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Abstract

Several finite complex reflection groups have a braid group that is isomorphic to a torus knot group. The
reflection group is obtained from the torus knot group by declaring meridians to have order k for some
k ≥ 2, and meridians are mapped to reflections. We study all possible quotients of torus knot groups
obtained by requiring meridians to have finite order. Using the theory of J-groups of Achar and Aubert
[‘On rank 2 complex reflection groups’, Comm. Algebra 36(6) (2008), 2092–2132], we show that these
groups behave like (in general, infinite) complex reflection groups of rank two. The large family of ‘toric
reflection groups’ that we obtain includes, among others, all finite complex reflection groups of rank two
with a single conjugacy class of reflecting hyperplanes, as well as Coxeter’s truncations of the 3-strand
braid group. We classify these toric reflection groups and explain why the corresponding torus knot
group can be naturally considered as its braid group. In particular, this yields a new infinite family
of reflection-like groups admitting braid groups that are Garside groups. Moreover, we show that a
toric reflection group has cyclic center by showing that the quotient by the center is isomorphic to the
alternating subgroup of a Coxeter group of rank three. To this end we use the fact that the center of the
alternating subgroup of an irreducible, infinite Coxeter group of rank at least three is trivial. Several
ingredients of the proofs are purely Coxeter-theoretic, and might be of independent interest.
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1. Introduction

The 3-strand braid group has many interesting quotients admitting realizations as
reflection groups of rank two over R or C, the most famous one being the symmetric
group S3. The symmetric group S3 is a finite real reflection group or finite Coxeter
group, and the 3-strand braid group is isomorphic to the corresponding Artin–Tits
group. In this case, the quotient map from B3 to S3 maps Dehn twists to reflections.
This situation admits a well-known generalization, where the symmetric group is
replaced by any (not necessarily finite) Coxeter group and the braid group by the
corresponding Artin–Tits group (see for instance [21, Section 6.6] for an introduction
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172 T. Gobet [2]

to the topic). In this situation, one has a natural recipe to attach to a Coxeter group
a group playing the role of the braid group and sharing the same kind of (in general,
conjectural) properties—absence of torsion, solvable word and conjugacy problems,
and so forth.

In the complex case, that is, if we start with a finite complex reflection group,
there is also a way to attach a group with the same kind of properties as the braid
group: one defines the braid group attached to a finite complex reflection group as the
fundamental group of the space of regular orbits in the natural representation of the
reflection group [12]. This allows one to recover the 3-strand braid group from several
finite complex reflection groups of rank two arising as quotients—like for instance G4
in Shephard–Todd notation. In the cases where the reflection group can be realized
over the real numbers, that is, in the cases where it is a finite Coxeter group, the
obtained braid group is isomorphic to the Artin–Tits group of the Coxeter group [9].
In the complex case, the generalizations of Dehn twists are given by so-called braided
reflections, which are also mapped to reflections in the quotients.

In this paper, we study another kind of generalization of reflection quotients of the
3-strand braid group. A feature of the 3-strand braid group is that it is isomorphic
to the knot group of the trefoil knot [21, Section 1.1.4], which is a torus knot (that
is, a knot that lies on the surface of a torus). Several finite complex reflection
groups with a single conjugacy class of reflecting hyperplanes have their braid group
isomorphic to a torus knot group [5], and the quotient map from the torus knot
group to the complex reflection group maps meridians—which one can consider as
generalizations of Dehn twists—to reflections. Moreover, as in the aforementioned
cases, a presentation of the reflection group is obtained from a presentation of the
torus knot group having meridians as generators by setting xk = 1 for some k ≥ 2 for
any (equivalently every) meridian x. The obtained reflection groups—which include
the aforementioned quotients of the 3-strand braid group—are of rank two, that is, they
are reflection groups over C2. The aim of this paper is to study all possible quotients
of all possible torus knot groups arising in this way. Note that surjective maps from
link groups onto Coxeter or reflection groups, which have the property that they send
meridians to reflections, arise in a knot-theoretic setting in the study of the so-called
meridional rank conjecture stating an equality between the bridge number of a link L
and its meridional rank (see [3, 4]). Indeed, if one finds such a surjective map from
Γ = π1(S3\L) onto W, where L is a link and W a reflection group, then the meridian
rank of L, that is, the minimal number of meridians needed to generate Γ, is necessarily
bounded below by the reflection rank of W, that is, the minimal number of reflections
needed to generate W. This conjecture is solved for torus links [30].

The aforementioned quotients of torus knot groups studied in this paper are infinite
in general. We show that they are generalizations of complex reflection groups of rank
two, with the torus knot group playing the role of an attached ‘braid group’, and give
a few fundamental results on their structure as well as a classification.

To be more precise, let n, m ≥ 2 be two relatively prime integers, with n < m. The
torus knot group G(n, m) is the fundamental group of the complement of the torus
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knot Tn,m in R3. It admits (see for instance [29, Ch. 3, Section C]) the well-known
presentation

G(n, m) = 〈x, y | xn = ym〉. (1-1)

Another presentation, which we call classical, is given by

〈x1, x2, . . . , xn | x1x2 · · ·︸��︷︷��︸
m factors

= x2x3 · · ·︸��︷︷��︸
m factors

= · · · = xnx1 · · ·︸��︷︷��︸
m factors

〉, (1-2)

where indices are taken modulo n. See for instance [6, 6.4, Problem 10]. An explicit
isomorphism between G(n, m) and the group with Presentation (1-2) is given by
x �→ x1x2 · · · xm, y �→ x1x2 · · · xn. Note that in Presentation (1-2), the generators are
meridians. To see this, one can for instance use [13, Proposition 3.38(b)], where it
is shown that if a, b ∈ Z are such that an − bm = 1, then yax−b is a meridian. Using
the defining relations of Presentation (1-2), we see that under the isomorphism given
above, the element yax−b is mapped to x±1

i for some i, and hence there is an i such that
xi is a meridian. However, since n and m are coprime, all xi are conjugate, and hence
they are all meridians. Using the fact that the torus knots Tn,m and Tm,n are isotopic, one
obtains a third presentation, where generators are also meridians, which we call dual,
given by

〈y1, y2, . . . , ym | y1y2 · · ·︸��︷︷��︸
n factors

= y2y3 · · ·︸��︷︷��︸
n factors

= · · · = ymy1 · · ·︸��︷︷��︸
n factors

〉.

In the case where n = 2, m = 3 (more generally, for m odd), the classical presentation
above is the classical presentation of the 3-strand braid group B3 (more generally, of
the Artin–Tits group of dihedral type I2(m)), while the dual presentation is Birman,
Ko, and Lee’s presentation [7] (more generally, the dual presentation in the sense
of [6]). This explains our terminology. Presentation (1-1) is obtained from the classical
one by setting x = x1x2x1, y = x1x2, while the third one is obtained by setting y1 = x1,
y2 = x2, y3 = x1x2x−1

1 . The symmetric group S3 is obtained from either the classical
or dual presentation by adding the relations a2 = 1 for all generators a (or for a single
generator a, as they are all conjugate). The complex reflection groups mentioned above
are obtained in a similar way by setting ak = 1 for the generators a and some k ≥ 2,
and the images of the generators (and more generally, the meridians) in the quotient
are reflections. More precisely, in Shephard–Todd notation:

• G4, G8, and G16 are obtained from the classical presentation of B3 � G(2, 3) by
adding the relations xk

i = 1 for all i, where k = 3, 4, and 5, respectively;
• G12 is obtained from the classical presentation of G(3, 4) by adding the relations

x2
i = 1 for all i;

• G22 is obtained from the classical presentation of G(3, 5) by adding the relations
x2

i = 1 for all i;
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• G20 is obtained from the classical presentation of G(2, 5) by adding the relation
x3

i = 1 for all i;
• for odd m, the group G(m, m, 2), which is also the dihedral Coxeter group of type

I2(m), is obtained from G(2, m) by adding the relation x2
i = 1 for all i. Note that in

this case, G(2, m) is the Artin–Tits group of type I2(m).

Generalizing the groups obtained in the first point above, Coxeter [15] studied the
quotient of B3 (and more generally, Bn) by the relations xk

1 = xk
2 = 1, where k ≥ 2, and

showed that this quotient is finite if and only if k ≤ 5. He also showed that these groups,
which are sometimes called truncated braid groups, admit a complex representation as
groups generated by (pseudo-)reflections. For k ≤ 5, he showed that this representation
is faithful, and that the group is finite if and only if k ≤ 5.

Let n, m be as above and k ≥ 2. We define a three-parameter family of groups
generalizing all the examples given above, called toric reflection groups, by setting

W(k, n, m) :=

〈
x1, x2, . . . , xn |

xk
i = 1 for i = 1, . . . , n,

x1x2 · · ·︸��︷︷��︸
m factors

= x2x3 · · ·︸��︷︷��︸
m factors

= · · · = xnx1 · · ·︸��︷︷��︸
m factors

〉
. (1-3)

We define the conjugates of the nontrivial powers x�i (that is, not equal to the
identity) of the generators xi to be the reflections in W(k, n, m). This is partly justified
by the fact that in the aforementioned cases where W(k, n, m) is finite, the xi are
reflections, and more generally, by the following fact. We show in Theorem 1.1 that
these groups are isomorphic to groups that are part of a family of groups introduced by
Achar and Aubert, called J-groups [2], which are generalizations of complex reflection
groups of rank two—see Section 2.1 for precise definitions, and Theorem 2.12 together
with Corollary 2.13 for a more precise and complete statement. Each such group
admits a representation as a subgroup of GL2(C) generated by (pseudo-)reflections
[2, Section 4]. Achar and Aubert showed that a J-group is finite if and only if it is a
finite complex reflection group of rank two [2, Theorem 1.2].

THEOREM 1.1 (Toric reflection groups are J-groups). The group W(k, n, m) is iso-
morphic to the J-group J( k n m

n m ) of Achar and Aubert. Under this isomorphism, the
generators of W(k, n, m) correspond to elements of the J-group acting by reflections in
Achar and Aubert’s representation.

