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The X-ray Transform in Non-positive Curvature

Consider the geodesic X-ray transform Im acting on symmetric m-tensor fields.
We have proved in Theorem 4.4.1 that I0 is injective on any simple surface. It
follows from Theorem 4.4.2 also that I1 is solenoidal injective. In this chapter
we make the additional assumption that (M,g) has non-positive Gaussian
curvature, and prove the classical result of Pestov and Sharafutdinov (1987)
that Im is solenoidal injective for any m. The proof at this point follows
easily from the vertical Fourier analysis and the Guillemin–Kazhdan identity
in Chapter 6. We will prove later in Chapter 10 the solenoidal injectivity of Im
on any simple surface, but this requires additional technology.

We will also use the assumption of non-positive curvature to improve the
H 1 stability estimate for I0 given in Theorem 4.6.4 to a sharper H 1/2

T estimate,
which parallels the classical Radon transform estimate in Theorem 1.1.8.
A similar stability estimate will be given for Im. Finally, on simple surfaces
with strictly negative Gaussian curvature, we give rather strong Carleman
estimates that, in particular, imply the injectivity of the attenuated geodesic
X-ray transform. All these results are based on the Guillemin–Kazhdan
identity, considered as a frequency localized version of the Pestov identity and
shifted to a different Sobolev scale. The stability estimates were first given in
Paternain and Salo (2021) and the Carleman estimates in Paternain and Salo
(2018).

7.1 Tensor Tomography

Recall from Section 6.4 that the geodesic X-ray transform Im acting on
symmetric m-tensor fields is said to be s-injective if any h ∈ C∞(Sm(T ∗M))

with Imh = 0 is a potential tensor, i.e. h = dsp where p ∈ C∞(Sm−1(T ∗M))

with p|∂M = 0. The following result settles the uniqueness question for Im on
simple surfaces with non-positive curvature.
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172 The X-ray Transform in Non-positive Curvature

Theorem 7.1.1 Let (M,g) be a simple surface with non-positive curvature.
Then Im is s-injective for any m ≥ 0.

The case m = 0 was already established in Theorem 4.4.2 so we will assume
that m ≥ 1. Using the reduction to a transport equation problem given in
Proposition 6.4.4, it is sufficient to prove the following result.

Theorem 7.1.2 Let (M,g) be a simple surface with non-positive curvature. If
u ∈ C∞(SM) satisfies Xu = f in SM and u|∂SM = 0, and if f has degree
m ≥ 1, then u has degree m − 1.

The proof relies on the following basic fact stating that the equation Xu = f

can be written in terms of the Fourier coefficients of u and f using the splitting
X = η+ + η−.

Lemma 7.1.3 (Fourier coefficients of Xu) Let (M,g) be a compact oriented
surface with smooth boundary, and let u ∈ C∞(SM) satisfy Xu = f . Then

η+uk−1 + η−uk+1 = fk, k ∈ Z.

In particular, if f has degree m, then

η+uk−1 + η−uk+1 = 0, |k| ≥ m + 1.

Proof We use the following facts from Lemma 6.1.3 and Lemma 6.1.5:

• u = ∑∞
k=−∞ uk with convergence in C∞(SM);

• Xu = η+u + η−u where η± : �k → �k±1;
• f = ∑∞

k=−∞ fk with convergence in C∞(SM).

Using these facts and collecting terms of the same order, the equation Xu = f

implies that

η+uk−1 + η−uk+1 = fk .

The result follows.

The main result now follows by using the Guillemin–Kazhdan identity, or
more precisely its consequence (Beurling contraction property) in Proposition
6.5.2.

Proof of Theorem 7.1.2 By Lemma 7.1.3 one has

η+uk−1 + η−uk+1 = 0, |k| ≥ m + 1. (7.1)

Assume first that k ≥ m + 1. Since the Gaussian curvature is non-positive, the
Beurling contraction property (Theorem 6.5.2) implies that

‖η−uk−1‖ ≤ ‖η+uk−1‖.
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7.2 Stability for Functions 173

Combining this with (7.1) yields

‖η−uk−1‖ ≤ ‖η−uk+1‖, k ≥ m + 1. (7.2)

Iterating (7.2) N times yields

‖η−uk−1‖ ≤ ‖η−uk−1+2N‖, k ≥ m + 1.

We now note that since u ∈ C∞(SM), one has η−u ∈ L2(SM). This implies
that

∑‖η−ul‖2 < ∞, which in particular gives ‖η−ul‖ → 0 as l → ±∞. We
can thus let N → ∞ above to obtain that

η−uk−1 = 0, k ≥ m + 1. (7.3)

We may combine (7.3) and (7.1) to obtain that

η−ul = η+ul = 0, l ≥ m.

Since X = η+ + η−, we thus have for l ≥ m that

Xul = 0, ul |∂SM = 0.

This shows that ul is constant along geodesics and vanishes at the boundary.
Thus we must have

ul = 0, l ≥ m.

