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Abstract

Estimators which have locally uniform expansions are shown in this paper to be asymptotically
equivalent to Af-estimators. The M-functionals corresponding to these M-estimators are seen
to be locally uniformly Frechet differentiable. Other conditions for Af-functionals to be locally
uniformly Frechet differentiable are given. An example of a commonly used estimator which is
robust against outliers is given to illustrate that the locally uniform expansion need not be valid.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 62 E 20; secondary 62 G
35.
Keywords and phrases: infinitesimal neighbourhoods, Frechet differentiability, strong expan-
sions, Af-functionals.

1. Introduction

Robust inference for a statistical model denoted by {Fe : 6 e 6} where 6
is an open subset of Rk, is often formalized in the so called "infinitesimal
set-up". Here the true distribution F describing the underlying process is
in a small vicinity of the model {Fg}; the vicinity being described by the
union of small neighbourhoods of all possible F$ , where 0 € 8 . For any
given neighbourhood of a particular Fe it is assumed here that the size of the
neighbourhood tends to zero at the rate ly/n , where n is the sample size.
The infinitesimal approach constitutes a convenient and relatively universal
tool for construction and verification of important asymptotic properties of
estimates and tests.
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Infinitesimal models are considered by Jaeckel (1971), Beran (1977),
Huber-Carol (1970) and Rieder (1978), and a justification can be found in
Bickel (1981) for their use. Bednarski (1985) illustrates the link to the in-
fluence curve of Hampel (1974), whence the infinitesimal approach can be
considered to have broad application. Further rigor is given to the influ-
ence curve in proofs of Frechet differentiability for classes of M-estimators
in Clarke (1983, 1986), while authors Rieder (1980) and Bickel (1981) give
infinitesimal approaches for M-estimators.

Let ^ n denote the shrinking neighbourhood about Fe, and let Tn be
an estimator of 9. Studying properties of Tn , one often assumes (Bickel
(1981), Rieder (1980), Bednarski (1985)) that, for some function if/,

) J
Here A",, . . . , Xn is a sample from Fg . Asymptotic properties of Tn are
derivable from expansion (1.1) and estimators having this property are called
regular. The expansions hold automatically for product measures from ^ ® "
which form sequences contiguous to {Ffn}. Bickel and Rieder devote es-
sential parts of their quoted papers to the analysis of regular estimators under
contiguous departures from the basic model. Both authors however discuss
briefly the question concerning the validity of (1.1) for more general depar-
tures (arbitrary sequences from &®"). In fact, the estimators which satisfy
the stronger property form an important subclass of regular estimators, for
which a complete characterization of asymptotic distributions under infinites-
imal departures can be given. If in addition we require the expansion to be
locally uniform, we are led to the following condition for Tn :

(1.2) n n j i t i n Q
* 1=1

for every sequence Qn e &~T
m

n , where xn converges to 0 so that \fn{in - 6)
stays bounded.

Let us say that Tn satisfying (1.2) has a strong expansion at Fg with
respect to the family of neighbourhoods. In Section 2 the family of infinites-
imal neighbourhoods will be given by a metric and then we shall say that the
strong expansion is with respect to the metric.

An important class of estimators for which we have general methods for
constructing these asymptotic expansions is the class of M-estimators. The
expansions are frequently obtained by differentiability of Af-functional, for
example by making use of the Frechet-differentiability of M-estimators as is
presented concisely in Clarke (1983, 1986). Other basic references concern-
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ing differentiability are Kallianpur (1963), Reeds (1976), Fernholz (1983),
and Gill (1989).

The objective of this paper is to characterize relationships between differ-
entiability and strong expansions. We show in Section 2 that if an estimator
has a strong expansion (at Fg with respect to a metric d), with a function
y/, then under additional mild conditions the M-functional related to y is
locally uniformly Frechet differentiable, meaning that

(1.3) T[G]-r-M l Iy/(x,x)dG = o[d(Fe,FT)

for some matrix M. Use is made of the fixed point theorem.
For an M-estimator the strong expansion (1.2) is implied by (1.3) above.

