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A critique of Standard ML
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Princeton University, NJ, USA

Abstract

Standard ML is an excellent language for many kinds of programming. It is safe, efficient,
suitably abstract, and concise. There are many aspects of the language that work well.

However, nothing is perfect: Standard ML has a few shortcomings. In some cases there
are obvious solutions, and in other cases further research is required.

Capsule Review

The two most important questions about a programming language are: is it implementable,
and is it useful? Drawing on his experiences writing a compiler for Standard ML in the
language itself, Appel assesses the design of Standard ML from the point of view of its utility
to the programmer and the problems it creates (and solves) for the compiler writer. Appel's
suggestions and criticisms are valuable not only to future implementers of Standard ML and
its close relatives, but also to language designers in need of a 'reality check' for their ideas.

1 Introduction

The Meta-Language of the Edinburgh LCF theorem-proving system (Gordon et al,
1979) evolved into a freestanding programming environment (Cardelli, 1984) and
then into Standard ML (Milner, 1984; MacQueen, 1984). After further evolution the
language is fairly stable (Milner, 1989).

This is a critique of the language from two perspectives: the user's and the
implementor's. The first part of this paper describes why ML is a pleasant language
to use, and the second shows how some of these language features are interesting
to compile. Then the third and fourth parts of the paper point out some of the
annoyances ML programmers and implementors have to deal with.

2 Why I like ML

In this section I list the reasons why I like programming in ML, in decreasing order
of importance. Some features of the language for which ML is especially known fall
surprisingly far down the list.
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Safety

Certain programming errors cannot always be detected [by a compiler], and must be
cheaply detectable at run time; in no case can they be allowed to give rise to machine- or
implementation-dependent effects, which are inexplicable in terms of the language itself. This
is a criterion to which I give the name security.

C. A. R. Hoare, 1973

One of the most pleasant things about ML is that it is safe: programs cannot
corrupt the runtime system so that further execution of the program is not faithful
to the language semantics (Thanks to the Modula-3 manual (Nelson, 1991) for this
phrasing.) Nelson (1991) divides programming languages into three geneological
categories: The BCPL family, including C and C++, which are not safe; the Algol
family, including Pascal and Ada, which are almost safe; and the 'mathematically
derived' family, including Lisp, ML, Smalltalk, and CLU, which are safe—except
when Lisp programmers disable runtime type checking because it's too expensive.
(There are, of course, languages such as FORTRAN and COBOL that do not fall
into these categories.)

In a safe language, all errors that could 'derail' the program (cause behaviour not
explainable in terms of the source language) are detected either at compile time or
at run-time.* This makes it much easier to reason about program behaviour: if an
expression uses the first element a of a list /, we can be assured that / is really a list
and not a misunderstood integer. Furthermore, a large class of storage-allocation
mistakes common to unsafe languages are simply not possible in ML.

When fallible humans attempt to write large programs to do complicated things,
safety is very important. Of course, safety is not the same thing as freedom from
bugs, but at least the bugs can be understood in the framework of the language
semantics (formal or informal). There is no behaviour that cannot, in principle, be
predicted from the program text.

In an unsafe language, program bugs that corrupt the run-time system are usually
the most difficult to diagnose and have the most disastrous effects. But in a safe
language, even buggy programs stay within the 'semantic model' of the language,
which makes program development much easier.

Garbage collection

Garbage collection frees the programmer from calculating the lifetime of every
object so as to deallocate it. With automatic storage management it is possible to
write programs more concisely, elegantly, and abstractly; one can manipulate values,
instead of objects whose addresses must be remembered so they can be freed.

Even with a garbage collector, the programmer should avoid keeping unnecessary
pointers to useless objects lest the program use too much space; occasionally it
may be necessary to analyse and rewrite parts of the program to avoid keeping

t In ML, anything detected at run-time is considered to be an 'exception', not an 'error';
exceptions include such events as arithmetic overflow, array-bounds errors, and taking the
head of an empty list.
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data structures live (Runciman and Wakeling, 1993; Appel, 1992, chap. 12). But this
performance tuning is preferable to the 'correctness tuning' necessary in a language
with explicit dispose.

Without garbage collection, it is difficult to make a safe language that does
interesting things. All modern languages, from all three of the families mentioned
above, have dynamic storage allocation. But, in general, only languages of the
'mathematical' category have automatic garbage collection. In the BCPL and Algol
families, dynamic storage that is no longer active must be explicitly freed by the
program if it is to be re-used. It is practically impossible (i.e., no one knows how)
to make a safe language with explicit storage deallocation. This is the main (though
not the only) reason that languages of the Algol family are not completely safe.

In some C or Pascal programs it is obvious where to put the free or dispose
statements. But when data structures get just a bit more complicated, it is harder
to predict when to dispose of things. Programmers often resort to explicit reference
counts, or even to special-purpose mark-and-sweep garbage collectors implemented
anew for each class of record.

The problem becomes worse across module boundaries. If a 'server' module
implements an abstraction using dynamic storage, then the 'client' module won't
know the format of the records to dispose of them. But the server won't know
when the client is finished with the abstract objects. A typical solution is to add
new operators to the abstract interface for freeing of abstract objects. This quickly
becomes tedious.

Storage allocation bugs can corrupt the runtime system, or go undetected until
millions of program statements have been executed after the error. Thus they are
particularly nasty to diagnose. Safe languages of the 'mathematical' family, including
Standard ML, have automatic garbage collection and avoid this kind of bug entirely.

Compile-time type checking

Programmers make mistakes. Even when they have proved their algorithms correct in
some formal or informal sense, it is difficult to avoid all errors when translating into
the concrete formal notation of a programming language. Since I am particularly
slapdash in my programming, perhaps I make even more mistakes than the average
programmer.

So I must find my mistakes and fix them. Any help that the programming
environment can give me in finding mistakes is most welcome. As a practical matter,
I have found that the vast majority of my mistakes are found at compile-time by
the ML type checker. These mistakes are particularly easy to fix, because:

• Compiling something takes less time than compiling and running it.
• One compilation can find many compile-time errors; it's harder to find several

bugs with one run (or even one compile and several runs) of a program.
• Compile-time errors are caught regardless of the input data; run-time type

errors may not be caught until the program is exercised on many inputs.
• Compile-time errors often come with helpful explanations; run-time errors can

be harder to diagnose.
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Finally, compile-type types (especially the elegant type system of ML) help me to
understand my program in a consistent way, so that perhaps I make fewer mistakes
in the first place.

It is interesting to note that most languages of the 'mathematical' family have
had run-time type systems (in Lisp, Scheme, Smalltalk, APL, etc.), while the Algol-
like languages have had compile-time type checking. Perhaps this is because the
'mathematical' languages have garbage collectors; garbage collectors require some
run-time type information to trace reachable objects; as long as the type information
is in the run-time data there is a temptation to use it; or perhaps no one knew
how to do good 'mathematical' compile-time type-checking before ML's type system
(Milner, 1978) was invented. Of course, run-time type checking can be slow; but the
'mathematical' languages have not had raw speed as a primary design concern. In
ML, the absence of run-time checking does make for more efficient implementation;
this will be discussed below.

The module system

ML has a module system supporting abstract data types, hiding of representa-
tions, and type-checked interfaces. Modules are very important in structuring large
software systems.

Much has been written about the advantages of modules and abstract data types.
The 'classes' of Object-Oriented programming are a kind of module, and support
abstraction nicely; as are the 'modules' of Modula and Ada. It is not controversial to
say that modules with enforced interfaces and representation-hiding are an essential
feature of a modern programming language.

ML's module system is particularly nice, in that it allows one module to be
parameterized by the interface of another. Ada (1980) and Modula-3 (Nelson, 1991)
also support 'generic' modules that are parameterized in this way. However, ML is
unusual in that its parameterized modules—/unctors—can be compiled (with code
generation) before any actual parameter is presented. The same arguments in favour
of compile-time type checking also favour the checking of functors when they are
parsed, independently of the arguments to which they might be applied.

In a language with parameterized modules and abstract data types, it's necessary to
check that a given abstract type always refers to the same concrete representation—
but at the same time, without 'giving away' the representation. In Ada and Modula-3
such checking is possible because 'compilation' (and type checking) of the param-
eterized module body is done for each application to actual parameters. ML uses
the sha r ing spec* to require that two functor parameters must use the same
representation for a shared abstract data type.

For example, suppose the signature (interface) HASH specifies a module to map
strings to unique tokens. There are certainly different ways to implement this sig-
nature; and even the same implementation might exist in multiple instances, main-

* Henceforth I will use spec to mean the syntactic construct in ML signatures, and specifica-
tion in a more general, informal sense.
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taining different hash tables. Now, if a parser module Parse with signature PARSE
produces parse trees containing tokens, and a type checking module Type check
(with signature TYPECHECK) also deals with tokens, they can be combined using a
paremeterized module Compiler:

functor Compiler( structure P : PARSE
structure T : TYPECHECK
sharing P.Hash = T.Hash

) = . . .

The advantage of parameterizing Compile is that it can be applied to different
parsers or different typechecking algorithms later on. But the program will be mean-
ingless unless the particular Parse module we use relies on the same Hash table
as the Type check module does. And—even worse—if the internal representation
of the unique tokens is sufficiently different, then the program is not even safe from
mistaking pointers from integers, etc. ML's module system may be unique in safely
combining compiled parameterized modules with abstract data types.

Immutable values

In a functional language one describes the relationships between values, not objects.
I will illustrate with a silly example. Consider the statements (in some programming
language),

x := 1+6
y := 2+5

Now, to reason about the relationship between x and y, one might ask the
following questions:

• Is x the same 7 as y?
• If we modify x, does y change?
• Need we make a copy of 7 to implement z: =x?
• When we're done with x how do we dispose of the 7?