A similar argument for k ≤ −m − 1, using the second part of Theorem 6.5.2,
yields that

ul = 0, l ≤ −m.

This concludes the proof.

Remark 7.1.4 The proof above has historical significance as it is virtually
identical to the original proof in Guillemin and Kazhdan (1980a) of solenoidal
injectivity for closed surfaces of negative curvature. Guillemin and Kazhdan
were originally interested in the problem of infinitesimal spectral rigidity.

7.2 Stability for Functions

Let (M,g) be a compact simple surface, and let I0 be the geodesic X-ray
transform. Recall from Theorem 4.6.4 that the X-ray transform enjoys the
stability estimate

‖f ‖L2(M) ≤ C‖I0f ‖H 1(∂+SM)
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174 The X-ray Transform in Non-positive Curvature

for any f ∈ C∞(M). We compare this with the stability estimate for the Radon
transform in R

2 from Theorem 1.1.8, which states that

‖f ‖L2(R2) ≤ 1√
2
‖Rf ‖

H
1/2
T (R×S1)

for f ∈ C∞
c (R2). Note that the estimate for Rf is stated in parallel-beam

geometry, whereas the estimate for I0f is stated in fan-beam geometry.
There are two important differences between the above stability estimates:

the latter estimate involves an H 1/2 norm instead of H 1, and the H
1/2
T norm is

only taken with respect to the s-variable in Rf (s,ω) in the sense that

‖Rf ‖
H

1/2
T (R×S1)

= ‖(1 + σ 2)1/4(Rf )˜(σ,ω)‖L2(R×S1).

In this section we will improve the stability estimate for I0f and replace the H 1

norm with a suitable H
1/2
T norm. This will be done by using vertical Fourier

expansions and the Guillemin–Kazhdan identity. However, we will need the
additional assumption that (M,g) has non-positive curvature.

We introduced in Section 4.5 the vector field T that is tangent to ∂SM .
Define the H 1

T (∂SM) norm via

‖w‖2
H 1

T (∂SM)
= ‖w‖2

L2(∂SM)
+ ‖Tw‖2

L2(∂SM)
.

Note that this is different from the H 1(∂SM) norm, which was given by

‖w‖2
H 1(∂SM)

= ‖w‖2
L2(∂SM)

+ ‖Tw‖2
L2(∂SM)

+ ‖Vw‖2
L2(∂SM)

.

Thus the H 1
T norm only involves the horizontal tangential derivatives along

∂M , but not the vertical derivatives.
The space H

1/2
T (∂SM) is defined as the complex interpolation space

between L2(∂SM) and H 1
T (∂SM) (for interpolation spaces, see Bergh and

Löfström (1976)). The spaces H 1
T (∂+SM) and H

1/2
T (∂+SM) are defined in a

similar way. The following stability estimate is the main result in this section.

Theorem 7.2.1 Let (M,g) be a compact simple surface with non-positive
Gaussian curvature. Then

‖f ‖L2(M) ≤ 1√
2π

‖I0f ‖
H

1/2
T (∂+SM)

, f ∈ C∞(M).

The first step in the proof is to rewrite the boundary term in the Guillemin–
Kazhdan identity in terms of the tangential vector field T from Definition 4.5.2.
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Proposition 7.2.2 Let (M,g) be a compact surface with smooth boundary. For
any u ∈ C∞(SM) one has

‖η−u‖2 = ‖η+u‖2 − i

2
(KV u,u) + i

2
(T u,u)∂SM .

Proof From Lemma 6.5.1 we have

‖η−u‖2 = ‖η+u‖2 − i

2
(KV u,u) − (η−u,μ−1u)∂SM + (η+u,μ1u)∂SM .

Since μ = 〈v,ν〉 and Vμ = −〈v⊥,ν〉, so that μ±1 = 1
2 (μ ∓ iV μ), the

boundary terms become

1

2

[
(η+u,(μ − iV μ)u)∂SM − (η−u,(μ + iV μ)u)∂SM

]
.

Using that η± = 1
2 (X ± iX⊥), the boundary terms further simplify to

1

2
[−(Xu,i(V μ)u)∂SM + i(X⊥u,μu)∂SM ] = i

2
((V μ)Xu + μX⊥u,u)∂SM .

By Lemma 4.5.4 the last expression is equal to i
2 (T u,u)∂SM .

Next we consider a version of the Beurling contraction property with
boundary terms on surfaces with non-positive curvature.

Proposition 7.2.3 Let (M,g) be a compact surface with smooth boundary.
Suppose that K ≤ −κ0 for some κ0 ≥ 0, and let u ∈ �k . If k ≥ 0 then

‖η−u‖2 + κ0

2
k‖u‖2 ≤ ‖η+u‖2 + i

2
(T u,u)∂SM,

whereas if k ≤ 0 one has

‖η+u‖2 + κ0

2
|k|‖u‖2 ≤ ‖η−u‖2 − i

2
(T u,u)∂SM .