This allows one to consider Presentation (1-3) as a presentation of a reflection
group in some sense. Nevertheless, let us point out that Achar and Aubert’s repre-
sentation is not faithful in general: see Section 2.3. We say that two toric reflection
groups W(k, n, m), W(k′, n′, m′) with respective sets of reflections R, R′ are reflection
isomorphic, written W(k, n, m) �ref W(k′, n′, m′), if there is a group isomorphism
ϕ : W(k, n, m) −→ W(k′, n′, m′) such that ϕ(R) = R′. The following statement classifies
toric reflection groups (see Theorem 4.1 below).
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THEOREM 1.2 (Classification of toric reflection groups). Let k, k′, n, n′, m, m′ ≥ 2 with
n < m, n′ < m′, n and m coprime, and n′ and m′ coprime. Then,

W(k, n, m) �ref W(k′, n′, m′)⇔ k = k′, n = n′, and m = m′.

Note that Presentation (1-3) can be given as well if n > m. However, in this case,
thanks to the isomorphism G(n, m) � G(m, n) and the fact that the toric reflection
group is obtained from the torus knot group by killing the k th power of meridians, we
get that W(k, n, m) � W(k, m, n). Hence, the case n < m is sufficient to parameterize all
toric reflection groups, and with this assumption, Theorem 1.2 says that for any toric
reflection group W, there is a single pair (k, n, m) with W �ref W(k, n, m).

As an immediate corollary of Theorem 1.2, we get the following definition of
the braid group of a toric reflection group, in the spirit of Achar and Aubert’s
characterization of finite J-groups. Given a toric reflection group W, let k, n, m ≥ 2
with n < m and n, m coprime such that W �ref W(k, n, m). We set B(W, R) := G(n, m).

COROLLARY 1.3 (Braid groups of toric reflection groups). Let W be a toric reflection
group with set of reflections R. Then we have the following.

(1) The groupB(W, R) is well defined, that is, only depends on the isomorphism class
of the toric reflection group of W.

(2) If W is finite, then B(W, R) is isomorphic to the braid group of the complex
reflection group W.

Note that Schreier [31] proved that two torus knot groups G(n, m) and G(n′, m′)
(n < m and n′ < m′) are isomorphic (as abstract groups) if and only if n = n′ and
m = m′ (his result is actually more general as he did not assume the parameters to
be coprime).

The above corollary yields the generalization of reflection quotients of the 3-strand
braid group announced at the beginning of the introduction. Note that every torus knot
group is a Garside group [17, Example 4] (see also [20, Section 3] and [16] for basics
on Garside groups), and hence it shares many properties with Artin’s braid groups and
more generally Artin–Tits groups of spherical type, that is, attached to finite Coxeter
groups, which are all Garside groups. Such groups have, for instance, solvable word
and conjugacy problems, and are torsion-free. Note that Artin–Tits groups attached to
infinite Coxeter groups are not Garside groups in general (some of them are known
to be so-called quasi-Garside groups [16]), while by Corollary 1.3, an infinite toric
reflection group has an attached ‘braid group’ which is always a Garside group. This is
not especially surprising and could already be observed for Coxeter’s truncated braid
groups [15], as toric reflection groups have, even when infinite, properties similar
to finite (irreducible) Coxeter groups. For instance, they have a nontrivial cyclic
center—see Corollary 1.6.

A main ingredient in the proof of Theorem 1.2 is the theory of Coxeter groups and
their parabolic subgroups, especially in rank three. In the following, we show several
results which are purely Coxeter-theoretic, and might be of independent interest.
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To establish Theorem 1.2, we identify the quotient of a toric reflection group W by its
center. More precisely, let k, n, m be as above, and let Wk,n,m be the rank-three Coxeter
group

Wk,n,m =

〈
r1, r2, r3

∣∣∣∣∣ r2
1 = r2

2 = r2
3 = 1,

(r1r2)k = (r2r3)n = (r3r1)m = 1.

〉

Let W+k,n,m be its alternating subgroup, that is, the subgroup of elements with signature
1. Let c = (x1x2 · · · xn)m ∈ W(k, n, m), which is central in W(k, n, m). Then we show
(see Theorem 3.3) the following theorem.

THEOREM 1.4. The group W(k, n, m) is a central extension of W+k,n,m by the subgroup
〈c〉. That is, we have a short exact sequence

1 −→ 〈c〉 −→ W(k, n, m) −→ W+k,n,m −→ 1.

In most cases, the group Wk,n,m is infinite and irreducible. The determination of the
center of a toric reflection group uses the following result, which is of independent
interest (see Proposition 3.1).

PROPOSITION 1.5 (Center of alternating subgroups of Coxeter groups). Let (W, S) be
a Coxeter system of rank at least 3. Let W+ be the alternating subgroup of W. Then the
center Z(W+) of W+ is included in the center of W. In particular, if (W, S) is infinite,
irreducible, and of rank at least three, then Z(W+) is trivial.

Together with Theorem 1.4 and a case-by-case check in the cases where Wk,n,m is
finite, Proposition 1.5 yields (see Theorem 3.3 below) the following corollary.

COROLLARY 1.6 (Center of toric reflection groups). The center of W(k, n, m) is cyclic,
generated by c.

In the case where W(k, n, m) is infinite, we do not know whether c has finite order
or not (see Remark 3.8). An explicit identification of the center inside the group
together with Theorem 1.4 would show that the groups W(k, n, m) have solvable word
problems—see Question 3.9 and the discussion above it.

In the case where W(k, n, m) is finite, Theorem 1.4 together with Corollary 1.6
give for the groups listed above a new and more general explanation for the known
description of the quotient W(k, n, m)/Z(W(k, n, m)), as we see that it is isomorphic
to the alternating subgroup of a Coxeter group that can be attached in a uniform
way to all the concerned finite complex reflection groups. Note that when W(k, n, m)
is finite, it is known that k − 1 is the number of conjugacy classes of reflections in
W(k, n, m), and that n is the reflection rank of W(k, n, m), that is, the minimal number of
reflections that are needed to generate W(k, n, m). For arbitrary W(k, n, m), we see that
it is still true that k − 1 is the number of conjugacy classes of reflections, but we do not
know whether n is equal to the reflection rank of W(k, n, m) or not—see Remark 4.8.
A positive answer would be a first step toward another proof of the classification of
toric reflection groups given in Theorem 1.2 that may avoid the recourse to Coxeter
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groups—which has other advantages, as for instance Coxeter groups of rank three
have nice geometric realizations. This would also give another way of showing that
the meridional rank of the torus knot Tn,m (n < m) is equal to n (established in [30]).

The paper is organized as follows. Note that since the results are not always proven
in the same order as they appear in the introduction, and sometimes require more
notation than what we introduced above, we have a different numbering of the results
in the rest of the paper, and sometimes a slightly different formulation. In Section 2, we
recall from [2] a few basic results on J-groups, and show that toric reflection groups
are J-groups, allowing one to consider toric reflection groups as (a generalization of)
complex reflection groups of rank two. In Section 3, we identify the center of toric
reflection groups and link them as explained above to alternating subgroups of Coxeter
groups of rank three. In Section 4, we use the previously established results to classify
toric reflection groups; a main ingredient to this end is the study of finite subgroups of
(alternating subgroups of) Coxeter groups of rank three.

2. J-groups and toric reflection groups

In this section, we first recall the definition and basic properties of J-groups in
Section 2.1. These groups, which are infinite in general, were introduced by Achar and
Aubert in [2] as a generalization of finite complex reflection groups of rank two. They
are defined as certain normal subgroups of a family of groups defined by generators
and relations, which are themselves J-groups. We then show that toric reflection groups
are J-groups of a certain kind in Section 2.2 by giving an explicit presentation by
generators and relations for these J-groups using the Reidemeister–Schreier algorithm.
Finally, in Section 2.3, we discuss the faithfulness of Achar and Aubert’s representation
for this family of groups.

2.1. J-groups: definition and basic properties. Let a, b, c ≥ 2. Let J( a b c ) be the
group defined by the following presentation:

J
(
a b c

)
:= 〈s, t, u | sa = tb = uc = 1, stu = tus = ust〉.

Let a′, b′, c′ be three pairwise coprime positive integers, such that k′ divides k for all
k ∈ {a, b, c}. Let J( a b c

a′ b′ c′) be the normal closure in J( a b c ) of the elements sa′ , tb′ , and
uc′ . These groups were defined by Achar and Aubert in [2], and are called J-groups.
Note that J( a b c

1 1 1 ) = J( a b c ), and hence J( a b c ) is itself a J-group, and we may call it
the parent J-group of J( a b c

a′ b′ c′ ); in general, and also for other J-groups, the parameters
equal to 1 are omitted in the second row of parameters.

Recall that a complex reflection group is a (finite) subgroup W ⊆ GLn(C) generated
by (pseudo-)reflections, that is, elements of finite order whose space of fixed points is
a hyperplane in Cn—see [11, 23] for basics on complex reflection groups. Achar and
Aubert’s main result is the following.
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THEOREM 2.1 (See [2, Theorem 1.2]). A J-group is finite if and only if it is a finite
complex reflection group of rank two.

In the case where a J-group H := J( a b c
a′ b′ c′ ) is finite, it turns out that both H and

G := J( a b c ) are finite (see [2]). In this case, the generators s, t, and u are reflections,
and since a power of a reflection is either the identity or a reflection and the set of
reflections is stable by conjugation, the subgroup H is generated by reflections, that is,
it is a reflection subgroup of G. In the case where G is infinite, it is shown in [2] that
one can still define a representation

ρ : G −→ GL2(C)

of G (and hence of H) where the generators of G act by reflections. However, as we
see in Section 2.3, this representation is unfaithful in general when G is infinite. The
elements s, t, and u have orders a, b, and c in G (see the proof of Lemma 2.5).