The converse statement need not be true for estimators more generally. In
Section 3, conditions for local uniform Frechet differentiability are derived.
These conditions are implied by the assumptions of Clarke (1983, 1986),
whence the "usual" Af-estimators have strong expansions. Also examples
are presented which are meant to help understand limitations of the main
theorem.

2. Strong expansions and M-estimators

The objective of this section is to show that any estimator having a strong
expansion in a parametric model must be in an asymptotic linear relation
with an M-estimator. Moreover the functional induced by this M-estimator
will be locally uniformly Frechet differentiable.

The principal result is given in Theorem 2.1, which makes use of Con-
ditions C. Some preliminary notation will be adopted in what follows. Let
{Fe}eee be a family of probability measures defined on the Borel tr-field of

Euclidean space Rm, where 0 is an open subset of R . Let d(-, •) de-
note a metric on the space of measures on Rm , which is denoted by G say.
Let the parameter 6 be fixed. Consider the sequences of parameters and
neighbourhoods of probabilities defined as follows:

Je = { { T J : 3b > 0 such that y/n\rn - 6\ < b for all xn e {rn}};

Here | • | is the usual Euclidean norm. The functional T defined on G and
the shrinking neighbourhoods are assumed to satisfy the following conditions.

Conditions C.
Cl. There is a neighbourhood Ug of 8 and 0 < k{ < k2 such that

kx\0-x\< d(Fe, Fx) <k2\6- T| for all x e Ug.
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C2. For every {xn} &J$, n > 0 and Gn€&~T n(rj), we have that

^\T[Fn]-xn-j¥{x,xn)dFn

converges to zero in G®n probability, where Fn is the empirical distribution
function based on the sample of size n and y/{-,x) is a measurable function.

C3. The function y/ from C2 is bounded.
C4. For every {xn} e Je , every r\ > 0 and {Gn} such that Gne&~T n(n),

n > 1,

is relatively compact in G®" .
C5. With KG(T) denned equal to / y/{x, x)dG{x), we suppose KF (T) is

differentiate at T = 6 and has nonsingular derivative M at x = 6 .
C6. For every sequence of Gn € ^ „(?/) there is a neighbourhood C/e of

0 such that for every n , KG (x) are continuous functions on Ug .
These conditions are associated with the usual estimating functionals in-

volved in robustness studies and which satisfy the strong expansion as is
stated in C2. Condition Cl is satisfied by regular parametric models un-
der suitable choices of metric d. The condition C4 denotes the square root
consistency of T under infinitesimal departures from the parametric model.

It can be remarked that the conditions imply the usual Fisher consis-
tency requirement that KF(6) = 0, since by condition C2 and C4 the

/ i//(x, 6)dFn converges in F®" probability to zero, which is also KF (6)
by the law of large numbers.

In the following discussion T*[G] is denoted to be the M-estimator de-
fined as the solution of / i//(x, x)dG(x) — 0 which is closest to 0.

THEOREM 2.1. Under conditions Cl to C6, T* is locally uniformly Frechet
differentiate, that is.

The proof of Theorem 2.1 will be preceded by several lemmas, given below.

LEMMA 2.1. For every r\ > 0 and every sequence {Gn} such that Gn e

8 «('?)' We nave tnCit

(6)-K (6)\
n a

is bounded.
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PROOF. By Condition C2,

T[Fn]-6- jy,{x,d)dFn

We obtain, on rewriting this quantity,

inC? 0.

Vn~(T[Fn] -0)--7= X
\l ft .V l=\

{0)

Condition C4 gives us that the first term is bounded. For the second term
it suffices to consider the univariate case of {/. There are two possibilities.
Either VarG [t//(X, 6)] is bounded away from zero or there are subsequences
Gn for which VarG [y/(X, 0)] tends to zero. In the former case an applica-
tion of the Lindenberg-Feller theorem implies convergence to a normal law
in which case the second term is bounded. In the latter case it is clear that
the second term tends to zero in probability. Thus the result follows since
KF (0) = 0 . A multivariate result is easily obtained by using a method anal-
ogous to the proof of the central limit theorem by Cramer and Wold (1936).