Proof This follows directly from Proposition 7.2.2.

Given f ∈ C∞(M), we wish to apply the Beurling contraction property to
the Fourier coefficients of uf . The function uf is not, in general, in C∞(SM),
so we will work in slightly smaller sets as in Section 4.5. Let ρ ∈ C∞(M)

satisfy ρ(x) = d(x,∂M) near ∂M with ρ > 0 in M int and ∂M = ρ−1(0).
Define ν(x) = ∇ρ(x) for x ∈ M , let μ(x,v) := 〈v,ν(x)〉 for (x,v) ∈ SM ,
and define

T := (V μ)X + μX⊥.

Thus T extends the tangential vector field from ∂SM into SM . By Exercise
4.5.6 it satisfies [V,T ] = 0 in SM . Define Mε := {x ∈ M ; ρ(x) ≥ ε}.
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176 The X-ray Transform in Non-positive Curvature

We start the proof of Theorem 7.2.1 with the following result, which
estimates f in terms of an inner product on ∂SM involving uf |∂SM , the
tangential vector field T , and the fibrewise Hilbert transform H (see Section
6.2). Recall that in (4.5) we proved the estimate

‖f ‖2
L2(SM)

≤ −(T uf ,V uf )∂SM .

The estimate below is better, since the right-hand side does not involve vertical
derivatives of u.

Lemma 7.2.4 Let (M,g) be a compact simple surface with non-positive
curvature. For any f ∈ C∞(M), one has

‖f ‖2
L2(SM)

≤ (
T uf ,Huf

)
∂SM

.

Proof Let f ∈ C∞(M) and let u = uf , so that Xu = −f and u is smooth
in SMε for ε > 0 small. Since the curvature is non-positive, for any k ≥ 0
Proposition 7.2.3 gives that

‖η−uk‖2
SMε

≤ ‖η+uk‖2
SMε

+ i

2
(T uk,uk)∂SMε . (7.4)

Notice also that the equation Xu = −f gives η+uk + η−uk+2 = 0 for k ≥ 0
(see Lemma 7.1.3). Combining this with the inequality above yields

‖η−uk‖2
SMε

≤ ‖η−uk+2‖2
SMε

+ i

2
(T uk,uk)∂SMε . (7.5)

We iterate (7.5) for k = 1,3,5, . . . and use the fact that ‖η−ul‖SMε
→ 0 as

l → ∞ (which follows since η−u ∈ L2(SMε)). This gives that

‖η−u1‖2
SMε

≤ i

2

∞∑
j=0

(T u1+2j,u1+2j )∂SMε .

A similar argument for k ≤ −1, using the second part of Proposition 7.2.3,
shows that

‖η+u−1‖2
SMε

≤ − i

2

∞∑
j=0

(T u−1−2j,u−1−2j )∂SMε .

Combining the above estimates and using the equation Xu = −f again gives

‖f ‖2
SMε

= ‖η−u1 + η+u−1‖2
SMε

≤ 2(‖η−u1‖2
SMε

+ ‖η+u−1‖2
SMε

)

≤ i
∑
k odd

(T uk,wk)∂SMε,
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7.2 Stability for Functions 177

where

wk := iHuk =
{

uk, k > 0,
−uk, k < 0.

We next use the fact that [T ,V ] = 0, which implies that T maps �k to �k .
Hence the estimate for f may be rewritten as

‖f ‖2
SMε

≤ (T u,Hu)∂SMε .

Since uf |∂+SM = I0f and uf |∂−SM = 0, one has u|∂SM ∈ L2(∂SM). By
Corollary 4.5.8 one also has T uf |∂SM ∈ L2(∂SM). In particular, u|∂SM ∈
H 1

T (∂SM). One also has Hu|∂SM ∈ H 1
T (∂SM), since

‖Hu‖2
∂SM ≤

∑
‖uk‖2

∂SM = ‖u‖2
∂SM, (7.6)

‖Hu‖2
H 1

T (∂SM)
≤

∑(‖uk‖2
∂SM + ‖T uk‖2

∂SM

) = ‖u‖2
H 1

T (∂SM)
. (7.7)

The last identity used again that [V,T ] = 0. Taking the limit as ε → 0 as in
Exercise 4.5.9 gives that

‖f ‖2
SM ≤ (T u,Hu)∂SM .

Next we give an estimate for the right-hand side of the previous lemma.

Lemma 7.2.5 Let (M,g) be a compact surface with smooth boundary. For any
u,w ∈ H 1

T (∂SM) one has

|(T u,Hw)∂SM | ≤ ‖u‖
H

1/2
T (∂SM)

‖w‖
H

1/2
T (∂SM)

.

Proof Given s > 0, let H−s
T (∂SM) be the dual space of Hs

T (∂SM). We first
use the estimate

|(T u,Hw)∂SM | ≤ ‖T u‖
H

−1/2
T (∂SM)

‖Hw‖
H

1/2
T (∂SM)

.

