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ABSTRACT

We prove modularity of some two-dimensional, 2-adic Galois representations over a
totally real field that are nearly ordinary at all places above 2 and that are residually
dihedral. We do this by employing the strategy of Skinner and Wiles, using Hida families,
together with the 2-adic patching method of Khare and Wintenberger. As an application
we deduce modularity of some elliptic curves over totally real fields that have good
ordinary or multiplicative reduction at places above 2.
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Introduction

The Fontaine-Mazur-Langlands conjecture (in a special case) predicts that totally odd,
geometric, absolutely irreducible p-adic representations of Gal(Q/F), for F C Q a totally real
number field, arise from Hilbert modular forms. When F = Q and p is odd, this conjecture has
been resolved in almost all cases. When [F': Q] > 1 and p is odd, much is still known (especially if p
is split in F). Less is known when p = 2 because the Taylor—Wiles method encounters technical
difficulties. The first 2-adic modularity lifting theorem (known to the author) was proved by
Dickinson [Dic01] for F' = Q. Recently, Khare and Wintenberger [KW09] and Kisin [Kis09b]
developed an extension of the Taylor—Wiles method to prove modularity of a wide class of 2-adic
representations, and this was essential in their proof of Serre’s conjecture. It’s interesting to
note that, since proofs of the known cases of the Fontaine-Mazur—Langlands conjecture for GL2
use Serre’s conjecture as an important ingredient, 2-adic modularity lifting theorems have had
applications in proving modularity of p-adic representations even when p is odd.

Owing to their technical nature, the current 2-adic modularity lifting theorems require
stronger assumptions than their p > 2 counterparts. One such assumption is that the residual
representation has non-solvable image (the main theorem of [DicO1] has a gap in the residually
solvable case; namely in the proof of Lemma 40 on p. 369 of [Dic01] it is incorrectly assumed that
certain matrices have distinct eigenvalues). A 2-adic modularity lifting theorem in the residually
solvable case is desirable for a number of reasons, one of which is that the 2-adic representations
arising from elliptic curves are always residually solvable. The main result of this paper is such
a theorem.

This is done by employing a strategy of Skinner and Wiles. They showed, in the p > 2 case,
that certain representations of Gal(Q/F) for (most) totally real fields obeying an ordinarity
hypothesis are modular, assuming only that the residual representation is absolutely irreducible
(cf. [SWO01]). Usually, one assumes further that the residual representation is absolutely
irreducible when restricted to the finite index subgroup Gal(Q/F((,)). Their strategy is to
use Hida families in order to move to a new ‘residual’ representation where one can assume
stronger conditions. We carry out the Skinner and Wiles method in the 2-adic case and prove
modularity of representations that are ordinary at places above 2 and whose reductions are
absolutely irreducible with solvable image. It is worth mentioning that this strategy is based
in turn on a strategy of theirs for proving modularity in the more difficult case of residually
reducible representations, albeit for less general totally real fields (cf. [SW00]).

The main result of this paper is the following theorem. In assumption (ii) below, the
isomorphism of local class field theory is normalized so that uniformizers correspond to arithmetic
Frobenii. Also, the extension L/F in assumption (v) is unique since any absolutely irreducible,
two-dimensional, mod 2 representation with solvable image is dihedral, by the classification of
subgroups of PGLy(F2), and the image of a mod 2 dihedral representation has order not divisible
by 4.
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THEOREM. Let F be a totally real subfield of Q. Let Jr denote the set of embeddings F — Q.
Fix embeddings Q — Q, and Q — C. Via these embeddings we view Jp as the set of embeddings
{F — R} as well as the set of embeddings {F — Q}. For any v|2 in F, let Jg, C Jr denote
the subset of T that give rise to v. We identify Jg, with the set of embedding F,, — Q.
Let
p:Gp —> GL2(Qy)

be a continuous representation unramified outside finitely many primes. Assume there is some
(k,w) € J2, such that k, > 2 for each 7 € Jp and w = k, + 2w, is independent of 7, and such
that:

(i) detp = ¢e§”_1, with ¢ a finite-order character and €2 the 2-adic cyclotomic character;
A (¥ *

(ii) for eachv|2, pla, = (* ¥,) and xu(y) = [1,es, v~ onsome open subgroup of O, , viewing
Xv as a character of F, via class field theory;
(iii) for each choice of complex conjugation c, det p(c) = —1.

Let p: G — GLa(F3) denote the residual representation associated to p. We also assume:

(iv) p is absolutely irreducible with solvable image;

(v) letting L/F denote the unique quadratic extension such that p|qg, is abelian, if L/F is CM,
then there is some v|2 in F' that does not split in L.

Under these assumptions p is modular, i.e. there is a 2-nearly ordinary, regular algebraic,
cuspidal automorphic representation m of GLa(Ap) such that p = p,.

We will actually prove this with assumption (iv) replaced by the assumption that p is
absolutely irreducible and admits a 2-nearly ordinary modular lift (cf. Theorem 5.2.1). A theorem
of Wiles allows us to produce ordinary lifts in the residually dihedral case (cf. Lemma 5.1.2),
and the main theorem follows.

First, some comments on the assumptions in the theorem. Condition (ii) is the near-ordinarity
condition, and it is essential to the method as we use Hida families. We do not assume
distinguishedness, as in [SWO01], because of the advances in modularity lifting theorems since their
paper; namely the use of framed deformation rings. The distinguishedness of certain deformations
of p will, however, play an important role in the argument. Namely, to show that certain points of
the local deformation ring are normal. This will be elaborated on below. The condition (iv),
together with allowing general totally real fields F', is the main improvement in this paper. As
mentioned above, both the results of [Kis09b, KW09] exclude the residually solvable case, and
they also assume F' is unramified above 2 in the potentially ordinary case. Condition (v) is
technical and is related to the fact that when the extension L/F is CM and every v|2 in F splits
in L, Hida’s universal nearly ordinary Hecke algebra has CM components. I will elaborate on
this below.

The main theorem has the following corollary.

COROLLARY. Let F' be a totally real field and let ¥ be an elliptic curve over F' with j-invariant
je- Let A be the discriminant of some Weierstrass equation defining F. Assume:

(i) for every v|2 in F, the valuation of jg at v is at most zero;
(ii) E has no 2-torsion defined over F and A is not a square in F';
(iii) if A is totally negative, then there is some v|2 in F' such that A is not a square in F,.

Then E is modular.
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This essentially follows immediately from the main theorem; the details are given in §5.3.1.
Some examples of elliptic curves satisfying the assumption are given in §5.3.2. Note that the
discriminants of two different Weierstrass equations differ by a square in F'; so, the assumptions
of the corollary are insensitive to the choice of Weierstrass equation.

Strategy
I will now elaborate on the strategy of the proof.

We consider a certain large deformation ring where at places above 2 we enforce no p-adic
Hodge theory conditions but demand that the representations be reducible. Using standard
arguments, we show that there is a surjective morphism from our large deformation ring R
(tensored with a certain Iwasawa algebra) to a 2-nearly ordinary Hecke algebra T, and we call a
prime ideal of R pro-modular if it is the pullback of one from T. If we prove that all prime ideals
of R are pro-modular, then Hida’s classicality theorem implies that any representation satisfying
(i), (ii) and (iii) in the statement of the theorem is a classical point of this large Hecke algebra.

In order to show that all prime ideals of R are pro-modular, following Skinner and Wiles, we
prove two things:

(i) there exist certain dimension 1, characteristic 2 pro-modular prime ideals p of the Hecke
algebra, that we will call ‘nice primes’ below, such that we can adapt the 2-adic Taylor—Wiles
method to prove the localizations and completions of R and T at such primes are isomorphic;

(ii) that every minimal prime of R is contained in a nice prime.

To prove step (i), there are two main difficulties in combining the methods of Skinner and
Wiles with those of Khare and Wintenberger: namely, proving the existence of Taylor—Wiles
primes and performing the patching. The reason why the 2-adic Taylor—Wiles method fails in
the residually dihedral case is because the image is too small. We thus need to ensure that
our nice primes do not generate dihedral deformations; as in [SWO01], we require that they
have dimension 1, characteristic 2, and when the universal deformation is specialized at p, the
resulting representation is non-dihedral. The calculations of [SW00, SW01] bounding the size
of a certain cohomology group do not work in the p = 2 case because they rely heavily on
complex conjugation acting semisimply. To overcome this we further require that the image of
the representation associated to our nice prime contains a non-trivial unipotent element. This
allows us to use of a result of Pink [Pin98] to show that the image of the Galois representation
attached to one of these prime ideals is open in SLo(Kj), where Ky is a finite index subfield
of the residue field of p. This fact allows us to explicitly compute the cohomology groups in
question, and to show the existence of the Taylor—Wiles primes. As in the work of Skinner and
Wiles, there is a technicality that must be dealt with all the while; namely, we cannot adapt the
Taylor-Wiles patching argument directly to the localized deformation rings and Hecke algebras.
This is because at the heart of the patching argument is a simple diagonalization in the spirit of
Cantor, based on the fact that we have infinitely many objects, each being finite. This finiteness
is lost if one tries to perform patching after localizing, so we must perform the patching integrally,
and then localize after taking limiting objects. Because things are done integrally, we must take
care to control the torsion submodules of the cohomology groups we compute. In particular, we
will have to ensure that the torsion subgroups of certain cohomology groups and Hecke modules
do not depend on the choice of Taylor-Wiles primes.

After carrying out the patching there is another complication that arises not present in the
work of Skinner and Wiles. In the Taylor-Wiles argument as improved by Kisin, the point of
the patching is to create a limiting object that, for dimension reasons, is isomorphic to a certain
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power series ring over a local deformation ring. One then uses a description of the minimal primes
of the local deformation ring in order to show that the Hecke module in question is supported
on the component of the universal deformation ring containing the point corresponding to the
representation we wish to prove is modular. In our situation, the dimension argument can only
be applied after localizing and completing the appropriate rings at our fixed nice prime. The
completion may increase the number of minimal primes of our local deformation ring, and if we
cannot describe them anymore, then we cannot hope to say that our Hecke module is supported
on those we want. In order to avoid this, we require further that the nice primes lie over the
distinguished locus of the local deformation ring at all places above 2. This allows us to show
that the pullback of nice primes to the local deformation ring lie in the normal locus. Then the
completion of the localized local deformation ring will again be normal, hence a domain.

In order to show that the local deformation ring is normal at nice primes, it is not enough
to analyse its characteristic zero points. We must know something about its mod 2 points as
well. In the case of the local deformation ring at places above 2, we use the Deumuskin relation
to explicitly compute the deformation ring on the locus of distinguished deformations. For the
local deformation rings at primes not above 2, we use recent ideas of Snowden that allow us to
show the deformation ring mod 2 may be thought of as representing a certain moduli space of
unipotent matrices, whose structure can be described in detail.

The step (ii) is carried out as in the work of Skinner and Wiles, except that we use a
connectedness theorem of Grothendieck instead of the theorem of Raynaud. Grothendieck’s
theorem is more readily applicable to our situation, as we do not show that our local deformation
ring satisfies Serre’s property (S2), which is necessary (at least on a certain open locus) to apply
Raynaud’s theorem. We first show that a nice prime exists. Using step (i) we know that any
irreducible component containing it is pro-modular. Let C' be one such component and let C’
be any other component. The connectedness theorem of Grothendieck implies that there is a
chain of irreducible components C' = Cy,...,C,, = C’ such that the dimension of C; N Cj11
is large. Using this, we show that if C; is pro-modular, then C; N C;11 contains a nice prime;
applying step (i) again we deduce that C;y; is pro-modular. Continuing in this way, we deduce
the pro-modularity of C’.

In order to show that C; N C;11 having large dimension implies that it contains a nice prime,
we in particular need that C; N C;11 is not contained in the dihedral locus. This is why we
need the extra condition in the CM case. If L/F is CM and every place above 2 in F splits
in the quadratic extension L/F, the dihedral locus will form an irreducible component of the
Hecke algebra, hence conjecturally also of the deformation ring. In this case, even if we start
out with non-dihedral components C' and C’, the author does not know how to guarantee that
the C; appearing above after applying Grothendieck’s theorem are non-dihedral. If our extra
assumption is satisfied, i.e. that there is some v|2 that does not split in L, then having large
dimension implies that our representation is distinguished at this v, which then implies it is not
dihedral. In the case that L/F is not CM, we use known cases of Leopoldt’s conjecture to base
change to a situation where the dihedral locus has sufficiently large codimension so that it does
not contain any of the intersections C; N Cj1.

Outline
The paper is organized as follows.

In §1, we start by recalling some commutative algebra facts about complete Noetherian
local rings. In particular, we recall facts about their completed tensor product. We also record
Grothendieck’s connectedness theorem. We then recall the notion of group actions and group
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chunk actions from [KWO09] that will be necessary for the patching argument. After this, we
turn to deformation theory, first recalling some general facts. We then study the nearly ordinary
deformation rings at places above p, the main points being to show that it is a domain of the
correct dimension, that over a certain locus its reduction mod p is still a domain, and that a
certain locus of its characteristic zero points are smooth. We then recall some facts about the
local deformation rings away from p and use ideas of Snowden to show that they are domains
mod p. After that we turn to global deformations. The main points of this subsection are to
recall that our global deformation ring has an appropriate presentation over the local one, in
order to later apply Grothendieck’s connectedness theorem, and to show that a certain group
action on the universal deformation ring is free. Lastly, we prove some small lemmas regarding
deformations of dihedral representations, which will be useful in proving certain deformations
are non-dihedral as well as to determine some properties of non-dihedral deformations.

In §2, we recall Hida’s theory of nearly ordinary automorphic forms in the totally definite
quaternionic case. In the first subsection, we state definitions, analyse certain neatness properties
of the open subgroups that will comprise our level, and state the relation to cuspidal automorphic
representations of GLs. In the next subsection, we define the nearly ordinary Hecke algebra, and
in the following subsection construct the universal nearly ordinary Hecke algebra. If the following
subsection, we recall the Galois representations associated to eigenforms, and show how they give
a Galois representation into the universal Hecke algebra such that the induced map from the
universal deformation ring is surjective and factors through the quotient defined in §1.6.5. In
the final subsection, we augment the level with Taylor—Wiles primes. The Taylor—Wiles primes
we use to augment the level may have the property that the corresponding Frobenii do not
have distinct eigenvalues under the residual representation. Because of this we cannot prove the
standard control theorem, as there may be lifts of p that are Steinberg at these primes. We show,
however, that the obstruction to the usual control theorem is annihilated by an element that
becomes invertible after localizing at one of our nice prime ideals.

In §3, we show the existence of the Taylor-Wiles prime associated to a representation
into GLa(A), with A the ring of integers in a characteristic 2 local field K, satisfying some
technical hypotheses. The main input is Pink’s result [Pin98] that allows us to conclude that the
intersection of the image with SLa(A) is conjugate to an open subgroup in SLy(Ap), where Ay is
the ring of integers of a characteristic 2 local subfield Ky C K. This allows us to compute explicitly
with cocycles. As mentioned above, we must compute these cohomology groups integrally, and
keep track (or at least bound) the torsion subgroups.

In §4, we prove the R**d = T theorem. This section together with § 3 comprise the technical
heart of the paper. The patching argument is a synthesis of the proof of [KW09, Proposition 9.3]
and [SW00, §5]. The idea is to mimic the proof of [KW09, Proposition 9.3], but to define the
maps from a power series over the local deformation ring Rjoc[[21, - - -, Z]] to our augmented level
global deformation rings R,,, in such a way that the x1, ...,z are mapped to the pullback to R,
of our fixed nice prime ideal, instead of the maximal ideal. In this way, we get a surjection after
localizing and completing at the nice prime. When defining these maps, we need to ensure that
certain cokernels are finite of bounded size, so that when we take a projective limit, the ranks
of the resulting limiting modules do not grow. It is due to this reason that we needed to ensure
that the torsion subgroups of the cohomology groups computed in §3 did not depend on the
Taylor-Wiles primes. After proving the localized R*™d = T theorem, we apply the connectivity
argument to conclude that R™d = T.

The last section, §5, proves the main theorem. We first recall some congruences proved
in [Kis09a, KW09] necessary to show the existence of appropriate automorphic lifts after base
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change. We also prove a small lemma that shows the existence of ordinary lifts in the residually
dihedral case, using a result of Wiles [Wil88] that allows one to insert an ordinary Hilbert
modular form of parallel weight 1 into a p-adic family. We then prove the main theorem, by
applying base change, combining the aforementioned congruences together with known cases of
Leopoldt’s conjecture so that we satisfy the assumptions of the R™d = T theorem of §4.

Notation and conventions

We state some notation and conventions used in this paper. We will denote by p a rational prime
throughout. In the later sections we will usually take p = 2. Let Q be the algebraic closure of
Q in C. For any subfield L C Q we set G, = Gal(Q/L). Throughout F will denote a totally
real number field inside Q. Given a finite set S of places of F we denote by Gr s = Gal(Fs/F),
where Fy is the maximal Galois extension of F' contained in Q, unramified outside S. We let Jp
denote the set of embeddings F — Q.

For each rational prime ¢, fix an algebraic closure Q, of Q, and embeddings Q — Q,. We
can then view Jp as the set of embedding of F into any of the Q, or C. For any place of F we
denote by F, the completion of F at v inside Q,, or C. In the case that v is non-Archimedean,
we write G, = Gal(Q,/F,) and let I, denote the inertia subgroup. For v Archimedean, we let
G, = Gal(C/F,). In either case we identify G, with a decomposition group of G at v via the
embedding Q — Qy, or Q — C.

As usual Ar will denote the ring of adeles of F' and A% will denote the subring of finite
adeles. We normalize the isomorphism of local class field theory so that uniformizers correspond
to arithmetic Frobenii, and normalize global class field theory compatibly.

We will denote by ¢, the p-adic cyclotomic character and €, is reduction mod p. We use
homological conventions for our Galois representations; for example, the Galois representation
attached to an elliptic curve is the one coming from its Tate module, not cohomology. With
this convention, a representation is ordinary at v if the local representation is reducible with an
unramified quotient.

We will let E denote a finite extension of @, contained in @p. We will let O denote its
ring of integers and F its residue field. We will occasionally enlarge E if necessary. We let
CNLp denote the category of complete, Noetherian, local, O-algebras A such that the structure
morphism O — A induces an isomorphism of residue fields. The morphisms in CNLp are local
O-algebra morphisms. Given an object B in CNLp we let CNLp denote the subcategory whose
objects are B-algebra and whose morphisms are B-algebra morphisms. We let CNL® be the
opposite category of CNLp and we identify it with the category of representable set-valued
functors on CNLp via the Yoneda embedding. Given a CNLp-algebra A, we denote by SpfA the
corresponding object of CNL%, which should cause no confusion as the natural embedding of
CNL? into the category of formal B-schemes is fully faithful. Given any local ring A, we denote
by my its maximal ideal.

Given a separable field extension L/K, we let Nmy /i denote the norm from L/K. We refer
the reader to the beginning of each section for more notation and conventions that will be
employed in that particular section.

1. Deformation theory

In this section we develop the necessary deformation theory. In § 1.1, we recall some commutative
algebra facts for complete Noetherian local rings with finite residue field. Of particular
importance to our applications later will be recalling some facts regarding the completed tensor
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product of such rings, cf. Proposition 1.1.4, and the connectivity theorem of Grothendieck, cf.
Proposition 1.1.6.

The following subsection recalls some facts from [KWO09] regarding group actions in the
category CNLp. In particular, the notion of group chunks and the building of free actions using
them is essential to the 2-adic Taylor—-Wiles method developed in [KW09], and we will use
these results in §4. The following subsection recalls some general definitions and results about
deformation theory.

The subsequent subsection deals with determining the local deformation rings at the prime p.
We follow the construction of Geraghty [Ger10]. However, as we deal only with dimension 2, we
can be more explicit and use the Demuskin relation to prove that a certain open subset of
the special fibre is integral. This will be important for showing that a certain localization of
a completed tensor product of local deformation rings is normal in §4, cf. Lemma 4.1.6. Also
important in establishing this normality is to prove a certain open subset of the generic fibre is
smooth, and we prove this by following [Ger10].

The next subsection deals with determining the local deformation rings at the places not
equal to p. Most of this is simply recalling results proved in [Kis09a, Kis09b, KW09]. However,
we will also need information about the special fibre of such rings. This is easy in the Archimedean
case, and to do this in the case | # p we use ideas of Snowden [Snoll]. This is important for
showing the normality of the ring in Lemma 4.1.6, mentioned above.

In the next subsection we deal with deformations of global Galois groups. We recall some
definitions and properties and show that a certain quotient of the universal deformation ring
(tensored with an Iwasawa algebra) can be presented as a complete Noetherian domain modulo
‘few’ relations, which will be necessary to apply the connectivity result Corollary 1.1.7 later. We
also recall some facts regarding twists of the universal deformation by characters, as in [KW09],
which is essential to the 2-adic method.

In the last subsection, we prove some easy facts regarding deformations of dihedral
representations, that will be useful for determining the images of non-dihedral deformations to
characteristic p local fields as well as to establish criteria for a deformation to be non-dihedral.

We now set up some more notation. Fix a choice of uniformizer wg for E. Given a CNLp-
algebra B, we denote by Arp the full subcategory of CNLp consisting of Artinian objects. Given
a finite extension E’/E, we also let Args denote the category of Artinian local rings with residue
field £’ with topology given by its structure as a finite-dimensional E’-vector space. Note that
such rings are canonically E’-algebras. The morphisms in Arg are local E’-algebra morphisms.