If these questions seem silly, consider the analogous case for this program fragment:

x : = cons(a, t>)
y : - cons(a ,b )

Now, is x the same list cell as yl If we modify car(x), does y change? When should
we make a copy of the cons cell? How do we dispose of it?

The disposal question is adequately handled in languages with garbage collection,
of course. But the update and identity questions are not. It is very distracting, when
writing and understanding a program, to worry about sharing of substructures,
side-effects, and aliasing. (An optimizing compiler is distracted by these problems
too!)

These questions are all silly for integers because we treat integers as values, not
objects. If we considered integers as objects, perhaps with a command to 'update'
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some of the bits of an integer object, then the complexities listed above would have
to be considered by anyone programming with integers.

Values have many advantages over objects. Sharing of the substructures of values
never leads to problems if the substructures can't be modified. One doesn't need
to reason about equal versus identical values—and to ensure that this is true, ML
does not permit testing address equality on immutable types. One can perform
induction over structure to prove useful things about values; for objects one has to
do induction over their histories, which complicates reasoning about them.

Mutable objects

Even though values have many nice properties, the notion of mutable objects should
not be discarded. Only an extremist would say that updateable cells are always too
hard to use and understand. The extremists might yet be proved right: it is certainly
true that any algorithm on objects can be simulated on values, and recent work has
made such algorithms ever more readable and understandable (Wadler, 1992). But
there are millions of programmers who have sufficiently comprehended the notion of
assignment and updateable data structures to write successful programs. Of course,
the same argument could be made for bringing back the GOTO and the 64-kilobyte
address space. But it is true that programming with updates is a proven technology,
and programming entirely without them is still 'research'.

Now, other languages have combined a functional style with the capability to
do updates—Scheme, for example. But the question is, how can these two styles
be combined without losing the benefits of the immutable values? Once updates
are permitted, the 'silly' questions posed in the previous section begin to have
complicated answers.

ML solves this problem by carefully segregating the mutable and the immutable
types. An integer values has type in t , and a mutable cell containing an integer has
type i n t ref ; these types are not the same. One can fetch the (immutable) value
out of an i n t r e f and bind it to a variable of type i n t ; one can store a different
(immutable) value in the i n t ref. Reference values are the only ones for which
questions of sharing and identity are important.

Reference cells can be components of data structures. For example, t r e e below is
the type of immutable trees with integer leaves; elements of t r e e l are trees whose
leaves may be modified but whose structure is immutable. On the contrary, the
leaves of t r e e 2 are immutable but the structure can be re-arranged (and entirely
new leaves can be inserted):

datatype tree
= LEAP of int
| NODE of tree * tree

datatype treel
= LEAF of int ref
| NODE of treel * treel
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datatype tree2
= LEAP of int
| NODE of tree2 ref * tree2 ref

Mutable reference cells, which are carefully identified in advance to the compiler
and the human reader of the program, have turned out to be a very good compromise.
They allow value-based reasoning about non-references, and the use of updates where
necessary.

Polymorphic types

The implicit parametric polymorphism of ML is a great convenience. In writing a
C or Pascal program that deals in linked lists of several different types of objects,
for example, it is bothersome to have to copy almost verbatim the definitions of
functions to create lists, map functions over lists, reverse lists, calculate lengths of
lists, and so on. In ML, as in Lisp, the same map function can operate on a list of
anything, and similarly for l e n g t h , r e v e r s e , and cons. The l e n g t h function
is polymorphic: it has the type int list —> int and the type string list —> int and
many others besides. In object-oriented languages with inheritance, polymorphism
can be achieved without much difficulty (depending on the language). But in C,
polymorphism can be accomplished only by using cast to avoid the type-checker,
and in Pascal only by clumsy use of variant records.

Type inference

In ML it is never necessary to declare types for variables or for functions and
their formal parameters (well, hardly ever; see the section on Overloading. The
compiler can infer types for these identifiers, and it checks that the variables are
used consistently. Thus ML achieves the advantages of compile-time type-checking
with the conciseness of undeclared types.

This is a convenience, but of course it doesn't shorten programs by an enormous
factor: in languages with explicitly declared types, the type declarations don't over-
whelm the program. A big advantage of type inference is that the compiler infers the
most general (polymorphic) type for each function. Then the programmer doesn't
tend to prematurely over-specify the types of functions.

For example, consider writing a l e n g t h function to compute the number of
integers in a list :̂

§ A list in ML can be empty, or nil, or can be 'cons' cell containing a 'head' (first element)
and a 'tail' (the rest of the list). Thus, list is a disjoint union type, or datatype, of the
following form:

datatype ' a l i s t = n i l | : : of ' a * ' a l i s t
The constructors of this datatype are n i l and : : (pronounced 'cons'). All the elements
of a list must be of the same type; if this type is, e.g., a then the list is called an a list.
Because keyboards don't have Greek letters, we write a as 'a. It is convenient to make : :
infix and right-associative by default, so that 1: : 2: : 3: : n i l is the list of the first three
positive integers.
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fun length (head: : rest) = 1 + length(rest)
| length (nil) = 0

Because the programmer needn't specify the type of the list element head, there is
no temptation to overspecify it as int . So the length function, just as written, has
type a list —> int for any a, and can be applied to lists of strings, lists of reals, lists
of lists, and so on.

Complete formal definition

The programming language Pascal was an advance in language design, and became
very popular, for several reasons. It supported clean and useful control structures
and data structures. It is a small enough language, and was specified precisely
enough (in informal prose) (Jensen and Wirth, 1974) that people could understand
what Pascal programs should do.

But Pascal still has 'ambiguities and insecurities' (Welsh et al, 1977). That is,
the language definition is ambiguous about the meaning of certain constructs (and
different compilers give different results on the same program); and the language is
insecure: it is not safe in the sense described by Hoare.

ML is not only secure, it is also unambiguously defined. The Definition of Standard
ML (Milner et al, 1989) is a complete operational semantics for the entire language.
One can use the Definition to calculate exactly which programs should be accepted
by a compiler, and what their result will be.

Furthermore, the Definition (with accompanying commentary (Milner and Tofte,
1991)) is readable—as formal semantic definitions go. This does not mean that the
definition is suitable as a manual for the programmer; there is too much formal
notation and not enough worked examples for that. But the student of language
design, or the serious compiler-writer, can use the Definition as a reference to
understand the meaning of any construct that might be in doubt. This leads to
portability between implementations, provability of programs (in principle), and
confidence in the safety and security of ML programs.

The Definition has, over time, proved to be tractable enough to serve as the basis
for useful technical discussion among its many readers. Even when there have turned
out to be holes in the Definition, they can be discussed and repaired with confidence
and agreement over what the changes mean.

A formal definition is merely a complicated good-luck charm unless it can be
used to prove important properties of the language. The Definition is mathematically
tractable enough to prove, for example, that programs that type-check will execute
'safely', that there can be no 'dangling references' (invalid pointers), that the type
inference algorithm always finds the most general type for an expression, and many
other theorems that inspire confidence in the semantics of the language (Milner and
Tofte, 1991)—some of the theorems mentioned have actually been proved only for
subsets of Standard ML.

The proponents of formal specifications of programming languages have long
claimed that semantics should be used as a tool for language design, not just for
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writing down the semantics of existing languages. The conciseness and completeness
of the ML Definition stem, in part, from the reluctance of the Standard ML design
committee to admit features into the language for which they didn't understand how
to write a provably sound semantics.

Higher-order functions

In ML, as in Scheme and other languages derived from the A-calculus, functions are
first-class values that may be passed as arguments, returned as results, and put into
data structures.

Of course, the C programming language has 'first-class' functions, too; but there
is an important difference between the functional values of ML and those of C. ML
has nested function definitions with lexical scope; the inner functions can refer to
local variables and formal parameters of the outer functions. Thus, each time an
outer function is invoked with different actual parameters, a 'new' version of the
inner function is built. A simple example:

fun add(x: int) =
let fun f(y) = x+y

in f
end

val smallinc = add(l)
val biginc = add(10)

val twelve = smallinc(biginc(l))

The fun keyword introduces a function declaration. The l e t dec in exp end
syntax introduces a local declaration dec visible only in the expression exp. Thus,
when add is applied to 1, the function f\{y) = 1 + y is created and returned as a
result. When add 10 is computed, the function f\o(y) = 10 + y is the result.11

Imagine, for a moment, a programming language in which character-string values
can be stored in variables, passed as arguments, returned as results; suppose there
are character-string literals, and it's possible to extract the individual characters
from string values. But suppose there are no operators (such as concatenate,) that
can create new character-string values at run timel Then the character-string type
would be of limited utility; one might use it for printing interactive prompts defined
at compile time, and so on. Any data type in which one can only pass around
compile-time literals, is hardly 'first-class'.

But this is exactly the situation for function pointers in C! The only function
values are those created at compile time; one cannot make 'new' functions like
/i and /io shown in the example above. This is because C does not allow nested

11 This add function can be written more concisely as
fun add x y = x+y : in t

where the type constraint : i n t is necessary because of overloading; see section 4.
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functions with lexical scope. Similarly, even though Modula-3 has nested functions
and lexical scope, only functions at the outermost level of nesting can be passed as
arguments.

On the other hand, Pascal allows nested functions (with lexical scope) to be
passed as arguments, but not to be returned as results or stored in data structures.
This restriction limits the utility of function values. Both the C restriction and the
Pascal restriction are motivated by the desire to avoid the need for garbage collection:
first-class functions with nested scope cannot be implemented with a conventional
stack of activation records. But when the system has a garbage collector already,
first-class nested functional values don't add great complexity to the implementation
of the language.