Interpolating (7.6) and (7.7) shows that H satisfies

‖Hw‖
H

1/2
T (∂SM)

≤ ‖w‖
H

1/2
T (∂SM)

.

It remains to estimate the norm of T u. First note that

‖T u‖L2(∂SM) ≤ ‖u‖H 1
T (∂SM).

Next we estimate the H−1
T norm using that T is skew-adjoint (see Lemma

4.5.4):

‖T u‖
H−1

T (∂SM)
= sup

‖w‖
H1
T
=1

(T u,w)∂SM = − sup
‖w‖

H1
T
=1

(u,T w)∂SM

≤ ‖u‖L2(∂SM).
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178 The X-ray Transform in Non-positive Curvature

Interpolating the two estimates above gives

‖T u‖
H

−1/2
T (∂SM)

≤ ‖u‖
H

1/2
T (∂SM)

as required.

Combining Lemma 7.2.4 and Lemma 7.2.5, we obtain a stability estimate
for f in terms of uf :

Lemma 7.2.6 Let (M,g) be a compact simple surface with non-positive
curvature. For any f ∈ C∞(M), one has

‖f ‖L2(SM) ≤ ‖uf ‖
H

1/2
T (∂SM)

.

We can now prove the main stability result.

Proof of Theorem 7.2.1 Recall that uf |∂+SM = I0f and uf |∂−SM = 0. Thus
uf |∂SM = E0(I0f ) where E0 is the operator that extends a function by zero
from ∂+SM to ∂SM . It follows from Lemma 7.2.6 that

‖f ‖L2(SM) ≤ ‖E0(I0f )‖
H

1/2
T (∂SM)

. (7.8)

We clearly have

‖E0h‖L2(∂SM) ≤ ‖h‖L2(∂+SM), h ∈ L2(∂+SM).

Let H 1
T ,0(∂+SM) be the closure of C∞

c ((∂+SM)int) in H 1
T (∂+SM). Then

‖E0h‖H 1
T (∂SM) ≤ ‖h‖H 1

T ,0(∂+SM)

first for h ∈ C∞
c ((∂+SM)int) and then for h ∈ H 1

T ,0(∂+SM) by density.

Let H 1/2
T ,0(∂+SM) be the complex interpolation space between L2(∂+SM) and

H 1
T ,0(∂+SM). Interpolation gives that

‖E0h‖H
1/2
T (∂SM)

≤ ‖h‖
H

1/2
T ,0(∂+SM)

.

Since I0f ∈ H 1
0 (∂+SM) by Proposition 4.1.3, it follows in particular that

I0f ∈ H
1/2
T ,0(∂+SM). Thus

‖E0(I0f )‖
H

1/2
T (∂SM)

≤ ‖I0f ‖
H

1/2
T (∂+SM)

. (7.9)

Combining (7.8) and (7.9) gives the desired estimate
√

2π‖f ‖L2(M) = ‖f ‖L2(SM) ≤ ‖I0f ‖
H

1/2
T (∂+SM)

.
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7.3 Stability for Tensors

We will now give a stability estimate for Im where m ≥ 1. Recall that
solenoidal injectivity of Im means that the only symmetric m-tensors satisfying
Imf = 0 are of the form f = dsh where h ∈ C∞(Sm−1(T ∗M)) and
h|∂M = 0. This means that from the knowledge of Imf one only expects to
recover the solenoidal part f s of f (see Theorem 6.4.7). The following result
gives a stability estimate for this problem. A very similar estimate was obtained
in Boman and Sharafutdinov (2018) for Euclidean domains, but phrased using
parallel-beam geometry.

Theorem 7.3.1 Let (M,g) be a compact simple surface with non-positive
Gaussian curvature. For any m ≥ 1 one has

‖f s‖L2(M) ≤ C‖Imf ‖
H

1/2
T (∂+SM)

, f ∈ C∞(Sm(T ∗M)).

The proof will be similar to that of Theorem 7.2.1. As in Section 6.3, it will
be convenient to identify a symmetric m-tensor field f on M with a function
f ∈ C∞(SM) having degree m and to work with the transport equation
Xuf = −f in SM . We begin with an analogue of Lemma 7.2.4 for m-tensors.

Lemma 7.3.2 Let (M,g) be a compact simple surface with non-positive
curvature. For any f ∈ C∞(SM) having degree m ≥ 1, one has

‖f + X(u−(m−1) + · · · + um−1)‖2
L2(SM)

≤ 1

2
(T u,Hu)∂SM,

where u = uf .

Proof We work in a slightly smaller set Mε as in the proof of Lemma 7.2.4,
so that u is smooth in SMε. Since Xu = −f and f has degree m, one has
η+uk + η−uk+2 = 0 for k ≥ m. Thus from (7.4) we obtain an analogue of
(7.5):

‖η−uk‖2
SMε

≤ ‖η−uk+2‖2
SMε

+ i

2
(T uk,uk)∂SMε, k ≥ m.

