320D11 - 131528622080D10 

- 340313128960Z)9 + 1704016117760/)8 + 2064134430720D7 

- 9471958415360£>6+ 1591540812800D5 + 21370601518080D4 

- 22233526876160D3 - 6079909376000D2 + 2590552673280D 

- 5045962521600. 

Next, since the polynomials h and R have a common root D = Do in ¥p, their resultant 
must be zero in the field. Again PARI was sufficient to calculate this resultant (ignoring 
its sign) as 

13,117,496,913,601,213,844,923,052,653,971,935,231,744,566,886,400,000, 

a number with 53 digits and prime decomposition 

24 93655 l l /71 /72 />3, 

where 

P\ = 31, pi = 424,928,167, p3 = 70,588,464,402,288,705,233. 

From the above, the proof is complete unless p = p\, /?2 or p3. We treat each of these 
in turn beginning with a calculation of Do. First, when p = p\ = 31 then Do = 9 and 
neither possibility indicated in (6.11) can hold. Next, when/? = pi 

D0 = 380,858,452= -44,069,715, 
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which (by (6.11)) means that D < 0, i.e. (b) holds and Q = —L. Further, the roots L of 
/ ( - L , A)) in ¥p are 124,277,976 and 424,928,167 neither of which yields a value of L 
compatible with (b). Finally, when/? = /?3, 

D0 = 55,163,881,953,837,280,929 

which again is consistent with (6.11) only if (b) holds and Q = —L. In fact, the common 
root of f(Q, Do) and g(Q, Do) was calculated to be 

Q = -L= 1,763,423,151,823,514,026, 

which, of course, can only lead to a value of L outside the permitted range. 
In summary, we see from the above that there are no "freak" values of p and n for 

which (4.2) holds for r < 3. Had there been, while, in principle, it would have been pos
sible to use (4.8) with r = 4, in practice it would have been a daunting task to accomplish 
this even for a particular n and prime/? (of the order of p^ above, say). Thus, with some 
relief, we can say that the proof of the conjecture is complete. 
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