DEFINITION 2.2. The reflections in H = J( a b c
a′ b′ c′ ) � J( a b c ) = G are those elements

of H that are G-conjugates of a power of sa′ , tb′ , or uc′ that is not the identity. We denote
by R(H) the set of reflections in H.

DEFINITION 2.3. Let G, G′ be two J-groups with respective sets of reflections
R, R′. Let ϕ : G −→ G′ be a group homomorphism. We say that ϕ is a reflection
homomorphism if ϕ(R) ⊆ R′. Another possible definition of reflection homomorphism
could be to require that ϕ(R) ⊆ R′ ∪ {1}, which might be more suitable to study
quotients, as done for instance in [26] in the case of finite Coxeter groups and their
standard generators. In this paper, we only consider reflection isomorphisms, which are
obviously the same in both categories. We say that G and G′ are reflection isomorphic
if there is a reflection homomorphism ϕ : G −→ G′ that is a group isomorphism and
such that ϕ(R) = R′.

REMARK 2.4. Note that permuting the columns of a J-group G yields another J-group
G′ that is reflection isomorphic to G: a reflection isomorphism between J( a b c

a′ b′ c′ ) and
J( b a c

b′ a′ c′ ) is obtained by mapping s to t−1, t to s−1, and u to u−1, while a reflection
isomorphism between J( a b c

a′ b′ c′ ) and J( c a b
c′ a′ b′ ) is obtained by mapping s to t, t to u, and

u to s. These two reflection isomorphisms are enough to generate every permutation
of the columns.

LEMMA 2.5. No two elements in {s, s2, . . . , sa−1, t, t2, . . . , tb−1, u, u2, . . . , uc−1} are con-
jugate to each other in G = J( a b c ). In particular, there are a + b + c − 3 conjugacy
classes of reflections in G.

PROOF. It suffices to note that the quotient of J( a b c )by the normal subgroup 〈〈a〉〉
normally generated by a is isomorphic to the abelian group Z/bZ × Z/cZ, with t having
image (1, 0) and u having image (0, 1). This shows that no two elements in

{t, t2, . . . , tb−1, u, u2, . . . , uc−1}
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are conjugate in G, as their images in the abelian quotient would have to be equal.
Arguing similarly with the normal subgroups 〈〈b〉〉 and 〈〈c〉〉, we get the claim. �

Note that this also shows that s, t, and u have orders a, b, and c in G.

LEMMA 2.6. With the notation of Definition 2.2, we have R(H) = R(G) ∩ H.

PROOF. It is clear that R(H) ⊆ R(G) ∩ H. Conversely, let wrnw−1 ∈ R(G) ∩ H, with
r ∈ {s, t, u} and n not divisible by o(r) := order(r). As H � G, we have rn ∈ H. Assume
without loss of generality that r = s. It remains to show that a′ divides n. If not, then
there is 1 ≤ a′′ < a′ such that sa′′ ∈ H. However,

G/H � J
(
a′ b′ c′

)
,

and since the image of s in this quotient has order a′, one cannot have sa′′ ∈ H, which
is a contradiction. Hence, a′ divides n, and wrnw−1 ∈ R(H). �

DEFINITION 2.7. Let H be a J-group. Define H(H) to be the quotient set of R(H)
by the transitive closure of the relation rn ∼ rm for all r ∈ R(H) and 1 ≤ n, m < o(r).
An element H of H(H) is called a reflecting hyperplane (attached to any reflection
r ∈ R(H) such that the class [r] of r modulo ∼ is equal to H). Note that the action of
H on R(H) by conjugation induces an action of H onH(H)—more generally, if H has
parent J-group G, then since H is normal in G, we have an action of G onH(H).

LEMMA 2.8. If a J-group H � 1 has a single H-conjugacy class of reflecting hyper-
planes, then up to permutation of the columns, H is of the form J( a b c

a′ b c ), where a′ � a,
b < c.

PROOF. Given a J-group H = J( a b c
a′ b′ c′ ), if i′ < i for more than one integer i ∈ {a, b, c},

say a and b, then both 1 � sa′ and 1 � tb′ lie in H � G = J( a b c ). For r ∈ R(H), by
Lemma 2.5, the reflection r is conjugate (in G) to exactly one nontrivial power of
a generator in {s, t, u} and hence, all reflections rm for 1 ≤ m < o(r) are conjugate in
G to a power of the same generator. Now for any r ∈ R(H) such that [r] lies in the
H-conjugacy class of [sa′], the reflection r is conjugate (in G) to a power of s. Similarly,
for any r ∈ R(H) such that [r] lies in the H-conjugacy class of [tb′], the reflection r is
conjugate (in G) to a power of t. It follows that the H-conjugacy classes of [tb′] and [sa′]
are distinct in G (and a fortiori in H), since if [r] was a hyperplane in both classes, then
r would be conjugate (in G) to both a power of s and a power of t, which by Lemma
2.5 is excluded.

Hence, we have that H is of the form J( a b c
a′ b c ), where a′ < a. Note that b � c as

b′ � c′ by definition. Using also Remark 2.4, this concludes the proof. �

Note that it is not clear a priori that every J-group of the form H = J( a b c
a′ b c ) as above

has a single conjugacy class of reflecting hyperplanes: by definition, the generators of
H are all conjugate in G to a power of s, but it is not clear that they are in fact conjugate
in H to a power of s. We show in Corollary 2.13 that this holds at least for a′ = 1, using
Theorem 2.12 and the following proposition.
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PROPOSITION 2.9. Let H = J( a b c
b c ) with a, b, c ≥ 2.

(1) The reflections xi := ti−1st−i+1, where i = 1, 2, . . . , b, generate H (as a group).
(2) Every reflection in H is a conjugate in H of a nontrivial power of some xi.

PROOF. Since all the elements xi lie in H and H � G = J( a b c ), their conjugates by
s, t, and u again lie in H. We begin by showing that an element of the form gxig−1,
where g ∈ G can be rewritten in the form hxjh−1 for some j and some element h lying
in the subgroup H′ ⊆ H generated by the elements xi. Note that by induction on the
length of a word for g in {s±1, t±1, u±1}, it is enough to show it for g ∈ {s±1, t±1, u±1}.
For g = s±1, we have s±1xis∓1 = x±1

1 xix∓1
1 as s = x1. We have t±1xit∓1 = xi±1 for all i =

1, . . . , b (with the convention that xb+j = xj). Using that stu is central in G,

uxiu−1 = t−1s−1(stu)xi(u−1t−1s−1)st = t−1s−1xist = t−1x−1
1 xix1t = x−1

b xi−1xb,

and a similar computation shows that u−1xiu = x1xi+1x−1
1 .

Now H is generated by its reflections, that is, by the conjugates in G of the nontrivial
powers of s = x1. However, by the observation above, every element of the form gx�1g−1

can be rewritten in the form hx�i h
−1 for some i and some h in H′. It follows that the

elements xi generate H, and hence that H′ = H. The second point also follows. �

2.2. Toric reflection groups are J-groups. Let k, n, m ≥ 2 with n < m and n, m
coprime. Recall from the introduction that the toric reflection group W(k, n, m) is
defined by the presentation

W(k, n, m) :=

〈
x1, x2, . . . , xn |

xk
i = 1 for i = 1, . . . , n,

x1x2 · · ·︸��︷︷��︸
m factors

= x2x3 · · ·︸��︷︷��︸
m factors

= · · · = xnx1 · · ·︸��︷︷��︸
m factors

〉
. (2-1)

In particular, the group W(k, n, m) is a quotient of the torus knot group G(n, m) as
the above presentation is obtained from the classical Presentation (1-2) of G(n, m) by
adding the relations xk

i = 1.

DEFINITION 2.10. The set of reflections in W(k, n, m), denoted R, is the set of those
elements in W(k, n, m) which are conjugate to a nontrivial power of one of the elements
xi, that is,

R = {gx�i g
−1 | i ∈ {1, 2, . . . , n}, g ∈ W(k, n, m), � ∈ Z with x�i � 1}.

We see later that all the elements xi have order k. Given two toric reflection groups
W, W ′ with respective sets of reflections R, R′, we say that a group isomorphism
ϕ : W −→ W′ is a reflection isomorphism if ϕ(R) = R′, and write W �ref W ′.

REMARK 2.11. Observe that Presentation (2-1) could be given as well for m < n.
We explain why we assume that n < m in most statements. In fact, one has
G(n, m) � G(m, n) since the torus knots Tn,m and Tm,n are isotopic (see for instance
[13, Proposition 3.37]). By writing down explicitly an isomorphism between G(n, m)
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and G(m, n), it is not hard to see that it induces a reflection isomorphism W(k, n, m) �ref

W(k, m, n). We see in this section another explanation for this isomorphism, by
realizing toric reflection groups as J-groups. More precisely, this is a consequence
of the first point of Corollary 2.13 together with the reflection isomorphism

J
(
k n m

n m

)
�ref J

(
k m n

m n

)

from Remark 2.4.

THEOREM 2.12 (Toric reflection groups are J-groups). Let k, n, m ≥ 2 with
n, m coprime (we do not necessarily assume n < m here), and let H = J( k n m

n m ) �
J( k n m ) = G. Then H has a presentation with generators x1, x2, . . . , xn and relations
(indices are taken modulo n)

xk
i = 1, for all i = 1, . . . , n,

x1x2 · · · xm = xixi+1 · · · xi+m−1, for all i = 2, . . . , n.

If n < m, we therefore have W(k, n, m) � H. In terms of the generators of G, we have
xi = ti−1st−i+1 for all i = 1, . . . , n.

COROLLARY 2.13. Let H = J( k n m
n m ), with k, n, m as in Theorem 2.12.

(1) Let R be the set of reflections in W(k, n, m) and R′ be the set of reflections in
H = J( k n m

n m ). The isomorphism ϕ : W(k, n, m)
�−→ H, xi �→ ti−1st−i+1 from

Theorem 2.12 satisfies ϕ(R) = R′. In other words, it is an isomorphism of
‘reflection groups’.