Iterating this for k = m,m + 2, . . . , and using that η−uk → 0 in L2(SMε) as
k → ∞, gives

‖η−um‖2
SMε

≤ i

2

∞∑
j=0

(T um+2j,um+2j )∂SMε .

Starting with k = m+1 instead, and adding the resulting estimates, yields that

‖η−um‖2
SMε

+ ‖η−um+1‖2
SMε

≤ i

2

∞∑
j=0

(T um+j,um+j )∂SMε .
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A similar argument for k ≤ −m, using the second part of Proposition 7.2.3,
shows that

‖η+u−m‖2
SMε

+ ‖η+u−m−1‖2
SMε

≤ − i

2

∞∑
j=0

(T u−m−j,u−m−j )∂SMε .

The equation Xu = −f , where f has degree m, and the fact that both T and
H map �k to �k , imply that

‖f + X(u−(m−1) + · · · + um−1)‖2
SMε

= ‖η−um‖2
SMε

+ ‖η−um+1‖2
SMε

+ ‖η+u−m‖2
SMε

+ ‖η+u−m−1‖2
SMε

≤ 1

2
(T u,Hu)∂SMε .

Taking the limit as ε → 0 as in the end of proof of Lemma 7.2.4 proves the
result.

Combining Lemma 7.3.2 and Lemma 7.2.5 gives the desired stability
estimate for f in terms of uf :

Lemma 7.3.3 Let (M,g) be a compact simple surface with non-positive
curvature. For any f ∈ C∞(SM) having degree m ≥ 1, one has

‖f + X(u−(m−1) + · · · + um−1)‖L2(SM) ≤ 1√
2
‖u‖

H
1/2
T (∂SM)

where u = uf .

Theorem 7.3.1 will now follow by rewriting the above estimate in a form
that involves the solenoidal part f s .

Proof of Theorem 7.3.1 Given f ∈ C∞(Sm(T ∗M)), we will use the isomor-
phism #m in Proposition 6.3.5 and write f̃ := #mf , ũ := uf̃ and

q̃ := −
∑

|k|≤m−1
k is odd/even

ũk, (7.10)

where the sum is over odd k if m is even, and over even k if m is odd.
Using Lemma 7.3.3 and the parity of f̃ and Xq̃, we have∥∥f̃ − Xq̃

∥∥2 ≤ ∥∥f̃ + X(ũ−(m−1) + · · · + ũm−1)
∥∥2 ≤ 1

2
‖ũ‖2

H
1/2
T (∂SM)

.

Let q = #−1
m−1q̃, so that Xq̃ = #mdsq by Lemma 6.3.2. Using (6.15), we obtain

that

‖f − dsq‖L2(M) ≤ Cm‖f̃ − Xq̃‖L2(SM) ≤ Cm‖ũ‖
H

1/2
T (∂SM)

. (7.11)
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Let f have solenoidal decomposition f = f s + dsp. Writing w := p − q,
we have

‖f − dsq‖2 = ‖f s + dsw‖2 = ‖f s‖2 + 2 Re(f s,dsw) + ‖dsw‖2.

Since f s is symmetric and solenoidal and p|∂M = 0, an integration by parts
gives that

(f s,dsw) = (f s,∇w) = (iνf
s,q)∂M,

where iνf
s(v1, . . . ,vm−1) := f s(v1, . . . ,vm−1,ν). Thus

‖f − dsq‖2 ≥ ‖f s‖2 − 2|(iνf s,q)∂M |.
Combining this with (7.11) and using Young’s inequality with ε > 0, yield that

‖f s‖2
L2(M)

≤ C‖ũ‖2
H

1/2
T (∂SM)

+ ε‖iνf s‖2
H−1/2(∂M)

+ 1

ε
‖q‖2

H 1/2(∂M)
.

By Lemma 7.3.4 we have ‖iνf s‖H−1/2(∂M) ≤ C‖f s‖L2(M), and choosing
ε > 0 small enough allows us to absorb this term to the left-hand side. In
addition, using Lemma 7.3.5 gives that

‖f s‖L2(M) ≤ C‖ũ‖
H

1/2
T (∂SM)

.

It remains to note that ũ|∂SM = E0(Imf ) where E0 denotes extension by zero
from ∂+SM to ∂SM . Using (7.9) with I0f replaced by Imf concludes the
proof.

Lemma 7.3.4 If (M,g) is compact with smooth boundary and
f ∈ C∞(Sm(T ∗M)) is solenoidal, then

‖iνf ‖H−1/2(∂M) ≤ C‖f ‖L2(M).