1.1 Some commutative algebra
We recall some facts about objects in CNLp and their completed tensor products that will be
useful to us later.

1.1.1 Recall that a scheme X is called Jacobson if for any closed subset Z C X, the set
of closed points in Z is dense. We say a ring R is Jacobson if Spec R is Jacobson. If R is a
CNLp-algebra, [Gro66, Corollary 10.5.8] shows that Spec R ~\ {mpg} is Jacobson, and if p is not
nilpotent in R, then R[1/p] is Jacobson. Parts (i) and (ii) of the following proposition are [KW09,
Proposition 2.2(i)] and part (iii) is [KW09, Corollary 2.3].

ProPOSITION 1.1.2. Let R be an O-flat CNLp-algebra.

(i) There is a finite extension E'/E with ring of integers O’ and a local O-algebra morphism
R— 0.
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(ii) Every maximal ideal of R[1/p] is the image of the generic point of Spec O’ — Spec R, with
R — O asin (i).

(iii) Let I be an ideal of R and let X (I) denote the set of all morphisms R — O’ as in (i) whose
kernel contains I. If R/I is O-flat and reduced, then I = [\, x () ker(z)

1.1.3 Let R; and Re be CNLp-algebras. Then their completed tensor product over O is again
a CNLp-algebra. To see this, let m denote the kernel of the natural map Ry ®o Ry — F ®oF =TF.
Since Ry ®o Ry is complete for the m-adic topology and we have an injection F* — (R; ®o Ra)*,
any element which does not belong to m is invertible, and so R; ®o Ro is local. We can write
R; as a quotient of a power series ring O[[z1,...,zq4,]], and so Ry ®o Ro can be written as a
quotient of the power series ring O[[x1, ..., T4, +d,)], hence is Noetherian.

If Ry and Ry are flat CNLp-algebras then R; — Ry ®o Ry is flat, cf. [Gro64, Lemma 19.7.1.2
of §0]. In particular Ry ®o Ry is O-flat.

PROPOSITION 1.1.4. Let Ry and Ry be CNLp-algebras and let R = Ry ®o Rs.

(i) Let E'/E be a finite extension and for each i = 1,2 let x; : R;[1/p] — E’ be an E’-point
that is formally smooth over E. The E'-point (x1,z2) : R[1/p] — E’ is formally smooth
over .

(ii) If for each i = 1,2, R; is O-flat and R;[1/p] is geometrically integral, then so is R[1/p|. In
particular, R is a domain.

(iii) Assume that each R; is O-flat and that for any minimal primes q; of R;, R;/q;[1/p] is
geometrically integral. Then any minimal prime of R is of the form q; ® Ry + Ry ® qo, with
q; a minimal prime of R;.

(iv) Assume that each R; is an F-algebra and let Nil(R;) denote the nilradical of R;. The
nilradical of R is Nil(R;) @ Ry + R1 ®p Nil(Rz).

Proof. Parts (i) and (ii) are [Kis09a, Lemma 3.4.12]; see also [KW09, Proposition 2.3].

Let q be a minimal prime of R and let g; be its pullback to R;. We have q; ®p R2 + R1 ®0 q2
C q. Note that (R;/q1) ®o (R2/q2) is a domain by part (ii), and has the same dimension as R.
The natural surjection R — (R1/q1) ®o (R2/q2) then must have kernel q.

We now prove part (iv). Let Nil(R) denote the nilradical of R. Since each Nil(R;) is finite
length, Nil(R;) ®r Re = Nil(R;)®r Rz and R; ®r Nil(R2) = R1 ®pNil(R1). By considering simple
tensors, we see that Nil(R;) ®r R2 + R1 ®p Nil(R2) C Nil(R). Consider the surjection

R —> R/(R; ®r Nil(Rs) + R; ®r Nil(R1)) = (R1/Nil(R;)) &r (Ra/Nil(Ry)).

A theorem of Chevalley, see [Gro65, Corollary 7.5.7], shows that (R; /Nil(R1)) @ (R2/Nil(R2))
is reduced, and so Nil(R) C Nil(R;) ®p R2 + R1 ®r Nil(Rz2). O

1.1.5 We record a connectedness theorem of Grothendieck. This will be used in
Proposition 4.4.3 in the same way as [SWO00, Corollary A.2] is used in the proof of [SWO01,
Proposition 4.2]. We use Grothendieck’s theorem because it more readily implies connectivity
results for the spectra of quotients of complete local Noetherian domains than does the theorem
of Raynaud used in [SW00, Corollary A.2].
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We say that a Noetherian scheme X is k-connected if dim X > k and for any closed subset
7 C X with dim Z < k, the topological space X \ Z is connected. Clearly, if X is k-connected,
it is k’-connected for any k' < k. Note that a Noetherian scheme X is k-connected if and only if:

(i) every irreducible component of X has dimension > k; and

(ii) for any two irreducible components C' and C’ of X, there is a sequence of irreducible
components

C=0yC,...,Cp,b=C"
such that dim(C; N Cy41) > k for each 0 < i < n.
We will use this formulation later. The following is [Gro05, Exposé XIII, Theorem 2.1].

PROPOSITION 1.1.6. Let A be a complete Noetherian local ring and let f1, ..., f, € ma. If Spec A
is k-connected and r < k, then Spec A/(f1,..., fr) is k — r-connected.

For a detailed proof of this proposition see [FOV99, §3.1]; in particular, see the proof of
Theorem 3.1.7 found there. Upon noting that any Noetherian domain A is (dim A—1)-connected,
we have the following corollary.

COROLLARY 1.1.7. Let A be a complete Noetherian local domain and let fi,..., f. € ma. If
r < dim A — 1, then Spec A/(f1,..., fr) is (dim A — r — 1)-connected.

1.2 Group actions on CNLp

We quote some results and definitions regarding group action on the category CNLe@
from [KW09], which will be necessary for the patching argument in §4. This material is taken
directly from [KW09, §2.4-2.6], and we refer the reader there for proofs.

1.2.1 Let G be a group object in CNLZY. We call G a CNLp-group. Letting A(G) denote
the CNLp-algebra representing G, we note that the group structure on G is defined in the same
way as the Hopf algebra structure on an affine algebraic group except that our comultiplication
takes values in the completed tensor product A(G) — A(G) ®o A(G).

Let X be an element of CNL(}, and let A(X) be its affine CNLp-algebra. We similarly define
an action of G on X, i.e. a CNLp-morphism 7 : A(X) — A(G) ®o A(X) making G(A) x X (A) —
X (A) a group action that is functorial in A. An action is free if the map G x X — X x X given
by (g,x) = (gz,x) on points is a closed immersion. This is equivalent to requiring that for any
CNLp-algebra A, G(A) acts freely on X(A). We let A(X)o denote the subalgebra of A(X)
consisting of elements a such that y(a) = 1 ® a. The elements a € A(X)g are the functions on X
that are constant on orbits, i.e. a(gzr) = a(x) for any CNLp-algebra A and z € X(A), g € G(A).

1.2.2 Let H be a finitely generated abelian group whose torsion is a power of p. We call
the diagonalizable CNLp-group associated to H, denoted by H*, the CNLp-group defined by
completing the diagonalizable group associated to H as in [Gro05, Exposé VIII| at the identity
element of the special fibre. Concretely, we have Z* = G/, the formal torus on CNLe, and
(Z/p"Z)* = pyr. All other H* are products of these two examples. Note that a surjection of
abelian groups H — H' induces a closed immersion (H')* — H*. The following is a combination
of [KW09, KW09, Propositions 2.5 and 2.6].

ProrosITION 1.2.3. Let X be an object in CNL%p and let H be a finitely generated group with
a free action H* x X — X.

(i) A quotient H*\X exists in CNL(Y, and if H is torsion free, then X — H*\X is formally
smooth of relative dimension equal to the rank of H.
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(ii) The morphism X — H*\X makes X a torsor over H*\ X for H* x (H*\X), i.e. the map
(H* X (H*\X)) XH*\X X — X XH*\X X

given on points by (g,z) — (gx,x), is an isomorphism.

(iii) If H — H' is a surjective morphism of abelian groups, then (H')*\X has a natural free
action of H*/(H')* and H*\X is naturally isomorphic to the quotient of (H')*\X by the
action of H*/(H')*.

[m]

1.2.4 Let m > 1 be an integer. Denote by CNL," the full subcategory of CNLo consisting
of objects A such that m’} = 0. For a CNLp-algebra A, we denote by AlM the CNL[(;n]—algebra
A/m7}. Note that A > Al defines a functor from CNLo to CNL[Om], and we call A" the
truncation to level m of A. For A a CNLp-algebra, the restriction of SpfA to CNL[Om] is isomorphic
to SpfAl™ . If X is an object in CNLZ, X = SpfA(X), we let XM = SpfA(X)™ on CNL[Om],
and call X" the truncation to level m of X. If X = X[™| then any CNL%p-map X — Y factors
through Y™, A map X — Y is a closed immersion if and only if X" — Y™l is a closed
immersion for each m. Note that if A; and Ay are CNL%” }—algebras, then A; ®p A may not be,
and the restriction of SpfA; x SpfAs to CNLE;R} is represented by (4; ®o Ag)[m}.

We define a group chunk of level m to be G = SpfA(G), where A(G) is a CNLEgL]—algebra
equipped with CNLE;n]—morphisms A(G) = (A(G) & A(G)IM | A(G) — A(G), and A(G) —
Ol satisfying the usual diagrams defining a Hopf algebra. A group chunk of level m defines

group functor on CNLEZL ], Note that if we are given a CNLp-group G, GI" is a group chunk of
level m, for all m > 1.

Let X = SpfA(X) with A(X) a CNL[(;n]—algebra, and let G’ be a group chunk of level m. We
define a group action chunk of level m, to be a morphism (G x X)[m] — X defining a functorial

group action on CNL[(f)n]. Note that the map (GxX)™ — X x X given on points by (g, z)— (gz, x)
factors through (X x X)[™. We call the group chunk action free if (G x X)I" — (X x X))
is a closed immersion. Given a CNLp-action G x X — X, (GI™ x X["hl" — X[ is a group
action chunk of level m. We record [KW09, Proposition 2.7].

PropoSITION 1.2.5. Let G be a CNLp-group. Suppose that for each m > 1, we have CNL[(ZL]—

algebras A,, and CNLp-morphisms A,,+1 — A, such that Ay, = l(iLnAm is in CNLp (i.e. is

Noetherian). Assume that for each m, we have a group action chunk of G on SpfA,,.

(i) Then there is a unique CNLp-group action G x SpfA., — SpfA. such that for each m,

[m]

the group action chunk of GI™ on SpfA%’ is compatible with the group action chunk of
G on A,, via the closed immersion SpfA,, — SpfALZL !

(ii) If the group action chunks of G™l on SpfA,, are free, then so is the action of G on SpfAse.

1.3 Some general deformation theory
We first introduce some notation and state some useful facts. Our references for this subsection
are [Maz89, KW09, §2].

1.3.1 Let G be a profinite group and let

p: G — GL,(F)
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be a continuous homomorphism. Denote by Vg the representation space of p. Given A €
ODb(CNLp), a lift of p to A is a continuous homomorphism p : G — GL,(A) whose reduction
modulo my4 is equal to p. A deformation of Vg to A is a pair (V4,¢4), where V4 is a free
rank-two A-module with continuous G-action, and ¢ is an isomorphism V4 @4 F 5 Vi, We will
usually drop ¢4 from the notation. A deformation is an equivalence class of lifts, two lifts begin
equivalent if they are conjugate by an element of ker(GL,(A) — GL,(F)). Also, a deformation
V4 of Vg to A together with a choice of basis for V4 lifting our fixed basis of Vg determines a lift
of p. For this reason we will also call lifts framed deformations.

We define set valued functors D and D" on CNLp by letting D(A), respectively D (A),
denote the set of deformations of Vg to A, respectively the set of lifts of p to A. Sending a
lift to its equivalence class of deformations gives a natural morphism D~ — D. If G satisfies
the p-finiteness condition, i.e. if Hom(G’,Z/pZ) is finite for all finite index subgroups G’ of G,
then DY is representable. We will give a proof of this fact below in Proposition 1.3.3. If further
Endgg) (V) = F, then D is also representable. This can be checked using Schlessinger’s criteria,
see [Maz89], or by taking the quotient of D~ by the free action of PGL,, the completion of
PGLy /o at the identity section of the special fibre. If R and RY denote the objects representing
D and DY, respectively, then the natural morphism R — RP is formally smooth of relative
dimension n? — 1, see [KW09, §2.2].

Let v denote an O-valued character of G whose reduction is equal to det p. In the case that G
is a local or global Galois group, or a quotient of one of these groups, we define a subfunctor D¥ of
D by letting D¥(A) be the subset of D(A) consisting of deformations V4 such that det V4 = e,
We define DY¥ similarly. Let RY and p™V denote the object representing DY and its universal
lift. If 7 is the ideal generated by the elements det p™V (o) — 1be, (o), it is easy to see that R-/T
represents D™, Similarly if D is representable, then so is DY.

1.3.2 We extend the functor D" to a larger category. Let Topy, be the category whose objects
are pairs (A, I), where A is a topological O-algebra and I is an ideal of A defining the topology
of A such that I contains the image of wg under the structure map O — A and such that
A is I-adically complete. The morphisms (A,I) — (A’,I') in Topy are O-algebra morphisms
¢ : A — A’ such that p(I) C I'. Note that the map A — (A,m4) embeds CNLp as a full
subcategory of Topy, and that for any (A,I) in Topy the map O — A induces an injection
F— A/I

Let G and p be as in §1.3.1, and assume that G satisfies the p-finiteness condition. We define
a functor D on Topy by letting DY(A, I) denote the set of continuous homomorphisms

p:G— GL,(A)

such that

G—L s GL,(A)

| e

GLy(F) — GLn(A/I)

commutes. Note that under the embedding A — (A, m4) of CNLp into Topy, the restriction of
D" on Topy, to CNLp coincides with DV as defined in §1.3.1.

PROPOSITION 1.3.3. There is a CNLp-algebra RV such that (R, mzn) represents DY on Top,.
In particular DV is representable on CNL.
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Proof. Let G' = ker p, G'(p) its maximal pro-p quotient, and H the kernel of the natural surjection
G’ — G'(p). Note that H is normal in G as G’ is normal in G and H is a characteristic subgroup
of G'. Since G satisfies the p-finiteness condition, G'/H is topologically finitely generated; hence,
so is G/H. Fix a set of topological generators 1, ...,y of G/H. Let F' denote the free group
on the set {71,...,7m} and let F"* denote its profinite completion. We have a natural surjection
F" — G/H and we denote by K its kernel.

For each 7, let [p(7x)] € GL,(O) be the matrix whose entries are the Teichmiiller lifts of
the entries of p(7x). Consider the power series ring O[[afj]] where 1 <i,j <nand 1 <k <m.
We define a continuous homomorphism

o: FN — GLn(O[[afjH)

by o(vk) = [p(v)] + (QZ) Let J denote the ideal of O[[afj]] generated by the elements of the
matrices o(r) — 1 for all r € K, and set R- = O[[afjﬂ/!]. Then the pushforward of p along

O[[afj]] — R defines a continuous homomorphism G/H — GL,(R"), and we let

PV . @ —> GL,(R")

be the continuous homomorphism given by precomposing with the surjection G — G/H. Note
that R" is an object in CNLp. We will now show that (R, myn) represents D2 on Topy and
that p"V is the universal lift.

Let (A, ) be an object in Topy and let

p:G— GL,(A)

be an element of DY(A,I). Since G — GL,(A) — GL,(A/I) has kernel G/, and I"/I"*! is
p-torsion for all n, the morphism p factors through G/H. The morphism p is equivalent to giving
matrices X € GLy(A) for each 1 < k < m, such that their reduction modulo I is equal to
p(7k), and such that the induced homomorphism F” — GL,(A) is trivial on the subgroup K.
By viewing p as a specialization of g, this is then equivalent to giving an O-algebra morphism
O[[afj]] — A whose kernel contains J and such that the maximal ideal of O [[af]ﬂ is mapped to
I, i.e. to give an O-algebra morphism ¢ : RY — A such that ¢(mpo) C I, and we see that p is
the pushforward of p™™ under this map. a

This proposition has the following immediate consequence. If E’/E is a finite extension with
ring of integers O’ and residue field F/, then R” ®¢ O’ represents the lifting functor D for
p ®r F' on CNLor.

1.3.4 Let E'/FE be finite with ring of integers O’ and residue field F'. Assume we are given
a continuous homomorphism por : G — GL,(O’) such that

G—L = GL,(0)

|

GL,(F) —— GL,(F")
commutes. Let pp denote the induced morphism pg : G — GL,(E’). Recall that Arg: is the
category of Artinian local rings with residue field E’ topologized by their structure as a finite
dimensional E’-vector spaces, and morphisms local E’-algebra morphisms. Let DEE, denote the
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functor on Args that sends an object B of Args to the set of continuous homomorphisms
pp : G = GL,(B) such that pp modulo mp is equal to pgs. The following proposition will
be useful in determining the generic fibre of the local deformation ring in § 1.4 and the argument
is due to Kisin [Kis03, Proposition 9.5].

PROPOSITION 1.3.5. For any B in Arg and pp € DDE
morphism RP — B such that pp is the pushforward of p

as in § 1.3.4, there is a unique O-algebra

!
univ

via this morphism.

Proof. Choose a surjection E'[[x1,...,2,]] = B and let Ay denote the image of O'[[x1, ..., x,]]
under this surjection. Since the representation pg: takes values in GL,(O'), the representation
pp takes values in GL,,(Ap + mp). Let n = Ag N'mp. Since B is Artinian, we can define for any
m>=1, A, = Ag + Z;’il p~™nJ. For each m > 1, A,, is a CNLpr-algebra subring of B. Note
that Ag + mp = szgo Ap,. Since G is compact, a standard Baire category argument implies
that pp takes values in A,, for some m. By Proposition 1.3.3, there is a unique CNLp-morphism
RY — A,, such that G — GL,(A,,) is the pushforward of p™V via R” — A,,.

It remains to show uniqueness. Let ¢, ¢’ : R~ — B be two such O-algebra morphisms. Since
the image of RY under either of these maps lies in Ay + mp = Um>0 A,, and RP is compact,
again by Baire category its image via either ¢ or ¢’ must lie in some A,, for m sufficiently large.
By the universal property of R~ on Tope, we must have ¢ = ¢'. |

1.4 Local deformation rings at p
Throughout this subsection, F,, will denote a finite extension of Q,, and G, = Gal(@p /Fy,). We
assume that F contains all embedding of F;, into an algebraic closure of E. Our construction of
the local deformation ring, as well as the analysis of its generic fibre follows [Ger10, § 3].

For a given ring A, we call an A-submodule L C A2 a line if both L and A?/L are projective
of rank one.

1.4.1 We fix a continuous homomorphism
p: Gy — GLo (F)

and a continuous character ¢ : G, — O such that detp = E. Let Vr denote the representation
space of p. We will assume throughout this subsection that there is some line Ly in V& that is
stable by the action of GG,,. Let L be one such line and let ¥ denote the character of G, giving
the action on Vg/Lp. Note that the choice of X is unique unless Vg is the direct sum of two
distinct characters. In this case we simply make a choice of one of these characters.

We let DS and D5 denote the functor of lifts of 7 and the subfunctor consisting of lifts
with determinant ve,, respectively. We denote the corresponding representing objects by RE
and RY ’w, respectively.

Let G%b denote the abelianization of G, and G%b(p) the maximal pro-p quotient of the
abelianization. Set A(G,) = O[[G2"(p)]]. Note that G&(p) is isomorphic to g, x Zg“, where
d = [F, : Qp] and pps is the group of p-power roots of unity in F,. So A(G,) has p® minimal
primes, corresponding to the p*® distinct O-valued characters of p,s (recall we have assumed
E contains all embeddings of F, into E), and its quotient by any of these minimal primes is
isomorphic to a power series over O in d + 1 variables.

Let ¥ denote the Teichmiiller lift of . If A is a CNLp-algebra and x : G, — A* is a
continuous character, then writing x¥ = xx’ with \’ factoring through the natural projection
G, —> G?}b(p), we see that A(G,) represents the set valued functor that assigns to each CNLp-
algebra A the set of continuous characters {x4 : G, — A*} that lift . We let x™ : G,, — A(G,)
denote the universal A(G,)-valued character lifting .
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We will need to consider quotients of A(G,) by its minimal primes in order to ensure that
our local lifting ring is a domain. Recall that s is identified with the p-power torsion subgroup
of G2P. Fix a character 7 : pps — O, and let g, denote the corresponding minimal prime of
A(Gy). We set A(Gy,n) = A(Gy)/qy, and let X};niv denote the character obtained by composing
X"V with the natural surjection A(G,) — A(G,n). Then A(G,,n) represents the functor that
assigns to each CNLp-algebra A the set of characters {x4 : G, — A*} that lift ¥ and whose
restriction to the p-power torsion subgroup of G%b is equal to n.

Set R/D\&b;vm) = R & A(Gy,m), and consider Ph ®0 R%{évm). If A is an O-algebra, then
D?w

an A-point of this scheme is a triple (o, 8, L) where o : Ry’ — A and 8 : A(G,,n) — A are
(-algebra morphisms, and L is a line in A?. By pushing forward the universal RS valued lift
via «, we get a homomorphism py : G, — GLy(A), and by pushing forward X};ni"
character x4 : G, — A*. We define a functor DL¥"" on the category of O-algebras by letting
DLPY(A) be the subset of such triples (a, 3, L) such that pa leaves L invariant and G, acts on

A%/ L via xa.