(2) There is a single H-conjugacy class of reflecting hyperplanes in H.

PROOF. All the elements ti−1st−i+1 are reflections in H, and hence we have ϕ(R) ⊆ R′.
Conversely, let r be a reflection in H. Then by the second point of Proposition 2.9, it is
conjugate in H to a nontrivial power of some xi, and hence ϕ−1(R′) ⊆ R.

By definition of H, we know that all the reflecting hyperplanes in H are conjugate
in G = J( k n m ), but it is not obvious that they are conjugate in H. However, by the
second point of Proposition 2.9, we know that every reflection in H is conjugate in H
to a nontrivial power of some xi. To conclude the proof, it therefore suffices to show
that all the elements xi are conjugate in H. We use Theorem 2.12 to this end: since n
and m are coprime, all the elements xi are conjugate to each other in W(k, n, m), as a
consequence of the relations

x1x2 · · ·︸��︷︷��︸
m factors

= x2x3 · · ·︸��︷︷��︸
m factors

= · · · = xnx1 · · ·︸��︷︷��︸
m factors

. �

The proof of Theorem 2.12 occupies the remainder of the section. It is obtained via
an application of the Reidemeister–Schreier algorithm (see for instance [24]).

EXAMPLE 2.14. For k = 2, n = 3, m = 4, we get the presentation

x2
i = 1 for all i, x1x2x3x1 = x2x3x1x2 = x3x1x2x3.
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TABLE 1. Finite toric reflection groups.

k n m W(k, n, m)

2 3 4 G12
2 3 5 G22
3 2 3 G4
4 2 3 G8
5 2 3 G16
3 2 5 G20
2 2 ≥ 3 and odd G(m, m, 2) = I2(m)

This is a presentation of the complex reflection group G12 in Shephard–Todd notation
(see for instance [11, Table A.3]), and we recover (as in [2]) that J( 2 3 4

3 4 ) � G12.
Similarly, for the values of k, n, m given in Table 1, we obtain all the finite toric
reflection groups (the fact that they are the only finite toric groups follows from the
classification given in [2]). These are the finite complex reflection groups of rank two
with a single conjugacy class of reflecting hyperplanes.

REMARK 2.15. It is well known that G16, G20, and G22 are normal subgroups of
G19 = J( 2 3 5 ), that G4 is a normal subgroup of G7 = J( 2 3 3 ), and that G8 and G12
are normal subgroups of G11 = J( 2 3 4 ) (see for instance [23, Ch. 6]). In particular,
Theorem 2.12 reproves this fact and gives a way to express the generators of these
subgroups in terms of the generators of G19, G7, and G11 (see also [25, Table 1]).

Let G, H be as in Theorem 2.12. Note that as G/H � Z/nZ × Z/mZ, a system of
representatives of the (right) cosets modulo H is given by Huitj, 0 ≤ i < m, 0 ≤ j < n.
Note that the setK := {uitj}0≤i<m,0≤j<n yields a Schreier transversal for G/H. For g ∈ G,
we denote by g the representative of Hg inK . Recall that a system of generators for H is
given by the elements of the form kxkx

−1
, where k ∈ K and x ∈ {s, t, u}. For x ∈ {s, t, u}

and 0 ≤ i < m, 0 ≤ j < n, we denote the generator uitjxuitjx
−1

of H by xi,j. Among this
set of generators, some of them are the identity, namely:

• ti,j = 1 for all 0 ≤ i < m, 0 ≤ j < n;
• ui,0 = 1 for all 0 ≤ i < m.

For simplicity of notation in the next proofs, it is convenient to consider the first
subscript in xi,j modulo m and the second one modulo n, that is, to write xi+m,j = xi,j
and xi,j+n = xi,j for all i, j ∈ Z.

The graph given by the action of generators of G on (right) cosets modulo H is given
in Figure 2. More precisely, if a generator x ∈ {s, t, u} is such that (Huitj)x = Hui′ tj′ ,
then we draw an arrow from the vertex Huitj to the vertex Hui′ tj′ , indexed by xi,j. The
plain arrows give the spanning tree corresponding to the Schreier transversal with
respect to the generating set {s, t, u} of G. In this case, the corresponding generator x
is equal to 1, and we simply label the corresponding arrow by x. The reason for such a
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FIGURE 1. Application of the relations stu = tus = ust at the vertex Hut of the coset graph to obtain
defining relations of H.

notation is that it becomes easy using this graph to write down the relations given by
the Reidemeister–Schreier algorithm: one simply applies the defining relations of G
at each vertex of the coset graph, following arrows from left to right: for instance,
applying the relations stu = tus = ust at the vertex Hut (see Figure 1) yields the
relations

s1,1u1,2 = u1,2s2,2 = u1,1s2,1

as arrows labeled by t have their corresponding generator equal to 1.
We get the following relations.

Relations coming from the relations sk = tn = um = 1. We get

sk
i,j = 1 for all (i, j) ∈ {0, . . . , m − 1} × {0, . . . , n − 1}, (2-2)

ui,jui+1,j · · · ui+m−1,j = 1 for all i ∈ {0, . . . , m − 1}, j ∈ {1, . . . , n − 1}. (2-3)

Relations coming from the relations stu = tus = ust.
First column of the graph in Figure 2:

si,0ui,1 = ui,1si+1,1 = si+1,0 for all i ∈ {0, . . . , m − 1}. (2-4)

Column j, where 2 ≤ j ≤ n − 1:

si,j−1ui,j = ui,jsi+1,j = ui,j−1si+1,j−1 for all i ∈ {0, . . . , m − 1}. (2-5)

Column n:

si,n−1 = si+1,0 = ui,n−1si+1,n−1 for all i ∈ {0, . . . , m − 1}. (2-6)

We have already seen in Proposition 2.9 that the elements xi := ti−1st1−i (1 ≤ i ≤ n)
generate H. Setting si := s0,i (1 ≤ i ≤ n) and considering indices of the elements si

modulo n, for all 1 ≤ i ≤ n,

si−1 = s0,i−1 = ti−1s(ti−1s)
−1
= ti−1st1−i = xi (2-7)
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FIGURE 2. Coset graph of the (right) cosets of H with action of the generators of G, and corresponding
generators of H. For clarity, we did not represent all the arrows, especially those with label ti,n−1 = 1, um−1,i,
si,j. The plain arrows correspond to the spanning tree of the graph yielding the Schreier transversal (and
have corresponding generator of H equal to 1).

as Hti−1s = H ti−1st1−i︸��︷︷��︸
∈H

ti−1 = Hti−1. The next proposition therefore gives a new proof

that the elements x1 = s0, x2 = s1, . . . , xn = sn−1 are enough to generate H, and gives a
formula for all the elements xi,j of H in terms of these generators.

PROPOSITION 2.16. Let 0 ≤ � ≤ m − 1.

(1) Let 1 ≤ p ≤ n. We have sm−1−�,p−1 = s0s1 · · · s�sp+�s−1
� s−1

�−1 · · · s
−1
0 .

(2) Let 1 ≤ p ≤ n − 1. We have um−1−�,p = s0s1 · · · s�s−1
p+�s

−1
�−1s−1

�−2 · · · s
−1
0 .

In particular, the elements si generate H.

The proof of Proposition 2.16 is by induction on �. The following lemma deals with
the case � = 0.

LEMMA 2.17. (1) Let 1 ≤ p ≤ n. We have sm−1,p−1 = s0sps−1
0 .

(2) Let 1 ≤ p ≤ n − 1. We have um−1,p = s0s−1
p .

PROOF. We argue by induction on p to show both statements for 1 ≤ p ≤ n − 1.
Equation (2-4) (with i = m − 1) yields

sm−1,0um−1,1 = um−1,1s1 = s0,
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from which we deduce that um−1,1 = s0s−1
1 and sm−1,0 = s0s1s−1

0 . Hence, the statement
of the lemma holds true for p = 1.

Assume that the result holds true for some 1 ≤ p ≤ n − 2. Equation (2-5) (with
j = p + 1 and i = m − 1) yields

sm−1,pum−1,p+1 = um−1,p+1sp+1 = um−1,psp,

from which, by induction, we get um−1,p+1 = um−1,psps−1
p+1 = s0s−1

p sps−1
p+1 = s0s−1

p+1, and
sm−1,p = um−1,p+1sp+1u−1

m−1,p+1 = s0sp+1s−1
0 , and hence both statements also hold true for

p + 1. Therefore, the result holds true for all 1 ≤ p ≤ n − 1 and it remains to check the
first statement for p = n, that is, that sm−1,n−1 = s0sns−1

0 = s0. However, this holds true
as an immediate consequence of Equation (2-6) with i = m − 1. �

PROOF OF PROPOSITION 2.16. The proof is by induction on �. The case � = 0 was
treated in Lemma 2.17. Assume that the claimed formulas hold true for some 0 ≤ � ≤
m − 2.

We show that the claimed relations hold true for � + 1 by induction on p as in
Lemma 2.17. Equation (2-4) (with i = m − 2 − �) yields

sm−2−�,0um−2−�,1 = um−2−�,1sm−1−�,1 = sm−1−�,0, (2-8)

from which, by induction (on �), we get

um−2−�,1 = sm−1−�,0s−1
m−1−�,1 = (s0s1 · · · s�s�+1s−1

� · · · s
−1
0 )(s0s1 · · · s�s−1

�+2s−1
� · · · s

−1
0 )

= s0s1 · · · s�s�+1s−1
�+2s−1

� · · · s
−1
0 .

Using this together with Equation (2-8) again, we get also by induction (on �) that

sm−2−�,0 = sm−1−�,0u−1
m−2−�,1

= (s0s1 · · · s�s�+1s−1
� · · · s

−1
0 )(s0s1 · · · s�s�+2s−1

�+1s−1
� · · · s

−1
0 )

= s0s1 · · · s�s�+1s�+2s−1
�+1s−1

� · · · s
−1
0 .