Proof The idea is that since f solves δsf = 0 in M , the boundary value
iνf |∂M can be interpreted weakly as an element of H−1/2(∂M). Let
E : H 1/2(∂M) → H 1(M) be a bounded extension operator on tensors (such
a map can be constructed from a corresponding extension map for functions
by working in local coordinates and using a partition of unity). Then, since
δsf = 0,

‖iνf ‖H−1/2(∂M) = sup
‖r‖

H1/2(∂M)=1

(iνf ,r)∂M

= sup
‖r‖

H1/2(∂M)=1

−(f ,∇Er)M

≤ sup
‖r‖

H1/2(∂M)=1

‖f ‖L2‖Er‖H 1 ≤ C‖f ‖L2 .
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Lemma 7.3.5 If q = #−1
m−1q̃ where q̃ is defined by (7.10), then

‖q‖H 1/2(∂M) ≤ C‖ũ‖
H

1/2
T (∂SM)

.

Proof We prove the statement by interpolation. Since q̃ = #m−1q, (6.15) and
orthogonality imply that

‖q‖2
L2(∂M)

≤ C‖q̃‖2
L2(∂SM)

≤ C‖ũ‖2
L2(∂SM)

. (7.12)

Consider now the H 1(∂M) norm. In local coordinates we may write q =
qj1···jm−1dx

j1 ⊗ · · · ⊗ dxjm−1 , and the H 1(∂M) norm involves the L2(∂M)

norms of the components qj1···jm−1 and ∂T qj1···jm−1 , where ∂T is the tangential
derivative. Locally q̃ = qj1···jm−1v

j1 · · · vjm−1 . By Definition 4.5.2, we have

T q̃ = (∂T qj1···jm−1)v
j1 · · · vjm−1 + · · ·

where · · · denotes terms whose L2 norms can be controlled by ‖q‖L2(∂M).
Thus, using (6.15) again,

‖q‖H 1(∂M) ≤ C‖q̃‖H 1
T (∂SM).

Finally, by Lemma 4.5.4, the operators V and T commute on ∂SM . This
implies that (T wk,T wl)∂SM = 0 if wk ∈ �k , wl ∈ �l and k �= l. Thus

‖T q̃‖2
L2(∂SM)

=
∑

|k|≤m−1
k is odd/even

‖T ũk‖2
L2(∂SM)

≤ ‖T ũ‖2
L2(∂SM)

.

Using the definition of the H 1
T norm, this shows that

‖q̃‖2
H 1

T (∂SM)
≤ ‖ũ‖2

H 1
T (∂SM)

.

Thus we have proved that

‖q‖H 1(∂M) ≤ C‖ũ‖H 1
T (∂SM). (7.13)

Interpolating (7.12) and (7.13) proves the statement.

7.4 Carleman Estimates

In Sections 7.1–7.3, we used the Guillemin–Kazhdan identity to prove unique-
ness and stability results for the X-ray transform on simple surfaces with non-
positive Gaussian curvature. Here we show that if the curvature is strictly
negative, one can apply weights to the Guillemin–Kazhdan identity and obtain
stronger Carleman estimates that are robust under certain perturbations. We
will use this to prove uniqueness for an attenuated X-ray transform.
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Let (M,g) be a simple surface, and let A ∈ C∞(SM). In Section 5.3 we
introduced the attenuated X-ray transform of f ∈ C∞(SM) as

IAf = uf |∂+SM,

where uf is the solution of

Xu + Au = −f in SM, u|∂−SM = 0.

Clearly IA is the standard geodesic X-ray transform when A = 0. We will
specialize to the case where f = f (x) ∈ C∞(M), so that IA is acting on
0-tensors, and

A = a−1 + a0 + a1 ∈ �−1 ⊕ �0 ⊕ �1.

Thus the attenuation A is the sum of a scalar function a0(x) and a 1-form
a1 + a−1.

Theorem 7.4.1 Let (M,g) be a simple surface with negative Gaussian
curvature. If A = a−1 +a0 +a1 with ak ∈ �k , then IA is injective on C∞(M).

This is a consequence of the following energy estimate:

Theorem 7.4.2 Let (M,g) be a simple surface with Gaussian curvature K ≤
−κ0 for some κ0 > 0. For any m ≥ 0 and τ ≥ 1, one has∑

|k|≥m

|k|2τ‖uk‖2 ≤ 2

κ0τ

∑
|k|≥m+1

|k|2τ‖(Xu)k‖2,

whenever u ∈ C∞(SM) with u|∂SM = 0.

The previous theorem involves a large parameter τ , and the constant on
the right is of the form C/τ , which becomes very small when τ is chosen
large. As discussed in Paternain and Salo (2018) this behaviour is typical of
Carleman estimates, and in fact the weights |k|2τ can be written as e2τϕ(k)

where ϕ(k) = log |k| corresponds to a logarithmic Carleman weight. Adjusting
the parameter τ > 0 will allow us to deal with a possibly large attenuation and
prove injectivity of the attenuated X-ray transform. The estimate in Theorem
7.4.2 can also be understood as a version of the Pestov identity shifted to a
different vertical Sobolev scale.