, we get a

LEMMA 1.4.2. The functor DL is represented by a closed subscheme £ of P}g R0 R%{év "

Proof. For ease of notation, set R = Rf{év e Let ¢ denote the tautological morphism
¢ : 0]123}% - O]P’}Q(l)a

and let £ denote its kernel. Let U = Spec A be an open affine subset of PL such that Opy, (1)(U)
is free of rank one over A. Fix a generator e of (’)P}%(l)(U). Let

Z(U) = {r € A : there is some o € G, and = € A? with ¢(pa(0)x — xA(0)z) = re}.

Then Z(U) is an ideal in A and does not depend on the choice of e. It is easy to see that 7
defines a sheaf of ideals of PL, and that DLYY coincides with the functor of points of the closed
subscheme of IP’}% defined by Z. O

1.4.3 We now let Rf(’gv - denote the quotient of Rf{év - by the kernel of the homomorphism

O,
RA(va) — 0g(2),

is the affine algebra of the scheme theoretic image of .Z in Spec R%{év "

PROPOSITION 1.4.4. Let E'/E be a finite extension with ring of integers O'. Let p : G, —

GL2(O’) be a lift of p with determinant ve,, and let x : G, — (O')* be a character lifting X

whose restriction to the p-power torsion subgroup of G2 is equal to n. The point of R%{év .

M Avw
i.e. RA(GM?)

determined by the pair (p, x) factors through Rf(’gv ) if and only if there is a G,-stable line in
(0")? such that G, acts on the quotient via .

Proof. Let f denote the morphism .2 — Spec R%{év e The point determined by (p, x) satisfies
the conclusion if and only if it is in the image of Z[1/p]. Since f is proper, so is f[1/p],

and the topological image of f[1/p] is equal to the scheme-theoretic image of f[1/p], which
3 Aﬂl)
is Spec RA(GUW)[l/p]. O
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In order to determine the structure of Rf(’gv ;) more precisely, we will relate it to .Z via the
following lemma.

LEMMA 1.4.5. Let Z denote the closed subscheme of A(G,,,n) defined by (Xg“i")2 = 1ep, and let
V' denote its complement. The map

Av
2 XSpec A(Gym) V — Spec RA(gM) X Spec A(Gum) V.
is an isomorphism.

Proof. Since V' is an open subscheme of Spec A(G,,n) and the scheme-theoretic image commutes
with flat base change,

Av
2 XspecA(Gym) V — Spec RA(gM) XSpec A(Gum) V.

has injective structural morphism, so to prove it is an isomorphism it suffices to show it is
a closed immersion. To show this, it suffices to show that if A is a local ring and (p4, x4,
L) € (£ Xgpec A(Gym) V) (A) is an A-point, the line L4 is unique and is defined over B, where B
is the image of RE{é%n) in A under the morphism determined by (p4, x4). Indeed, this implies
that the fibres are all singletons and that the corresponding maps on local rings are surjective.

Let (pa;xa,La) € (£ XspecA(Gom V)(A), with A a local ring. Take o € G, such that
x%4(0) # Yep(0) mod my. Consider the matrix M = pa(o) — bepx ;' (). Since G, acts on Ly
via weple we see that det M = 0. But, by our assumption on o, its reduction modulo the
maximal ideal of A has rank one, hence one of the entries of the matrix M is a unit. This implies
that the line L4 is unique and its projective coordinates can be defined using the entries of M,

which are elements in the image of R/D\{év . in A. O

1.4.6 Let By denote the Borel subgroup of upper triangular matrices in GLs. Fix a continuous
homomorphism g : G, — Ba(F) with det g = )¢, and such that

_ <>)< >x<>
0= -
X
Bor,

with ¥ our fixed character. Define a functor DﬁBor’w on CNLe by letting D5 (A) be the set

of continuous morphisms g4 : Gy, = Ba(A) that reduce to o modulo my4, have determinant e,

and such that, writing
X1 ok
A = )
¢ < X2>

X2 coincides with 7 on the p-power torsion subgroup of G‘;’)‘b.
Before proceeding with our analysis of DgBor’w, we record a lemma, which is [Mat89,
Exercise 16.10], that will be useful in the proof of Proposition 1.4.8 below.

LEMMA 1.4.7. Let R be a local Noetherian ring and let r1,...,r, € R, n > 1. If r1,...,1p
generate a prime ideal of height n, then R is a domain, and for any 1 <1< r, ry,...,r; generates
a prime ideal of height i.

Proof. We induct on n. Assume that r € R generates a prime ideal of height 1. Take a minimal
prime q C 7R. For any = € q we have © = ry for some y. Then r ¢ q implies that y € q, and
rq = q. Nakayama’s lemma implies q = 0.
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For n > 1, the image of r, in R/(r1,...,r,—1) generates a prime ideal of height 1, cf. [Mat89,
Theorem 13.6(iii)], so the n = 1 case implies that r1,...,r,—1 generates a prime ideal of height
n — 1, and the lemma follows by induction. O

PROPOSITION 1.4.8.

(i) The functor DEBOT’w is representable by a CNLp-algebra REBOT’w.

RﬁBor’w is a complete

(ii) Assume that ¢ has (possibly trivial) p-power order image. Then
intersection of dimension 3 + 2[F, : Q,)].

(iii) Assume that the image of ¢ is either trivial or has order p, and that if p = 2, then either
F, contains a primitive fourth root of unity or [F, : Q3] > 3. Both RaBor’w and Rgor’w ®Ro F

are domains.

Proof. The proof of representability in the general case is proved exactly as with R in
Proposition 1.3.3. We leave the details to the reader and henceforth assume that g has (possibly
trivial) p-power order image.

For any o € Gy, we let [p(0)] € GL2(O) denote the matrix whose entries are the Teichmiiller
lifts of the entries of 9(o). Let G,(p) be the maximal pro-p quotient of G,. Our assumption on

the image of g implies that for any g4 € Dlg’or’¢(A), 04 factors through G,(p). Let Q/EG; be the

Teichmiiller lift of Ye,, and set ¢ = (Ve,)(ey) L
If F, does not contain a pth root of unity, then G,(p) is a free pro-p group of rank
m =1+ [F, : Q], cf. [NSW00, Theorem 7.5.8], and the p-part of the torsion subgroup of

G2 (and hence 7) is trivial. Fix a set of generators 71, . . ., ¥, on which G, (p) is free, and define
a lift _
0" 1 Gy = Ba(Ol[at, ...y am, b1, ..., by]])
by
i _ o(vi) (1 + a;) bi
univ .\ _ )

0 ) =l na

Any lift o4 € DﬁBor’w(A) is a specialization of 0" via a unique CNLp-morphism O[[a1, ..., am,

b, ... bm]] > A, and we have RC™Y = O[[a1, . .., Gm, by, .. -, by]]- It has dimension 3+2[F, : @],
and both it and its reduction modulo wg are domains. This proves both parts (ii) and (iii) in
this case.

We now assume that F, contains a primitive pth root of unity. Let p,s denote the group of
p-power roots of unity in F,. Then G, (p)ab can be presented as the free pro-p group on generators
Yis- - Ym, With m = 2+ [F, : Qp] modulo a single relation k. The shape of & is divided into four
subcases.

(a) If p* > 2,
k= (1,72) (13 72) -+ (1Y),
where (75, Yi41) = "V Vivi41-
(b) If p® = 2 and [F, : Q2] is odd,
k=17 (72,73) - (Ym—1, Ym)-
(c) If p* =2, [F, : Q2] is even, and the image of €2 : G, — ZJ is procyclic,

f
k=" (71,72)  + (Ym—1s Ym),s

for some f > 2.
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d) If p* =2, [Fy : Qo] is even, and the image of €5 : G, — Z is not procyclic,
P

f
k=7(n72)7 (93,74) - (Y1, Ym),
for some f > 2.

Part (a) is due to Demuskin, cf. [NSWO00, Theorem 7.5.9], part (b) to Serre [Ser95,
Corollaire 4.4], and parts (c) and (d) to Labute [Lab67, Theorem 9]. We note that in [Ser95],
Serre uses a different convention for the commutator but either choice is valid, see [NSWO00,

p. 359].
We note that the image of 71, ..., 7m in G2P(p) are generators and are subject to the single
relation 7{)3 =1in case (a), v275 = 1 in case (b), ’y%+2f = 1in case (c), and ’y%*ygf = 1in case (d).

From this we see that the torsion subgroup of G2 (p) is generated by the image of 71 in cases (a)
and (c), by 1172 in case (b), and by ’yyy%f_l in case (d). Let F be the free group pro-p group
on the set {71,...,vm}. Set B = Ol[ag,...,am,b1,...,by]] and define

OFAN F/\ —> BQ(B)

as follows. In cases (a) and (c), we set

o) = o] (P70 1Y,

In case (b), we set

orr(11) = [o(1)] <¢(71)77_1(717%)(1 +ag)™? by ) |

n(mys) (1 + az)?

In case (d), we set

orn(71) = [o(n

) St nd A +az)" by
A +as)? )

And in all cases, let
orn (i) = [o(vi

) <¢(%‘)(1 + a;) " +b;i)1> 7

for 2 < i < m. It is easy to check that in all cases we have

orn(k) —1 = (1 71~>

with 7 a non-zero element in mp. For any o4 € DEBOT’w(A), 04 is the pushforward of a unique

CNLp-morphism B — A that contains r in its kernel. From this it follows that ng’or’w =~ B/rB
and the universal lift 0™V is the pushforward of ops via the natural surjection. This proves
part (ii).

We now prove part (iii). Let wg be a uniformizer of E. Using Lemma 1.4.7, to show that
Rgor’w =~ B/(r) and ngaor,w ®o F = B/(r,wg) are domains, it suffices to show that B/(r, wg,
ag,...,am—2,b1,...,by_2) is a domain of dimension 3. Let rg denote the image of r in B/(wg,
ag, ..., Gm—2,b1,...,bm—2) Z Fllam—1, @m, bm—1,bm]]. We are thus reduced to showing that rg is
irreducible in F[ap—1, am, bm—1,bm]]-
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Let o9 denote the pushforward of opa to Fllam—1,am,bm—1,bm]]. Note that m > 3, and if
p = 2, since we are assuming either F), contains a primitive fourth root of unity or [F, : Q2] > 3,
if we are in case (b) or (d) above we must have m > 5. Then, in all cases, 7 is given by

00(Ym—1)""20(Ym) " 00(Ym-1)20(Ym) = <1 q°> .

Our assumption on the image of ¢ implies that at most one of 9(y;»—1) and (7, ) is non-trivial
and that if it is non-trivial, then it is unipotent. Our assumptions also imply ¢, is trivial mod
wg. Define §;, for i = m — 1, m, by

i) = (1 . (1 +ﬁ;z‘)1> =2 <1 o (1 +b;¢)1> '
A straightforward computation shows that
70 = (14 am—1) " (14 am) " (Bu((L + am1) = (L + am-1)"") = Ba-1 (L + am) — (L +am) ™).
To finish the proof, it suffices to show that
1= Bn((L+ am-1) = (L4 am-1)"") = Bt (L + am) = (L +am) ™) (1)

is irreducible. To do this we use the following easy but useful fact we leaned from [Kun05, p. 164]:
if K is a field and f € K[[z1,...,zy]] is reducible, then for any grading deg(z;) = n; > 0, the
lowest-degree term of f is reducible in K[z1,...,zy].

First consider the case that 9(7v,—1) is non-trivial, and write

2= (" 7).

with a € F*, so that B,1 = a(1 + am_1)"" + byu_1. Note then 3, = by,, since the image of o
has order p. If p # 2, we use the grading deg(a;) = deg(b;) = 1, and (1) becomes

2aay, + higher order terms

and 2aay,—1 is irreducible in Flamy,—1, @m, bm—1,bm]. If p = 2, we use the grading deg(a;,—1) =
deg(bpm—1) = 1 and deg(a,,) = deg(by,) = 2. Then (1) becomes

—aa?, + bya?, | + higher order terms

and —aa2, | +by—1a2, is irreducible in Flay,—1, @m, bm—1, bm]. The case when (v, ) is non-trivial
is symmetric.
Now assume 9(Vim—1) = 0(Ym) = 1. We use the standard grading deg(a;) = deg(b;) = 1, and
(1) becomes
20 —1bm — 2a,by—1 + higher order terms

if p #£ 2, and
—a2, by 4 a2,by,_1 + higher-order terms

if p = 2. In either case the leading term is irreducible in Fla,,—1, @m, bm—1,bn]. This concludes
the proof of part (iii), and of the proposition. O

Writing the universal lift 0"V : G, — Bg(RgBor’w) as

Quniv _ (X}130r * )
Xgor

The character x5° gives a CNLo-morphism A(G,,7n) — REBOMA
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1.4.9 Let .Z be as in Lemma 1.4.2, and let = be a closed point of .. Then z is simply a
choice of p-stable line L, in the representation space of p such that G, acts via X on Vg/L,.

Consider the set valued functor DCE“/’ on CNLp that sends a CNLp-algebra A to the set of
pairs (pa, La), where py is a lift of p to GL2(A) with determinant ey, and Ly is a G,-stable
line in A? lifting L, such that the action of the p-part of the torsion subgroup of G&> on A?/L,
is given by 7. Let (’)gp,x denote the completion of the local ring of .Z at x. Note that the natural
map

Spec 0%y, — &

yields a lift pj : G, — GL2(O% ) of p, and a Gy-stable line L7 lifting L;. The following lemma

X
is immediate.

LEMMA 1.4.10. The completion of the local ring of £ at x, O, ,, represents Dﬁg’w with
universal object (p}, L}).

For any ring A, we will denote by Lf}d the A-line in A? fixed by the upper-triangular matrices.

Let x = (p,X, L) be a closed point of .Z. Take g € GL2(O) such that gL, = L?Ftd. Note that
gpg ! is upper triangular, and we have the functor D];TO;LI/; on CNLp as in §1.4.6, which is

represented by Rf;)r;t/il as in §1.4.8.

LEMMA 1.4.11. There is an isomorphism O%, , = RgB;;fji [[#]] of A(G,,n)-algebras.
Proof. For ease of notation set R = RfTogr’fzi and let ¢ denote its universal lift. Define a lift

PRz : Gv — R[[2]] of p by

PR (0) =g (i 1) o(o) <_i 1) 9

and let L, denote the pgy,-stable line g~ (1) L5t9. Note that (pg(p)), Lrj) determines a
local A(GY,n)-algebra morphism O%, , — R[[2]]. Given any CNLo-algebra A, and (pa,La) €

DLIY(A), there is a unique ¢ € my such that

(1
Li=g 1(0 1>Li§d.

We then have a unique local O-algebra morphism R[[z]] — A, which is also a morphism of
A(Gy,n)-algebras, such that (pg(r.)), Lrj) specializes to (pa, La). This shows that (’)gﬂ@ —
R[[z]] is an isomorphism of A(G,,n)-algebras. |

PROPOSITION 1.4.12. Assume that the image of p is either trivial or has order p. If p = 2, assume
further that F, contains a primitive fourth root of unity or [F, : Q] > 3.

(i) The quotient Rf(gv,n) is an O-flat domain of dimension 4 + 2[F, : Q,].

ii) Let Z denote the closed subscheme of Spec A(G,,n) defined by (x*™V)? = 1e,, and let V
n P
denote its complement. The scheme

AN
(Spec RA(gu,n) XSpeCA(GU,n) V) ®O F

is integral.

1254

https://doi.org/10.1112/50010437X1300780X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1300780X

2-ADIC RESIDUALLY DIHEDRAL (GALOIS REPRESENTATIONS

Proof. Note that the special fibre of .Z over Rf(’gv - is isomorphic to }P’IIF if p is trivial, and is a

point otherwise, so .% is connected. By Lemma 1.4.11 and Proposition 1.4.8, the completed local
ring of .Z at any closed point is a domain of dimension 4 4 2[F;, : Q,], and its reduction modulo
the maximal ideal of O is also a domain. We conclude that both .Z and .Z ®¢ F are integral.

This implies that Rf(’gv . is a domain as well as part (ii) of the proposition, by Lemma 1.4.5. It

is not hard to see that Spec Rf(’g ) X Spec A(Gu.m) V and & Xgpec A(G,,m) V are each of codimension

1, so dim Rf(’gv 0= dim .2 =4+ 2[F, : Q). =

1.4.13 Fix a finite extension E’/E with ring of integers ', and a continuous homomorphism

0 : Gy — Ba(E') with det p = 1p¢,. We do not assume that g is a lift of p. Define a functor Dgor’w

on Arg by letting Dgor’w(A) be the set of continuous morphisms g4 : G, — Ba(A) that reduce

to 0 modulo m4 and have determinant we,.

PROPOSITION 1.4.14. The functor Dy is pro-represented by a complete, Noetherian, local
E'-algebra Rgor’¢. If o # (X7 ) for some character x, then ng’or’w is formally smooth over E’
of dimension 2 + 2[F, : Qp].

Proof. We prove representability in the same way as Propositions 1.3.3 and 1.4.8. There is a
finite index subgroup G’ of G,, such that o(G’) is pro-p. Let G'(p) be the maximal pro-p quotient
of G’ and let H be the kernel of the natural surjection G’ — G’(p). We have that H is normal
in G,, that G,/H is topologically finitely generated, and that for any g4 € DgBor’w, Ain Arg,
04 factors through G, /H. Fix a set of topological generators 71, ...,y for G,/H. Let F be the
free group on {71,...,7m} and let F denote its profinite completion. Let K denote the kernel
of the natural surjection F"* — G,,/H. Define a continuous homomorphism

opn i F" — Bo(E'[[a1, ..., am,b1,...,bn]])

by

or () = o) (T T 0
FoAT ’ (1+a)" ')
Now let J denote the ideal of E'[[a1, ..., am,b1,...,by]] generated by the entries of the of the
matrices ppr(k) — 1, for k € K. Set Ry = E'[[ay,...,am,b1,...,bn]]/J. The pushforward
of or~ along the surjection E'[[a1,...,am,b1,...,by]] = ng’or’w gives a continuous morphism

G,/H — Bg(ngor’¢), and we let
Quniv c Gy —> BQ(R];OY#J)

denote the composite of this morphism with the natural surjection G, - G,/H. It is easy to
see that RE"W pro-represents DEOW with universal object o
Let E'[e] = E'[[x]]/(2?). Let b denote the subspace of upper triangular matrices in Mgy (E")

with G,-action given by 0 X = o(0)Xo(c)~!, and let b denote its trace zero subspace. The

tangent space of Ry is given by D"V (E'[¢]). Given 01 € DIV (E'[¢]), write 0r[)(0) as

univ

op/e(0) = (1 +ec(0))o(o),

for each o € G, with c(o) € b. It is easily checked that gy, is a homomorphism with det opr[) =
Ve, = det g if and only if ¢ € Z1(G,, 69), the space of 1-cocycles of G, with coefficients in b°,
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This determines an isomorphism of E'-vector spaces Dy (E'[¢]) = Z'(G,, b°). Now
dim Z(G,, %) = dim H'(G,, b°) — dim H°(G,,, 6°) + 2
= 2[F, : Q)] + 2 + H*(G,, "),

by the Euler—Poincaré characteristic.
Now fix a minimal presentation

0— J— A—> RP"™ — 0,
with A a powerseries over E in dim Z!(G,, b") variables. As in [Maz89, §1.6], we will show that
dim J/m4.J < dim H*(G,, b°).

Let A, = A/m", R, = ng’or’w/szor,w, and J,, = ker(4,, - R,). Then for n sufficiently large
o

the natural map J/myJ — J,/ma, J, is an isomorphism of E’ vector spaces, and it suffices to
show
dim J,, /my, J, < dim H?(G,, bY).

Choose a continuous set-theoretic lifting
@ : GU e B2 (An)

such that det §(c0) = 1ey(o) for all ¢ € Gy, and such that its pushforward to R, is 0"V mod

ngor,¢- To see that this is possible, note that we can take a continuous E’-vector space section
(4

s : R, — A, of the quotient A, — R,. This determines a continuous set-theoretic section
Ba(R,) — Ba(A,,), and we let ¢’ be the composite of the map G, — Ba(R,,) with this section.
Since the map o — e, (o) det ¢(0) ™! is continuous on Gy, so is the function g : G, — Ba(A,)

defined b,
' o — e (V) det o)
i) = (o) )

which is the desired set-theoretic lifting. Define the continuous function

c: Gy x Gy — bV @p J,/ma, T,
by c(o1,02) = o(c102) 16(02) " 1o(01) 7. It can be checked that c is a 2-cocycle of G, with
values in b® @ J,/ma, J,, and that its image [c] in H2(Gy, 6° ®@ps Jn/ma, Jp) = H?(Gy, %) @5
Jn/ma, J, does not depend on the choice of 9. We get a natural map

(Jn/ma, Jn)" —> H2(va [’0)

by A — (1 ® A)([¢]). We will show that this map is injective. Take non-zero A € (Jp/ma, Jp)*
such that (1®A)([c]) = 0. Let A], denote the quotient of A,, by the kernel of \. We have an exact
sequence

0—F — A —R,—0 (2)

and the obstruction class [¢] vanishes for this extension. This implies that there is a continuous
homomorphism
oar, : Gy, —> Ba(4},)

univ

with determinant 1)¢,, and whose pushforward to R, is ¢ modulo mﬁgow. Then there is a local

E’-algebra morphism ng’or’w — A}, inducing o4/ . Since m’j, = 0, this map factors through R,
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and induces a section of (2). But this contradicts the fact that A}, — R, induces an isomorphism
on tangent spaces.
We deduce that there is a presentation

RE™ = F[[zy,..., 2]l /(f1,-- - fr)

where g = 2 + 2[F, : Q,] + dim H?(G,, 6°) and r < H%(G,, b°). In particular, we conclude that
dim ng’or’w > 2+ 2[F, : Q). Let u be subspace of AdY consisting of upper triangular unipotent
matrices. Note that u is G,-stable and the trace pairing on Ad® induces a G,-equivariant
isomorphism (b°)* 22 Ad°/u. Local Tate duality gives an isomorphism H?(G,,b%) = HO(G,,
(Ad°/u)(1)). It is easily checked that this latter space is non-zero if and only if

- ()

for some character x, in which case it has dimension 1. O

1.4.15 Let .Z be as in Lemma 1.4.2. Take a closed point = € Z[1/p] with residue field E’.
Note that since .# is finite type over RE{é ;) bart (ii) of Proposition 1.1.2 implies that E’/E is

finite. Let p, and x, denote the pushforward of p and X};ni", respectively, to E’, and let L,
denote the fixed G,-stable line in (E)? such that G, acts on (E')?/L, via x..