Hence, the statement holds true for p = 1.
Assume that the result holds true for some 1 ≤ p ≤ n − 2. Equation (2-5) (with

j = p + 1 and i = m − 2 − �) yields

sm−2−�,pum−2−�,p+1 = um−2−�,p+1sm−1−�,p+1 = um−2−�,psm−1−�,p, (2-9)

from which by induction (on � and p), we get

um−2−�,p+1 = um−2−�,psm−1−�,ps−1
m−1−�,p+1

= (s0s1 · · · s�+1s−1
p+�+1s−1

� s−1
�−1 · · · s

−1
0 )(s0s1 · · · s�sp+�+1s−1

� s−1
�−1 · · · s

−1
0 )

· (s0s1 · · · s�s−1
p+�+2s−1

� s−1
�−1 · · · s

−1
0 )

= s0s1 · · · s�+1s−1
p+�+2s−1

� s−1
�−1 · · · s

−1
0 .
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Using this together with Equation (2-9) again, we get also by induction (on � and p)
that

sm−2−�,p = um−2−�,psm−1−�,pu−1
m−2−�,p+1

= (s0s1 · · · s�+1s−1
p+�+1s−1

� s−1
�−1 · · · s

−1
0 )(s0s1 · · · s�sp+�+1s−1

� s−1
�−1 · · · s

−1
0 )

· (s0s1 · · · s�sp+�+2s−1
�+1s−1

� · · · s
−1
0 )

= s0s1 · · · s�+1sp+�+2s−1
�+1s−1

� s−1
�−1 · · · s

−1
0 ,

and hence both statements also hold true for p + 1. Therefore, the result holds true at
level � + 1 for all 1 ≤ p ≤ n − 1 and it remains to check the first statement (at level
� + 1) for p = n, that is, that

sm−2−�,n−1 = s0s1 · · · s�+1sn+1+�s−1
�+1s−1

� · · · s
−1
0 = s0s1 · · · s�+1s−1

� · · · s
−1
0 .

To this end, we use Equation (2-6) with i = m − 2 − �, that is,

sm−2−�,n−1 = sm−1−�,0 = um−2−�,n−1sm−1−�,n−1.

However, we already know by induction (on �) that sm−1−�,0 = s0s1 · · · s�+1s−1
� · · · s

−1
0

(alternatively both factors in the product um−2−�,n−1sm−1−�,n−1 are also already known,
and multiplying them yields the same result). �

Setting � = m − 1 in the first item of Proposition 2.16, we get

si−1 = s0s1 · · · sm−1si+m−1s−1
m−1 · · · s

−1
1 s−1

0 for all 1 ≤ i ≤ n. (2-10)

LEMMA 2.18. Setting xi = si−1 for all 1 ≤ i ≤ n, the set of relations (2-10) is equivalent
to the second set of relations in the statement of Theorem 2.12, that is, to

x1x2 · · · xm = xixi+1 · · · xi+m−1, for all i = 2, . . . , n.

PROOF. The set of relations in Equation (2-10) can be rewritten as

xix1x2 · · · xm = x1x2 · · · xmxi+m for all 1 ≤ i ≤ n. (2-11)

We show that they imply the relations x1x2 · · · xm = xjxj+1 · · · xj+m−1 for all j = 2, . . . , n,
by induction on j. Putting i = 1 in Equation (2-11) and canceling x1, we get the relation
x1x2 . . . xm = x2x3 · · · xm+1, which proves the case j = 2. Assume that x1x2 · · · xm =

xjxj+1 · · · xj+m−1 for some 2 ≤ j < n. From Equation (2-11) and by induction, we get

xjx1x2 · · · xm = x1x2 · · · xmxj+m = xjxj+1 · · · xj+m−1xj+m.

Canceling xj on both sides yields x1x2 · · · xm = xj+1 · · · xj+m−1xj+m. Hence, the relations
in Equation (2-10) imply the second set of relations.

Conversely, if the second set of relations holds true, then for all 1 ≤ i ≤ n, we have

xix1x2 · · · xm = xixi+1 · · · xi+m−1xi+m = x1x2 · · · xmxi+m,

which concludes the proof. �
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END OF THE PROOF OF THEOREM 2.12. It follows from Proposition 2.16 that the
elements xi terms generate H. Lemma 2.18 shows that the second set of relations in
the statement of Theorem 2.12 holds true in H. We also know that the first set of
relations holds true as a consequence of Relations (2-2). To conclude the proof of
Theorem 2.12, it therefore remains to show that, replacing the various ui,j and si,j
in Relations (2-4)–(2-6) by their expressions in terms of s0, s1, . . . , sn−1 obtained in
Proposition 2.16, we get no other relations than those in the statement of Theorem 2.12.

This is a direct check. For Relations (2-2), as by Proposition 2.16, every si,j is
conjugate to some si, we get that Relations (2-2) follows from the relations xk

i = 1
for all 1 ≤ i ≤ n. We now consider Relations (2-3). These relations tell us that for all
i ∈ {0, . . . , m − 1}, j ∈ {1, . . . , n − 1}, we have

∏i+m−1
q=i uq,j = 1. We separate this product

as
∏m−1

q=i uq,j
∏m−1+i

q=m uq,j. Proposition 2.16 yields

m−1∏
q=i

uq,j =

m−1∏
q=i

s0s1 · · · sm−1−qs−1
j+m−1−qs−1

m−2−qs−1
m−3−q · · · s

−1
0

= s0s1 · · · sm−1−is−1
j+m−1−is

−1
j+m−2−i · · · s

−1
j ,

while
m−1+i∏
q=m

uq,j =

i−1∏
q=0

uq,j =

i−1∏
q=0

s0s1 · · · sm−1−qs−1
j+m−1−qs−1

m−2−qs−1
m−3−q · · · s

−1
0

= s0s1 · · · sm−1s−1
j+m−1s−1

j+m−2 · · · s
−1
j+m−is

−1
m−i−1s−1

m−i−2 · · · s
−1
0 .

Now we have the relation
∏m−1

q=i uq,j
∏m−1+i

q=m uq,j = 1. Replacing the expressions
obtained above and conjugating by (s0s1 · · · sm−1−i)−1, we get the relation

s−1
j+m−1−is

−1
j+m−2−i · · · s

−1
j s0s1 · · · sm−1s−1

j+m−1s−1
j+m−2 · · · s

−1
j+m−i = 1.

Putting the inverses in the right-hand side and replacing si−1 by xi for all i, we get
the equivalent relation x1x2 · · · xm = xj+1xj+2 · · · xj+m, which we already obtained in
Lemma 2.18.

Hence, Relations (2-2) and (2-3) yield no new relations in H. We need to check that
the same holds true for the remaining Equations (2-4)–(2-6). We check it for Equation
(2-4). For any 0 ≤ i ≤ m − 1, we have

si,0ui,1 = (s0s1 · · · sm−1−ism−is−1
m−1−i · · · s

−1
0 )(s0s1 · · · sm−1−is−1

m−is
−1
m−2−i · · · s

−1
0 )

= s0s1 · · · sm−1−is−1
m−2−i · · · s

−1
0 ,

ui,1si+1,1 = (s0s1 · · · sm−1−is−1
m−is

−1
m−2−i · · · s

−1
0 )(s0s1 · · · sm−i−2sm−is−1

m−i−2 · · · s
−1
0 )

= s0s1 · · · sm−1−is−1
m−2−i · · · s

−1
0 ,

and we thus see that both si,0ui,1 and ui,1si+1,1 yield the same words, and by
Proposition 2.16, they are also equal to a word for si+1,0. We only deleted factors
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of the form xx−1 to obtain these equalities, and hence these relations do not yield any
relation in H at all.

It is checked that Equations (2-5) and (2-6) do not give any new relations in H in the
exact same way as we did for Equation (2-4) above. For Equation (2-5), replacing the
various factors using Proposition 2.16 and deleting xx−1 factors as above, one sees that
si,j−1ui,j, ui,jsi+1,j, and ui,j−1si+1,j−1 again yield the same words, equal to the word for si+1,0
obtained in Proposition 2.16. For Equation (2-6), we also get that si,n−1 and ui,n−1si+1,n−1
yield the same words, also equal to the word for si+1,0 obtained in Proposition 2.16.

The last statement that xi corresponds in G to ti−1st1−i has already been seen in
Equation (2-7) above.

2.3. Representation by complex reflection groups. Achar and Aubert [2, Section
4] constructed a representation of G = J( a b c ) (and hence of any J-group) on C2,
where the generators s, t, and u act by (pseudo-)reflections. This yields reflection
representations of J-groups and hence, thanks to Theorem 2.12, of every toric
reflection group. As we see in this section, this representation is not faithful in general
when W(k, n, m) is infinite.

The representation is constructed as follows. Let K be a finite abelian extension of
Q containing the roots of unity of orders 2a, 2b, and 2c. Let ZK be the ring of algebraic
integers of K. Let θ = eiπ/a, φ = eiπ/b, and ψ = eiπ/c. Choose two elements q, r ∈ ZK

such that qr = θφ(ψ + ψ−1) − θ2 − φ2. Then setting

ρ(s) =

(
θ2 q
0 1

)
, ρ(t) =

(
1 0
r φ2

)
, ρ(u) = θφψρ(t)−1ρ(s)−1,

we have the following proposition.

PROPOSITION 2.19 [2, Proposition 4.2]. The map ρ extends to a group homomorphism
G −→ GL2(K).

The following example shows that ρ is unfaithful in general when W(k, n, m) is
infinite.