This argument based on Carleman estimates is quite robust and it imme-
diately extends to complex matrix-valued attenuations (even some non-linear
ones) and tensor fields. However, it requires the additional assumption that the
Gaussian curvature is negative. We will remove this curvature assumption later
in Chapter 12 (in the scalar case) and Chapters 13–14 (in the matrix case).
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Proof of Theorem 7.4.1 Let f ∈ C∞(M) satisfy IAf = 0. By Theorem 5.3.6
one has u := uf ∈ C∞(SM), and u solves the equation

Xu + Au = −f in SM, u|∂SM = 0. (7.14)

Note that for |k| ≥ 1, since f = f (x) one has

‖(Xu)k‖ = ‖(Au)k‖ = ‖a1uk−1 + a0uk + a−1uk+1‖
≤ C(‖uk−1‖ + ‖uk‖ + ‖uk+1‖).

We now insert u in the estimate of Theorem 7.4.2, which yields that∑
|k|≥m

|k|2τ‖uk‖2 ≤ C

τ

∑
|k|≥m+1

|k|2τ (‖uk−1‖2 + ‖uk‖2 + ‖uk+1‖2)
≤ C

τ

∑
|k|≥m

(|k| + 1)2τ‖uk‖2.

If we additionally assume that m ≥ 2τ , then for |k| ≥ m one has

(|k| + 1)2τ = |k|2τ (1 + 1/|k|)2τ ≤ e|k|2τ .

Thus, whenever m ≥ 2τ we have∑
|k|≥m

|k|2τ‖uk‖2 ≤ C1

τ

∑
|k|≥m

|k|2τ‖uk‖2,

where C1 is independent of τ and u. Choosing τ so that τ ≥ 2C1 implies that

uk = 0, |k| ≥ 4C1.

It follows that u must have finite degree.
Finally we need to show that u ≡ 0. Suppose that u has degree l ≥ 0. Then

uk = 0 for k ≥ l + 1. Using the equation (7.14), ul satisfies

η+ul + a1ul = 0, ul |∂SM = 0.

Using the special coordinates (x,θ) and Lemma 6.1.8, so that M = D, we
have ul(x,θ) = ũl(x)e

ilθ and a1 = ã1(x)e
iθ where ũl ∈ C∞(D) solves the

equation

e(l−1)λ∂z
(
ũle

−lλ
) + ã1ũl = 0 in D, ũl |∂D = 0.

We choose an integrating factor h ∈ C∞(D) (for instance by using the Cauchy
transform) that solves

∂zh = eλã1 in D.
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Then

∂z
(
ehũle

−lλ
) = 0 in D, ũl |∂D = 0.

The only solution of this equation is ũl = 0. Thus we must have ul ≡ 0. This
argument shows that uk = 0 for k ≥ 0, and similarly one obtains that uk = 0
for k ≤ 0.

Proof of Theorem 7.4.2 Let u ∈ C∞(SM) with u|∂SM = 0. We begin with the
Guillemin–Kazhdan identity: for any k ≥ 0, Proposition 6.5.2 gives that

‖η−uk‖2 + κ0

2
k‖uk‖2 ≤ ‖η+uk‖2.

In order to get the term ‖(Xu)k+1‖2 on the right, we write

‖η+uk‖2 = ‖(Xu)k+1 − η−uk+2‖2

= ‖(Xu)k+1‖2 − 2 Re((Xu)k+1,η−uk+2) + ‖η−uk+2‖2

≤
(

1 + 1

εk

)
‖(Xu)k+1‖2 + (1 + εk)‖η−uk+2‖2,

where the parameter εk > 0 will be chosen soon. Inserting this estimate in the
previous inequality yields that

‖η−uk‖2 + κ0

2
k‖uk‖2 ≤

(
1 + 1

εk

)
‖(Xu)k+1‖2 + (1 + εk)‖η−uk+2‖2.

We multiply this inequality with a weight γk > 0, which will be fixed later,
and add up the resulting inequalities over k ≥ m. This shows that

∞∑
k=m

γk

(
‖η−uk‖2 + κ0

2
k‖uk‖2

)
≤

∞∑
k=m

γk

((
1 + 1

εk

)
‖(Xu)k+1‖2 + (1 + εk)‖η−uk+2‖2

)
. (7.15)

In order to get an estimate with only ‖(Xu)k+1‖2 terms on the right, we would
like to absorb the ‖η−uk+2‖2 terms from the right to the left. This is possible
if the parameters are chosen so that

(1 + εk)γk ≤ γk+2.