LEMMA 2.2. For every sequence {Gn} such that Gn e &~g n(n) and every

{rl
n}, {r2

n} € Jg, we have

V K A ^ T , , ) - KG{xn)) - (KFe(Tn) - ^ ( T n ) ) | • 0.

PROOF. By assumption C2 it follows that

1 f 2

:, Tn)dFn - I y/{x, xn)dFn

converges to zero in G®n . The above expression can be rewritten as
-L J2

The second term involving the summation has independent identically
distributed summands with expectation zero. Hence, using similar reasoning
as in Lemma 2.1, we see that the normed summation tends either to zero
in probability or to a limiting normal distribution. If it tends to a limiting
normal distribution then it can be noted that if Y -̂ -> JV(O, a) and for some
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sequence of numbers Cn it is true that \Yn + Cn\ —• 0 in G®" , then a = 0
and Cn —• 0. Consequently it follows in either case that

xXn) - KGn(r
2
n))\ - 0 .

Making the same argument but replacing Gn by Fe gives by difference the
result of the lemma.

LEMMA 2.3. For every n > 0 and Gn e &g n(rj), y/n\T*[Gn] - d\ is
bounded.

PROOF. By Lemma 2.1, it follows that there is an a > 0 such that

y/E\KG{e)-KF(0)\<a.
n u

Let e > 0 be given. For every {tn} such that v/"lT
n - #1 < V >

V ^ ^ t T . ) - KG{6) - (KFe(rn) - KF){6))\ < \

holds for n > nQ. Consequently it follows that

{ H ) F n ) \
o

By differentiability of KF (T) at x = 6, we have

when y/n\x - 8\ < n. So

yfh~\KG {f)-M(T-0)\<a + e if y/n\x - 6\ < rj.

This is rewritten as

\/n\KG (x + 6)- Mx\ < a + e if \/n\x\ < r\,
n

whence it follows that

for « large enough and for s/n\x - 0\ < \M~l\(a + e) (since t] can be
chosen). Hence for n large enough, —M~XKG ( 0 + T) + T transforms the ball

|T| < (\M~l\(a + e))/y/n into the same ball and moreover the transformation
is continuous. By the fixed point theorem there is a x* such that |T*| <
|Af"'|(a + e)/y/n and -M~lKG (6 + x*) + x* = x*, which gives us that

-M~lKG (0 + T*) = 0 implies KG (6 + x*) = 0. Thus T*[Gn] = 6 + x* and
the result is proved.
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PROOF OF THE THEOREM. Consider the sequences of Gn and xn so
that Cn = d(Gn, FT ) + d(Fr , Fg) satisfy 0 < l imy^C < oo. Since

n n

\/n\T*[Gn] - 6\ is bounded, by Lemma 2.3, it follows from Lemma 2.2 and
C5 that

KG{T*[Gn]) - KGa(rn) = KFg(T*[Gn]) - KFg(rn) + o(l/y/n)

= KFe(T*[Gn]) - KFffi) + KFg(6) - KF$(xn) + o

Therefore \/n\T*[Gn] -tn + M~lKG (rn)\ must converge to zero. Thus the
result follows.

3. Other conditions for locally uniform Frechet differentiability
and examples

By considering the parametric family {Fe}eee, where as before

kl\d-x\<d{Fx,Fe)<k2\x-d\

for some 0 < k{ < k2 and all T in a neighbourhood of 8, a set of conditions
on KG{x) — f y/{x, x)dG, giving locally uniform Frechet differentiability,
can be specified.

Conditions B.
B , . KF (6) = 0. KF (x) is differentiable at x = 6 and the derivative M

is nonsingular.
B2 . For every sequence of probability measures {Gn} such that Gn e

&~g ~{r\), for some r\ > 0, there is a neighbourhood Ue of 6 for which
KG (T) is continuous for every n .