EXAMPLE 2.20. Let k = 6, n = 2, m = 3. By Theorem 2.12, the group W(6, 2, 3) can be
identified with the subgroup of G = J( 6 2 3 ) generated by x1 = s and x2 = tst−1 = tst.
Note that, thanks to Theorem 2.12, it is a quotient of the 3-strand braid group

B3 = 〈x1, x2 | x1x2x1 = x2x1x2〉

by the relations x6
1 = 1 = x6

2, studied by Coxeter in [15]. By definition of ρ(u) and since
stu = tus = ust, we have that ρ(s)ρ(t)ρ(u) is the scalar matrix θφψId, which in this case
is −Id. It implies that ρ(stu) has order 2. Now since stu is central in G and u has order 6,
we have that (stu)6 = (stuu−1)6 = (st)6, from which we deduce that

ρ(x1x2)3 = ρ(stst)3 = ρ((stu)6) = Id.
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However, there is a surjective map W(6, 2, 3)� W(3, 2, 3), xi �→ xi. The group
W(3, 2, 3) is the complex reflection group G4, and one checks that x1x2 has order
6 in this group. It follows that (x1x2)3 cannot be equal to 1 in W(6, 2, 3), and that Achar
and Aubert’s representation is unfaithful in this case. The same observation can be
made with the representation constructed by Coxeter in [15, Section 7].

Moreover, the isomorphism class of the representation depends in fact on the choice
of q and r. In the above case, we have qr = 0. Choosing q = 0 = r yields matrices ρ(s)
and ρ(t) commuting with each other, while choosing q = 1, r = 0 yields matrices ρ(s)
and ρ(t) which do not commute with each other.

The above example raises the following questions.

QUESTION 2.21. Are there examples of infinite toric reflection groups for which Achar
and Aubert’s representation is faithful? For which toric reflection groups W(k, n, m) is
there a (canonical) faithful representation as a complex reflection group?

3. Center of toric reflection groups

The aim of this section is to establish that toric reflection groups have a cyclic center,
and to show that the quotient by their center is an alternating subgroup of a Coxeter
group of rank three. This is a key ingredient for the classification of toric reflection
groups that we give in the next section. We assume the reader is familiar with the
general theory of Coxeter groups and their parabolic subgroups (see for instance [1, 8]
for basics on the topic).

Let us introduce some notation and properties of Coxeter groups that are used
in the next sections. We denote by (W, S) a Coxeter system, with S finite. Recall
that for I ⊆ S, the subgroup WI := 〈s | s ∈ I〉 is called a standard parabolic sub-
group of W, and that the pair (WI , I) is itself a Coxeter system. These subgroups
have particularly nice properties: for instance, any S-reduced decomposition of an
element w ∈ W that lies in WI has all its letters in I—see [1, Section 2.3.2]. A
subgroup of the form xWIx−1 of W, where I ⊆ S and x ∈ W, is called a parabolic
subgroup of W.

More generally, one can show that any subgroup W′ of W generated by a subset of
the set T =

⋃
w∈W wSw−1 of reflections of W is itself a Coxeter group in a canonical

way—see [18]. Such a subgroup is called a reflection subgroup of W.
Given a Coxeter group W with length function �S with respect to the generating set

S, the subset W+ of elements w such that �S(w) is even forms a subgroup of index two
of W (hence normal), called the alternating subgroup of W, which we denote W+.

3.1. Center of alternating subgroups of Coxeter groups. We need the following
result, which applies to an arbitrary Coxeter group of rank at least 3, though we only
apply it in the rank three case. Recall that the center of an infinite and irreducible
Coxeter group is trivial (see [8, Ch. V, Section 4, Exercise 3]).
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PROPOSITION 3.1 (Center of alternating subgroups of Coxeter groups). Let (W, S)
be a Coxeter system with |S| ≥ 3. Let W+ be the alternating subgroup of W. Then
Z(W+) ⊆ Z(W). In particular, as infinite and irreducible Coxeter groups have trivial
centers, the center of the alternating subgroup of an infinite and irreducible Coxeter
group of rank at least three is trivial.

PROOF. Let x ∈ Z(W+). Let T denote the set
⋃

w∈W wSw−1 of reflections of W. For
every s ∈ S, define s′ := xsx−1 ∈ T . We show that s′ = s for all s ∈ S, which concludes
the proof.

Let s, t ∈ S with s � t. As x is central in W+, we have xst = stx. We also have
xst = s′t′x, which yields st = s′t′. By [19, Lemma 3.1], the reflection subgroup
W ′ := 〈s, t, s′, t′〉 of W is dihedral. We claim that W′ is the standard parabolic subgroup
generated by s and t. Indeed, writing χ(W′) for its set of canonical generators as
a Coxeter group (see [18]), we have |χ(W′)| = 2 and s, t ∈ χ(W′) since s, t ∈ S, and
hence W ′ = 〈s, t〉. In particular, we have s′, t′ ∈ 〈s, t〉. Assume that s′ � s. Then since
s′ ∈ 〈s, t〉 and 〈s, t〉 is a standard parabolic subgroup of W, the reflection s′ has a reduced
S-decomposition (equivalently all reduced S-decompositions) in which t has to appear.
Now, since W has rank at least 3, let r ∈ S\{s, t}. Arguing as above, we have sr = s′r′

and s′ ∈ 〈s, r〉. This is a contradiction, as t appears in reduced S-decompositions of s′,
while all elements in 〈s, r〉 have all their S-reduced decompositions only involving the
letters s and r. Hence, s = s′. �

The above result is not valid for irreducible Coxeter groups of rank two: let
W = I2(m) be the dihedral group of order 2m (m ≥ 3). Then W+ � Cm, the cyclic group
of order m. It is the rotation subgroup of W. Hence, W+ = Z(W+), while Z(W) is trivial
for odd m and isomorphic to C2 for even m. The infinite dihedral group W has trivial
center, while W+ � Z.

Also note that it has been shown that for irreducible, infinite, and nonaffine Coxeter
groups, the center of any finite index subgroup is trivial (see [27, Proposition 6.4] or
[28]).

3.2. Center of toric reflection groups and their parent J-groups. Let k, n, m ≥ 2
with n < m, and n and m coprime. The aim of this section is to show that the
center of a toric reflection group is cyclic. A step to achieve this is to show that
W(k, n, m)/Z(W(k, n, m)) is isomorphic to the alternating subgroup W+k,n,m of the
rank-three Coxeter group

Wk,n,m =

〈
r1, r2, r3

∣∣∣∣∣ r2
1 = r2

2 = r2
3 = 1,

(r1r2)k = (r2r3)n = (r3r1)m = 1.

〉

A presentation for the alternating subgroup W+ of an arbitrary Coxeter group W is
given by Bourbaki [8, Ch. IV, Section 1, Exercise 9]. In the specific case of Wk,n,m, it
yields the presentation

W+k,n,m = 〈a, b | ak = bn = (ba−1)m = 1〉, (3-1)
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where in terms of the generators r1, r2, r3 of Wk,n,m, we have a = r1r2, b = r3r2 (hence,
ba−1 = r3r1).

LEMMA 3.2. Let m = qn + r be the Euclidean division of m by n. Let δ := x1x2 · · · xm.
Then, taking indices modulo n, we have xiδ = δxi+r for all i = 1, . . . , n.

PROOF. As m ≡ r (mod n), using the defining relations of W(k, n, m), we have for all
i = 1, . . . , n,

xi(x1x2x3 · · · xm) = xi(xi+1xi+2 · · · xm+i) = (xixi+1 · · · xm+i−1) xm+i︸︷︷︸
=xi+r

= (x1x2 · · · xm)xi+r.

�

Let c := (x1x2 · · · xn)m ∈ W(k, n, m). Note that we have (x1x2 · · · xn)m = (x1x2 · · · xm)n.
Moreover, by Lemma 3.2, the element c is central in W(k, n, m) as

xic = xiδ
n = δnxi+nr = δ

nxi.

We denote by W(k, n, m) the quotient of W(k, n, m) by the extra relation c = 1.
We clearly have a group homomorphism J( k n m ) −→ W+k,n,m with s �→ r1r2,

t �→ r2r3, u �→ r3r1. By restriction, it induces a homomorphism W(k, n, m) −→
W+k,n,m. Considering the generators xi of W(k, n, m) � J( k n m

n m ) and recalling from
Theorem 2.12 that in terms of the generators of the parent J-group J( k n m ), we have
xi = ti−1st1−i for all i = 1, . . . , n, we see that such a homomorphism maps x1x2 · · · xn to
(r1r3)n, which has order m in Wk,n,m: indeed, by the general theory of Coxeter groups,
we know that r1r3 has order m (see for instance [1, Section 2.3.3]), and n and m are
coprime. In particular, the element c is mapped to 1; hence the above homomorphism
factors through W(k, n, m), and we denote by ϕ : W(k, n, m) −→ W+k,n,m the obtained
homomorphism.

The main result of the section is given by the following statement.

THEOREM 3.3 (Center of toric reflection groups). Let G = J( k n m ), where k, n, m ≥ 2,
n < m, and n, m are coprime.

(1) The map ϕ is an isomorphism.
(2) We have the following commutative diagram, where both rows are short exact

sequences:

1 〈stu〉 G W+k,n,m 1

1 〈c〉 W(k, n, m) W+k,n,m 1

id

(3) We have Z(W(k, n, m)) = 〈c〉 and Z(G) = 〈stu〉.
(4) The above commutative diagram induces isomorphisms

G/Z(G) � W(k, n, m)/Z(W(k, n, m)) = W(k, n, m) � W+k,n,m.

We split the proof of Theorem 3.3 into several statements.
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TABLE 2. Quotient of a finite toric reflection group by its center.

k n m W(k, n, m) W(k, n, m)/Z(W(k, n, m))

2 3 4 G12 W+2,3,4 = W(B3)+ � S4

2 3 5 G22 W+2,3,5 = W(H3)+ � A5

3 2 3 G4 W+3,2,3 = W(A3)+ � A4

4 2 3 G8 W+4,2,3 = W(B3)+ � S4

5 2 3 G16 W+5,2,3 = W(H3)+ � A5

3 2 5 G20 W+3,2,5 = W(H3)+ � A5

2 2 ≥ 3 and odd G(m, m, 2) = I2(m) W+2,2,m = W(A1 × I2(m))+ = G(m, m, 2)

REMARK 3.4. As a byproduct, in the cases where H = W(k, n, m) is finite, we recover
from Theorem 3.3 the known (see for instance the tables at the end of [11]) description
of H/Z(H) given in Table 2. Note that for the primitive groups, that is, all the groups
in Table 2 except dihedral groups, there are three possible groups H/Z(H): this is a
well-known fact, as these groups are of three types, called tetrahedral (G4), octahedral
(G8, G12), and icosahedral (G16, G20, G22), depending on whether H is a subgroup of
the tetrahedral group T , octahedral group O, or icosahedral group I. If H is of type G
for G ∈ {T ,O,I}, then H/Z(H) � G/Z(G) (see [23, Ch. 6] for a detailed explanation
of this phenomenon).