In particular, we need to assume γk+2 > γk for this to work. To keep the
weights γk(1 + 1

εk
) on the right as small as possible, we fix the choice

εk = γk+2 − γk

γk
.
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With this choice, (7.15) takes the form
∞∑

k=m

κ0

2
kγk‖uk‖2 ≤

∞∑
k=m

(
1 + 1

εk

)
γk‖(Xu)k+1‖2

=
∞∑

k=m+1

γk+1γk−1

γk+1 − γk−1
‖(Xu)k‖2. (7.16)

The estimate (7.16) is true for any weights γk > 0 with γk+2 > γk , and
by taking limits also whenever γk ≥ 0 and γk+2 > γk . However, the weights
can grow at most polynomially if we want the left-hand side to be well defined
(recall that Xu ∈ C∞, so V N(Xu) ∈ L2 showing that

∑|k|2N‖(Xu)k‖2 is
finite for N > 0). We let s > 0 and fix the choice

γk = ks .

To estimate the coefficient γk+1γk−1
γk+1−γk−1

, we note the following elementary bounds
for t ∈ (0,1):

log(1 + t) ≥ t log(2), log(1 − t) ≤ −t ≤ −t log(2).

Hence

(1 + t)s − (1 − t)s ≥ 2 sinh(st log(2)) ≥ 2 log(2)st ≥ st .

This yields for k ≥ 1 the bound

γk+1γk−1

γk+1 − γk−1
= (k2 − 1)s

ks((1 + 1/k)s − (1 − 1/k)s)
≤ 1

s
ks+1.

Using the last estimate in (7.16) gives that

κ0

2

∞∑
k=m

ks+1‖uk‖2 ≤ 1

s

∞∑
k=m+1

ks+1‖(Xu)k‖2.

Analogously, using the second part of Proposition 6.5.2 gives the estimate

κ0

2

−m∑
k=−∞

|k|s+1‖uk‖2 ≤ 1

s

−m−1∑
k=−∞

|k|s+1‖(Xu)k‖2.

Combining these two estimates and setting 2τ = s+1, prove the theorem.

7.5 The Higher Dimensional Case

The results in this chapter were proved by using vertical Fourier analysis and
the Beurling contraction property, which was a consequence of the Guillemin–
Kazhdan identity. Since these results have higher dimensional counterparts
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as described in Section 6.6, all the results in this chapter extend to higher
dimensional manifolds whose sectional curvatures are non-positive. We state
the results below and refer to Paternain and Salo (2021, 2018) for the proofs.

Let (M,g) be a compact simple manifold of dimension n ≥ 2. The first
result gives the solenoidal injectivity of the X-ray transform Im on symmetric
m-tensor fields.

Theorem 7.5.1 Let (M,g) be a simple manifold with non-positive sectional
curvature. Then Im is s-injective for any m ≥ 0.

In order to state the stability results we need to discuss the H
1/2
T space in

higher dimensions. Given u ∈ C∞(SM), we first define the full horizontal
gradient

h

∇u :=
h
∇u + (Xu)v.

Note that
h

∇u is the horizontal part of ∇SMu (the gradient of u with respect to
Sasaki metric) in the splitting ξ = (ξH,ξV ) for ξ ∈ T SM given in (3.12). The

tangential part of
h

∇u on ∂SM is defined by
h

∇‖u :=
h

∇u − 〈
h

∇u,ν〉ν,
where ν is the inner unit normal for ∂M . Next we define the H 1

T norm on
∂+SM by

‖u‖2
H 1

T (∂+SM)
= ‖u‖2

L2(∂+SM)
+ ‖

h

∇‖u‖2
L2(∂+SM)

.

The space H
1/2
T (∂+SM) is defined as the complex interpolation space halfway

between L2(∂+SM) and H 1
T (∂+SM).

The following result states the stability estimates for the X-ray transform on
tensor fields.

Theorem 7.5.2 Let (M,g) be a simple manifold with non-positive sectional
curvature. Then

‖f ‖L2(M) ≤ C‖I0f ‖
H

1/2
T (∂+SM)

, f ∈ C∞(M).

For any m ≥ 1 one has

‖f s‖L2(M) ≤ C‖Imf ‖
H

1/2
T (∂+SM)

, f ∈ C∞(Sm(T ∗M)).

The injectivity result for the attenuated X-ray transform takes the following
form. We consider attenuations A that are sums of scalar functions and
1-forms, which is written as A ∈ "0 ⊕ "1 in the notation of Section 6.6.
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Theorem 7.5.3 Let (M,g) be a simple manifold whose sectional curvatures
are all negative. If A = a0 + a1 with ak ∈ "k , then IA is injective on C∞(M).

The Carleman estimate required for proving the previous theorem is as
follows.

Theorem 7.5.4 Let (M,g) be a simple manifold whose sectional curvatures
satisfy K ≤ −κ0 for some κ0 > 0. For any m ≥ 1 and τ ≥ 1, one has

∞∑
l=m

l2τ‖ul‖2 ≤ (n + 4)2

κ0τ

∞∑
l=m+1

l2τ‖(Xu)l‖2,

whenever u ∈ C∞(SM) with u|∂SM = 0.
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