Perhaps one must write some programs with higher-order functions to really
appreciate their expressiveness. However, I will present some examples of their use:

Reduction functions on lists: Take a binary operator (like + or x), and apply it to
an entire sequence of values, thus:

a\ x ai x ... x an x 1

(Append the term x 1 in order to appropriately handle the case where n = 0.)
This notion can be easily generalized: given an operator opr and an identity /
for that operator, reduce (opr, I) is the function that applies the operator to an
entire list of values. Thus, the function sum that totals the elements of a list is
just reduce(+,0) and product is reduce(x,l). In ML one might write:

fun reduce(opr, I) =
le t fun f ( n i l ) = I

| f ( a : : r e s t ) = opr(a, f ( r e s t ) )
in f

end

val sum = reduce(op +, 0)
val product = reduce(op *, 1)
fun min(a, b:int) = if a<b then a else b
val infinity = 1000000000
val minlist = reduce(min, infinity)
val fifteen = sum(l: :2: : 3: : 4: : 5: : nil)

The op keyword allows an infix operator like * to be used as an ordinary
identifier.

Window manager: One could organize a window interface so that an application
running in a window is represented by its keyboard and moused To hand the
application characters typed into its window, one calls its keyboard function;
to give it mouse-clicks, one calls its mouse function. Thus:

J An interesting and useful windowing library has been implemented in ML by Gansner
and Reppy (1991) as a very elegant interface to an X server. The example here does not
describe their system.
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type window_app =

{keyboard: string->unit,
mouse: int*int->unit}

This says that window_app is a record type containing two fields, keyboard
and mouse, keyboard is a function that takes a string parameter and
returns 'unit' (which is a place-holder like 'void' in C), and mouse takes a
coordinate-pair as an argument. Now, the window manager can pass keypresses
and mouse-clicks to the application by calling these functions. This has an
'object-oriented' flavour; the private data of the application (i.e., 'self in OOP
terminology) is hidden in the free variables of the two functions. In C it would
be necessary to include an explicit 'self field in the window_app record, and
pass this as an extra argument to keyboard and mouse.

Most of the interesting uses of first-class functions combine the use of nested
lexical scope (where inner functions' free variables are bound in outer functions)
with functions returned as results or stored in data structures. Thus, the very
combination that is left out of C and Pascal because it is difficult to implement (it
requires a garbage collector for activation records) is the most useful.

Efficiency

An elegant language will have few applications if programs written in it always run
too slowly. So it is important that ML can be compiled to run efficiently. There
are many reasons to believe that it can. ML has compile-time type checking, which
means that type tags need not be carried around at run time, and operators need
not check the types of their arguments at run time. ML does not have the 'dynamic
method lookup' required of many object-oriented languages.

ML does do array-bounds checking, which is not present in C and which slows
things down unless safely removed by a good optimizing compiler. ML does check
pointers for nil before dereferencing; but the way this is incorporated in pattern-
matching feature of the language, these tests will be part of the ordinary control
flow written by the programmer. (Unfortunately, sometimes the programmer knows
that a list can't be nil, but the check must be done anyway except by an impossibly
intelligent compiler.) And ML checks for overflow of arithmetic expressions, but on
most computers this is handled by the hardware without the need to issue extra
instructions.

But can ML be as efficient as C? To some extent, this is still a research question
(one that interests me very much). It's a difficult question to answer, because it
requires that 'the same' program be written both in C and in Standard ML. And
what does it mean to say that a program written in idiomatic C is 'the same' as one
written in idiomatic ML?

One might make a good attempt at a quantitative measurement by rewriting some
C programs in idiomatic ML, and vice versa, and running the results with 'good'
compilers on the same hardware. This is a sufficiently unrewarding job that few
people have done it on 'realistic' programs.
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On the other hand, there are many good Scheme compilers. While Scheme does
not run as efficiently as C on all problems, Scheme and Common Lisp are sufficiently
efficient that many real applications are written in them. It should be possible to get
ML to run at least as efficiently as Scheme, since the languages are similar in many
ways but ML doesn't require the run-time type checking that Scheme does.

In any case, there is at least one reasonably efficient implementation of ML
(Appel and MacQueen, 1991). This and other implementations ** have many users,
for whom they are adequately efficient; this might not be the case if they were too
slow by an order of magnitude.

ML programs (run under some compilers) have used much more space than
comparable C programs. This is a serious problem, but recent research (Appel,
1992, chap. 12) has hinted at solutions. At present, it appears that ML is efficient
enough to use for a wide variety of applications. C programs are faster probably
by no more than a factor of two, and often less than that. For many purposes,
ML's advantages in safety, elegance, ease of storage management, and so on may
outweigh this difference in performance. And programs that require complicated
and expensive storage management in C may run faster in an ML implementation
with a good garbage collector (Clinger and Hansen, 1992).

Why some people don't like ML

An (anonymous) early reviewer of this paper complained about ML's 'lack of
dynamic types, mutation (and lack thereof), lack of access to machine (as in C),
restrictive type system, small changes usually require complete recompilation, bizarre
syntax, lack of macros, etc '

These criticisms merit some discussion.

Lack of dynamic types: Some things are easier to do in a dynamically-typed lan-
guage. For example, subtyping is easy to do in Lisp, since list-of-real is
automatically a subtype of list-of-(real-or-string); and ML doesn't have a
subtyping mechanism. But such examples are not very compelling; an ML
program might have a few more injection and projection functions than a Lisp
program.
A more interesting use of dynamic types is for programs that wish to do type-
safe, structured input/output, which is problematic in Standard ML. Within
the ML community, the type dynamic has been proposed as a solution to this
problem (Leroy and Mauny, 1991): values of type dynamic would carry full

" Several Standard ML implementations are available:
• Standard ML of New Jersey, from Princeton University and AT&T Bell Laboratories

(contact appel@princeton.edu)
• Poly/ML, from Abstract Hardware Ltd. (contact bob@ahl.co.uk)
• Poplog ML, from the University of Sussex (isl@integ.uucp, pop@cs.umass.edu)
• Edinburgh ML 4.0, from the University of Edinburgh (lfcs@ed.ac.uk)
• ANU ML, from the Australian National University (mcn@anucsd.anu.oz.au)
• MicroML, from the University of Umea, Sweden (olof@cs.umu.se)
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ML-style types as part of their run-time representation, and could be coerced
into ordinary statically-typed values with a run-time check.

Restrictive type system: ML's type system is less restrictive than that of most
statically-typed languages (except those, like C, that allow evasion of the
type system). In return for obeying the type rules, the programmer is rewarded
with compile-time error messages instead of run-time bugs.

Mutation (and lack thereof): ML makes it incovenient (but not extremely so) to
modify fields of data structures: such fields must be declared in advance. This
is just enough to encourage a functional style of programming (which is good)
with an escape hatch where necessary (which is also good).

Lack of access to machine: ML succeeds all too well in abstracting away from the
machine. This makes it difficult to implement those programs that must do
machine-level things, with memory words, pages, protections, signals, etc. It is
possible to make interfaces to these things in ML; but it must still be admitted
that a typical ML system has a large runtime system written in C to handle
the things that couldn't be implemented in ML.

Recompilation: Separate compilation is essential in a programming environment.
In statically-typed languages such as C or Modula, a system like make can
recompile just those files that may need it; in dynamically-typed languages
such as Lisp, only files actually modified need recompilation (in the absence
of macro definitions, of course).
Implementations of Standard ML have not usually had very good separate
compilation systems. This is partly a problem with the language, as elaborated
in section 5, but mostly a problem with the individual implementations. In
any case, it appears to be a problem that can be solved without modifying the
language definition.

Bizarre syntax: Lisp syntax has a wonderful consistency, but is an acquired taste.
Standard ML syntax is a mediocre example of the Algol school, in which
keywords are used instead of some of the parentheses, and in which infix
operators are used where it makes sense to do so. Some of the obvious 'bugs'
in the grammar are reported later in this paper; but in general, don't we have
better things to argue about than syntax?

Lack of macros: This is clearly an advantage, not a disadvantage. For the program-
mer to have to calculate a string-to-string rewrite of the program before any
semantic analysis invites problems of the worst kind. Where macros are used
to attain the effect of in-line expansion of functions, they are doing something
that should be done by an optimizing compiler. Where macros are used to
attain call-by-name, the effect can be obtained by passing a suspension as
an argument; in ML this is written with the syntax fn ( )=> which though
admittedly ugly is fairly concise, and is better than tolerating the semantic
havoc wrought by macros.
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3 ML is fun to compile

Some of ML's characteristics enable compilers to use interesting techniques that are
applicable to few other languages. On the other hand, many aspects of the language
are best attacked by quite conventional techniques. And there are features of ML
that might be considered an annoyance (or a 'challenge') by compiler writers; these
are described in section 5.

Safety

Compilers for safe languages, in which every compileable program has a well-defined
result, can perform certain transformations that compilers for unsafe languages may
not. For example, if the programmer cannot access data structures except through
the 'official' operators, then the compiler is free to choose arbitrary representations—
even different representations for the same data structure in different parts of the
same program. In an unsafe language, the programmer can access the underlying
bit pattern of a data type; this tends in practice (and by convention) to force the
compiler into predictable choices.

Another example of the use of safety is given below under the heading 'Accurate
control dependence'. Essentially, the input program is the representation of a com-
putable program, and the compiler may use 'extensional equality' to substitute any
other representation of the same function. On the other hand, in an unsafe language,
some aspects of the program can be represented only by an operational semantics
specifying a sequence of operations whose order cannot be rearranged.