Consider the set valued functor DEE’w on Args that sends an Arg-algebra A to the set of
pairs (pa, La), where py is a lift of p, to GLa(A) with determinant ey, and Ly is a G,-stable
line in A? lifting L,. Let O";p,x denote the completion of the local ring of .Z at x. The natural
map

univ

Spec 0y, — &
yields a lift pp : Gy — GL2(O% ) of p;, and a G-stable line L7 lifting L.

LEMMA 1.4.16. The completion of the local ring of £ at x, (’)Qp’m, pro-represents DEE”Z’ with
universal object (pl, L}).

Proof. Let B be an Arp-algebra and let (pg,Lp) € DL (B). Denote by xp the character
giving the G,-action on B?/Lp. By Proposition 1.3.5, there are unique continuous O-algebra
morphisms RY — B and A(G,) — B such that pp is the pushforward of p"™V, and yp is the
pushforward of ™. Since the pp has determinant t¢,, and the restriction of xp to the torsion
subgroup of G2 is equal to 7, we get a unique continuous O-algebra morphism R/D\?év n B
which gives rise to pp and xp. Since the line Lp is stable under pp, we obtain a unique m7orphism
y : Spec B — % such that the image of the closed point of Spec B is x. As B is Artinian, y

factors through Spec 0%, . — Z. O

Let = (pz, Xz, Lz) be a closed point of Z[1/p], and denote by E’ its residue field. Take
g € GLy(FE') such that gL, = st%,d. Note that gp,g~! is upper triangular, and we have the functor

D];’;r’gdil on Args as in §1.4.13, which is represented by RBor’w_1 as in Proposition 1.4.14.

9pzg

LEMMA 1.4.17. There is an isomorphism O%, = R];;f’;fl [[2]]-

Bor,

ey and let ¢ denote its universal lift. Define a lift

Proof. For ease of notation set R = R
PR+ Gv = R[[2]] of px by

PRl (o) =97 (i 1) o(o) <_i 1) g,
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and we let Lp[,)) denote the ppgy,j-stable line g~ (! ;) L5t Note that (o)), Lr) determines a
local E'-algebra morphism O%, . — R|[z]]. Given any Arp-algebra A and (pa, La) € DLIV(A),
there is a unique ¢ € m4 such that

(1
La=g 1(0 1)Li§d.

We then have a unique local E’-algebra morphism R][[z]] — A, such that the specialization of
(PRI i) 18 (pa, La). This shows that O, , — R[[2]] is an isomorphism. O

PROPOSITION 1.4.18. Let x = (pz, Xz) be a closed point of Spec Rf(’gv n)[l/p]. If X2 # 9, Yep,

then the local ring of Rf(’gv - at x is formally smooth over E.

Proof. Let E’ denote the residue field of x. Since y2 # ey, Lemma 1.4.5 implies there is a
unique E’ point of ., which we denote again by x, and an isomorphism (Rf(’gu 77))53\ - 04,

The result then follows from Proposition 1.4.14 and Lemma 1.4.17. a

1.5 Local deformation rings away from p
In this subsection, F;, is either be a finite extension of Q, with ¢ # p, or F, = R. We fix a
continuous homomorphism

p: Gy — GLo(F)

and a continuous character ¢ : G, — O* such that detp = wiep. We let Vg denote the
representation space of p. We let DS’ and D5 denote the functor of lifts of p and the subfunctor
consisting of lifts with determinant ¢, respectively. We denote the corresponding representing
objects by RE and RE ’w, respectively.

1.5.1 Assume that F,, is a finite extension of Q, with ¢ # p. Let ¢ denote the cardinality of
the residue field of F),. Let p""V denote the universal lift to R%.

ProproSITION 1.5.2. Let R?’w denote the quotient of RS by its p-torsion.

(i) The quotient EE ¥ is O-flat and equidimensional of relative dimension 3.

(ii) The set of unramified lifts of p, form an irreducible component of Specﬁf ’d}, which is
formally smooth over O. We denote the quotient by the corresponding minimal prime by
Ry

(iii) If E'/FE is finite and x : Rf’w — FE is a continuous O-algebra morphism such that ker(x) is
contained in more than one irreducible component, then letting p, denote the corresponding
lift, py = yv€p @ 7y for some character 7y, of G,,.

Proof. By definition EE Y s p-torsion free, hence is O-flat. The dimension of §3’¢[1 /p] is shown
to be 3 in [Kis09b, Proposition 2.5.4]. It is shown in [Kis09b, Proposition 2.5.3] that there is a
quotient R5"Y — R such that a lift factors through RS if and only if it is unramified,
and that R5"Y"™ is formally smooth over O of relative dimension 3. The quotient R _ U
necessarily factors through RE#Z). Part (iii) follows from the proof of [Kis09b, Proposition 2.5.4].
More specifically, in the proof of [Kis09b, Proposition 2.5.4], it is shown that the completed local
ring at z is smooth unless H?(G,,, Ad%(p,)) # 0, where Ad°(p,) denotes the trace zero subspace
of the adjoint representation of p,, and it is easily checked that if H*(G,, Ad%(p;)) # 0, then
Pz = Yv€p D Yy for some character v, of G,. O
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We now turn our attention to semistable lifts. We will need the following lemma, which is a

variant of a result of Snowden [Snoll].

LEMMA 1.5.3. Assume that p is the trivial representation and that ¢ =1 (mod p). Let J be the
ideal in RY) generated by the equations

P (o) = () + 1, det 9 (0) = (o),
for all o € G, as well as the entries of the matrix equations
(P"™ (o) = (P (1) = 1) = (ep(0) = (3™ (r) — 1)
for all 0,7 € G,,. Then (RS'/J,) @0 F is a domain of dimension 3.

Proof. Set R = (R}/J)®0TF, and let pg be the pushforward of p"™" to R. Since we have assumed
g =1 (mod p), modulo wg the equations defining J become

trpr(c) =2 and detpgr(o) =1

for all o € G, and
(pr(0) = )(pr(T) —=1) =0
for all 0,7 € G,. From this, it follows that R represents the functor on CNLp that sends a
CNLp-algebra A to the set of families of matrices {1 + X, € 1 + myMay2(A) : 0 € G4}, such
that
tr(l+X,) =2, det(l14+X,)=1, X,X;=0

for all 0,7 € G,. For any such family, the elements 1 + X, commute and have order p (or 0),
hence the map G, — 1+ X, factors through the maximal abelian quotient of exponent p, which
is a product of two cyclic groups of order p. From this, we see that R represents the functor on
CNLF that assigns to each CNLg-algebra A, a pair of matrices X,Y € maMay2(A) such that

tr(l+X)=tr(1+Y) =2, detl+X)=det(1+Y)=1, X?’=Y?’=XY =YX =0.

Define a functor F' on the category of F-algebras that assigns to an F-algebra A the set of
pairs (X,Y) € May2(A) satisfying

trX=trY =0, detX=detY =0, X’=Y?’=XY =YX =0.
It is easy to see that F' is represented by Rp = Flaq, b1, c1, a2, ba, c2]/1, where
I = (af —bicr, a3 — baca, aras + bica, aras + bacy, arby — asby, aser — arca), (3)

with universal pair ((‘” b1 ), (“2 b )) Let x denote the F-point of Spec Rp corresponding to the

c1 —a1 co —as
pair (0,0). There is an isomorphism of functors on CNLp

Spf R —> Spf(Rr)2

given by (1+X,1+Y) — (X,Y), and so we wish to show that (Rp), is a domain of dimension 3.
Note that
(RF>;‘\ = F[[a’la bla C1, a2, b2a 02]]/17

with I as in (3). For any Noetherian local ring A, if its associated graded ring gr(A) is a domain,
then so is A. Noting that

gr((Rp)y) = Flay, bi, c1, ag, by, 2] /I = Ry,

since I is homogenous, we are reduced to showing that R is a domain of dimension 3.
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Note that I is the homogenization in F[a1, by, ¢1, ag, ba, 2] of the ideal
I' = (1 — bye1, a3 — baca, az + bicz, az + bacy, by — azby, azer — c2),

in F[by, c1, ag, ba, ca]. By [ZS75, ch. 7, § 5, Theorem 17], to show that I it prime it suffices to show
that I’ is prime. The map defined by by — asb; and ¢y — ascy gives an isomorphism

F[bla C1, a2, b2762]/I/ = F[bla 6170/2]/(1 - blcl)a

which is a domain of dimension 2. Hence, Rr is a domain and has dimension 1 + dim F[by, ¢y,
CLQ,bQ,CQ]/I/:?). O

ProPOSITION 1.5.4. Let v : G, — O be a finitely ramified, continuous character such that
7?2 = 4 (enlarging O if necessary), and such that v(I,) is prime to p. Assume that p, is an
extension of iy by 7e,.

There is an O-flat reduced quotient RS of R of relative dimension 3, such that if E' /| E
is a finite extension, a continuous O-algebra morphism x : R — E' factors through Ry if
and only if the corresponding lift p, is an extension of v by ~yep,. R57"1/p] is formally smooth

over E, and RGt ®e F is a domain.

Proof. Except for the claim about the reduction mod p, this is proved in [Kis09a, Corollary 2.6.7]
for p > 2 and « unramified, and in [KW09, Theorem 3.1] in the remaining cases.

If there is a unique line in V& on which G,, acts via 7€, then the proof of [KW09, Theorem 3.1]
shows that Ry is formally smooth over O, and so we may assume that €, is trivial, i.e. ¢ =1
(mod p), and that G, acts on Vi via the character 7. Twisting lifts by 7! yields an isomorphism
of lifting functors DﬁD = DpD@W—l; hence, an isomorphism of their universal lifting rings. Part (iii)
of Proposition 1.1.2 shows that this isomorphism of universal lifting rings yields an isomorphism
Ryt > RIS and so we may assume y = 1 and p is the trivial homomorphism.

Let J be as in Lemma 1.5.3. Let X denote the set of points z : RY) — ', where O is the ring
of integers in some finite extension E’/E, such that the induced lift p, is conjugate to an extension
of e, by 1. Set Jx = [, ¢ x ker(z). By part (iii) of Lemma 1.1.2, the surjection Ry — Ry has
kernel Jx. Since the equations defining J hold for any x € X, this surjection factors through
RY/J. Let q denote the kernel of RY/J — RJ™'™". Note that q is prime and wg ¢ q. Since Ry
is O-flat of relative dimension 3, and (R.'/.J) ®0 F is a domain of dimension 3 by Lemma 1.5.3,
the surjection

(RY)J) @0 F — RIS @0 F

is an isomorphism. Then Lemma 1.5.3 implies RE oost ®e F a domain. O
1.5.5 Now assume that F, = R and assume p is odd, i.e. detp(c) = —1 for ¢ complex
conjugation.

PROPOSITION 1.5.6. There is an O-flat reduced quotient Ry of RS, such that if E'/ E is finite,
a continuous O-morphism x : RY) — E' factors through RSV if and only if p, is odd. Ry
is a complete intersection domain of dimension 3, Ry '[1/p] is formally smooth over E, and
RUD’fl ®o F is a domain.
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Proof. Khare and Wintenberger [KW09, Proposition 3.3] or Kisin [Kis09b, Proposition 2.5.6]
showed that Ry~ " is smooth over O if p is non-trivial, and that if p is trivial, then

R 2 O[[z,y, 2]]/(2® + 2y + y2),

which is a complete intersubsection domain of dimension 3. Lastly, 22 4 yz is irreducible in
F[[z,y, 2]], so Ry’ ' ®o F is a domain. O

1.6 Global deformations
Let F' be a totally real field and let S denote a finite set of places of F' containing all of the
infinite places as well as all of the places above p. Denote by Fg the maximal Galois extension
of F in Q, unramified outside of S, and let Grg = Gal(Fs/F). Fix an absolutely irreducible,
continuous representation

p:Grs — GL(F),
and a continuous character ¢ : Gr g — O such that E = detp. For each v € 5, let F), denote
the completion of F' at v, and let G, = Gal(Q,/F,) where £ the residual characteristic of v, or
oo. Let @ be some (possibly empty) set of places of F' disjoint from S.

Throughout this subsection, all completed tensor products are taken over O unless noted
otherwise.

Let Rpsug, respectively R?,SuQv denote the universal deformation ring, respectively
universal deformation ring with determinant we,, of the Grsug-representation p. For each
v € S, let Ry"™ denote the universal framed deformation ring for lifts of p|g, with determinant
Yep|g,. Consider the set valued functor on CNLp that sends an object A to (Va,{By}ves),
where V4 is a Gpgug-deformation of p to A, such that the determinant of V4|g, is equal
to Yeplg, for all v € S, and B, is a lift of B for each v € S. This functor is representable
and we denote the representing object by RE‘,SUQ‘ The subfunctor consisting of the tuples
(Va,{Bv}ves) such that det V4 = )¢, is also representable and we denote the representing object
by R%gu(g‘ The forgetful functor (Va, {5y }ves) — Va gives canonical maps Rrsug — R% SUQ
and R% sug RE”g’UQ, and in the latter case it is formally smooth of relative dimension 4|S|—1,
cf. [KWO09, Proposition 4.1]. Note that R}@’ sug is a quotient of Rpg and there is a canonical
isomorphism R%’ZUQ = R% suQ ®Rrsu0 R% SUQ-

The identity map R% suQ — R% sug 8ives a universal object (Vuniv fpunivy o). For each
veSs, (V™W|qg,, Bi™) determines a lift of p|g, with determinant vep|q, , so we have a canonical
morphism RE LGN R% SUQ- Letting Rg’w denote the completed tensor product ®UGSRE ’w, R% SUQ

is canonically a Rg’dj algebra. This also give an Rg’w—algebra structure to R%guq

1.6.1 Let Ad denote the space May2(F) with the adjoint GF g-action, and let Ad® denote
its trace zero subspace. In what follows we will use the following notation. Given a topological
group G such that Hom.(G,F) is finite, and a finite F[G]-module M, we denote by M* the
F-linear dual of M with the induced G-action. For any i > 0, we denote by h'(Gpg, M) the
F-dimension of the cohomology group H*(G, M). If G = Gpg, and W is a finite set of places of
F, we let H{/V(G F,s, M) denote the kernel of the restriction map

H'(Grs, M) — [] H(Gv, M)
veW

and let Al (Grs, M) denote its F-dimension.
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PROPOSITION 1.6.2. There is a presentation

Ryt = RV [wr, o wg)l/(frseo oo £r)
with

g—r=|S|—1- hO(GES, (Ado)*(l)).
Proof. Let

b mR§,¢/((mRE,w)2,WE) — ng:g/((ng:asb)z,wE)

denote the map on reduced cotangent spaces induced from Rg’w — Rg’g. By [Kis07,
Proposition 4.1.4], we have a presentation

RpS = R3V[[w1,...,agll/(fr, .., fr)

where g — r > dimp coker¢) — dimp ker ¢ — h%(G F7S,Ad0). One can show, cf. [Kis07, proof of
Lemma 4.1.5],

dimg m 0.0 /(M p0.0)?, @) = 415| + h' (Grs, Ad”) — h)(Grs, Ad®) — 1
F,S F,S

and
dimpm 0.0 /((m0.0), @wg) =415 + > _(h'(Gy, Ad®) — BY(G,,, Ad°) — 1).
s s vES
So,

dimg coker¢ — dimg ker¢ = dimp m ;0.4 /(M ,0.6), @g) — dimpm 0. /(W 40.)%, ©E)
F,S F,S S S
=S| — 1+ h'(Gps,Ad°) — h"(GRs, Ad°)
— Y (WG, Ad) — 1O(G,, AdY)). (4)
veES
The Poitou—Tate sequence implies
h%(Grs, Ad°) = B*(Grs,Ad%) = Y " 1h*(Gy, Ad°) + 1°(Grs, (Ad”)*(1)).
veS

Combining this with (4), we have
g — r > dimy coker¢ — dimp ker¢ — h%(GF,S, AdY)

> |S| = 1= h%(Grs, (Ad°)*(1) = x(Grs, Ad%) + ) X (G, AdY), (5)
ves
where x(Grgs,Ad’) and x(G,,Ad’) denote the global and local Euler characteristics,
respectively, as F-vector spaces.

For v|oo we have h'(G,, Ad®) = h?(G,,, Ad°) since G,, is cyclic, and so x(Gy, Ad®) = hO(G,,
Ad®). For v finite the local Euler characteristic formula gives x (G, Ad®) = 1, when v { p, and
X(Gy, Ad®) = —3[F, : Q], when v|p. The global Euler characteristic formula gives x(Gr,s, Ad®) =
=3[F:Ql + Xy h%(G,, Ad%). Equation (5) then becomes

g—r > —1-h%Grs, (Ad%)*(1)), -

We will use the above lemma to show that a certain quotient of R% ¢ (actually a quotient
of Rp s tensored with an certain Iwasawa algebra) has an appropriate presentation in order to
apply the connectivity result, Corollary 1.1.7.

1262

https://doi.org/10.1112/50010437X1300780X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1300780X

2-ADIC RESIDUALLY DIHEDRAL (GALOIS REPRESENTATIONS

1.6.3 Let X be a fixed set of places not containing any places above p or co. For each v € X
fix a continuous character v, : G, = O such that v,([,) is finite and prime to p, and such that
= 1|, (enlarging O if necessary). We further assume the following.

(a) For vlp, pla, = (*x,), where we fix the choice Y, in the case that p|¢, is the direct sum of
two distinct characters.

(b) Forv e ¥, plg, = (%%; ).

(c) For any Archimedean v, ¢|g, = 1.

(d) That p is unramified outside ¥ U {v|p} U {v|oo}.
Fix a finite set of places Sy, disjoint from XU {v|p} U{v|oo} and set S = Sy, UX U{v|p}U{v|oc}.
For each v|p, let 1, be a character of the torsion subgroup of G2P(p). Then 7, corresponds to a
unique minimal prime of A(G,,) = O[[G2"(p)]], which we denote by g,,,. We denote the quotient
A(Gy)/ay, by A(Gy,ny). Note that giving the tuple (1,),|, is equivalent to giving a character n

on the torsion subgroup of Hv|p G2 (p). For each v € S, let EE ¥ denote the CNLgp-algebra given

by:
(a EE’¢ = R/%(gmnv) as in §1.4.3, for v|p;

)
(b) EDW RD’A"St as in Proposition 1.5.4, for v € ¥;

) RD¢ R} 1asin Proposition 1.5.6, for v|oo,
(d) Rfd} = RS as in part (i) of Proposition 1.5.2, if v € Sy,.
Let Ry’ = ®uesRy s MGp) = Gyp A(Gy), and A(Gyp, 1) = @y A(Gy, 10). Note that Ry
quotient of

( |p(RD @ AGy,mw))) QveS,ulp REW = (Ques RE) ® A(Gp’ ),

and that A(Gp,n) represents the functor on CNLp that sends a CNLp-algebra A to the set of
tuples (Xv), jp» Where each x, is an A-valued character of G, that reduces to ¥, modulo the
maximal ideal of A, and whose restriction to the p-power part of the torsion subgroup of G2 is
equal to 7.

PROPOSITION 1.6.4. If p = 2, assume that for each v|2, either F, contains a fourth root of unity
or [F, : Q2] > 3. Assume also that p|g, is either the trivial representation or that its image has

order p for each v|p. Then Eg’w is an O-flat domain of dimension 1+ 3|S|+ [F : Q).

