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Some properties of the curve of constant bearing

By D. MARTIN.

If Z is a fixed point on the surface of the earth (assumed
spherical) and P is the North Pole, then the locus of a point X, which
moves in such a way that the angle a between the great circle arcs
PX, ZX is constant, is called a curve of constant bearing.

a is measured clockwise from XP; it is then the great circle
bearing of Z from X as defined in navigation, and lies within the
range 0° to 360°.

Curves of constant bearing are of some importance in navigation
because, if a ship or aircraft at X takes a bearing of a radio station
at Z, the position line so obtained is an arc of such a curve. Never-
theless, few properties of the curves seem to be recorded1; the reason
is probably that practical navigators are interested not in the actual
curves in their entirety but in the projections on a Mercator chart of
comparatively short lengths of them.

In this note some simple properties of the curves are obtained;
the derivation of the results is very straightforward and, needless to
say, no originality is claimed.

We begin by writing down the equation of a curve of constant
bearing. Let the latitudes of X and Z be </>, <f>0 respectively, and let
the meridian of Z be that of zero longitude; the longitude A of X is
considered as positive or negative according as it is Easterly or
Westerly. Since, by convention, the angles of a spherical triangle
cannot exceed 180°, two cases a < 180° (fig (i)) and a > 180° (fig. (ii))
must be considered. Then, in both cases, by the Four Part Formula
of Spherical Trigonometry, the equation of the curve of constant
bearing is2

cos A sin <f> = cos <f> tan <̂0 + sin A cot a. (1)
A number of useful properties of the curve follow immediately from

(a) The curves of constant bearing (of a given point) for bearings
a and 180°+a form parts of the complete curve defined by (1). For

1 One or two are given in the Admiralty Manual of Navigation, Vol. III .
(H.M.S.O., 1938).

* Admiralty Manual, loc. cit., p. 203. There is a minor difference in sign due to
our convention regarding the sign of the longitude.
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simplicity, we shall call this complete curve a curve of constant
bearing.
(6) All curves of constant bearing pass through the North and South
Poles; these are approached along the meridians of longitude a and
180° —a respectively. The bearing changes abruptly by 180° as the
curve passes through each pole.
(c) Every curve of constant bearing of Z passes through both Z and
Z' the antipodal point of Z. The bearing changes discontinuously by
180° as the curve passes through each of these points.
(d) All curves of constant bearing are centrally symmetric about the
two points on the equator of longitude ± 90°.
(e) The curve for bearing 360° —a is the image in the meridional
plane of Z of the corresponding curve for bearing a.
{/) The points of intersection of a curve of constant bearing and the
equator are given by

sin A + tan <f>0 tan a = 0, (2)

whence it follows that the longitudes of the points of intersection are
supplementary. The points are real and distinct, real and coincident
or imaginary according as | tan <f>0 tan a | is less, than, equal to or
greater than unity. In the last case, the curve consists of two ovals,
one in each hemisphere.
(g)1 If we change to Cartesian coordinates x = r cos <f> cos A,
y = r cos <f> sin A, z = r sin <f>, then (1) becomes

zx = (x2 + y2) t an <f>0 + yr cot a.

The curve of constant bearing is therefore the intersection of two
quadrics (a sphere and a hyperboloid of one sheet) and is, in fact, a
quartic curve of the first species.

We obtain next an expression for the angle between the curve of
constant bearing at any point on it and the meridian at that point.

In fig. (iii) X (</>, A) and Y (<f> + 8(f>, A + SA) are neighbouring points
on a curve of constant bearing and Y K is an arc of a great circle
perpendicular to PX. Then

YK = 8b cos <f>
XK 8 ^

and, if >p denotes the angle between the curve and the meridian at X
{measured clockwise from the meridian),

t a n tfi = cos <f> dA/d<j). (3)

1 Pointed out to me by Dr L. M. Brown.
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By (I)',
dX _ cos A cos <f> + sin <f> tan <f>0 . .

d<j> sin A sin <f> + cos A cot a '

whence (1), (3) and (4) yield1

tan (a — t/r) = sin </> tan A. (5)
A consequence of (5) is that where the curve cuts the equator

and the meridian of Z (at Z and Z'), it is inclined at an angle a to the
meridian.

We next prove that the loci of the turning points in longitude and
the turning points in latitude of the curves of constant bearing of Z
are great circles.