Compile-time type checking

Compilers for languages with run-time type checking, such as Lisp and Smalltalk,
must work very hard to minimize the execution cost of type checking. An advantage
of ML (and all languages of the Algol and BCPL families) is that all type checking
is done at compile time, and does not slow the execution of the program.

Representation analysis

The types of variables in ML are known sufficiently at compile time to guarantee,
as in Algol-like langauges, that primitive operators will never be applied to values
of the wrong type. However, because of ML's parametric polymorphism, there are
other contexts (such as inside the cons function) in which the types of (polymorphic)
variables are not completely known. In such cases, the program always manipulates
values without inspecting their internal representation. But to manipulate them (pass
them as arguments, store them in data structures, etc.) it is necessary to know their
size. The solution is to represent all polymorphic variables by bit-patterns of the
same size (e.g. one word). Then polymorphism will work: at run time, polymorphic
variables will be passed from one place to another by machine code that is oblivious
of its actual type. This is exactly the strategy used in implementing Lisp: the cons
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function needs to know that the size of every object is the same, but does not need
to know the internal representation of the objects it is consing.

This has been interpreted to mean that every variable, every function closure,
and every argument of a function, must be represented in exactly one word. Where
the natural representation of a value does not fit into one word (as with a list, a
floating-point number, etc.), then a pointer to a heap-allocated object is used instead.
This is a source of great inefficiency.

Parametric polymorphism is a useful kind of abstraction; abstraction often leads
to inefficiency. ML programmers have always had to face this tradeoff, which the
language has resolved in favor of abstraction. But perhaps it is possible to pay for
the abstraction only where abstraction is actually used.

Xavier Leroy has recently pointed out that it is not necessary to represent every
variable in one word, just polymorphic variables (Leroy, 1992). The type-checker
can identify those places where non-polymorphic values are passed to polymorphic
variables, and vice versa. Then the compiler can choose specialized representations,
just as languages of the Algol family do, for nonpolymorphic variables. Then, to the
extent that an ML program uses nonpolymorphic variables (as a Pascal program
does), it will be as efficient as a Pascal program. This could be a very significant
savings, as Leroy's measurements show. And it is a kind of optimization that would
be impossible in Lisp (because the types cannot be safely analysed at compile time).

Separation of static and dynamic semantics

In an ML compiler the static semantics (type checking) and dynamic semantics
(evaluation) can be evaluated independently of each other, and in either order. In a
compiler, dynamic semantics determines the machine code to be generated.

This may have interesting consequences for the implementation of a separate
compilation facility. It should be possible to generate machine code for a module
in vacuo; that is, without knowing the types of the module's free identifiers. Then,
at link time the module can be type-checked, since the types of free identifiers then
become known. Since code generation is much more expensive than type checking,
we might gain significant benefit from this approach. The algorithms for in vacuo
separate compilation have been worked out (Shao and Appel, 1992, 1993), and are
now being implemented.

One of the interesting problems with in vacuo compilation is the use of open.
Consider the declaration

structure C =
struct

open A
open B
val f x = i+j

end

Now the binding of identifiers i , j , and even + is unclear; they could come from
A, from B, or from the global scope. However, this can be resolved at link time,
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without significantly slowing down the execution of function f except that in-line
expansion of + is not possible.

But now consider

structure D -
struct

fun g y =
let open A
in y(l)
end

end

Now, does the applied occurrence of y use the local binding, or a binding imported
from A? Since we can't see the definition of A while doing in vacuo compilation, it's
impossible to tell. Thus, we must compile this as

structure D =
struct

fun g y = (if A_contains_y then A.y else y) (1)
end

where A_contains_y is a link-time constant. This slightly slows down the function
execution. But this local open that rebinds a variable in scope makes the program
extremely difficult to understand for the human reader, too; it's bad programming
style and should be discouraged.

Thus, the consideration of in vacuo compilation has told us something about in
vacuo human-program-reading. Something similar comes up with the confusion of
data constructors and variables in pattern matches; does fn RED => 5 test for
a constructor, or bind a variable? The in vacuo compiler has a hard (though not
impossible) time with this (Shao, 1992); but so does the human reader. A possible
moral is: if the in vacuo compiler can't tell what's going on, the reader probably
can't either.

A more mundane advantage of the separation of static and dynamic semantics is
that a simple, untyped intermediate representation can be used; and the translation
of ML into this intermediate representation need not pay attention to types. This
somewhat simplifies a compiler.

Of course, the representation analysis described above makes the implementation
of dynamic semantics dependent on static semantics. So a compiler that uses link-
time type checking, or a simpler translation to intermediate representation, could
not take use representation analysis.

Immutable records

A common problem that plagues optimizing compilers is aliasing. It is often very
difficult to determine when two pointers point to the same thing; this inhibits certain
kinds of optimizing transformations. For example (in Pascal):
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a : = p~.x;
q" .x : = b;
c := p" .x ;

or, similarly,

a : = p~.x;
f ( x ) ;
c : = p ' . x ;

we might like to replace the statement c : - p" . x, which involves a fetch, by
c : = a, which might be a register-register move. However, if there is a possibility
that q points to the same record as p, (i.e., is aliased); or if f(x) might modify p" . x,
then this transformation is invalid.

It's no easier to solve aliasing problems in ML than in any other language.
However, they don't need to be solved! Fetches from immutable objects cannot
possibly be affected by any store instructions. And the vast majority of objects
created are immutable (over 99% in a variety of real applications). Thus, most
fetches can be moved past stores and procedure calls, and common subexpressions
involving fetches from immutable objects can be eliminated. It is very pleasant to
exploit this freedom in writing an optimizing compiler.

Mutable cells

In ML the updateable parts of data structures (ref cells) are identified at compile
time. This could be useful to a garbage collector. Generational garbage collectors
(Lieberman and Hewitt, 1983; Ungar, 1986) segregate heap-allocated records by
age. Because records are initialized (to point to already-existing records) when they
are created, newer records usually point to older records. The only way that an
older record can point to a newer record is by an update to the older record after
the newer one has been created. Generational collectors need to efficiently identify
all those cells in an older generation that have been updated to point into a newer
generation.

There are many ways to keep track of updated cells. A software approach is to
have the compiler generate code after each assignment statement to keep a list of
all cells updated (Ungar, 1986). It is not necessary to put newly-allocated cells on
this list, of course. So all the compiler needs to do is distinguish initializing store
instructions from updating stores. This is easy to do in ML, as it is in Lisp and any
other language where records are initialized as they are allocated. It is more difficult
in Algol-like languages where records are created uninitialized and are then stored
into afterwards to initialize them.

An alternate approach to updates is to use the virtual-memory hardware of the
computer (Shaw, 1987). By making older generations read-only, an updating store
will cause a page fault. This fault can be handled by making the page writeable,
and marking all the objects on that page as possibly updated. Then future updates
to the same object, or to nearby objects, will not incur the cost of a fault.
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The page-based technique will work best if there is locality of reference among
the updates. It would be best, for example, to put all the mutable objects close to
each other on a small set of pages, so that fewer updating page faults occur. This
is possible if the runtime system can guess which objects can be or will be updated.
Fortunately, in ML the r e f cells can be distinguished from immutable records, data
constructors, and closures, as they are created. The compiler can mark re f cells as
they are allocated, or allocate them in a different area of memory, and the runtime
system can rely on this marking. Such a technique is not possible in Lisp, since any
object can in principle be updated (even though few objects are actually updated in
practice).

It is interesting to compare ML (which allows programmers to execute updating
side effects) with lazy functional languages such as Haskell (Hudak, 1991), from the
garbage collector's point of view. Since generational garbage collectors hate updates
to existing objects, it would seem at first glance that a purely functional language
with no assignment statement would be easier to garbage-collect. But lazy languages
are constantly updating lazy closures ('thunks') with the results of evaluating them.
Paradoxically, from collector's viewpoint ML has many fewer assignments than
Haskell, and garbage collection in ML is likely to be more efficient.

Accurate control dependence

A statement guarded by a conditional is said to be control dependent on the condi-
tional. However, this definition can be refined for safe languages such as ML.

Consider these two ML fragments and a C fragment:

a) if i>0 then case q of u: :v => u
| nil => ...

else . . .

b) case q of u::v => if i>0 then u
else ...

| nil => ...

c) if (i>0) if (j>0) s = p->link;

In each case there is a fetch guarded by a two conditionals. The compiler might
wish to hoist the fetch above the inner conditional, perhaps to improve instruction
scheduling or register allocation.

In case (a) this is impermissible, since q might be ni l—a fetch from n i l might
be illegal on the target machine. The pattern u: : v ensures that q is a cons cell. In
case (b) it is clearly permissible to hoist the fetch, since the validity of the pointer q
cannot be affected by the value of i.

But in example (c) we cannot tell anything about the relationship between j and
p. The programmer might know that j is the length of the linked list p, so that the
fetch cannot be hoisted; or the value of j could be unrelated to whether p is nil,
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so the fetch can be hoisted. ML provides more precise information to the compiler
than C does about the true control-dependences of fetches.

In summary, the safety of the language gives us a tool for reasoning accurately
about control dependencies.

No pointer equality

Pointers in ML cannot be tested for identity. That is, except for re f cells, the
program cannot determine if two similar objects are located at the same address.
Since non-reference objects cannot be updated, the program cannot even perform
the experiment of modifying one object and seeing if the other changes. This unusual
feature leads to several interesting consequences.