Proof. By Propositions 1.4.12, 1.5.4, 1.5.6, and part (ii) of Proposition 1.5.2, each of the Rf’w
an O-flat domain of relative dimension:

(i) 34 2[F, : Q) if v|p;
(i) 3ifve ¥
(iii) 2 if v|oo;
(iv) 3if v € Sy
and so Eg’¢ is O-flat of relative dimension
S UB42AF Q)+ Y 3+ ) 2=3[5+[F: Q)
v|p vEXUSur v|oo

To see that it is a domain, consider a finite extension E’/E with ring of integers O and residue
field F’. It follows from Proposition 1.3.3 that RE ®e O’ is the universal lifting ring on CNLy/ for
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the representation p|g, ®rF’, and it follows easily that EE ’¢®@ O’ are the corresponding quotients
on the category CNLe.. Applying Propositions 1.4.12, 1.5.4, and 1.5.6 to Rf’“’ ®o O, we conclude
that EE ’w[l /p] is geometrically integral. Then Eg’¢ is a domain by Proposition 1.1.4. O

1.6.5 Now fix a finite set of primes @ disjoint from S. Letting RE = ®pes RS, define
-0 O 5 7D1’¢)
Rpsug = Rrsug @rg Rs
and - -
D D, 5 D
Rrsuq = Resug @po Rs™
Note that R% sug and RE{?UQ are quotients of R% SUQ & A(Gp,n). We then define Efﬁgu@ to be
the image of R? SUQ ® A(Gp, n) under

~ D’ ~ iD,'I/)
R%,SuQ @ A(Gp,n) — RF,gUQ ® A(Gp,n) — Rp'sug-

If E'/F is finite with ring of integers O’, a local O-algebra morphism Rpsug @ A(Gp) — O

factors through E% sug if and only if the corresponding deformation Vor and tuple of characters
(Xw)v|p satisfies:

(a) det Vor = tbep;

(b) for each v|p, there is a G,-stable line L in Vi, and the action of G, on Vi//L is given
by Xo;

(c) for each v|p, the restriction of x, to the p-power torsion subgroup of G;‘}b is equal to ny;

(d) for each v € X, Vior|g, is an extension of v, by vy€p;

(e)

(f) for each v € Sy, Vor|q, is unramified.

for each Archimedean v, V|, is not the trivial representation;

Note the second last condition is redundant, as it is implied by the first. However, we will later
have to consider the ng—map Eg’ suQ —> E}D;”gUQ, and the oddness condition is not forced on

RIDQ sug- Also note that if we had omitted the primes Sy from S entirely, the resulting ring
E% sug would have been the same. We include them because it will be useful later in §4 to

ensure that the local framed deformation ring Rg’w surjects onto a certain Hecke algebra, as well
as to ensure that a certain group action is free.
If A is a CNLp-algebra, and z,2’ € Spf(RE’lspUQ ® A(Gp,n))(A) are two A-points with

the same image in Spf(R%SUQ(gA(Gp,n))(A), i.e. give rise to the same deformation, then

z € SpfRp h,0(A) it and only if @/ € SpfRp g,0(A). It follows that Ry.g,q — Ry sug is formally
smooth of relative dimension 4|S| — 1.

The following proposition will allow us to invoke Corollary 1.1.7, which is crucial to the
Sinner—Wiles strategy.

PROPOSITION 1.6.6. Assume that p|q, is either the trivial representation or that its image has
order p for each v|p. If p = 2, we also assume that for each v|2, either F,, contains a fourth root
of unity or [F, : Q2] > 3. There is a presentation

Eﬁ,s = A/(f1,--s fm)
with A a domain, and dim A —m > 1+ [F : Q] — h%(G s, (Ad)*(1)).
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Proof. Since Fﬁ g — ﬁ%’g is formally smooth of relative dimension 4[S| —1, RE{? is isomorphic

to a power series over Rg g in 4|S|—1 variables, and it suffices to show that there is a presentation

7D, ~
RF,? = A/(f17)fk)
with A a domain and dim A — k > 4|S| + [F : Q] — h°(GF.s, (Ad")*(1)). By Proposition 1.6.4,

Rg’w is a domain of dimension 1+ 3|S| + [F' : Q]. The presentation in Proposition 1.6.2 yields a
presentation

Rps 2Ry ler, . xg)l/(frye o fr)

)

with g — 7 > [S] — 1 — h%(Gr.s, (Ad®)*(1)). Take A = Rg *[[z1,. .., z,]]. O

1.6.7 Let @ be a set of places of F' disjoint from S. Let Fg denote the maximal abelian pro-p
extension of F' unramified outside of () and split at primes in S. Note that Fg /F is finite, since
S contains all of the primes above p. Let Gg = Gal(FS /F) and let G, denote the diagonalizable
CNLp-group as in §1.2.2. For any CNLp-algebra A, G*Q(A) is the subgroup Hom(Gg, A*) that
reduce to the trivial morphism modulo m4.

There is an action of GZ‘Q on SPfRE“,SuQ given as follows. Let A be a CNLp-algebra, and
let V4 be a deformation of Vg to A. If x € G*Q(A), viewing x as a character of Grsug, we
have a deformation V4 ® x. In this way we get an action of G*Q on SpfRrsug. This action

extends to an action on Spf(RE g 0 ® A(Gpum) by (Va, {Butues: Dxohup) = (Va @ x. {Bu}oes.
{Xv}u|p)- For any v € S, since Fg is split at v, the lift of p|g, given by V4|g, and 5, is equal
to the lift given by (V4 ® x)|g, and S,. Thus, the action of G, commutes with the morphism
Spf(R%SUQ ®A(Gp,m)) — Spf(RE’w ® A(Gp,m)). Letting EE”" and EIDT’SUQ be as in §1.6.3, we
get an action of Gg, on Spfﬁ%SUQ that commutes with Spfﬁ% suQ — Spfﬁg’w. Note that the
map (Va, {Bv}ves, {Xv}olp) = det Va(toe,) ™! determines a morphism ) : Spfﬁ%SUQ — G{, such
that for any CNLo-algebra A, g € G{,(A) and z € Spfﬁ%SUQ(A), we have dg(gz) = ¢*5g ().
The natural surjection Ei suQ —> EE{?UQ identifies Spfﬁ?ﬁuQ with the closed formal subscheme
-0 .

of SpfRp g given by dg = 1.

If p = 2, we denote by sz the 2-torsion subgroup of G7,, i.e. the diagonalizable CNLp-group
(Gq/2Gq)*. For x € GF) 5(A), we have x? = 1, hence the action of Gy on Spr%’SUQ7 respectively
on Spfﬁ% su@» induces an action of sz on SprE,”gUQ, respectively on Spfﬁ%’gUQ.

If p = 2 and p has solvable image, then there is a unique quadratic extension L/F such that
pla, is abelian, since in this case the image of p has order twice an odd number.

LEMMA 1.6.8. Let p = 2. Assume that if p has solvable image, then some v € S does not split
in L/F, where L is the unique quadratic extension for which p|q, is abelian. Then if Q is a set
of places disjoint from S, the action of GZ? on Spfﬁ% suq 1s free.

Proof. This is essentially [KW09, Lemma 5.1]. It suffices to show that the action of G, on
SpfRrsuq is free. If p is non-solvable, then its projective image is isomorphic to SLa(Far), for
some 1 > 1. If p is solvable, then by our assumption on S and the fact that p(Gp) has odd
order, we see that the fixed field of the kernel of p and FS are disjoint. In either case, if y is a
non-trivial element of G¢)(A4), we can find g € Gpsuq such that x(g) # 1 and trp(g) # 0. Then,
if V4 is a deformation of p to A, we have x(g) tr pa(g) # tr pa(g), for any p4 in the deformation
class of Vy, since trp4(g) is a unit. O
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1.7 Deformations of dihedral representations
Fix continuous and absolutely irreducible

p: GF,S — GLQ(F)

and let Vg denote its representation space. Let A be a CNLp-algebra and V4 a deformation of
V. We say V4 is L-dihedral, for a quadratic extension L/F, if G, acts on V4 through an abelian
quotient, but G does not. We say V4 is dihedral if it is L-dihedral for some quadratic L/F.
Note that V4 is L-dihedral only if Vg is L-dihedral. If A is a domain with field of fractions K,
then if V4 is L-dihedral and V4 ® 4 K is irreducible, for K an algebraic closure of K, then one
can show there is a character x : Gy — A such that V = Indgf X- A subgroup H of GLy(F) is
called dihedral if its image in PGLy(F) is isomorphic to a dihedral group. It is easy to check that
VF is dihedral if and only if p(G) is dihedral. From this we see that if p = 2, there is a unique
quadratic L/F such that Vf is L-dihedral, as the order of p(GF) is twice an odd number.

1.7.1 We first establish some criteria for determining when the intersection of the image of
a deformation with SLo is Zariski dense.

LEMMA 1.7.2. Let A be a CNLp-algebra domain of characteristic p with fraction field K. Note
that A is canonically an F-algebra. An element g € GL,,(A) has finite-order eigenvalues if and
only if its characteristic polynomial has coefficients in F.

Proof. Let K be an algebraic @Sure of K, and let F be the algebraic closure of F in K. If ¢
has finite-order eigenvalues in K X, then the characteristic polynomial of g has coefficients in
FN A =T. The other direction is clear. O

LEMMA 1.7.3. Let A be a CNLp-algebra domain of characteristic p with fraction field K, and
let K be an algebraic closure of K. Let V4 be a deformation of Vi to A such that the map
imp4 — imp has non-trivial kernel. The image of ps contains an element with an infinite-order
eigenvalue in K~

Proof. Take non-trivial ¢g; € ker(impq — imp). If g; has finite-order eigenvalues then its
eigenvalues must be 1, and g; is unipotent. There is a basis of V4 such that

)

with 0 # & € myu. Since Vg is irreducible, there is go € imp 4 such that, with respect to our fixed

basis,
_fa b
g2 = c d

with ¢ € A*. If trgo € F, then trg192o = cx +a+d = cx + trgs ¢ I, since trgo € F and
0 # cx € my. We have thus shown that there is ¢ € imp4 with tr g ¢ F. The lemma then follows
from Lemma 1.7.2. |

LEMMA 1.7.4. Let A be a CNLp-algebra domain and let V4 be a non-dihedral deformation of
Vi such that for some o € G, pa(o) has eigenvalues whose ratio is not a root of unity. Then
for any finite index subgroup H of G, pa|g is absolutely irreducible.

1266

https://doi.org/10.1112/50010437X1300780X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1300780X

2-ADIC RESIDUALLY DIHEDRAL (GALOIS REPRESENTATIONS

Proof. 1t suffices to consider the case when H is an open normal subgroup of Gr. Let K denote
the fraction field of A and let K be an algebraic closure. Assume there is an H-stable subspace
W of V4 ®4 K. Since H is normal in G, gW is also H invariant for any ¢ € Gp. Take n > 1
such that ¢ € H. Then, for each g € Gp, g\ is an eigenspace for p4(c™). Since the ratio of
the eigenvalues of p4(0) is not a root of unity, the eigenvalues of p4(c™) are distinct. Hence, any
g € G must permute the two one-dimensional eigenspaces for p4(c™). So, either W is G stable
or there is an index two subgroup N of G such that W is N stable and Gr/N interchanges the
two eigenspaces for p4(c™). In the first case p4 is reducible over K, contradicting irreducibility
of V¢ ®F F, and in the second it is dihedral, contradicting our assumptions on V. a

ProrosiTIiON 1.7.5. Let A be a CNLp-algebra domain with fraction field K of characteristic
p and let V4 be a deformation of Vg with finite-order determinant. Fix a basis of V4 and let T’
denote the image of Gr in GLa(A) with respect to this basis. If I' — GLo(FF) has non-trivial
kernel, then I' N SLo(K) is Zariski dense in SLg k.

Proof. By Lemma 1.7.3, there is some g € imp4 with infinite-order eigenvalues. Since det p4 is
finite order, the ratio of the eigenvalues of g is not a root of unity, and V4 satisfies the assumptions
of Lemma 1.7.4. So, for any finite index subgroup H of G, pa|p is absolutely irreducible.

Let I'' = I' N SLy(K) and assume that I'! is not Zariski dense in SLy k. Let 'l denote the
Zariski closure of I'! in SLo /i and (ﬁ)o its connected component at the identity. Our assumption
implies dim(T'1)° < 2, and so (T'1) is solvable. Then (I'1)° acts reducibly on V4 ®4 K, where K
is an algebraic closure of K. Since the determinant of Vj is finite, I N (T'1)° is finite index in

'l so there is a finite index subgroup H of G, such that pa|y acts reducibly on Vi ®4 K, a
contradiction. O

We note that the assumption that I' — GLgy(F) has non-trivial kernel is satisfied if Vg is
dihedral and V4 is non-dihedral.

COROLLARY 1.7.6. Assume that Vg is L-dihedral. Let A be CNLp-algebra domain of
characteristic p, and let V4 be a non-dihedral deformation of Vg with finite-order determinant.
Then there is 0 € Gp ~ G, such that ps(o) has infinite order.

Proof. Let K denote the fraction field of A. Fix a basis of V4 and let I be the image of p4 in
GL2(A) with respect to this basis. For each (a,b) € F x F*, let X5 be the subvariety GLz/x
defined by trg = a and det g = b, and let X be the union of the X, for each (a,b) € F x F*.
Note that each X, 5, and hence X, has dimension 2. Note also that if g € GLa(A) is of finite
order, then g € X (K), by Lemma 1.7.2.

Assume that pa(o) is finite order whenever 0 € Gp ~\ Gr. Let H = ps(Gp) C T, and
let g = p(o) for some o € Gp ~ Gr. By assumption, every element of gH is finite order, so
gH C X(K). Then I' = HU gH C gX(K) U X(K), so the Zariski closure of I" is contained in
gX U X. Since X has dimension 2, so does gX U X. Since the Zariski closure of I' is contained
in a 2-dimensional subvariety, V4 must be dihedral, by Proposition 1.7.5. O

1.7.7 Let L/F be a quadratic extension such that p is L-dihedral. Write p = Indgf X, for

X : G — FX, and let ¥ : G, — O* denote the Teichmiiller lift of . Let L2"/L denote the
maximal abelian pro-p extension of L unramified outside S. Set Ry_g; = O[[Gal(L%/L)]] and let
.G —> RE_ 4i be the canonical character. We have an L-dihedral deformation of Vg to Rp.g

given by Indgf xV. It is easy to see this deformation is universal for L-dihedral deformations,
and that there is a surjection Rp g — Rp.qi, hence the locus of all L-dihedral points in Spec Rr s
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is closed. As there are only finitely many quadratic extensions L/F such that p is L-dihedral,
the locus of all dihedral points in Spec Rpg is closed. The same is then true for any quotient
of RF’ S.

The following two lemmas record some properties of dihedral deformations and will be used
later to ensure certain deformations are non-dihedral.

LEMMA 1.7.8. Let L/F be a quadratic such that p is L-dihedral. Denote by Lg the maximal
Galois subextension of L% / L such that the non-trivial element of Gal(L/F) acts on Gal(Lg /L) as
—1. Let Rr, s — A be a surjection with kernel containing wg, and let V5 denote the corresponding
deformation. If det V4 is the Teichmiiller lift of det Vi to A*, and V4 is L-dihedral, then

dim A <r1kz,Gal(Lg/L).

Proof. Set R, 4 = Ol[[Gal(Lg/L)]] and let ¥V~ : G, — (R, 4)* be the canonical character.
We have an L-dihedral deformation of Vg to R; ; given by Indgf x¥. This deformation is
universal for L-dihedral deformations whose determinant is the Teichmiiller lift of det Vg. There
is a surjection Rp s — Rp.qi, and our assumptions imply that the surjection Rp g — A factors
through

Rps — Ry 4 — F[[Gal(Lg/L)]],

from which the result follows. O

The following lemma is taken directly from [Ski09, Lemma 2.2.1]. We include it for ease of
reference later.

LEMMA 1.7.9. Let L/F be quadratic such that p is L-dihedral. Assume that there is some v|p
in F that does not split in L. Let A be a CNLp-algebra domain, and let V4 be a deformation of
Vr to A. If V4 is dihedral and there are characters x1, x2 : G, — A* such that

trpa(o) = x1(o) + x2(o)
for all o € G, (and any p4 in the deformation class of V), then x1/x2 had order at most two.

Proof. Let w denote the unique place in L above v. Note that G, is index two in G,, and we
can find o € G, such that o generates Gal(L/F). By the theory of pseudo-representations, we
see that (Valg,)® = x1 ® x2-

By assumption, there is a character y : G;, — A* such that V4 & Indgf x- Note that Va|q, =
X @ X', where x’ denotes the conjugate of x by o. Replacing x by x/, if necessary, we can assume
Xlc., = x1la, and X'|¢, = x2|lG.,- But since x1 and x2 are characters of G, we have

so x1/x2 factors through Gal(L,,/F). O

2. Modular forms

In this section we recall Hida’s theory of p-adic Hecke algebras in the case of a totally definite
quaternion algebra over a totally real field. We recall some facts about the associated Galois
representations and define the particular Hecke algebras and Hecke modules that will be used in
the patching argument in § 4.

In the first subsection we recall the definition of modular forms on a totally definite quaternion
algebra over a totally real field and their connection with cuspidal automorphic representations
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of GLy. This is all standard, except that we allow the possibility of non-compact subgroups
as in [KW09, §7]. We do this for the following reason. If we have a fixed central character
for our space of modular forms, and f is a eigenform with Iwahori level at v, then there are
two possibilities for the Hecke eigenvalue at v. When p is odd, the choice for the eigenvalue is
uniquely determined modulo p, and so the local representation of G, associated to f is uniquely
determined by the reduction of f modulo p. When p = 2 this is not the case, and in order to
ensure that our local deformation ring at v is a domain, we only want to allow lifts of a fixed
mod p eigenform that have a specified Iwahori-level eigenvalue.

In the next subsection we recall the definition of the (finite-level) nearly ordinary Hecke
algebras and the corresponding nearly ordinary subspace of modular forms.

In the following subsection we construct the universal nearly ordinary Hecke algebra and
a certain avatar of p-adic Hida families. This is done following [Hid89a], except that we deal
only with the totally definite case, and so things become much simpler. We also allow certain
non-compact subgroups, but this does not pose an issue, provided that one assumes that the
level is small enough at some fixed place to guarantee a standard neatness condition.

In the next subsection we recall properties of Galois representations associated to our
quaternionic modular forms and the construction of large Galois representations with values in
our universal Hecke algebra using pseudo-representations and a theorem of Nyssen and Rouquier.

The final subsection will deal with augmenting the level of our Hecke modules at auxiliary
primes, necessary for the patching argument in § 4. Normally, one augments the level at primes v
that are congruent to 1 modulo p, and such that the fixed residual representation is unramified at
v with the Frobenius having distinct eigenvalues. This is done to ensure there are no lifts of the
fixed residual representation that are Steinberg at v. As in [SW00, SW01], it will be necessary
for us augment the level at places v for which the residual representation does not have distinct
eigenvalues. Due to this, we cannot ensure that there are no Steinberg-at-v lifts. However, we do
show that any such are annihilated by a particular element, cf. Lemma 2.5.3, which allows us to
prove a control theorem for these auxiliary primes that is necessary for the patching argument
in §4.

We now introduce some notation and assumptions that will be used throughout this section.
We denote by F C Q a totally real field, O its ring of integers, and A its ring of adeles. If S is
a finite set of places of I, we let Ag, g denote [] g F, and A}i denote H;¢ g Fy. If w is a rational

place, we will write Ap,, and A} instead of Ap ), and A}vlw}; in particular, A% denotes the
ring of finite adeles.

Recall we have fixed algebraic closures Q, of @, as well as embeddings Q < Q, and Q — C.
Let Jr denote the set of embeddings F — Q. Via our fixed embeddings of Q into @p and C,
we view Jp as the set of embeddings of F' into @p and C, respectively. Let E/Q,, be a finite
extension containing all embeddings of F' — @p. Let O denote the ring of integers of E. Given
an element z € F ®g Qp =[], Fv, and k € Z7F | we let 2% denote [lres 7(2)% € E. We call a
pair k = (k,w) € Z/F x Z'F an algebraic weight if k,; > 2 for all 7 and k, + 2w, is independent
of 7 € Jp. For each finite place v of F', we let m, denote the maximal ideal of Op, and k, the
residue field.

We will let U, = (Op ®z Z,)* = Hv|p O, . For any a > 1, we let

Uy = {(20)y)p € Up : 7, = 1 mod my, for each v[p}.

For a > 0 we set A(U,) = O[[U,]]. Note that A(Uy) has dimension 1 + [F': Q], is local if a > 1,
and is isomorphic to a power series over O if a is sufficiently large.
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For v a finite place of F', and a > 0, we let Iw(v?), respectively Iw; (v%), denote the subgroup
of GL2(OF,) that are upper triangular, respectively upper triangular unipotent, modulo m¢.
Given integers b > a > 0, we let Iw(v®?) = Twy (v®) N Iw(v?).

For a topological O-module M, we denote by MV the Pontryagin dual of M, i.e. MV
Home (M, E/O). This assignment is functorial and f + f" gives an isomorphism Endp (M)
Endp(MVY). In particular, if a commutative ring R acts on M, then it acts naturally on M
(r¢)(m) = ¢(rm). Pontryagin duality is not an exact functor, but if we restrict to the subcategory
of locally compact Hausdorff O-modules and strict morphisms, i.e. morphisms f : M — M’ such
that the induced map M/ker f — imf is an isomorphism of topological O-modules, then if

g el

My -5 vy s M

is exact and g(Ma) is closed in M3,
My 25 my Loy
3 2 3

is also exact, see [Mil06, Proposition 0.20]. We will always be in such a situation in what follows,
so we will occasionally refer to the ‘exactness of Pontryagin duality’ without further comment.

2.1 Quaternionic cusp forms

Let D denote a quaternion algebra with centre F' ramified at all infinite places and split at all
places above p. Denote by X the set of finite places at which D ramifies. Let vp denote the
reduced norm of D. Fix a maximal order Op of D and, for each finite place v at which D is split,
an isomorphism Op®e, Of, = M>(OF,) of OF,-algebras. This determines an isomorphism DS =
GLy(F,) sending (Op) to GLy(Of,). Using this, we identify (D ©p A%™)* with GLg(A%™).
We also fix a locally algebraic character ¢ : F*\(A%¥)* — O*, and for each v € ¥, unramified
characters v, : FX — O* such that 72 = /| R

2.1.1 Let A be a topological O-module. For each 7 € Jr, we have an isomorphism Op ®o,, -
O = M5(0O). Via this isomorphism, given 7 € Jg, k; > 2 and w, € Z, we can view

Sym* 242 @0 detVr O?

as an Op ®z Zy = Mayx2(OF ®z Zy)-module, which we denote by Wi, ., (A). Given an algebraic
weight £ = (k,w) € Z'F x Z/F | we set W,.(A) = ®@rc. 1, W, w, (A). Note W, (A) = W,.(0) @0 A.