By (4), the turning points in longitude are given by

cos A cos </> + sin]<£ tan <f>0 = 0. (6)

Now the equation of the great circle with pole at (<f>', A') is

cos (/>' cos A' cos <f> cos A + cos <f>' sin A' cos </> sin A + sin <f>' sin <f> = 0; (7)

hence by (6), the turning points in longitude lie on the great circle
with pole at Z.

Similarly, for the turning points in latitude,

sin A sin <f> + cos A cot a = 0;

elimination of a between this equation and (1) yields

cos A cos <f> tan <£0 — sin <f> = 0 (8)

as the equation of the locus of the turning points in latitude. This
represents a great circle with pole 90° N. of Z.

The properties derived above enable us to sketch the family of
curves of constant bearing (of Z) as in fig. (iv). The latitude of Z has
been taken as 40° N. In following out any particular curve in the
figure, it is useful to remember that the bearing changes abruptly by
180° at Z and Z', and at each pole.

When </>0 = 0 and a = 90°, the curve of constant bearing
degenerates into two circles, the equator and the meridian of longitude
± 90°. Also if the earth were flat, a curve of constant bearing would,
by reason of its definition, be a circle passing through P and Z. I t
is natural then to enquire if the curve has any properties in common
with the circle; so far I have been able to discover only two such
properties.

1 Admiralty Manual, loc. cit., p. 204.
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(A) In fig. (v) XY is an arc of a curve of constant bearing and
XK is an arc of a great circle perpendicular to PZ. Then, applying
Napier's Mnemonic to the right angled triangle PKX,

A

cot PXK = — sin <£ tan X,
A

PXK being measured clockwise from XP. Then, by (5)

cot PXK = — tan (a — ^),

whence, if we decide to take Y on the opposite side of X from Z and
A

measure YXZ clockwise from XY,

cot PXK = - tan YXZ

and PXK - YXZ = ± 90°
as in the case of the circle.

(B) We consider next the orthogonal trajectories of the one-
parameter family of curves of constant bearing, obtained by giving a
a fixed value.

By isolating tan <£0 in (1) and differentiating, we find that

cos <f> (sin A sin <f> + cos A cot a) dX = (cos A — sin <f> sin A cot a) d<f>.

Now ( I d<f>\ ( 1 d</> \ _
\ c o s <j> dX )0.T. \ c o s <f> dX JC.C.B. ~ '

whence we find that the differential equation of the orthogonal
trajectories is

(cos <f> cos A — sin <f> cos <f> sin A cot a) dX + (sin A sin <f> + cos A cot a) d<j> = 0;
sec2 cj> is an integrating factor, and the solution is

cos A sin <f> = C tan a cos <f> — sin A tan a, ' (9)
where C is an arbitrary constant. Comparing (9) with (1), we find
that the orthogonal trajectories form the one-parameter family of
curves of constant bearing, for which the bearing has the fixed value
90° + a. This result, which can easily be verified by means of (5),
would also be true if the curves of constant bearing were circles.

From the analogy with coaxal circles, it might be conjectured
that the orthogonal trajectories of the one-parameter family of
curves of constant bearing, obtained by fixing <f>a instead of a, would
form a family of .curves of constant bearing passing through two fixed
imaginary points and having imaginary values of a; but this does not
seem to be so. The equation of the family of orthogonal trajectories
turns out to be

sin2 A + sec2 <f> — 2 tan <£0 cos A tan <f> — C, (10)
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where C is the arbitrary constant; on changing to Cartesian co-
ordinates, we find that the curves are the intersections of the sphere
«2 + y2 + z2 = r2, and the quadrics

Cx% + (C - 1) y2 + 2tan^0za; - r" = 0,

and are therefore sphero-conics.
Finally, it may be remarked that if the earth's magnetic field

were free from local irregularities, then the lines of equal magnetic
variation (isogonals) would be curves of constant bearing with the
points Z, Z' at the magnetic poles. The Mercator projection of a
curve of constant bearing has four asymptotes, two at each pole, but
little more than this can be deduced from the usual magnetic charts.

THE ROYAL TECHNICAL COLLEGE,

GLASGOW.
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A geometrical proof of tan \ (B — C) = cot \ A

By A. D. RUSSELL.

In the figure, ABC is a

triangle with B > C ; A F is

made equal to AC, AE bisects

the angle A, and BDEG is a

rectangle. It is easily seen

that the angles marked a are

equal, that B — a = C + a,

and hence that a — \{B — C).

Then:

_BG BF cos \ A (b - c) cos \ A b-c
b sin | A + c sin | A b + c

cot \A.

12 HEUGH STREET,

FALKIRK.
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