Compilers can perform common subexpression elimination on record expressions.
That is, in the program

va l t = (a ,b )
va l s = f(x)
va l u = (a ,b )

the last line can be implemented as va l u = t by the compiler. This transformation
would not work in Lisp, Pascal, or almost any other language because the program
would be able to test whether u and t pointed to the same address.

Compilers and garbage-collectors can do 'hash-consing', i.e., if the record ( a ,b )
is to be created, and a similar record already exists (and can be found using a special
hash table), then a pointer to the existing record is used instead of making a new one.
In systems that allow address comparisons, hash-consing would entail an observable
semantic change to the program; in ML it would not. Now, hash-consing may be
intolerably slow. But consider a variation in which a generational garbage collector
does hash-merging of objects that survive into the second generation. Then it's only
necessary to hash a very small percentage of the objects that get allocated (since
only a few objects survive a garbage collection). This idea has been implemented by
Marcelo Gonc.alves at Princeton University.

Garbage collectors like to move an object from one place to another; but then they
need to update all the pointers to the object. A concurrent garbage collector might
have trouble finding all these pointers quickly. In that case, it might be desireable
to have two usable copies of the object—old and new—until all the pointers can be
'forwarded' (Nettles and O'Toole, 1990).

Distributed systems can copy objects without worrying about identity. Suppose
we want to make the distributed nature of a system transparent to the programmer.
If several processors want to look at a data structure at the same time, to obtain
adequate performance it is necessary to copy pieces of the data structure onto the
different processors. With a conventional programming language we now have to
worry about address identity and making updates visible to all the processors. These
problems are usually solved in hardware (e.g. with snoopy caches). In ML, worries
about updates disappear for all but reference values, which are rare enough that
conventional synchronization and message passing would be adequately efficient.
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The module system

Run-time aspects of the module system turn out to be very simple (Appel and
MacQueen, 1987). A structure that exports n types and m values can be implemented
as an ordinary m-tuple (types are needed only at compile time). Functors can be
implemented as functions that take structures (tuples) as arguments and return
structures as results. Since all inter-module linkage can be expressed this way, a
conventional link-loader is not even necessary—which is particularly convenient in
an interactive system that can load and execute programs and modules on the fly.

First-class continuations

An interesting and powerful feature of Scheme (Rees and Clinger, 1986) is the
call-with-current-continuation mechanism, whereby the dynamic calling context of a
function can be abstracted as another function. Standard ML does not have such
first-class continuations; but it turns out that they can easily be introduced, and they
fit very nicely into the ML type system (Duba et al., 1991).

First-class continuations make it easy to implement coroutines, or their general-
ization, lightweight processes (Wand, 1980). Low-level details that must ordinarily
be confronted in such implementations—such as the allocation of new activation
stacks, the garbage-collector interface, and the mechanisms for saving registers to
invoke a new thread—are all neatly encapsulated in the continuation mechanism.

Thread scheduling is much more efficient when done in the client process, without
requiring hardware- and operating-system context switches when synchronizing or
interleaving thread executions. Recent operating-system research (Anderson et al.,
1992) has shown how to let the operating system schedule processors while the
client programs manage processes to take advantage of the efficiency of user-mode
schedulers. In ML extended with first-class continuations, the scheduler can be
a source-language program that manipulates continuations directly. This approach
is very elegant and robust, and has proved successful in Concurrent ML (Reppy,
1990) and ML-Threads (Cooper and Morrisett, 1990), two quite different concurrent
programming environments for ML.

4 ML traps and pitfalls

The syntactic and semantic pitfalls that an ML programmer encounters are much
less severe and less numerous than those described in languages such as C (Koenig,
1989), which is an egregious example.

Misspelled constructors

A well-known and most dangerous pitfall awaiting the ML programmer is the
misspelling of a constant data constructor in a pattern. Because there is no syn-
tactic distinction between constructors and variables, any identifier declared as a
constructor is understood by the compiler as a constructor, and any other identifier
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is interpreted as a variable (which matches anything). Thus, a misspelled constructor
looks like a variable, and is accepted by the compiler. For example, the misspelling
of n i l in this implementation of l eng th causes the function always to return zero:

fun l eng th ( n i l l ) = 0
| l eng th ( h e a d : : r e s t ) = 1 + l eng th r e s t

In many cases (as in this one), the pattern-match will have redundant rules as
a result of the programmer's mistake. Since the compiler warns about redundant
rules, perhaps the error can be detected that way. But not in all cases. And warning
messages are easily ignored by the programmer.

The approach Prolog takes to solve the same problem is to make constructors
syntactically different from variables: Prolog constructors begin with lower-case,
variables with upper-case. The same solution would not quite work in ML, for two
reasons: ML allows 'symbolic' identifiers such as : : and + that don't begin with a
letter (and for which an upper/lower-case rule wouldn't apply); and ML allows data-
constructors to be 'thinned' to identically-named value bindings at module interfaces,
so that what is seen as a constructor in one module is seen as a function (variable)
in another module. These are both small things; they are cute but minimally useful,
and programmers could easily work around their absence.

Some variation of the Prolog approach would solve this problem without signif-
icantly altering the nature of Standard ML. The Haskell language (Hudak, 1991)
uses such an approach.

Overloading

Most languages support some kind of overloading of operators, also known as ad
hoc polymorphism. In its simplest form, this means that an operator such as + can
be applied to integer arguments (yielding an integer result) or to real arguments
(yielding a real result). This is not the same as the parametric polymorphism of
ML or Lisp functions such as cons or map: The algorithm used to implement + is
different for integers and reals, but the implementation of cons is the same for all
types.

Languages of the Algol and BCPL families have always had overloaded operators
built in, with overloading resolution (the determination of argument types, and
therefore of what implementation function to use) at compile-time. Languages of
the 'mathematical' family have typically had overloading resolution at run-time.

Several languages in all three families have allowed programmers to define new
overloaded identifiers, and to specify the implementation function to use for each
argument type. Object-oriented languages, especially, have sophisticated support for
user-defined overloading.

Compile-time overloading resolution and ML-style polymorphic type inference
do not work well together (Damas, 1985). In processing a function definition such
as

fun double(x) = x+x
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it is impossible to know at compile-time whether + is to be implemented as integer
or floating-point addition.

This is not a dangerous 'trap' for the programmer, since any ambiguous function
such as double will be caught at compile-time as a type-checking error; the
programmer will fix the problem (presumably) by inserting a type constraint, e.g.

fun double (x: r e a l ) = x+x

But it's a frequent annoyance; when writing a program on the integers I am just not
thinking about real numbers, and I am constantly surprised to see the overloading-
resolution failures. And in teaching the language, I must always qualify statements
such as 'The ML type inference algorithm can always derive a most-general type
for any expression' with technicalities about a half-dozen built-in operators.

One way to solve this problem is to allow run-time resolution of overloading, as in
the language Haskell (Wadler and Blott, 1989; Hudak, 1992) and in other extensions
of typed lambda calculus (Kaes, 1992). In these languages, class operators are
passed (at run-time) as implicit extra arguments to functions that take polymorphic
overloaded types as arguments.

But this mechanism makes dynamic semantics dependent on static semantics,
which precludes certain kinds of separate compilation schemes. And Haskell uses
a rather heavyweight mechanism for an apparently small gain. After all, making
do with non-overloaded identifiers wouldn't make programs any bigger—one would
just have to make up different names for different operations.

I am often asked whether I seriously mean that floating point addition should
not be represented by the + symbol. That is exactly what I mean: Standard ML
provides only a half-dozen overloaded operators anyway, and the use of + ' or some
such admittedly ugly symbol would be a reasonable price to pay for the deletion
of overloading from the language. The designers of Standard ML considered the
problem carefully and came to the opposite conclusion—so it must be a matter of
taste.

Weak type variables

The ML type system, and type inference algorithm, works very effectively on
programs without side effects. Particularly important is that the types are 'intuitive':
the inferred types seem very natural and obvious to most programmers in most
cases.

It has long been known that this algorithm does not work for polymorphic
references. To illustrate with an oft-used example, consider

l e t v a l f = fn x=>x in f 1; f t r u e end

The function / has the type V<x. a —> a, and can correctly be applied to an int and a
bool.

But let / be a reference to a polymorphic function and the type inference algorithm
cannot be naively applied. It seems natural to give polymorphic types to the ref,
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: =, and ! operators:

r e f : Va.a —> (are/)

:= : Va.(are/ x a) —> unit

! : Va. a ref —> a

Now try to type-check the expression

let val f = ref(fn x=>x)
in f : = (fn x=>x+l);

(!f) true
end

If / had type Va. ((a —> a)ref), then the program would (inappropriately) type-
check, and would 'go wrong' at run time by incrementing a boolean. So the naive
polymorphic type checker has proved inadequate to handle reference cells. A more
appropriate type for / might be (Va. a —• a)re/), with the quantifier nested inside
the ref constructor; but the ML type inference system cannot cope with 'inner'
quantifiers.

Cardelli's ML compiler (Cardelli, 1984), and the initial proposal for Standard ML
(Milner, 1984), required that reference cells be completely monomorphic, i.e., the
compiler must be able to infer a type without type variables for any argument of
the r e f constructor. This is certainly safe, but insufficiently flexible. Tofte (1990)
generalized this idea, introducing 'weakly polymorphic' references and 'imperative
types'. These allow a function that creates references to be applied to more than one
type, as long as each such type is itself monomorphic. Tofte's imperative types are a
substantial improvement, and make for a usable language; they have been adopted
as part of the Standard ML Definition.