Concretely we can view W, (O) as the space of O-linear combinations on the monomials
H XfT_2_jTY7‘_jT
Te€JR

for 0 < jr < k; — 2, where the action of Op ®z Z, = Max2(OF ®z Z,) is given by

(5 ) T 3822 = oty T o,

Cp T€Jp Te€Jp
*‘T(cp)};)kT_Z_UT(T(bp))(T'+'T(dp)y2)h:

Following [KWO09], we will consider some non-compact open subgroups U = [[, U, of (D ®p
A%)* in order to ensure that certain local deformation rings are domains. This is only necessary
when p = 2, which is our principal focus, but we do this for all p simply to avoid cases and to

1270

https://doi.org/10.1112/50010437X1300780X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1300780X

2-ADIC RESIDUALLY DIHEDRAL (GALOIS REPRESENTATIONS

treat all primes at once. To facilitate this, we extend the action of (Op ®z Z,)* on W, (A) to an
action of
(D ®@p AFP)* x (Op @7, Zy)* = [[ Do x [ [(OD)
vip vlp
by letting D,, act via v, ! ovp if v € ¥, and trivially if v ¢ ¥ U {w|p}.
Let ¥/ C ¥. We will call an open subgroup U = [[, U, of (D ®p A¥)* a (X' C X)-open
subgroup if:

(a) U, € GL2(Op,) for v ¢ 3;
(b) U, = D, for v € ¥'; and
(c) Uy=(0p)y forve X\ X

Let x be an algebraic weight and let U be a (X' C ¥)-open subgroup. We let S, (U, A) denote
the space of functions

[ D\(D®p AF)" — Wi(4)

o

such that f(zu) = u~'f(g) for all u € U and f(zz) = ¥(2) f(x) for all z € (A%)*. For this space
to be non-zero, there must be a submodule of A on which ¢(z) = zg_k_“’ for all z € UN(AY)*.
In the case that k = ((k,...,k),(0,...,0)) for some k > 2, we will also write Sy (U, A) for
Sk (U, A). Note that for v € ¥’ we have f(zg,) = v o vp(gv) f(x) for all g, € D,.

Choose t1,...,t, € (D®pAF)* such that (D®pAR)* =, D*t;U(A¥)*. Then the map
f— (f(t1),..., f(tn)) defines an isomorphism of O-modules

5.0 A) < @ WA 0 D
=1

which is also an isomorphism of A-modules if A is an O-algebra. If for any t € (D @p AY)*, we
have

(UAR)* Nt 'D*t)/F* =1,
then A S, (U, A) is an exact functor and S, (U, A) = S, (U, O) ®o A. Note, however, that

if A is O-flat, in particular if A = E, we still have Sy, (U, A) = S, (U, O) ®p A without any
assumption on U.

2.1.2 We record a few lemmas regarding the structure of the isotropy groups (U(A%)* N
t=1D>*t)/F*. Let D! denote the subgroup of D* of elements of reduced norm 1, and let U’ =
U N OJ. Note that U’ is open compact. Set V' =[], . (’)}X;w. Then the reduced norm gives an
exact sequence

0 — (UV Nt IDW) {1} — (UAX)* Nt™ID*t)/F* — (((AX))2V N F*)/(F*)?, (6

~—

and there is an exact sequence
0 — OF/(0F)? — ((AF) )’V N F*)/(F*)? — Cl[2] — 0 (7)

with Cl the class group of Op. The first two of the following three lemmas are taken directly
from [KW09, §7].

LEMMA 2.1.3. Let U be a (¥ C X)-open subgroup of (D @p A¥)*. Let w be a finite place not
above p at which D is split. Let N,, be the cardinality of GLa (k).
The exponent of a Sylow p-subgroup of (U(A)* Nt~1D*t)/F* divides 4N,,.
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Proof. First assume that U is compact. Then UV Nt~! D' is discrete and compact, hence finite,
and injects into U,,V,,. Note that any finite subgroup of U,,V,, of exponent a power of p injects
into GLa(k,,) under reduction modulo my,. By (7), (((A®)*)2V N F*)/(F*)? has exponent 2,
and so any p-Sylow subgroup of (U(A%)* Nt~1D*t)/F* has exponent dividing 2N,

Now assume that U is not compact. Let U’ denote the maximal compact open subgroup of
U. Since U(AY)*/U'(A¥)* is a finite group of exponent 2, the same holds for the quotient of
(UAR)*Nt~1D*t)/F>* by (U'(A®)*Nt~tD*t)/F*. From what we know in the compact case,
we get that the exponent of any p-Sylow subgroup of (U(A¥)* Nt~1D*t)/F* divides 4N,,. O

Let v be a finite place of F' at which D is split. If U, D Iw(v), then any character x, : kS — O*
can be viewed as a character of U by

a b _
Xv (c d) = Yolayd, ' mod m,).
Since x, is trivial on U N (A%)*
trivial on (A%)*.
LEMMA 2.1.4. Let @Q be some fixed set of finite places of F' at which D is split. Fix another
finite place w ¢ @ at which D is split, and let N,, be the cardinality of GLa(ky). Let U be a
(X C ¥)-open subgroup of (D @ A¥)* such that U, 2 Iw(v) for every v € Q. Assume that for
every v € ), the order of the p-subgroup of k; is divisible by the p-part of 2p(4N,,).
There is a character x = [[,co Xv : [Loeq ko' — O such that:

, we can extend X, to a character on U(AY)* by letting it be

(i) each x, Is non-trivial of order a power of p, and has order at least four if p = 2;
(ii) viewing x as a character of U(A%)* as above, x annihilates (U(AS)* Nt~1D*t)/F* for
any t € (D @p AF)*.

Proof. Our hypothesis implies that there is a character X' = [[,cq Xy  [[,eq ko = O of order
a power of p, with each x/, of order divisible by the p-part of 2p(4N,,). We then set x, = (x,)*Nw
and xy = HUEQ Xv- Note that the order of y is divisible by the p-part of 2p. Since the exponent
of a p-Sylow subgroup of (U(A¥)* Nt~1D*t)/F* divides the p-part of 4N, by Lemma 2.1.3, x
is trivial on (U(AX)* Nt~1D*¢t)/F* for any t € (D ®@p AR)*. O

9

LEMMA 2.1.5. Let v be a finite place of F at which D is split, and let U be a (X' C X)-open
subgroup of (D ®p AY)*. There is some n > 1 such that if U, C Iwy(v"), then (U(A%)* N
t7ID*t)/F* =1 for any t € (D @p AR)*.

Proof. Since D*\(D ®@p AY)*/U(A)™ is finite, it suffices to show the existence of such an
n > 1 for fixed t € (D ®p A¥)*. Let 1 denote the set of all roots of unity ¢ € Q such that
[F(¢) : F| < 2. Take k > 1 sufficiently large such that for any ¢ € p with ¢ # +1, we have
¢+ (1 # 42 mod mk. We take n such that n > 2k and such that 2 ¢ m?.

Let U’ denote the maximal compact subgroup of U, D! denote the subgroup of D* of elements
of reduced norm 1, and set V =[], ., Op. . First consider the subgroup (U'VNt~'D't)/{£1} of
(U'(A)*Nt~1D*t)/F*. Note that U’V Nt~1 D% is finite, since it is compact and discrete. Take
uz € U'V Nt~ 1Dt with v € U’ and z € V. Since uz € t~' D't has finite order, tr(uz) = ¢ + (7!
for some ¢ € p. Our assumption on U, implies vp(u,) € 1+m?, and so 1 = vp(u)z? implies that
Zy € 1+ mff, by choice of n. Then

CH T =tr(uz) = tr(upzy) = zotr(u,) € £2 + mF,
which implies ¢ = #1, by choice of k, and thus that (U'V Nt~1D4)/{£1} is trivial.
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Since (U'V Nt~tD%)/{#1} is trivial, the reduced norm induces and injection
(U'(AF)* Nt D) [F* — (V((AF))? N FX)/(F)?,

and by (7), (U'(A)* Nt~1D*t)/F* is a finite 2-group. Since U(A)*/U'(A%)* is a finite
group of exponent 2, (U(A®)* Nt~1D*t)/F* is also a finite 2-group. It thus suffices to show
that if g € U(A)* Nt~ D>t is such that g? € F¥, then g € F*. If g2 € F* and g ¢ F*, then
trg = 0. But U(A®)* Nt~1D*¢ injects into U, F, and since 2 ¢ m?, elements of U, F,* have
non-zero trace. O

2.1.6 Set U =UNO}. For g € (D®p A%O’Z), if U'gU" = | |, 9:U’, we have UgU = | |, ¢;U.
If ge (Dop ARP)* x (Op ®z Zy)™ there is a double coset operator

[UgU] : S,.m/,(U,A) —> Sﬁ’zp(V,A)

given by ([UgU]f)(xz) = >, 9if(xg;). If Ais an E vector space, then this double coset operator
is defined for any g € (D ®@p AF)*.

If V C U is another (X' C X)-open subgroup with V normal in U, then the group A =
UAR)*/V(AR)* acts on Sy (V, A) by ((0)f)(x) = usf(zus), where us is any lift to U of
d € UAY)*/V(AF)*. We will have several occasions to use the following lemmas.

LEMMA 2.1.7. Let U and V be (¥’ C X)-open subgroups of (D @p AY¥)* with V normal in
U.If for all t € (D ®p AX)* we have (U(A¥)* Nt~1D*t)/F* =1, then S, 4(V,0) is a free
O[A]-module.

Proof. Choose {t1,...,tn} C (D ®p A%)* such that (D ®p A¥®)* = ||’ D*t,U(A¥®)*. Our
assumption on U implies we have an O-algebra isomorphism

Sk (U,0) = P W,
i=1

f — (f(tl)v s 7f(tn))

For each § € A, choose a representative us € U. Then, (D@pARP)* =" [ scp D tiusV (AF)*
and there is an isomorphism of O[A]-modules

Sn,w(‘/u O) o @ W, ®0 O[A]
=1

fr— <Z us f(ti) @ 5_1> :
1<i<n

0EA

From which it follows that S ,(V, O) is a free O[A]-module. O

LEMMA 2.1.8. Let U and V be (¥’ C X)-open subgroups of (D @p AY¥)* with V normal in U
and A = U(AR)* /V(AY)* abelian. Assume that for all t € (D ®p A%)*, we have (U(A%)* N
t1D*t)/F* = 1.

We have that Sy, ,(V, E/O)" is a free O[A]-module, and for v : S, ,(U, E/O) — S, (V, E/O)
the natural inclusion, " defines an isomorphism from the A-coinvariants of Sy ,(V,E/O)Y to
SI{,'(/}(U’ E/O).
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Proof. Let aa denote the augmentation ideal of O[A]. We have
Sen(V, E/O)Y Jap &2 Homoe (S, 4 (V, E/O)[aa], E/O)
= Homo (S,.4(U, E/O), E/O)
= S,u(U.E/O)",

which is the second part of the lemma.

Give Homp (O[A], O) the O[A]-module structure (6A)(r) = A(6r). There is an isomorphism
of O[A]-modules O[A] = Homp (O[A], O) defined by sending 6 € A to (6~1)*, where (671)* takes
value 1 on §~! and 0 on every other v € A. Hence, Lemma 2.1.7 implies that Home (S, 4(V, O), O)
is a free O[A]-module. By our assumption on U, Sy, (V, E/O) = S, 4(V, O) ®0 E/O. Moreover,
since Sy, (V, O) is free over O, we have an O-module isomorphism

Homo(S,m/,(V, O)®p E/O,E/O) = Hom@(Snw(V, 0),0)

given by ¢ — ¢ ® 1. This map is O[A]-equivariant, so the freeness of Homo (S (V, O), O) over
O[A] implies that of S, ,(V, E/O)". 0

2.1.9 We finish this subsubsection by recalling the connection between the O-modules
Sk (U, O) and cuspidal automorphic representations of GLa(Ag). We say an irreducible cuspidal
automorphic representation m of GLa(Ap) is regular algebraic if there is an algebraic weight
k = (k,w) such that for each 7 € I, letting v denote the corresponding infinite place coming
from our fixed embedding Q — C, 7, is the discrete series representation with lowest weight
k; — 1 and central character z ~ sgn(z)¥7|z|27F7=2%r Recall that if V is an open compact
subgroup of GL2(A%) and g € GL2(A%), there is a double coset operator [V gV] on 7" given by

[VgViw = Zgiw

if VgV = |—|z giV.

Set U’ = U N O} Assume that ¢(z) = z27%72% for all z € U' N (A%¥)*. Fix an isomorphism
Q, = C that extends our fixed embeddings Q@ — Q, and Q — C. Define a character ¢ :
F*\A} — C* by 9c(z) = w(z)z;f+2w_22§gk_2w. We also define characters v, ¢ : £ — C* for
each v € ¥ simply via the isomorphism Q, = C. Note that we can view

W,.(C) = ® SymF2C? ® det ¥ C?
Te€Jp

as a representation of DX = (D ®@p R)*.
Let ﬁutg vy denote the set of all irreducible automorphic representations 7w of D with
central character 1¢ such that mo, = Wy (C)* and 7, = v, ovp for each v € ¥/. For 7 € Qlutgwcﬂ

and g € (D ®r A¥)*, there is a double coset operator [U’'gU’] on 7V’ defined in the same way
as the GLa-case. Let C7F v, (D*\(D ®p Ap)* /U’,C) denote the space of smooth functions

d)DX\(D ®FAF)X/U/ — C

such that ¢(zx) = Yc(z)¢(x) for all z € A and ¢(zg,) = Yo,covp(gy)@(x) for all g, € DS with
v € 3. Then

@ V= Home,(o (WH(C)*7 CT[Z?C,E’(DX\(D QF AF)X/U/’ C))

AutP

K, o0
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and the map f — (A = (z = Az lz,f(x)))) defines an isomorphism
A: Sy (U, E) @ C — Hompx (W, (C)*, CF(D*\(D @p Ap)*/U"))

such that A o [UgU] = [U'gU’] oA for all g € (D ®r AY¥)*. Applying the theorem of Jacquet—
Langlands and Shimizu to Qlut,g b, We obtain the following.
PROPOSITION 2.1.10. Define an open compact subgroup V' of GLa(A¥) by V, = U, forv ¢ ¥
and V, = Iw(v) for v € ¥. Let HEwC sy denote the set of all irreducible cuspidal automorphic
representations m of GLa(Afp) such that:

(a) 7 has central character c;

(b) 7 is regular algebraic of weight k;

(¢) my Is square integrable for each v € ¥;

(d) 7y = (yp,c o det) ® St for each v € ¥, where St denotes the Steinberg representation.
There is a surjection of C-vector spaces

JL: S y(U,E)®C— (=)
=
n,wC,Z/

such that:
(i) for g € (D ®p AS")* = GLy(AX™), we have

JLo [UgU] = [VgV]o JL;

(ii) JL is an isomorphism unless k = ((2,...,2),w), in which case the kernel of JL. consists of
the functions that factor through the reduced norm.

2.2 Nearly ordinary Hecke algebras
Keep the assumptions and notation of the previous subsubsection. We further assume that for
each v|p, there is n > 0 such that U, D Iwy(v™).

2.2.1 Recall that ¥ is the set of finite places at which D ramifies. Let S = X U {v|p} U{v:
U, # (Op)}. For any v ¢ S and uniformizer w, at v, the double cosets

do not depend on the choice of @w,. We define operators T}, and S, on Sy, (U, A) by setting

nr=[o (™ )]s wt sa=fo(® )]s

Note that S, is simply multiplication by ¢ (w,). If V' C U is another (X’ C X)-open subgroup,
the natural inclusion Sy (U, A) = Sy (V, A) is equivariant for the T}, and S, such that V, =
GL2(Op,).

For each v|p we fix, once and for all, an element w, € F such that w, is a uniformizer
for F, and lies in O;w for all w|p with w # v. We choose our uniformizers for F, in this way
because, following Hida, we modify the usual Hecke operators at places above p in order to define
the nearly ordinary subspace of S (U, O). This modification will involve a multiplication by a
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power of w,, and having w, belong to F' allows us to compare the nearly ordinary subspace of
Sk (U, O) with nearly ordinary cuspidal automorphic representations of GLa(Af).

Note first that for any g € May2(Op®zZ,) with det(g) # 0, the endomorphism 7(det(g)) ™" g
of Wy, w, (E) stabilizes the O-lattice Wy, (O), hence defines an endomorphism of Wy, (A)
for any O-module A. For each v|p, we then define the operator T, on S, (U, A) by

sl )

Note that 7%, depends on the choice of w, as we are not assuming U, = GL2(Op,). f V C U
is another (X' C ¥)-open subgroup and Iwq(v™) C V,, C U, C Iw(v), for some n > 1, the natural
inclusion Sy, (U, A) = Sy (V, A) is a equivariant for Ty, .

For y e U, = (OF ®z Z,)*, we define two related operators. First we define (y) by

We then define a normalized version (y)"° by

()" =y "(y).

The point of introducing the normalized version is that later we will define an isomorphism
between certain spaces of modular forms of different weights, and this isomorphism will not be
(y)-equivariant, but will be (y)"°-equivariant. Note that an O-subalgebra of Endp (S, (U, O))
containing (y) also contains (y)™° and vice versa. If V' C U is another (X' C X)-open subgroup
then the natural inclusion S, (U, A) — S, (V, A) respects the (y) and (y)"°-actions on each
space.

If A is a commutative O-algebra, we denote by T, ,,(U, A) the A-subalgebra of End 4(S (U,
A)) generated by T, for each v ¢ S, Ty, for each v|p, and (y) (equivalently (y)"°) for each
y € Up. If A is not a commutative O-algebra, we denote by T, (U, A) the O-subalgebra of
Endop(Sk,¢(U, A)) generated by the aforementioned Hecke operators. If A is a finite O-module,
orif A=FE/O, then T (U, A) is a finite commutative O-algebra.

2.2.2 Let A be one of the following: O, a finite quotient of O, E/Q, or a finite submodule of
E/O. We call a maximal ideal m of T, (U, A) nearly ordinary if the image of Ty, in T, (U,
A) /m is non-zero for each v|p. Note that since T, ,,(U, A) is finite over O, we have a decomposition

Ty (U, A) = [[ Tuw(U, A
m

where the product runs over the set of maximal ideals of T (U, A). We define the nearly
ordinary Hecke algebra (of weight k, character ¢ and level U with coefficients in A) by

I:;?w(Uv A) = H Tﬁ,iﬁ(U? A)m

mno

where the product runs over all nearly ordinary maximal ideals of T, (U, A). Note that the
projection
Tﬂﬂl’(Uv A) — 2?1/1((]7 A)
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corresponds to an idempotent ey in Ty (U, A), and it is known as Hida’s idempotent. Letting

Tp = HTwm

vlp

it can be checked that
eq = lim T,

n— oo P

We also define the nearly ordinary subspace of S, (U, A) by
Egp(U7 A) = eHSn,lp(Ua A)

2.2.3 Let 7 be a cuspidal automorphic representation of GLy(A ) of weight . For each v|p,
since w, is an element of F', we can make sense of the operator

T, = wy™ [v (w” 1) v]

on 7V for any compact open subgroup V, viewing Jr as the set of embeddings F — C. We say
7 is p-nearly ordinary (or just nearly ordinary if p is clear from the context) if there is a open
compact subgroup V of GLa(Af) and a non-zero vector = € 7V such that for each v|p, Ty, acts on
x by an element of Q that is a unit in the ring of integers of @p. Note this does in general depend
on our choice of embedding @ — Q,. If 7 is nearly ordinary, then for each v|p, m, is either a

1/2 1/2 1/2 1/2
principal series representation m(n,| |/, po| [o/ ) or a special representation o(ny| [v' ", mu| |0 ')
with @, Wn,(w,) an element of Q that is a unit in Q,, see [Hid89b, Corollary 2.2]. If 7 is nearly
ordinary and 7V # 0, then there is in fact a unique line in 7}> on which T}, acts via a unit in
Q-

Using the notation of Proposition 2.1.10, if we let II'” s denote the subset of H,,€ e
consisting of nearly ordinary representations, then the map J L of Proposition 2.1.10 restricts to

Eno

JL:S9,U B esC— & .
3 ,no

TFGHNJP(()E,

If U, C Iw(v) for each v|p, then any function factoring through the reduced norm of D is not
nearly ordinary, and so in this case JL is an isomorphism on nearly ordinary subspaces. Using
this we can identify T (U , E) with a subspace of endomorphism of @ 7".

Take 7 € Hf 120 - w1th 7V # 0, and fix a non-zero vector x = ®,z, € 7", on which Ty, acts
via a unit in Q, for each v|p. The line generated by x is T, (U, E)-stable, and if 2’ = ®, 1, is
another such vector, the TE?@D(U’ E)-eigensystem given by z is equal to that of 2’. It follows that
we have an F-algebra injection

2?1/1((]7 E) — H@pa
s
where the product is taken over all 7 € HH’;ZO sy With 7V = 0. In particular, Tg?w(U , O) is reduced.
2.3 Universal nearly ordinary Hecke algebras
Keep all assumptions and notation of the previous subsection. We will further assume henceforth
that A is one of the following: O, some finite quotient of O, E/QO, or some finite submodule of
E/O. We will also assume henceforth that U, = Iw(v) for all v|p.
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For integers b > a > 0 we let U (p®?) denote the open subgroup of U given by U (p®?), = U, if
vtp, and U(p»?), = U, NTw(v*®) for v|p. Note that U(p™?) is not the subgroup of U consisting
of elements that are upper triangular unipotent modulo p®, but rather modulo @y, where @, is
the finite idele with (@), = w, for v|p and equal to 1 elsewhere.