B 3 . For every sequence {Gn}, Gn e ^ n{n) we have \/nKG (6) is
bounded.

B 4 . For every sequence {Gn}, Gn e ^ „(//) and { T ^ } , {T^} e Je we
have

These conditions hold true under conditions presented in Clarke (1986).
Condition Bj corresponds to A'o, A'3 and a general assumption of Section
4 of that paper, while B2 follows from A\. Condition B3 follows from
assumption (4.1) in Clarke (1986). Finally one can show that B4 is obtained
from assumption A'4 with the aid of upper semicontinuity of the generalized
Jacobian.
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If T*[G] denotes the M-functional corresponding to y/ it can be inferred
as in Section 3 that y/n\T*[Gn] - 6\ is bounded for sequences Gne&~0 „(*])•
Arguing as in the proof of Theorem 2.1, we obtain the following result.

THEOREM 3.1. Assume Conditions B hold. Then the M-functional T* is
locally uniformly Frechet differentiable. That is,

COROLLARY 3.1. Under assumptions B, using the Kolmogorov metric, by
the inequality of Dvoretzky, Kiefer and Wolfowitz (cf. Serfling (1980)), we
have

n] - TB) = ±=M~X £ y/(Xi, d) + o
i = i

where Xx, ... , Xn is a sample from Gne^ n{n).

There are many examples of Af-estimators which satisfy Conditions B.
They can be found in Clarke (1986), where in particular Huber's minimax
M-estimator for location is analysed. Therefore these M-estimators have the
strong expansion.

Even though the main result of the paper is meant to indicate that there
is a close relationship between strong expansions and Frechet differentiabil-
ity, there are examples which illustrate that the strong expansion must be
supported by various non-stochastic assumptions, to imply Frechet differen-
tiability.

It appears that the functional T given in assumption C2 need not be
Frechet differentiable. Suppose that T is an M-functional which satisfies
conditions Cl to C6 for the Kolmogorov distance. Such functionals exist as
noted above. Moreover, suppose Fe is a distribution on the real line which
is absolutely continuous with respect to the Lebesgue measure.

Let {Dn} denote a sequence of absolutely continuous distributions such
that the sequence y/n(dk(Dn, Fe)) is bounded. Then a new functional T1 =
T + LD , , where / , , denotes the indication function, satisfies Cl to C6.

Since T' is not continuous at Fe it cannot be differentiable there.
It is perhaps important to realize that some well known estimators which

are robust in the sense that they are resistant to large outliers need not at
the same time have a strong expansion. The median is well known not to be
Frechet differentiable (cf. Fernholz, (1983)). It does not seem however so well
known that the expansion admitted by the empirical median does not hold
uniformly under shrinking neighbourhoods. Since the functional induced by
the median does not satisfy Condition C6 our main theorem does not imply
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that there is no strong expansion. We shall validate this fact below, showing
then that assumptions of our main theorem can perhaps be weakened.

Here we define the median to be F~l{\) where ^ " ' ( a ) =
inf{* : F(t) > a } . The influence curve for the median at the normal dis-
tribution O is given by a discontinuous function

y/(x) = {20(O-1(i))}~1 sign(x - (JT1^)) ,

where (/>(x) is the standard normal density. The expansion

is true at the normal distribution, whence the asymptotic normal distribution
of N(0, l/{4<£(0)2}) is achieved. The same cannot be said in infinitesimal
departures of O®" . The following result follows in a straightforward way
from the Malmquist (1950) representation of the distribution of uniform
order statistics by exponential random variables.

LEMMA 3.1. Let X{, ..., Xn be independent identically distributed vari-
ables from

where d0 places atomic mass one at the origin and 0 < e < 1. Then asymptot-
ically \/nF~x{j) has a distribution that attributes positive mass at the origin,
while (l/\/n)Z)"=1 V(^,) tends in distribution to a normal variable.
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