However, Tofte's scheme can be made more flexible. In particular, it does not
seem to work very naturally with higher-order functions; currying a function of im-
perative type can lead to a function that is rejected by Tofte's algorithm. MacQueen
solved this problem by assigning numerical weakness indices to the type variables
(MacQueen, 1988). MacQueen's scheme is strictly more powerful than Tofte's, and
has been implemented in Standard ML of New Jersey.

However, MacQueen's weak types aren't very easy for programmers to understand.
It's difficult for the uninitiated to infer types for functions that make ref cells;
typically I write the expression and get the compiler to print out the type, which I
can then use in writing module signatures, etc. This approach to interface design is
the opposite of that usually recommended!

The most annoying thing about Tofte's and MacQueen's imperative types is the
'visibility' of locally-used references in interface descriptions. Consider a function

s o r t : ( i n t * ' a ) l i s t -> ( i n t * ' a ) l i s t

which is given a list of pairs; the first element of each pair is an integer key and
the second element is of arbitrary type (though, of course, the same type for each
element of the list). The s o r t function returns the list sorted by key. It is easy to
write a purely functional quicksort or merge sort to solve this problem efficiently.
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But suppose one expects all the integers to be in the range 1-1000, and the list
contain thousands of elements. Then a bucket sort is faster, using an array of 1000
elements. But even though the array is not returned from sor t , or retained way
after s o r t returns, the type of this bucket-sort program would now be

s o r t : ( i n t * '_a.) l i s t -> ( i n t * ' _a ) l i s t

indicating that the non-key elements of the list cannot be polymorphic values. It is
too bad that this purely internal data structure must be 'mentioned' in the interface.

Many researchers have recently been engaged in devising better type inference
systems for polymorphic programs with references (Lucassen and Gifford, 1988;
Leroy and Weis, 1991; Jouvelot and Gifford, 1991; Talpin and Jouvelot, 1991;
Wright, 1992), which indicates that the problem of type-checking references is not
yet regarded as 'solved'; some of these systems address the problem of internal,
temporary references described above.

The ML Grammar

The designers of Standard ML worked very hard to get the semantics right, and to
define the semantics as completely and as formally as possible. Unfortunately, the
same attention was not paid to syntax. Thirty years after Algol, and 15 years after
Yacc, The Definition of Standard ML does not contain an unambiguous context-free
grammar for the syntax of the language.

As presented, the grammar is ambiguous for two reasons: The parser must 'guess'
whether an identifier in a pattern is a variable or a constructor; and it must
'guess' whether an identifier is defined as infix, and if so, at what precedence and
associativity.

These problems are not very difficult to solve semantically. For example, one
might think the expression a b c d e f has to be parsed very differently if t>
is an infix operator than if c is. The solution is to parse such an expression as a
sequence of atoms, and implement a simple precedence parser (37 lines of code in
SML/NJ) as a 'semantic action' for infix operators.

So the problem is not that ML has no context-free grammar; it's that the grammar
is not clearly specified in the Definition. One immediately runs into problems when
one wants to implement a parser for ML. A good language definition should include
a complete LR(1) grammar with no reduce/reduce conflicts and as few shift/reduce
conflicts as possible. Even if the implementor intends to parse using a different
strategy (e.g. LL(1) or recursive descent), the LR(1) grammar is a useful starting
point. The Standard ML of New Jersey implementation (Appel and MacQueen,
1991) uses such a grammar (with 68 terminals, 76 nonterminals, 231 productions,
452 LALR(l) states).

Most languages have a shift/reduce conflict with e l se . In the expression
i f A then i f B then C e l s e D

it's not clear whether the e l s e is supposed to match the first then or the second.
This is customarily resolved by saying that the innermost (in this case, the second)
then is matched; that is, an LR parser should resolve the conflict by shifting.
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ML cleverly avoids this problem by requiring that every i f have both a then
and an e l s e clause. But a similar problem occurs in case expressions:

case A
of X => case B

of Y => C
| Z => D

Now, is the Z pattern part of case A or case B? The Definition says that it's the
latter; and this corresponds to resolving a shift/reduce conflict in favour of the shift.
This is the only shift/reduce conflict in the Standard ML of New Jersey grammar.

Programmers have grown accustomed to the behavior of i f - t h e n - e l s e . But as
an ML programmer I often fall into the case trap: I often write pattern-matches like
the one above. The solution is to enclose the inner case expression in parentheses,
but I would rather the problem didn't occur in the first place.

These extra parentheses are ugly. In fact, having a shift/reduce conflict in the
grammar is ugly. A better solution might be to require that case and fn expressions
end with end, so the example above would be written:

case A
of X => case B

of Y => C
end

| Z => D
end

Now there is no ambiguity. It is, however, a matter of taste whether the end is
uglier than the extra parentheses.

There are some other syntactic glitches. It was clearly the intent of the designers
to make semicolons optional after declarations. Thus, the declaration

va l a = 5;
va l b = 6;

would have the same meaning without the semicolons. (The ML 'top level' (read-
eval-print loop) adds some twists of its own; these are discussed elsewhere in the
paper.)

This is a good thing; I'd rather not have semicolons cluttering up my programs (my
prose is another matter). But it turns out that between a s t r u c t u r e declaration
and a functor declaration a semicolon is required (though not between two
s t r u c t u r e declarations or two functors). The only apparent reason for this
discrepancy is that the syntax of module declarations was not carefully thought out.

Finally, I will remark that I have heard from many different people that they find
ML syntax confusing, ugly, and difficult to learn. As a longtime ML programmer, I
am quite comfortable with ML syntax; but perhaps the frequency of these complaints
might serve as a hint that there is an opportunity for a syntax designer of rare taste
and genius.
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Infix operators

Programmers may define new infix operators in Standard ML, and may give them
a precedence (between 0 and 9, where a higher number indicates tighter binding)
and left or right associativity. If the programmer wants to define an exponentiation
operator ** and make it right-associative and tighter-binding than multiplication,
the declaration i n f i x r 8 ** works quite well.

The Definition states

i n f i x and i n f i x r dictate left and right associativity respectively; association is always
to the left for different operators of the same precedence.

This is not as good a rule as it could be. Consider the list-like datatype

datatype 'a Iist2 = NIL
| $$ of 'a * 'a Iist2
| && of ' a * ' a I i s t 2

i n f i x r 5 $$ &&

Here there are two flavors of cons cells. Then the expression

1 $$ 2 $$ 3 && 4 $$ NIL

is intended to be a 'Iist2' of integers, some of which are marked with $$ and
others with &&, just as 1: : 2: : 3: : 4: : n i l is an ordinary list of integers. In both
cases, the cons operators (: :, $$, &&) are meant to associate to the right. But the
ML Definition requires that the 'Iist2' expression above should associate to the left
because different operators of the same precedence are used. Perhaps the Definition
'meant' to say that 'operators of the same precedence but opposite associativity
associate to the left.' But an even better rule would be that left- and right-associative
operators of the same precedence don't mix without parentheses; this is the rule in
Haskell (Hudak, 1991).

Infix vs. Modules

Infix declarations are not exported from modules, and cannot be specified in signa-
tures. This makes them significantly less useful.

For example, if one implements a module Vector to implement random-access,
integer-keyed tables, one might want a signature like

signature VECTOR =
sig type 'a vector

val vector: 'a list -> 'a vector
val sub: 'a vector * int -> 'a

end
structure Vector: VECTOR . . .

One might then want to make sub an infix operator, so that expressions like
V sub i could be used for getting the ith element of a vector.

To use vectors in another module B, one could refer to the vector-creation
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function Vector, vec to r and the subscript function Vector, sub. But it is more
convenient to write open Vector inside B, so that vec to r and sub can be used
without prefix within B.

However, one cannot write i n f i x sub in the signature VECTOR; within B the
sub operator won't be infix unless there is a separate i n f i x sub declaration in B.

The idea behind the module system is that an arbitrary piece of static environment
can be 'encapsulated'; then open will reconstitute that environment in another scope.
By prohibiting this encapsulation of the 'fixity' portion of the static environment,
the Definition makes i n f i x declarations second-class.

The only good argument against allowing open to reconstitute fixity declarations
is that it might make programs hard to understand; the interpretation (i.e., fixity)
of an operator cannot be understood by looking lexically upwards in the text of the
program for a declaration of that identifier, because one might not notice the open
of a module identifier (e.g. Vector). But this argument applies to all declarations
implicitly introduced by open, not just fixity declarations. The semantics (i.e., type,
value, etc.) of an operator can't be determined lexically because of the use of open;
the programmer who can parse the operators but doesn't know what they do is
almost as badly off as the one who isn't sure about operator precedence.

The Definition (Milner et al., 1989, p. 10) states that 'a more liberal scheme
(which is under consideration)' would allow infix specs in signatures, and then an
open declaration would re-install fixities of operators. Such a scheme has been
implemented in Standard ML of New Jersey (Appel and MacQueen, 1991), and is
quite convenient to use.

Separate compilation

The ML language definition is purposely quite vague about the pragmatics of
putting programs together. The Definition chooses to pretend that all programs are
typed into an interactive 'top level' read-eval-print loop, and vaguely alludes to the
fact that programs might be compiled from files. (In fact, most implementations
have a function called use that allows files to be compiled; but they disagree on
the semantics of nested uses.)

This is reasonable: there is nothing wrong with defining a programming language
in the abstract, without tying it to the concrete details of operating systems and
file systems. It is far better to underspecify this aspect of a language than to get it
wrong.

However, modern languages with module facilities (including C, Modula, Ada)
usually specify quite clearly which parts of a program can be compiled separately
from the rest of the program: in C, a . c file generally requires some . h files for
compilation, but not other . c files (Kernighan and Ritchie, 1978); the Modula-2
definition (Wirth, 1981) is even more specific about the organization of compilation
units.