2.3.1 For y € Uy, (Y ) normalizes U(p™?), so

Since we have fixed a central character ¥, the natural inclusion S ,(U(p*?), A) —
S (U(p™?), A) identifies Sy (U (p™?), A) with the U,-invariants of S, ,(U(p® b),A) Similarly
for S, (U (p™°), A) — S35, (U(p™*), A).

LEMMA 2.3.2. For any a > 0 and b > max{a, 1}, the inclusion S:%(U(p“’b), A) — S:%(U(p“*bﬂ),
A) is an isomorphism.

Proof. Recall that T, =[], 7w, Then for b > 1, the action of T}, on S (U(p™?), A) is given

by the double coset operator
a w a
o) (7)) vee)]

where w), € (A¥)* is the idele equal to w, at v|p and 1 elsewhere. It easy to check that, for
b>1,

U(ptth) (wp 1> U(p™*t) = U(p*?) <wp 1) U (pob+ly,

Hence, 1,54 (U(p***1), A) C S, 4(U(p*?), A), where we have identified S, ,,(U(p®?), A) with
its image in Sy, (U (p***1), A). It follows that ex Sy (U (p®**t1), A) = enS, (U (p*?), A) for any
a > 0 and b > max{a,1}. O

For b > a, the Hecke-equivariant injections S, ,(U(p™?), A
Sew (U(p™*), A) — S ( (p*?), A) induce surjections T, (U phb),
T, (U(p>h), A) — Tno( (p®9), A). We define

w(U(p%), A) = TIm T2, (U (p™), A),

Cl

and
e (U(P™), E/0) = lim 555, (U (p**), E/O).

(1

We have a faithful action of TS, (U(p>), E/O) on S, (U(p>), E/O).
If M is a topological O module then Pontryagin duahty M — MY =Homp (M, E/O) induces
an isomorphism Endp (M) = Endo(M"). Hence, we have a faithful action of T}, (U(p**), E/O)

on Sp% (U(p™®), E/O)". Take ag > 1 large enough so that (U(p"*)(AF)* Nt 1D*t)/F* =1
for all t € (D®p A3)*, which is possible by Lemma 2.1.5. Then for any a > ag, S35, (U(p™?), O)
is a finite free O-module and

(U (™), E/O) = ®E/O

1278

https://doi.org/10.1112/50010437X1300780X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1300780X

2-ADIC RESIDUALLY DIHEDRAL (GALOIS REPRESENTATIONS

hence, there is an isomorphism
Homo (S5 (U (p™*), 0, 0) = Homo (5,5, (U (™), £/O), E/O).
This isomorphism is equivariant for the action of the operators T, with v ¢ S, T, , with v|p,
and (y)"°, with y € U, on each side. We then have an isomorphism, for any a > ay,
wp(U(@H*),0) = T, (U(P™*), E/O)

which sends T}, to T}, etc. And so there is a faithful action of T2?¢(U(p“’“), O) on Sgﬁﬁ(U(p“’a),
E/0)". We then have a faithful action of T}, (U (p>), O) on

lim :%(U(pa’a)aE/O)nglm :‘;/,w(p“’“),E/m) _ (U™, B/O).

a>a0 azagp

We view Tnow(U(pOO),O) as a A(U,) = O[[Up]]-algebra by letting y € U, acting via
(y)"°. Denote by p, the prime ideal in A(U),) corresponding to the kernel of the O-algebra
homomorphism that sends y € U, to y=% € O. With some mild abuse of notation, we also
denote by p, its pullback to A(L{;}) = O[[Ug]] for any a > 0. We then have a version of Hida’s
control theorem.
PROPOSITION 2.3.3. Let a > 1 be such that (U(p®®)(A¥)* Nt~1D*t)/F* =1 for all t €
(D@p AF)™.

The A(Uy)-module S}, (U(p™),E/O)Y is finite free of rank equal to the O-rank of
SEpU @), 0). Moreover the natural surjection S, (U(p>), E/O)" — S, (U(p™?), E/O)"
has kernel p,.S3%, (U(p*), E/0)".

Proof. We define a different A(Uy)-module structure on S25, (U (p™), E/O)Y, by letting y € U,
act via (y). Note that the two A(U)-module structures differ by an automorphism of A(U) that
sends p, to the augmentation ideal a of A(Z/{;}). It thus suffices to prove the lemma with this new
AU,y )-module structure and p,; replaced by a.

The second part follows easily from Lemma 2.3.2,

2 (Um™), E/0)Y [aSp5,(U(p™), E/O)" = Homo (S35, (U (™), E/O) , E/O)
<hm n%(U(p“’%,E/O))

b>a
= Spo(U@™), E/O)".
For the first part, it suffices to show, by the second part, that for every b > a, S, (U(pb’b), E/O)V
is a finite free O[Z/{Z‘}/ug]—module of rank equal to the O-rank of SE%(U (p* ),(’)) Since the
projections
m(UE™), E/O)Y — 530, (U (p™), 0)"

are Hecke equivariant, and the direct summand of a free module over a local ring is free, it suffices
to prove this without having applied Hida’s idempotent. This follows from Lemma 2.1.8. O

COROLLARY 2.3.4. For any a > 0, both Si5, (U (p™), E/O)Y and T, (U(p™), O) are finite over
A(Uy).

Proof. Tt suffices to show this for some a > 0. That it holds for 3% (U(p*), E/O)" is part of
Proposition 2.3.3. Since there is an injection

Ty (U(p™), 0) — Endpq) (Spoy (U (p™), £/0)Y)
the same is true for T (U (p*°), O). O
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2.3.5 There is a unique free rank-one O-submodule of W,,(O) on which the diagonal subgroup
of GLy(OF ®z Zy,) acts via the character

a
D w gk+w—2
( dp> = a, dp ,

which we will denote by x.. Fix a generator v; of this submodule. By abuse of notation we will
also denote by v; its image in W, (O/my,) for any r > 1. Then, for A = O or O/my,, the choice
of v; gives a Borel equivariant map

Wi(A) — A(xx)-
If A= O/my, and a > r, this yields a U(p®®)-equivariant map
pr, : We(A) — A.

Recall that, for v € 3, U, may act non-trivially on both sides of the above. However, it does so

via the same O*-valued character v~ ! o vp.

LEMMA 2.3.6. Let a > r > 1, and recall that w), is the finite idéle defined by (wp), = w, for v|p
and (wp), =1 for v { p.

(i) For any v|p and g € U(p™*)(®* ,)U(p™*), we have w, ¥ gyv; = v; + w with w € ker(pr,,).
(ii) For any w € ker(pr,) and g € U(p“’“)(w; 1)U(pa’“), we have w, ™ gyw = 0.

Proof. Let a be either w, or w,. For u € U(p®*), u, acts on W, (O/mg,) through its image
modulo my,, which is upper triangular unipotent. Hence, for any

g€ U@ (a 1) Up™)

(o oz
7701
for some x € A¥ with x, € Of ®z Zj.
Recall we have an isomorphism of W,(O/mg,) with the space of O/mg,-linear combinations
on the monomials

we can assuine

[ xt2vz ®)

TE€JR
with each 0 < jr < k; — 2, on which GL2(O ®z Z,,) acts by

a b o w
( ’ d11)>> H XFr2mY ] = (apdy — bycy) H (7(ap) X~

Cp
Te€JR Te€JR

+ T(Cp)YT)deijT (T(bp) X7 + T(dp)YT)jT~

We see that ker(pr,,) is the span of all monomials (8) with some j, < k; — 2 and we may assume

_ kr—2
v = HJF YTT
For o = w, we have

w [T _ _
wvw< v 1> H YTkT 2 = H (T(a:p)XT+YT)kT oy 4w

TE€JR Te€JR

with w € ker(pr,,).
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For o = @y, since 7(w,) € mg, for any 7 € Jp,

w, TW( P 1) I x5 27y = [ (@) X577 (7 () X + Y7)7 =0,

Te€Jp Te€JR

if some jr < k; — 2. g
If a > r, the map pr,, : Wi (O/my,)) — O/my, induces a morphism of O-modules
pry; : Sy (U (™), Ofmp) —> Sa.4/(U(p™*), O/mp).

PROPOSITION 2.3.7. For any algebraic weight k and a > r > 1, pr}, is equivariant for all T,, with
v ¢S, Ty, with vlp, and (y)"® with y € U,. Moreover, pr}), induces an isomorphism

mu(U(p™?), 0/mp) — S35,(U (™), O/mp).

Proof. 1t is easy to see that pr, is equivariant for T, with v ¢ S and (y)"° for y € U,,. For v|p,

writing
a,a w'U a,q a,q
v (7)) v = s

we have, by part (i) of Lemma 2.3.6,

I (WJW Zi:gif(:rgi)> = Z(H Yoo VD(gi,v)>pr (xg:)) Zgzpr (xg:))

i wed

So, pr}. is equivariant for T,
The equivariance of pr} implies that it induces a morphism

(U (), Ofmp) —> S35, (U (p™*), O/mp).
Take f € So4(U(p™®), O/myp,). Write
a,a @, a,ay) . a,a
U(p™®) ( ’ 1) Up™) = JaU "),
and define a function s.(f) : D*\(D ®p A¥)* — W, (O/my,) by

sk(f)(x) = Z @, "V gif(xgi)v.

We first show that s(f) is independent of the choice of {g;}. Indeed, choosing u; € U(p™®), we
have

Zw Y f (xgiui)vy = Zw gzuwf (wgi)ul (9)

since f € So4(U(p™®), O/my,) implies f(xg,ui) = (HUGE, Yo © Vp(uiy)) f(2g;). For each 4, since
u;p is upper-triangular unipotent mod @y, we have u; v = v; + w;, with w; € ker(pr,). Then
(9) becomes

Z ©Wp rwng(‘rgz v+ Z Wy rwng(xgz w; = Z ©Wp nglf(xgl)vlv

by part (ii) of Lemma 2.3.6. So, s(f) is independent of the choice of {g;}.
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Now we check s.(f) € S (U(p**),0/mpy). Set F' = s.(f). The fact that F(zz) = (2)F(x)
for z € (A¥)* is immediate. Take u € U(p™*). Now

(uF)(x) —u(Zw ™ g f (zug; vl> Zw “ug; f(zug; v (10)

For each i, we can write ug; = gju;, and (10) becomes

Zw Ygju;f(zgjus)o = F(x),

since s, is does not depend on the double coset decomposition.

For f € S24(U(p™*), O/mp,), since T = Hv|p TL , part (i) of Lemma 2.3.6 implies that

(pry 0 5:)(f) =T, f-
Conversely, given F' € S ,,(U(p™®), O/my,), and writing F(z) = f(z)v+F'(x) with F’ a function
taking values in ker(pr,.), part (ii) of Lemma 2.3.6 implies that

(om0 PRI () = Do, ™ol o = D, ™ o aghu + F0)) = (13 F)(o),

If f e 855,(U[™),0/mp), then sq(f) € S35, (U(p™*), O/mp). Indeed, since each space is
finite, there is some n > 7 such that ey =T} on each space. Then

Tyse(f) = (sx 0 pro) (T "su(f)) = su(T " (prys 0 8x)(f)) = su(T'f) = sx(f)-

Lastly, pr,. and s, restrict to morphisms between the nearly ordinary subspaces whose composites
are automorphisms; so, pr,. and s, are isomorphisms on the nearly ordinary subspaces. O

Since m,"/O = O/my,, the following corollary follows from Proposition 2.3.7 upon taking
direct limits and Pontryagin duals.

COROLLARY 2.3.8. For any algebraic weight x, there is an O-module isomorphism
s (U(™), E/O)Y = 839,(U(p™), E/0)",
equivariant for all T, with v ¢ S, T, with v|p, and (y)"° with y € U,.

2.3.9 Henceforth we denote Sy ,(U(p™), E/O)Y by Sy(U). By Corollary 2.3.4, Sy, (U) is a
finite A(Up)-module that is free over A(U) for sufficiently large a > 1. We let Ty (U) denote the
A(Up)-subalgebra of End ) (Sy(U)) generated by T, for all v ¢ S and Ty, for v[p. Note that
Ty (U) is finite a finite A(U),)-algebra, and is reduced. The following corollary is immediate from
Corollary 2.3.8.

COROLLARY 2.3.10. Let k = (k,w) be an algebraic weight such that U N (A%)* acts on W, (O)
via ¢~ 1. We have an A(U,)-algebra isomorphism

o (UP™),0) = Ty(U)
identifying the T, for v ¢ S, and the T, for v|p.

Recall that if k is an algebraic weight, then for any a > 1 we denote by p the kernel of the
(O-algebra morphism A(Ug) — O corresponding to the character y — y=* of U,).
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COROLLARY 2.3.11. Let k = (k,w) be an algebraic weight such that U N (A%)* acts on W, (O)

via =1, Let a > 1 be such that (U(p®*)(A)* Nt~ 1D*t)/F* =1 for allt € (D @p A?)*.
The isomorphism Ty (U) = T, ,(U(p*>), O) of Corollary 2.3.10 combined with the natural

projection T (U (p*>°), O) = T\ (U(p™*), O) has kernel equal to the radical of p,T(U).

Proof. Combining Corollary 2.3.10 with Proposition 2.3.3 yields an action of T,(U)/p.Ty(U) on
Spo (U (™), E/O)Y that factors through Ty (U (p™?), O). Since Ty (U (p™?), O) is reduced,
it suffices now to show that any p € SpecTy(U) containing p.Ty(U) is in the support
of S, (U(p™*),E/O)Y. But this follows from Corollary 2.3.8 and Proposition 2.3.3, and
Nakayama’s lemma, since

i (UP™), E/O)) = Sy(U)p/prSy(U)p- =

We say that a prime p of Ty (U) is an arithmetic prime if there is some a > 1 and some
algebraic weight x such that p N A(U) = p.

COROLLARY 2.3.12. For any irreducible component C' of SpecTy(U), the set of arithmetic
primes in C' is Zariski dense.

Proof. 1t is easy to see that the set of primes p € Spec A(Uy) such that p N A(U) = p, for some
a and some &, is Zariski dense in A(U,). The result now follows from the fact that Spec Ty (U)
is finite over Spec A(U,) by Corollary 2.3.4. O

2.4 Modular Galois representations

We keep all assumptions and notation of the previous subsubsection. In particular x is an
algebraic weight, U is a (¥’ C X)-open subgroup of (D ®p Ap)*, and S denotes the finite
set of places containing X, all primes at which U, is not maximal compact, as well as all places
above p and oco.

2.4.1 Let m be a regular algebraic cuspidal automorphic representation of GLo(Ar). There
is an absolutely irreducible representation

Pr - GF —> GLQ(@p)

such that pr|g, and 7, satisfy the (suitably normalized) local Langlands correspondence for every
place v of F. The existence of such a p, was shown in [Tay89] building on [Wil88] and [Car86],
and an alternate construction is given in [BR93]. The compatibility with the local Langlands
correspondence was shown for places away from p in [Car86, Tay89], and for places above p
in [BR93, Sai09, Ski09].

In the case that 7 is p-nearly ordinary, we can say more. Let (k, w) denote the weight of 7.
Take an open compact subgroup V' C GL2(A%), with V;, C Iw(v) for each v|p, such that there is
0+#xz e with T, ™ = apx, where o, € Q is a p-adic unit under out fixed embedding Q — @p.
Then the line generated by z is also stable under (y) for every y € U,, and the eigenvalues are
algebraic. Letting Y/ denote the resulting Q-valued character, we define a character y, : F.* —

@; by xv(y) = x4 (y)y~% and x,(wy) = . It is shown in [Hid89b, Wil88] that
G, = (* *)
Price =\ xo)
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2.4.2 Let f € SE,(U, 0), be an eigenfunction for T}, (U, O), and let
Ar Ty (U,0) — @,

denote the resulting homomorphism. The image of f under the Jacquet-Langlands—Shimizu
correspondence, see Proposition 2.1.10, generates an irreducible m¢. Let py = pr,, with pr, as in
§2.4.1. The discussion in §2.4.1 applied to

implies:

(i) py is unramified outside S and tr ps(Frob,) = A¢(T},) for each v ¢ S;

(ii) det py = vep, in particular det py(c) = —1 for any choice ¢ of complex conjugation;
. vEp *

)
(ili) for every v € X, pfla, = (9 o) with 6, an unramified character, and if v € X, 6, = yu;
)

[acd

(iv) for every v|p, pfla, = (* X*v), where, via the isomorphism of local class field theory, x,(w,) =
A (T, ), and () = Ay ({9)™) for all y € O, .

2.4.3 We call an ideal a of T}, (U, O) or Ty(U) Eisenstein if there is an abelian extension
L/F such that for all but finitely many finite places v of F' that split completely in L, we have
T, —2 € a.

Let f be an eigenform for T}, (U, O), and let

)\f : TE?w(U, O) —d @Z”

denote the corresponding O-algebra morphism. The kernel of A is contained in a unique maximal
ideal m. Choosing a Zp—lattice for py and reducing modulo the maximal ideal of Zp, we obtain a
representation

Pm - GF,S —> GLQ(F).

If m is non-Eisenstein, p,, is irreducible and (up to isomorphism) p,, does not depend on the
choice of Z,-lattice in the representation space of py, nor on the choice of f.
Given the non-Eisenstein maximal ideal m of T (U) and v|p, we define a character

ng:]ilv 1 Gy —> Ty(U)y

by composing the isomorphism of class field theory with the character of F, that sends w, to
Ts,, and on O;U is equal to the canonical character

Op —> AUy)" —> Ty(U)y.

PROPOSITION 2.4.4. Let m be a non-Eisenstein maximal ideal of Ty(U). There exists a
continuous representation

pum : Grs —> GLa(Ty(U)m)
such that:
(i) for any finite place v ¢ S, tr pym(Frob,) = T,.
Moreover, this representation satisfies:

(i) det PUm = Yép;
(iii) for v|p and o € Gy, trp(o) = wep(xg%")_l(a) + Xﬁ%"(o’).
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Proof. Take an algebraic weight x and a > 1 such that U N (A%)* acts on W, (O) by ¢! and
such that for any t € (D ®@p AX)*, (U(p®*)(AX)* Nt~1D*¢t)/F* = 1. Then m is the pullback
of a non-Eisenstein maximal ideal of T}, (U(p™), O). Let

AT, U P™), O — Q,

by an O-algebra morphism corresponding to an eigenform f, and let py denote the corresponding
representation as in §2.4.2. Since tr py(Frob,) = A(T},), for every v ¢ S, the injection

2, (U, 0)w — [[ T,
f

cf. §2.2.3, implies there is a is a pseudo-representation
Ta: Grs —> Ty y(UPH*), O)nm

with r,(Frob,) = T, for every v ¢ S. We also get a pseudo-representation
ry: Gps — Trp(UP"),O)m

for every b > a, such that
Gr.s —= T, (U ("), O)n

T |

T2 (U (™), O)m
commutes. We then get a pseudo-representation

T = 1(131’/“1) : GF,S —> T¢(U)m,
b>a
such that r(Frob,) = T, for any v ¢ S. Since r modulo m is the trace of an absolutely irreducible
representation, namely p,,, a theorem of Nyssen and Rougier [Nys96, Rou96], implies that r is
the trace of a representation

pum : Grs —> GL?(TdJ(U)m)a

and a theorem of Carayol [Car94] implies this representation is unique. To see parts (ii) and
(iii), note that the specialization of py, at any arithmetic prime satisfies the corresponding
properties, hence so does pym by Zariski density of arithmetic primes, see Corollary 2.3.12, and
reducedness of Ty (U ). O

Recall that Ty, (U) is generated over A(U,) be the operators T, for all v ¢ S, and Ty, for
v|p, cf. §2.3.9. The following corollary shows that, after localizing Ty (U) at m, it suffices to use
finitely many of the T, with v outside of any finite set of places S’ O S. It will be used in §4,
cf. §4.1.3.

COROLLARY 2.4.5. Let S’ be any finite set of places of F containing S. Then there exist finite
places vy, ..., vp ¢ S such that Ty(U)m = AU [Tyy, - - -, Ty, [T, o

Proof. Let p denote the prime to p-torsion subgroup of U,. By definition, Ty (U) is generated
over A(Uy) by the operators T, for v ¢ S, T, for v|p, as well as (y) for y € p. As we have
assumed F contains all embeddings F,, — @, the projection Ty (U) — Ty (U)n sends each (y)
with y € u, to elements of O. The corollary then follows from Corollary 2.3.4 Proposition 2.4.4,
and Chebotarev density. O
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2.4.6 Let m be a non-Eisenstein maximal ideal of Ty (U), and denote by
P - GF,S —> GLQ(F)

the corresponding F representation. For v|p, let G2°(p) be the maximal abelian pro-p quotient
of Gy. Let A(Gy) = O[[G2(p)]], and let A(Gp) = &y, A(Gy). Via local class field theory, we
identify ¢} with J I3(p), where I2P(p) is the inertia subgroup of G2(2). Then AU) is a
subalgebra of A(G,), and A(G)) is isomorphic to a power series over A(U4}) in [{v|p}| variables.
Recall that for each v|p, we have a T (U)m-valued character x;i," of G that sends @, to Tr,.
Hence, the A(Ug)—algebra structure on Ty (U)n extends to a A(Gp)-algebra structure. Fix an
O-valued character 1 = (1)), of the torsion subgroup of Z/{]} (equivalently a character of the
torsion subgroup of [[,, G2P(p)). The character n determines minimal primes of A(U}) and

A(Gp), each of which denote by q,. We set A(Uy,n) = AU))/ay, AMGp,n) = A(G,)/q, and
Ty(U,mm = Ty(U)m/ay.