REMARK 3.5. As another byproduct, Theorem 3.3 also gives new presentations for
alternating subgroups of Coxeter groups of rank three whose Coxeter diagrams have
two edges with coprime labels. That is, for k, n, m ≥ 2, n < m, and n, m are coprime,
we have

W+k,n,m =

〈
x1, x2, . . . , xn

∣∣∣∣∣
xk

i = 1 for all i = 1, . . . , n,
x1x2 · · · xm = xixi+1 · · · xi+m−1, for all i = 2, . . . , n,

(x1x2 · · · xn)m = 1.

〉

The following statement proves the first point of Theorem 3.3.

PROPOSITION 3.6. The map ϕ is an isomorphism.

PROOF. We still denote the images of the generators xi of W(k, n, m) in the quotient
W(k, n, m) by xi. In terms of Presentation (3-1), the map ϕ sends xi to b−i+1abi−1 for all
i = 1, 2, . . . , n. Writing again m = qn + r for the Euclidean division of m by n, let us
observe for later use that

ϕ(x1x2 · · · xm) = ϕ(x1x2 · · · xn)qϕ(x1x2 · · · xr)

= (ab−1)nq(ab−1)r−1abr−1 = (ab−1)mbr = br. (3-2)

In particular, as b has order n, and r and n are coprime, the map ϕ is surjective as both
a and b are in the image of ϕ.
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Let us construct the inverse ψ of ϕ. To this end, let � ≥ 1 be the smallest positive
integer such that (br)� = b. Again, as n and r are coprime, such an integer must exist.
We define ψ on generators by a �→ x1, b �→ (x1x2 · · · xm)�. Let us check that these
images satisfy the defining relations of Equation (3-1). We have ψ(a)k = xk

1 = 1 and
ψ(b)n = ((x1x2 · · · xm)�)n = ((x1x2 · · · xm)n︸����������︷︷����������︸

=1

)� = 1. Now we have, taking indices modulo

n when necessary,

(ψ(b)ψ(a−1))m = ((x1x2 · · · xm)�x−1
1 )m = ((x2x3 · · · xmx1)�−1x2x3 · · · xm)m.

Writing δ = x1x2 · · · xm, we have xiδ = δxi+r for all i = 1, . . . , n by Lemma 3.2. Using
this relation, one checks by induction on i, using the fact that �r ≡ 1 (mod n), that for
i ≥ 1, we have

(δ�−1x2x3 · · · xm)i = δi(�−1)xm−(m−1)i+1xm−(m−1)i+2 · · · xm−1xm.

For i = m, the product xm−(m−1)m+1xm−(m−1)m+2 · · · xm−1xm has m(m − 1) factors and
since two consecutive factors have consecutive indices, using the defining relations
x1x2 · · · xm = xixi+1 · · · xi+m−1 (i ≥ 2), we get that this product is equal to δm−1. Hence,

(ψ(b)ψ(a−1))m = (δ�−1x2x3 · · · xm)m = δm(�−1)+m−1.

Now, using that �r ≡ 1 (mod n), we get that m(� − 1) + m − 1 ≡ 0 (mod n), and hence
that (ψ(b)ψ(a−1))m = 1 as δn = 1. This shows that ψ is also a group homomorphism.

It remains to show that ϕ and ψ are inverse to each other. We have ϕ ◦ ψ = id as
a �→ x1 �→ a and using Equation (3-2), b �→ (x1x2 · · · xm)� �→ (br)� = b. Conversely, the
map ψ ◦ ϕ maps xi �→ b−i+1abi−1 �→ δ(−i+1)�x1δ

(i−1)� (i = 1, . . . , n). By Lemma 3.2, we
have

x1δ
(i−1)� = δ(i−1)�x1+(i−1)�r

and as �r ≡ 1(mod n), we have x1+(i−1)�r = xi, which concludes the proof. �

PROOF OF THEOREM 3.3. The isomorphism W(k, n, m) � W+k,n,m claimed in the first
point is shown in Proposition 3.6. This also establishes that the short exact sequence
in the second row of the diagram of the second point is exact—this also shows that the
map G −→ W+k,n,m is surjective. To show that the first row is exact, it suffices to see that
the presentation

〈s, t, u | sk = tn = um = 1, stu = 1〉

is a presentation of W+k,n,m via s �→ r1r2 = a, t �→ r2r3 = b−1, u �→ r3r1 = ba−1. How-
ever, this exactly yields Presentation (3-1). Now the commutativity of the diagram is
clear: the commutativity of the square of the right is clear, and since the first row is
exact, the kernel 〈c〉 of W(k, n, m) −→ W+k,n,m has to be included in the kernel 〈stu〉 of
the first short exact sequence; this can also be seen explicitly using the fact that stu is
central in G, as
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c = (x1x2 · · · xn)m = (st)nm = (stuu−1)nm = (stu)nm(um)−n = (stu)nm.

This establishes the second point. Now by Proposition 3.1, the group W+k,n,m has trivial
center except possibly in the cases where Wk,n,m is finite or not irreducible, that is, for
(k, n, m) = (2, 2, m) with m odd, (2, 3, 4), (2, 3, 5), (3, 2, 3), (3, 2, 5), (4, 2, 3), (5, 2, 3).
In all cases, we get finite Coxeter groups of types A1 × I2(m) (m odd), A3, B3, and H3.
The center of A3 is trivial, and the centers of both H3 and B3 have order two, generated
by the longest element w0, which is not in the alternating subgroup. The center of
A1 × I2(m) is also of order two (it is the A1 component) since m is odd, generated by
a simple reflection; hence its nontrivial element is not in the alternating subgroup.
We thus have seen that in all possible cases, the group W+k,n,m has trivial center. This
implies that the kernels of both short exact sequences are in fact the centers of the
groups in the middle. This establishes point 3, and the last point is then immediate. �

REMARK 3.7. The idea of extending the group G/〈stu〉 into a Coxeter group is present
in work of Coxeter [14, Section 4.1].

REMARK 3.8. We do not know whether c has finite order in W(k, n, m) or not when
W(k, n, m) is infinite. It should be possible to establish that c has infinite order
whenever W(k, n, m) is infinite using topological methods, by viewing W(k, n, m) as
the fundamental group of a fibered Seifert orbifold, and combining well-known results
on such orbifolds. I thank Michael Heusener for pointing this out to me, explaining
to me the ideas behind this approach, and providing several references on the topic.
Determining whether c has finite order or not is equivalent to determining whether stu
has finite order or not in G. In Achar and Aubert’s representation (see Section 2.3), the
element ρ(stu) has finite order since it is a scalar matrix with eigenvalue a product of
three roots of unity, but we can use the observation made in Example 2.20 to see that
in general, the restriction of the representation to 〈stu〉 is unfaithful: again, consider
the group W(6, 2, 3). We see that ρ(c) = ρ((x1x2)3) = 1, while c cannot be equal to 1 in
W(6, 2, 3).

We end up the section with an observation on the solvability of the word problem in
W(k, n, m). Recall that a group has a solvable word problem if there exists an algorithm
allowing one to determine in finite time whether an arbitrary word represents the
identity or not. Theorem 3.3 seems to be close to answering this question positively
since W(k, n, m) is a central extension of a subgroup of a Coxeter group (which
therefore has a solvable word problem as Coxeter groups have a solvable word problem
[1, Section 2.3.3]) with a cyclic group. Nevertheless, and as observed in the previous
remark, the center is not clearly identified. Given any word in the generators of
W(k, n, m), we can take its image in W+k,n,m and say whether it represents the identity or
not, and hence solve the problem of determining whether the word we started with
represents an element that lies in the center of W(k, n, m) or not. Nevertheless, if
our starting word does lie in the center, it is not clear to us how to check whether
it represents the identity or not.
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QUESTION 3.9. Do the groups W(k, n, m) have solvable word problems?

We conjecture the answer to this question to be positive.

4. Classification of toric reflection groups

The aim of this section is to show the following result.

THEOREM 4.1 (Classification of toric reflection groups). Let k, k′, n, n′, m, m′ ≥ 2 with
n < m, n′ < m′, n, m coprime, and n′, m′ coprime. Then

W(k, n, m) �ref W(k′, n′, m′)⇔ (k, n, m) = (k′, n′, m′).

To this end, we require the description of the quotient of a toric reflection group by
its center from the previous section, together with the following result.

PROPOSITION 4.2 ([8, Ch. V, Section 4, Exercise 2] or [10, Proposition 1.3]). Let
(W, S) be a Coxeter system and H ⊆ W a finite subgroup of W. Then there exists w ∈ W
and J ⊆ S such that WJ is finite and wHw−1 ⊆ WJ.

COROLLARY 4.3. Let (W, S) be a Coxeter system. Every increasing chain

H1 ⊆ H2 ⊆ H3 ⊆ · · ·

of finite subgroups (Hi)i≥1 stabilizes, that is, there is n ≥ 1 such that Hn+p = Hn for all
p ≥ 1.

PROOF. By Proposition 4.2, the cardinality of a finite subgroup of W is bounded by

N := max{|WJ | | J ⊆ S, WJ is finite},

which is well defined since S is finite. �

DEFINITION 4.4. Let G be a group. A subgroup H ⊆ G is maximal finite if H is finite
and if for every subgroup H′ ⊆ G,

H � H′ ⇒ H′ is infinite.