Since ML has a rather elaborate module system, it would seem that each module
should be a separately compileable unit. But this is not necessarily the case; structures
with free structure identifiers do not sufficiently specify what they are importing. The
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Commentary suggests some (severe) restrictions on the module system that would
allow separate compilation. But on the whole, the relationship between structures,
modules, and separate compilation could use some further work.

Abstract structures

When a structure definition in ML is constrained by a signature, the representations
of types are not hidden; they 'show through'. Thus, the declaration of a module
implementing complex numbers,

signature COMPLEX =
sig type complex

val * : complex*complex -> complex
end

structure Complex : COMPLEX =

struct
type complex = real * real
val op -x- = fn ((rl, thetal): complex,

(r2,theta2): complex) =>
(rl*r2, thetal+theta2)

end

does not hide the fact that the polar representation is used: s t r u c t u r e declarations,
even when constrained by signatures, allow type and sharing information to 'show
through' the constraint. Other modules that make use of the Complex structure
will be able to access the components of a complex number, unless they import
Complex as the parameter of a functor. I have found that most people learning ML
are surprised by this, because the signature declaration itself makes no mention of
the representation.

In some cases the transparency of signatures is necessary and useful; but in
many cases it would be useful to use the module system to implement abstract
data types. MacQueen's original module proposal (MacQueen, 1984) provided for
a b s t r a c t i o n , a special kind of structure declaration in which all type represen-
tation and sharing information not specified in the signature constraint would be
hidden. Giving programmers the choice between s t r u c t u r e and a b s t r a c t i o n
would better support programming with abstract data types. Abstract datatypes
with hidden representations are the apple pie and motherhood of modern software
engineering, and rightly so.

Of course, there exist other mechanisms for abstract data types in Standard ML
(abstype and functor) . But it is particularly convenient to use abstract data types
at the module level, where a b s t r a c t i o n is more straightforward than abstype.
And functors can be a clumsy mechanism for structuring programs.

The Commentary to the definition shows that a b s t r a c t i o n is not semanti-
cally problematical (Milner, 1991, p. 85), and even gives a useful generalization of
MacQueen's proposal. It's a pity that this feature was omitted from the Definition.
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open in signatures

It is customary, in writing modular software, to specify the interfaces between
modules and to implement the modules to meet those interfaces. Even when the
programmer develops the implementation first, it is good practice to pretend oth-
erwise by writing the interface signature and cleaning up the implementation as
necessary to meet the signature. Then the reader of the program can first under-
stand the interfaces (which are generally more concise than the implementations),
and then proceed to learn about the implementation of one module at a time. The
signatures of the Standard ML module system support the writing of clear interface
specifications.

Now imagine an interface definition that says, in effect, 'the signature S is defined
to be whatever interface happens to be met by the implementation module M.' Then
to understand S, one must read through the entire implementation M, inferring types
for all the values, keeping track of which identifiers are visible in the outermost
scope. A right-thinking software engineer should certainly frown at such a method
of defining interfaces.

But this is exactly what is provided by open specs in signatures! The signature

s i g n a t u r e S = s i g open M end

specifies that the interface S is just whatever (largest) interface is obtained by
elaborating the structure M.

The open spec may be pleasingly symmetrical to the theoretician; it may be
technically useful in defining the semantics of the rest of the module system. But
it has no place in a real programming language. (A shar ing constraint can also
relate a signature interface to a free structure, but this is not so problematical for
the reader of the program, since it has no effect on the visibility of names.)

A related problem has to do with overlapping open (or include) specs. Since
open M or inc lude S has the effect of including many identifiers, it is easy for the
programmer to inadvertantly (or even purposefully) include two different signatures
containing the same type, value, or structure identifier. Though there is no ambiguity
in the semantics (the later spec takes precedence), multiple definitions make the scope
of specs much more complicated to follow, and make the implementation of semantic
analysis for signatures and sharing much more difficult.

The scope rules for ML expressions, while simple, are not completely trivial;
and that is appropriate: programs are complicated things. But it seems worthwhile
to strive for extreme simplicity in interface (signature) definitions: scope rules for
signatures should be trivial. A clear understanding of the interfaces of a program is a
prerequisite to understanding the program. Removing open, l oca l , and inc lude
specs** from Standard ML would result in much cleaner interfaces, without causing
great inconvenience.

One of the arguments for inc lude is that it helps in writing concisely a signature

n I am not proposing to remove open declarations from expressions, just open specs from
signatures.
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for modules that satisfy several different specifications. Consider a signature HASH
of hashable values, and a signature GROUP for mathematical group structures:

signature HASH =
sig type value

val hash : value -> int
end

signature GROUP =
sig type elem

val id : elem
val * : elem * elem -> elem

val inverse: elem -> elem
end

How can these be combined to make a signature for hashable groups? With
inc lude , one could write

signature HASHGROUP =
sig include HASH

include GROUP
sharing type value = elem

end

But substructures serve almost as concisely, without using inc lude :

signature HASHGROUP =
sig structure H: HASH

structure G: GROUP
sharing type H.value = G.elem

end

In fact, the latter approach is more robust, since unfortunate naming coincidences
between the two signatures can be distinguished by qualified identifiers (imagine
that the HASH signature also had an identity function id: value->value) . The
only disadvantage is that the client of HASHGROUP must either open G and H, or
use qualified identifiers such as G. i d instead of id.

5 Problems in compiling ML

ML is designed to be compiled: many things can be evaluated at compile time. ML
has static types, static (lexical) scope, statically-checked modules. However, some
aspects of the language design are hard to compile efficiently.

Polymorphic equality

ML has an operator = to test the equality of two values (which must have the
same type). Values of any of the primive types (integer, real, string, etc.) may be
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tested for equality, but values of function type may not. Abstract types, of which the
programmer has purposely hidden the representation, also do not 'admit equality';
they are not 'equality types'.

Any values of a record type or datatype built only from 'equality types' may be
compared for equality. Equality of records, lists, and so on is structural: the record
(xi,_yi) is equal to (X2,y2) if *i = *2 and y\ = y2l there is no way to tell if the two
records are at the same address.

This is all very well, but now there is a complication. Consider the program

fun alleq(a,b,c) = a=t> andalso b = c

val t = alleq(3,3,3)

val x = alleq(fn x=>x+l, (# ILLEGAL! *)
fn x=>l+x,
fn x=>x+l)

The function a l l e q should have a type resembling Va .axaxa-> bool, so that we
can pass three integers to it, or three strings, or three lists of real numbers. But we
cannot pass any values of a type (such as int —> int) that does not admit equality;
thus the last declaration must be illegal. (After all, to tell whether two functions are
'equal' the compiler must be able to tell whether they give the same results on all
inputs, which is rather difficult.)

In Standard ML the problem is resolved by introducing 'equality type variables',
which can be instantiated only by types that admit equality. Thus, the type of a l l e q
is something like

Va". a" x a" x a" —»• bool

where we can substitute int for a", but not int —• int. In an (ASCII) ML program,
equality type variables are written starting with two apostrophes instead of just one.

This seems like a clever solution, but it introduces three kinds of problems into
the ML language:

1. The static semantics of the language become very complicated;
2. code generation and the run-time system require unpleasant special cases;
3. and perhaps programming with equality types isn't a good idea anyhow.

Static semantics: Now the language designers must worry about type constructors
that admit equality, specs in signatures of types that admit equality, propagation of
the equality property through sharing constraints and functors, and so on. In The
Definition of Standard ML, no fewer than twenty-two pages mention some syntactic
or semantic aspect of equality types; this is approximately one out of every four pages
of the Definition. The ramifications of equality similarly metastasize throughout a
Standard ML compiler. Equality types add significant complexity to the language
and its implementation.

Dynamic semantics: In almost every respect the type checking of an ML program
is distinct from the evaluation of the program. Thus, type checking can be done

17 FPR 3
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at compile time, and type tags need not be carried on runtime objects. This saves
considerable space and time, and is one of the most important features of the
language.

But a function (such as a l l e q , above) must be able to test variables for equality,
even though the type of these variables is polymorphic and not known until run
time. There are two ways that this might be accomplished:

1. The runtime representation of each object can have sufficient tag information
to determine whether the object is a pointer, and if so, how many fields are in
the pointed-to record, and whether the record is a re f cell. Then an 'equality
interpreter' can recursively traverse data structures to test bitwise equality on
non-pointers, and structural equality on pointers. I believe this is the solution
chosen in all existing ML compilers.

2. The representation of any formal parameter whose type is a polymorphic
equality type variable could be a pair, whose first field is the value itself and
whose second field is a function for testing equality on values of that type.
Then a function such as a l l e q could use these implicit parameters to perform
equality testing. This is the solution adopted in Haskell (Wadler and Blott,
1989), which generalizes the notion of equality types to include other kinds of
overloading.

There are disadvantages to either solution. The first requires runtime tags which
are otherwise not necessary for ordinary execution. The argument is often made
that these tags are there to allow the garbage collector to traverse pointers and
records. But it is possible to devise a garbage collector that relies on the static type
information computed at compile time (Appel, 1989), without any runtime tags on
data. Furthermore, even a conventional garbage collector might use a BIBOP (Big
Bag of Pages) scheme that groups many objects of similar type on the same page,
so that one tag suffices for all of them. Then the run-time 'equality interpreter' faces
a very complex task in understanding the structure of objects.

As to the provision of implicit arguments to functions, this is workable but inele-
gant. As the Commentary on Standard ML states, 'the static and dynamic semantics
can be studied independently of one another' (Milner, 1991, preface). In structuring a
compiler, it is very convenient that translation of expressions into machine language
is independent of the types of the expressions. Requiring that some expressions
must be treated specially depending on their types corrupts the interface between
the components of the compiler.

Programming with equality types: An oft-used example of the utility of equality
types is the implementation of sets (with union, intersection, etc.) as lists. Thus,

fun s e t ( x ) = x : : n i l
fun member(x, nil) = false

| member(x, a::r) = x=a orelse
member(x,r)

fun union(a::r,h) =
if member(a,b)
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then union(r, t>)
e l s e a: : un ion ( r , b)

| u n i o n ( n i l , b ) = b

Then these functions can be used to make sets whose elements are any type a, as long
as a admits equality (i.e., doesn't contain components of functional or abstract type).
And the programmer doesn't even have to provide an explicit equality function—the
compiler figures it all out.

But there are two very significant problems with this program, and these problems
are sufficiently general that they may affect any program that makes much use
of equality type variables. First, the set union function takes quadratic time. Any
realistic program that deals with sets will want to make set union take linear time;
and this can only be done if there is some sort of ordering (less-than) comparison
operator available on the elements, or some way to hash the elements to integer
values. Thus, a 'production quality' set abstraction will be parameterized by more
than just an equality function.

Second, consider what happens with sets of sets. As an example,

val a = union(set(1), set(2))
val b = union(set(2), set(1))
val x = set(a)
val t = member(b,x)

The set x has a single element that is the set {1,2}; the last line tests the set {2,1} for
membership. Of course, the program will tell us that b ^ {a}, which violates the set
abstraction. The problem is that structural equality is the wrong equality to use on
sets; the programmer should really provide an eq_set function that tests whether
two sets have the same elements.

Thus, implicit structural equality is often bad programming practice. The program-
mer should provide an explicit equality function because (1) the explicit function
will likely be more efficient to use, and (2) the explicit function will have the right
semantics for the application.

A reasonable compromise would be to allow a kind of statically overloaded
equality function, of the kind found in earlier versions of Standard ML (Milner,
1984). This equality operator worked on any non-functional monomorphic type. Such
an operator is quite convenient to the programmer, and does not unduly complicate
the language semantics, compiler, or runtime system. (Half as many pages of the
Definition** would mention equality; equality attributes would cease to interact with
the type checker or the module system; no 'equality interpreter' would be needed
in the runtime system.) It must be admitted that with this solution (as with ML
overloading) we are left without principal types in some cases.

« Pages 4, 18, 19, 21, 22, 25, 26, 74, 75, 77, 79 of the definition (Milner et al., 1989) would
still mention equality; pages 13, 16, 33, 35, 36, 39, 40, 41, 43, 44, 57 would no longer need
to.

17-2
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Datatype representations

Recursive data types are declared in ML using da ta type , which defines the
constructors (and associated types) of a disjoint union type. Linked lists are just a
special case of this more general notion.

The run-time representation of a typical datatype element consists of a constructor
and an associated value. A straightforward implementation of this representation
would be as a two-element record, with one field containing a small integer tag
(standing for the constructor) and the other containing the value (since ML has
polymorphic types, every value must be the same size—one word in a typical
implementation).

This scheme, if applied to a datatype like list, would require that the representation
of a: : b be a pointer to a two-element record containing a constructor and a value;
the value would be a pointer to another pair containing a and b. Each element of
the list, then, requires not one 'cons cell' but two!

Cardelli's ML compiler (Cardelli, 1984) avoided this extravagance by taking
advantage of the fact that in the runtime representation of values, pointers could
be distinguished from small integers. Thus, the compiled code could tell which
constructor (n i l or : :) had been applied by seeing if the value was a small
integer (nil) or a pointer (: :). The pointer would then point directly at a record
containing a and b. Thus the representation of lists in Cardelli's compiler (and in
every subsequent ML compiler) is just like the representation used in Lisp.

In fact, all these compilers generalize the idea slightly: in any datatype with just
one non-constant constructor (and any number of constant constructors), if the
non-constant constructor carries a value that is always represented by a pointer,
then an extra indirection to carry the constructor is not necessary.

Now, consider the following perfectly legal Standard ML program:

functor F(type 'a t

datatype 'a list =
nil | :: of 'a t

) = struct . . . end;

structure S -
F(datatype 'a list =

nil | :: of 'a * ' a list
type 'a t = 'a * 'a list

In compiling the functor F, the compiler does not know whether the representation
of ' a t is always a pointer; so an explicit indirection (a record for the constructor)
must be used in the representation of list.

But in compiling the structure S, the actual parameter has a datatype list in which
the value carried by : : is a record, and thus always a pointer. So the representation
chosen by the compiler will use Cardelli's optimization.

Then when lists created outside of F are passed to functions inside F, the program
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will go wrong: different compilation units will disagree about the representation of
lists.

Thus, Standard ML does not permit Cardelli's optimization; but all the imple-
mentations use it because the alternative is too expensive (Cardelli, of course, was
not compiling a language with functors).

The problem is a bit more general. There are many other possible generaliza-
tions of Cardelli's technique, all with the aim of making the representations of
datatypes more compact and efficient. None of these techniques work across functor
boundaries.

Cardelli's technique is a variant of the idea, pay for abstraction only where things
are abstract. Leroy's representation analysis applies to functions; Cardelli's to data
structures. But it appears that this idea cannot be made to apply to recursive
datatypes in Standard ML; this is extremely unfortunate. I believe the problem lies
in the partial abstraction of datatypes. In the example above, the programmer has
abstracted a x a list into at, but has not abstracted the datatype list. This is an
unusual program. The whole point of a concrete datatype is that it is not abstract;
if the programmer wanted an abstract type in the interface then the parameter of F
wouldn't have mentioned a datatype at all.

Thus, a solution to this problem might be to change very slightly the notion of a
datatype. Instead of saying that a datatype is the disjoint sum of several types, let
us say that it is the disjoint sum of several product types. That is, the value carried
by a constructor is not just a type, it is a record type. Note that this is exactly the
way that a variant record works in Pascal.

Then the problematic program above would not be legal. The functor definition
would be allowed, but the datatype in the actual parameter would not match the
datatype in the formal parameter.

This slight restriction would allow compilers to use much more efficient rep-
resentations of concrete datatypes in ML. At present we are experimenting with
an implementation of this representation (and consequent language restriction) to
explore this tradeoff.

One might think that a compiler should also represent each element of an
(int x int)list as a triple (int,int,tail —pointer). But here the product type (int x int)
is not part of the datatype itself, but part of the type parameter of the list constructor.
This would lead to problems when polymorphic functions on list types are applied
to a specially-represented lists. Thus, such an optimization has problems not only at
functor boundaries but at function boundaries.

The initial basis

The Definition specifies an initial basis, that is, a set of predefined types, values, and
exceptions that are the 'built-in functions' (etc.) of any ML system. These include
the arithmetic operators on integers and reals, string concatenation, a few operators
on lists, and so on.

The initial basis is not large enough to write real programs that use nontrivial
input/output, or that interact much with the operating system. That's perfectly
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acceptable; this is a language definition, not a library module. The type and module
systems of Standard ML are adequate to describe appropriate libraries, and that's
what is important.

But the initial basis, such as it is, has some rough edges:

• There are functions for reading and writing strings of characters, for converting
integers into single-character strings (and back), and for concatenating strings,
and for 'exploding' strings into lists of single-character strings, and 'imploding'
(concatenating a list of strings together). But there is no way to access the
ith character of a string in constant time—there is no substring operator! The
only way to extract an internal character of a string is to explode the string
and then to traverse the resulting list; this takes time linear in the length of
the string.

• There is no way to make updateable arrays with constant-time access to
arbitrary elements. Arrays can be simulated by lists (or trees) of ref cells,
but access and update operations will then take linear (or logarithmic) time.
Updateable arrays are certainly not out of place in a language with updateable
refs.

• The arithmetic operators may overflow, in which case the Definition prescribes
that + will raise the Sum exception, * will raise the Prod exception, and so on.
It is extremely inconvenient for the implementor to have distinct exceptions
for the different operators; most computers don't raise separate hardware
exceptions for different kinds of overflow. And the programmer would almost
always be served just as well by a single exception called Overflow.

• There is no bit string type, and there are no bitwise logical operators on the
integer type. There are many applications of bitwise operators in graphics,
number theory, cryptography, and other areas. On the other hand, it is worth
noting that ML's d iv and mod have rounding behaviour (towards negative
infinity, not towards zero) that allow shifts and masks to be defined using
powers of two; compilers could optimize this case, in principle.

• Upon an input/output error, the I o exception is raised with a string argument.
The format of the argument is specified in the Definition, and this format
does not provide enough information for serious applications. It would have
been preferable to leave the contents of the string unspecified rather than
prematurely settling on an inadequate standard.

• To finish on a trivial note: the list concatenation operator ® is declared infix,
associating to the left. Programs would compute the same result under right
associativity, but would run faster, since © must copy its left argument but not
its right one.

It is worth noting that every implementation of ML since Cardelli's has had a
constant time array subscript and an efficient substring function; the Definition could
have provided a helpful standardization.
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6 Conclusion

The popularity of ML seems to be increasing, both as a language for writing real
programs and as a starting point for theoretical investigations of type theory and
language design. Programmers should note that the good points of ML discussed
in this paper are all rather general and important; the criticisms tend to be narrow,
technical, and not always important.

Theorists should note that, even though some of the criticisms are minor and
not of much theoretical interest, they all affect the usability of the language. Those
theorists who anticipate designing a language themselves someday might want to
remember this critique, along with the classics of the genre (Hoare, 1973; Welsh et
al, 1977).
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