Note that maximal finite subgroups need not exist in general. By Corollary 4.3,
maximal finite subgroups always exist in Coxeter groups, and we even have the stronger
statement that every finite subgroup of a Coxeter group is included in a maximal finite
subgroup: otherwise, one could build an increasing chain of finite subgroups that does
not stabilize. Note that being a maximal finite subgroup is a property that is stable
under conjugation.

PROPOSITION 4.5. Let (W, S) be a Coxeter system and

MW := {I ⊆ S | WI is finite and for all J ⊆ S, I � J ⇒ WJ is infinite}.

Then {WI | I ∈ MW} is a set of representatives of the conjugacy classes of maximal finite
subgroups of W.

PROOF. By Proposition 4.2, if H ⊆ W is finite, then wHw−1 ⊆ WJ for some w ∈ W and
some J ⊆ S such that WJ is finite. To conclude the proof, it therefore suffices to show
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that for I ∈ MW , the subgroup WI is maximal finite, and that for I � J where I, J ∈
MW , the subgroups WI and WJ are not conjugate to each other. This last property is a
consequence of [22, Corollary 3.1.7], as I is a maximal subset of S such that WI is finite.
Now let us show that WI , I ∈ MW , is maximal finite. Let WI ⊆ H such that H is a finite
subgroup of W. By Proposition 4.2, there is J ⊆ S and w ∈ W such that WJ is finite and
WI ⊆ H ⊆ w−1WJw. Writing w1 for the unique element of minimal length in WJwWI ,
we have I ∩ w−1

1 Jw1 = I by [1, Lemma 2.25], and hence I ⊆ w−1
1 Jw1. Let I′ ⊆ J such

that I = w1I′w−1
1 . Then since WI and WI′ cannot be conjugate to each other if I � I′

because of the maximality of I (again by [22, Corollary 3.1.7]), we have I′ = I, and
hence I ⊆ J, which forces I = J since WJ is finite. Since WI and w−1WJw = w−1WIw
have the same cardinality and WI ⊆ H ⊆ w−1WJw, we get H = WI . �

Note that since every increasing chain of finite subgroups of a Coxeter group W
stabilizes, the same is true for any subgroup of W; in particular it holds true for W+.
Specifically, there are maximal finite subgroups in W+, and every finite subgroup of
W+ is included in a maximal finite one.

PROPOSITION 4.6. Let k, n, m ≥ 2 be such that Wk,n,m is infinite. There are three
conjugacy classes of maximal finite subgroups of W+k,n,m. The finite groups in these three
classes are isomorphic to Ck, Cn, Cm, where Ci denotes the cyclic group of order i.

PROOF. Note that under these assumptions, the Coxeter group W = Wk,n,m is irre-
ducible. Moreover, in this case, MW consists of the three subsets of S of cardinality two
as |S| = 3 and W is infinite. Let H ⊆ W+k,n,m be a finite subgroup of W+k,n,m. We claim that
H is a conjugate (in W+k,n,m) of a subgroup of the alternating subgroup W+J of a standard
parabolic subgroup WJ of rank two of Wk,n,m. If H = 1, the claim is trivially true; hence
assume that H � 1. By Proposition 4.2, there is w ∈ Wk,n,m such that wHw−1 ⊆ WJ for
some J ⊆ S such that WJ is finite. If w ∈ W+k,n,m, then H and wHw−1 are conjugate
in W+k,n,m, and hence the claim holds true. If w � W+k,n,m, then since H � 1, we have
J � ∅, so let s ∈ J. Then sw ∈ W+k,n,m and swHw−1s ⊆ sWJs = WJ , and hence H is again
conjugate in W+k,n,m to a subgroup of WJ . In all cases, since 1 � H ⊆ W+k,n,m and WJ is
finite, we must have |J| = 2 since for |J| = 1, we have WJ ∩W+k,n,m = {1}. Therefore, H
is conjugate to a subgroup of the alternating subgroup of one of the three standard
parabolic subgroups of rank 2 of Wk,n,m. Note that these parabolic subgroups are dihe-
dral groups of orders 2k, 2n, and 2m. It follows that there are at most three conjugacy
classes of maximal finite subgroups of W+k,n,m, since if H is maximal finite, then it has
to be a conjugate of one of these alternating subgroups, namely Ck, Cn, or Cm.

To conclude the proof, it therefore remains to show that the above three alternating
subgroups of standard parabolic subgroups of rank two of Wk,n,m are maximal finite
subgroups of W+k,n,m that are not conjugate to each other—in fact, we show that they are
not conjugate in Wk,n,m, which is stronger. Maximality follows again from Proposition
4.2: let J ⊆ S with |J| = 2. Then if W+J ⊆ WJ is not maximal finite inside W+k,n,m, then
there is a finite subgroup H of W+k,n,m such that W+J � H. By Proposition 4.2, the
subgroup H is included in a finite parabolic subgroup xWJ′x−1 and up to enlarging
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J′, we can assume that |J′| = 2 (alternatively we can use the fact that every finite
subgroup of Wk,n,m is included in a maximal finite one together with Proposition 4.5).
Writing J = {t1, t2}, we have t1t2 ∈ W+J ⊆ H ⊆ xWJ′x−1. Now the intersection of two
parabolic subgroups is again a parabolic subgroup (see for instance [1, Lemma 2.25]),
and hence we have that WJ ∩ xWJ′x−1 is finite parabolic of rank at most two. However,
since it contains t1t2, it must have rank 2. As rank two parabolic subgroups are
maximal finite by Proposition 4.5, we have that both WJ , xWJ′x−1 and WJ ∩ xWJ′x−1

are maximal finite, which forces WJ = xWJ′x−1. Hence, W+J ⊆ H ⊆ WJ , which forces
H = W+J as H ⊆ W+k,n,m. Therefore, W+J is maximal finite. Now for J1 � J2 with Ji ⊆ S
and |J1| = 2 = |J2|, we see that W+J1

and W+J2
cannot be conjugate to each other in W:

if this was the case, there would be x ∈ W such that W+J1
⊆ xWJ2 x−1, and arguing as

above (with J = J1 and J′ = J2), we would get that WJ1 and WJ2 are conjugate to each
other, contradicting Proposition 4.5. �

PROOF OF THEOREM 4.1. Assume W(k, n, m) �ref W(k′, n′, m′). We first claim that
k − 1 is the number of conjugacy classes of reflections in W(k, n, m). Indeed, all
generators xi are conjugate to each other, and by Theorem 2.12, we have that x1 is
the generator s of the isomorphic J-group H = J( k n m

n m ) � J( k n m ) = G. We have that
s has order k in G. To conclude, since reflections in W(k, n, m) are defined to be the
conjugates of the nontrivial powers of the elements xi, it therefore suffices to show that
no two reflections in {s, s2, . . . , sk−1} are conjugate to each other. This holds true in G
by Lemma 2.5, and hence it holds true a fortiori in H. Since reflection isomorphisms
map reflections to reflections, we deduce that k = k′.

Now, by Theorem 3.3, the group W(k, n, m) is the quotient of W(k, n, m) by its
center. We therefore have

W(k, n, m) � W(k, n′, m′).

In particular, we have W+k,n,m � W+k,n′,m′ . We conclude by showing that this forces n = n′

and m = m′. We first assume that Wk,n,m is infinite, which forces Wk,n′,m′ to be also
infinite since alternating subgroups of Coxeter groups are subgroups of index two. By
Proposition 4.6, there are three conjugacy classes of maximal finite subgroups of W+k,n,m
(respectively W+k,n′,m′), and the isomorphism type of these finite subgroups is given by
Ck, Cn, and Cm (respectively Ck, Cn′ , and Cm′). The multiset of isomorphism type of
subgroups in conjugacy classes of maximal finite subgroups is obviously invariant
under isomorphism, which implies that the multisets {k, n, m} and {k, n′, m′} are equal.
Since n < m and n′ < m′, this forces n = n′ and m = m′.

We now assume that Wk,n,m (and hence Wk,n′,m′) is finite. We then deduce from
Table 2 that no two groups W+k,n,m and W+k,n′,m′ are isomorphic when (n′, m′) � (n, m).
Hence, n = n′ and m = m′. �

REMARK 4.7. Mimicking the definition given for finite complex reflection groups
in [12], one can define a Hecke algebra Hk,n,m of a toric reflection group W(k, n, m)
over a suitable base ring, deforming the group algebra Z[W(k, n, m)]. It is tempting to
conjecture that this algebra is a free module over this ring, with a basis deforming the
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basis of Z[W(k, n, m)] given by the elements of the group W(k, n, m). However, already
in the finite case, the proof of the BMR freeness conjecture for those finite complex
reflection groups that are toric reflection groups is case-by-case.

REMARK 4.8. The parameter k − 1 is the number of conjugacy classes of reflections
in W(k, n, m). It would be desirable to have an interpretation of n and m in terms of
the ‘reflection group’ structure of W(k, n, m). When W(k, n, m) is finite, the parameter
n is the reflection rank of W(k, n, m), that is, the minimal number of reflections that
are needed to generate W(k, n, m). We can conjecture that this still holds true for
arbitrary toric reflection groups. This would be a first step toward a proof of Theorem
4.1 avoiding a recourse to the theory of Coxeter groups—which has other advantages,
as for instance rank three Coxeter groups have nice geometric realizations. It would
also reprove that the meridional rank of the torus knot Tn,m (n < m) is equal to n (this
fact is proven in [30] in the context of the meridional rank conjecture): it is indeed
at most n since G(n, m) has its classical presentation having exactly n meridians as
generators, and if it was smaller, then because of the surjection G(n, m)� W(k, n, m)
which maps meridians to reflections, the groups W(k, n, m) could then be generated
by less than n reflections. As other J-groups might be reflection quotients of other
link groups, this could be of interest, even if in the specific case of torus knot groups
everything seems to be already known.
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