After enlarging O, if necessary, we may assume that all eigenvalues of p,, are defined over F.
Let Rpg denote the universal deformation ring for G g-deformations of p,, as in §1.6. By
Proposition 2.4.4, there is a local O-algebra morphism Rpg — Ty (U)n. We then get a local
A(G))-algebra morphism Ry g ® A(Gp) — Ty (U)m, which is surjective by Corollary 2.4.5. Let
E%}S denote the quotient of Rpg® A(G)) defined in §1.6.5 (with Sy = #). Recall that for a
finite extension E'/FE with ring of integers O, a local O-algebra morphism Rps® A(G)) — O’
factors through Eﬁ g if and only if the corresponding deformation Vi and characters (x,)
satisfy the following:

(a) det Vor = tey;
(b) for each v|p, there is a G,-stable line L in Vi such that G, acts on Vior /L via xo;

vlp

(c) for each v|p, the restriction of x, to the torsion subgroup of G2P(p) is equal to 7,;
(d) for each v € ¥, Vior|g, is an extension of 7, by yy€p.

PROPOSITION 2.4.7. Let m and Eﬁs be as above and assume X' = X. The A(G))-algebra
morphism Rp s & A(G,) — Ty(U,n)m factors through E}?S.

Proof. Let p be an arithmetic prime of Ty (U,7n)n. The pushforward of the representation in
Proposition 2.4.4 to Ty (U,n)m/p is an integral model for some py as in §2.4.2. By §2.4.2, the
map

RF,S ® A(Gp) - T’IZJ(Uv 77)m - T¢(U7 n)m/p

factors through Eﬁ g- The result now follows from the Zariski density of arithmetic primes, cf.
Corollary 2.3.12, and the fact that Ty (U, n)n is reduced. O

2.5 Auxiliary primes and freeness
In the patching argument of §4 it is important to deepen the level U at certain auxiliary primes.
In this subsection we establish a number of lemmas regarding the relationship between our spaces
of modular forms at these deeper levels and at the original level.

We keep the notation and assumptions of the previous subsections. In particular, D is a
totally definite quaternion algebra with centre F', U is a (X' C X)-open subgroup of (D®pA¥)*,
Y1 FX\(A®)* — OX is a continuous character such that 1(z) = 227%=2% on U N (A¥)* for

P
some algebraic weight (k, w), and S denotes the finite set of places at which either D is ramified,

U, # GLo(Op,), v|p, or v|oo.
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2.5.1 Fix a finite place w ¢ S, and let U’ be the open subgroup of U such that U] = U, if
v # w and Uy, = Iw(w). Given a > 0, we define a map

€% So(U(p™), E/O)* — Sy4,(U'(p™*), E/O)
(fi9)— f+ (1 ww> g.

This map is equivariant for all Hecke operators outside w, and induces a map on the nearly
ordinary subspaces, which we also denote by £*. We then set

€ = lm&” : §3%,(U(p™), E/0)® — S55,(U'(v™), E/O)

a>1

and &Y : Sy(U’") — Sy(U)? is its Pontryagin dual. These are both maps of A(U,)-modules and
respect the action of T), for v ¢ SU{w}, and Ty, for v|p.

LEMMA 2.5.2. Let m be a non-Eisenstein maximal ideal of T (U) and denote its pullback to
T, (U’') also by m. The localization of €V at m, Sy (U")m — Sy(U)2, is surjective.

Proof. 1t suffices to show that
£ 855,(UD0™), E/O)y — S3%(U'(0™), B/O)n
is injective. For this it suffices to show that for any a > r > 1, that
£ Sy (UP™), mg' /O)g — S55,(U" (p™), mg" /O)m
is injective. If (f, g) belongs to the kernel of
£ Sa (U (p™), mg" /0)? —> 8o, (U’ (p™%), mg' /O),

then f is invariant under U(p®®)SLa(F,,). Letting (D @ A%®)! denote the subgroup of elements
of reduced norm 1, strong approximation implies that f is invariant under (D ® A%O)l, hence f
factors through the reduced norm and is not in the support of m, since m is non-Eisenstein. O

For the remainder of this subsection fix p € SpecTy(U) contained in a non-Eisenstein
maximal ideal m, and denote by p, the G g-representation into GLa(Ty(U)m/p) induced from
Proposition 2.4.4. Note that this implies p, is unramified at w. Denote again by p and m the
pullbacks of p and m to Ty, (U’).

LEMMA 2.5.3. Let o € Gy, be some lift of Frob,,. Let
PU'm : GF —> GLQ(T¢(U')m)

be as in Proposition 2.4.4, and let y = (tr pyr m(0w))? — () (1 + Nm(w))?.
We have y(ker ") = 0. Moreover, if p € p, Nm(v) =1 (mod p), and p,(Frob,,) has distinct
eigenvalues, then y ¢ p.

Proof. Take a > 1 and an algebraic weight s such that:
(a) (U@»)(AX)* Nt I1D*t)/F* =1for allt € (D ®@p AR)*;
(b) the action of U(p®®) N (A%)* on W, (O) is given by 1~1;

c¢) m is the pullback of a maximal ideal of Ty ,(U(p®®),O) under the projection of
() g
Corollary 2.3.11.
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For A an O-module, let
s SE (U™, A)sy —> S0 (U (0™%), A

da—r+(t e

We know that coker(fz@ ) has a basis {f;} consisting of eigenforms which are new at v. Letting
p

py, denote the Galois representation associated to f;, local-global compatibility, cf. [Car86],

implies that
~ (EXi
Pt =<” ’ X.)
1

where x; is an unramified character of G, such that X? = ¢¥|g,- The eigenform f; defines
an O-algebra morphism Tgow(U "(p=*), O)m — Q, such that, precomposing with the projection
Ty(U') - T35, (U (p"*), O,

PU’ m

Gr —— GLo(Ty (U )m)
e |

GLo (Qp)

commutes. In particular, the image of (tr pys m(0y))? under this map is (@) (1 + Nm(w))?,
and y(coker(fg@ )) = 0. Hence, y(coker(£? 1)) = 0.
»p ’

If V is any (X' C ¥)-open subgroup with (V(A®)*Nt~1D*t)/F* =1forallt € (DRpAF)*,
we have S, (V,E) = S, (V,0) ®0 E and Sy, 4(V,E/O) = S, 4(V,0) ®0 E/O, and so there is
a natural surjection Sy (V. E) — S, (V, E/O). This yields a Hecke-equivariant commutative
diagram

2 w,E

S U (), B)y ———= S5, (U'(0™*), E)m coker(§p p) —=0

N |

Spop (U ™), B/ O)q —= S5, (U (p™*), B/ O)m ——= coker(£2 1) —= 0

with exact rows. Since the first two vertical maps are surjections, so is the third and we deduce
that y(coker( ZE/O)) =0.

Then, y(coker(li_r)na §z7E/O)) = 0. Noting that ff‘iE/O = and using the

h—r>nr21 5:,m(;’"/o
isomorphism of Proposition 2.3.7, £ = li_n)1a 5’?7 B/O" In particular, y(coker(§)) = 0. By exactness
of Pontryagin duality, y(ker(¢V)) = 0.

Assume p € p, Nm(w) = 1 (mod p), and y € p. Then, since pyn is unramified at w and
tr pym(c) = Ty, our assumptions imply T2 — 41)(w,,) € p. The characteristic polynomial of
py(Froby,) is X2 — T,y X + ¢(Froby,)Nm(v) = X% — T,y X + (), which does not have distinct
roots if T = 4v(w,) modulo p. O

2.5.4 Let @ be a finite set of primes of F' disjoint from S such that Nm(w) =1 (mod p) for
each w € Q. For each w € Q, let k,, denote the residue field of F,, and let A, be the maximal
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p-power quotient of k. Set Ag = [[,cq Aw. Define an open subgroup U’ of U by U, = U, if
v ¢ @, and U, = Iw(w) for w € Q. We then define an open subgroup Ug of U’ by

Ug = {(Z Z) EU’:awd;1|—> 1in Ay foreachweQ}.
LEMMA 2.5.5. Let @ be as above. Let a > 1 be such that (U(p®™®)(A®)* Nt~1D*t)/F* =1 for
allt € (D ®p A¥)™, and such that there is an algebraic weight x with U(p®®) N (A%)* acting
on W, (0) via =1

The A(Uy)[Ag]-module Sy (Uq) is free and the natural surjection Sy(Ug) — Sy(U’) has
kernel agSy(Uq), where aq is the Ag-augmentation ideal of A(UJ)[Aq]. In particular, the
AUZ)[Ag]-rank of Sy, (Uq) is equal to the A(Uy)-rank of Sy (U’).

Proof. Let k and a > 1 be as in the statement of the lemma. Take b > a. Applying Lemma 2.1.8
to the groups U'(p®?) C U'(p"?), U'(p»?) C Ug(p™®) and U'(p*®) C Ug(p®?), we deduce
that S, (U’ (p*?), E/O)Y and S, ,(Ug(p®?), E/O)Y are free over OU, /U] and OU,/Up)[Ag],
respectively, and that the natural surjection

Sk (U(""), E/0) — Sy (U' ("), B/0)Y

induces an isomorphism of Sy ,(U'(p*?), E/O)V with the Ag coinvariants of S, ,(Ug(p™?),
E/O)Y. Applying Hida’s idempotent and passing to the limit over b > a gives the result. O

LEMMA 2.5.6. Let w € Q, and let o, be a generator of the p-part of the tame inertia subgroup
of I,,. Note that under I,, — (’)}X;w — ks — Ay, given by class field theory, oy, is mapped to a
generator 0,, of Ay.

If m is a non-Eisenstein maximal ideal of Ty,(Ug), and py, m denotes the representation in
Proposition 2.4.4, then tr pyg, m(ow) = 6w + 6t

Proof. Let X : Ty(Ug)m — Q, denote an arithmetic point. By the definition of (Ug).,, the
automorphic representation associated to A via Jacquet—Langlands is not cuspidal at w. Local
global compatibility then shows that tr py(c.) = A(Jy +9,,1). The result now follows from Zariski
density of arithmetic points and the fact that Ty (Ug) is reduced. O

Finally, we will need a lemma describing certain twists of S, (U) by characters of order 2, as
in [KW09, §7.5]. Let Fg be the maximal p-power order abelian extension of F' that is unramified

outside @ and split at all primes in S. Let G¢,(O) be the set of characters Gal(FS/F) — O*
that reduce to the trivial character modulo mp. Since S contains all infinite places and FS is
split at all places in S, we can view any x € G*Q(O) as a character of (A%")*. The following
lemma is a slight variant of [KW09, Proposition 7.6].

LEMMA 2.5.7. Assume p = 2 and let G, ,(O) be the 2-torsion of G,(O). There is an action
¢ = ¢y of G, 5(O) on Sy(Ugq) such that:

(i) for ainy v ¢ SuUQ, Tv¢x = X(wv)(Tv¢)x§
(ii) for any v|2, T, ¢y = X(@y)(Tw,®)x;
(iii) for any y € Uy, (1) by = X (V) ((1)"°P)-

Proof. Take a > r > 1. For x € G{, 5(0) and f € 53 4(Uq(p™*), O/mp,), we define

fx: DX\(D @r AF)* /Uq(p™*) — O/mp
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by fy(9) = f(9)x(vp(g)), where vp is the reduced norm of D. Note that for any z € (A%)*,
x(vp(2)) = x(2)? = 1, since x has order 2. Since FSQ is unramified outside @ and split at all
places in S, for any u € Ug(p™*),

x(p(9)) = T] x(vp(uw))-

weQR

For each w € @ and u, € (Ug(p™®))w, the definition of (Ug), implies that the image of
vp(uw) = det(uy) in k5 is a square. Since x has order two and the places in @) have odd
residual characteristic, we get

x(wp(9)) = [ x(det(uw)) = 1.

weQR

So, fX S Sgﬂp(U(pa’a), O/mg)
The definition of the operators Ty, T, , and (y)"° as (normalized) double coset operators
together with the fact that for any h € Ug(p™®*)gUqg(p™*®), we have x(vp(h)) = x(vp(g)), imply:

(i) for any v ¢ SuQ, vax = X(wv)(va)X§
(11) for any U’27 vafx = X(wv)(TWuf)x;
(iii) for any y € Up, ()" fx = x(¥) ({¥)"f)x-

Since any x € G{, 5(O) has order at most 2, part (ii) gives T2 f = (T2 f)x- So, the Gy 2(O)-action
commutes with Hida’s idempotent and we have an induced action on

S5y (Uq(p™*), O/mp) = 555, (Ug(p™*), my"/O),

and on
S5 (Ua(p™). B/0) = lim lim 537, (Ug(n™*). mo /).

Letting G¢, (O) act on
Sy(Uq) = 859, (Uq(p™), E/O)Y
by ¢ — ¢y, where ¢, is the function ¢, (f) = ¢(fy) gives the result. O

3. Galois cohomology and auxiliary primes

Crucial to the patching method is the existence of so-called Taylor—Wiles primes or auxiliary
primes. The proof of their existence is the main result of this subsection.

The first subsection uses some of the lemmas proved in §1.7 together with a result of Pink
to prove that certain non-dihedral deformations to characteristic p local fields have open image
(up to finite index subfields). Using this, we then (mostly) compute the cohomology of the image
acting on the adjoint representation. The results in the first subsection allows us to do this by
explicit cocycle computation.

In the second subsection, we use the result from the previous one to show the existence of
auxiliary primes analogous to those in [KW09, Lemma 5.10]. As in [SW00, § 6], some care has
to be taken. In particular, it is not sufficient to compute the cohomology with coefficients in our
local field, we must do the computations integrally, and we must make sure that the size of the
torsion subgroups do not depend on the auxiliary primes chosen. This is due to the fact that when
performing the patching in §4, we must consider finite quotients of our universal deformation
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ring and Hecke modules. In order to ensure that the limits of the resulting projective systems
have the correct rank, we must ensure that the alluded to torsion subgroups do not grow. It is
because of this that we must be careful to control ensure all error terms stay bounded in this
subsection.

We recall and introduce some notation and assumptions that will be used throughout this
section. /' C Q is a totally real number field and Gr = Gal(Q/F). For any extension M/F
inside Q, let Gy = Gal(Q/M). Let K be a characteristic 2 local field with ring of integers A and
residue field F. Let g denote the cardinality of F. Let m denote the maximal ideal of A and let
w@ be a fixed choice of uniformizer. Fix an algebraic closure K of K.

We fix a continuous p : Gp — GLa(A) satisfying:

(A1) p unramified outside a finite set of places S;

(A2) p is not dihedral and imp — GLy(F) has nontrivial kernel;
(A3) det p is finite order;

(Ad)

(A5)

the image of p contains a non-trivial unipotent element;

if p is L-dihedral, there is some 79 € Gp ~ G, such that p(7p) has distinct infinite-order
A-rational eigenvalues.

Let V denote the free rank-two A module on which G acts via p. Let Ad denote the space of
endomorphisms of V' with the adjoint action of G, and Z its centre. For any A-algebra R (in
particular K, K, F) weset Vi = V@4 R, Adg = Ad®4 R, and Zr = Z®4 R. For m > 1 we also
write, for notational convenience, Ad,, and Z,, for Ady /mm = Ad/m™Ad and Z 4 jqm = Z/m™Z,
respectively.

3.1 The image

The main result of this subsection is to establish an openness result, Proposition 3.1.2, on the
image of a representation p satisfying our assumptions (A1)-(A4), and then to compute H'(imp,
Ad). Set G = imp and G' = G N SLy(V). By Proposition 1.7.5, we know that G! is Zariski dense
in SLQ/K

LEMMA 3.1.1. Let I be a compact subgroup of SLa(K), Zariski dense in SLg /g . Then there is
a subfield Ky of K with K/Kj finite and a quaternion algebra D over Ky, split over K, such
that if D' denotes the algebraic group over Ky defined by the norm-one elements of D, there is
an isomorphism @ : D' x g, K = SLo/k with I' C @(D*(Ko)) and such that both ¢~(I') and
¢~ Y([I',T]) are open in D'(Ky).

Proof. Note that the openness of ¢~!([I",I']) implies that of ¢~(I").

Applying [Pin98, Theorem 0.2] to the image of I' in PGLg(K), there is a finite index subfield
Ky of K, an absolutely simple adjoint group H over Ky, and an isogeny ¢ : H X i, K — PGLg /¢
with non-vanishing derivative such that T' C ¢(H(Kj)) and the associated isogeny @ : H X j¢, K —
SLg /g of simply connected covers maps an open subgroup of H(Ky) onto [T, T].

Since PGLy does not admit non-standard isogenies and the derivative of ¢ is non-zero, ¢ is
a central isogeny. Since H is adjoint, ¢ and ¢ are isomorphisms. As all Ky forms of SLg/k are
inner, H is the algebraic group defined by the norm-one elements of some quaternion algebra D
defined over K that splits over K. a

PROPOSITION 3.1.2. There is a finite index subfield Ky C K and g € GLo(K) such that both
gGlg~! and g[G',G')g~! are open in SLy(Kj).
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Proof. Since G' is Zariski dense in SLs /i by Proposition 1.7.5, we can apply Lemma 3.1.1. Let D
and @ be as in Lemma 3.1.1. By assumption (A4), G! contains a non-trivial unipotent element,
so D splits over Ko. The lemma now follows from the fact that SLg,x does not have outer
automorphisms. O

3.1.3 Let Ky be as in Proposition 3.1.2. Denote by Ay its ring of integers, mgy its maximal
ideal and wy a choice of uniformizer. Let e be the ramification index of K/Ky. The main goal
of this subsection is to describe the cohomology group H!(T, Ad) for I' an open subgroup of
G = im(p). We first record an easy lemma.

LEMMA 3.1.4. Let I' be a Zariski-dense compact subgroup of SLa(A). Then (Ad/Z)" = {0}.

Proof. Take X € Ad such that the image of X in Ad/Z is I'-invariant. Let W = KX+ Zx C Adk,
and let N be the kernel of I' — Aut(W). Then X is an endomorphism of Vi that commutes with
the action of N. Since 0 C Z C W is a I'-stable filtration of W and dimg W < 2, I'/N is solvable.
This together with the Zariski density of I' implies N is Zariski dense; hence, X € Z. O

Ideally one would want a proposition similar to [SW00, Lemma 6.9], which in our context
would be to prove that H'(I', Ad) is finite (they are actually more precise and consider not only
the splitting field of imp, but also adjoined all p-power roots of unity). This is not true in our case
because of the presence of the centre in Ad and the fact that if p is dihedral, the image of p is
pro-solvable. For example, if p is dihedral and L denotes the unique field from which 7 is induced
(it is unique since p = 2), then we have an A-module of rank one inside H'(G, Z) given by the
surjection G — Gal(L/F') composed with the map sending the non-trivial element of Gal(L/F')
to any non-zero element in Z. It seems likely that the natural map H'(G, Z) — H'(G, Ad), which
is injective by Lemma 3.1.4, is surjective. We do not prove this, but we describe the cokernel (if
it exists) in enough detail for our purposes in §3.2.

LEMMA 3.1.5. Let T be an open subgroup of G. The A-rank of coker(H*(T', Z) — H'(T', Ad)) is
at most one. Moreover, if it is one there is a positive integer Ny depending only on I' such that
if v € HY(T, Ad) maps to a non-torsion element of this cokernel, there is a cocycle x : I' — Ad
representing w0~ such that for infinitely many g € T' with distinct A-rational eigenvalues,

k(g) € Z ~ {0}.

Proof. Identify Ad with Mayo(A) using our fixed basis. Let g € GLo(K) be as in Proposition 3.1.2.
Set I'" = gT'g~! and Ad’ = gAd C Maxa(K). We have isomorphisms H(I', Z) = HY(T', Z) and
HYT',Ad") =2 HY(T, Ad) compatible with the maps H'(T', Z) — HY(T,Ad) and H'(I",Z) —
HY(T',Ad"). So, it suffices to prove the lemma for H*(I”, Z) and H'(I’, Ad’). Since Ad’ is open
compact in Moo (K), there is [ > 0 such that w!May2(A) € Ad' C wMaxa(A). For k > 1, let Jj,
be the principal congruence subgroup of level k in SLa(Ap), i.e. Ji, = (I+wfMaxa(Ag))NSLa(Kp).
By Proposition 3.1.2, I contains an open subgroup of the form J;, for some k. Set Ny = 3ke+4l.
We will show the following.

LEMMA 3.1.6. For anyy € H'(I", Ad’), there is a cocycle k representing w0~ such that, writing
<1 wé”) <>|< b>
K = )
1 x ok

(i) letting x' : T' — Ad'/Z denote the cocycle obtained by composing r with the projection
Ad" — Ad'/Z, the restriction K'| ,, is uniquely determined by b;

we have:

1292

https://doi.org/10.1112/50010437X1300780X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1300780X

2-ADIC RESIDUALLY DIHEDRAL (GALOIS REPRESENTATIONS

(ii) if b=0, then k(g) € Z for all g € J3;
(iii) if b # 0, then there are infinitely many diagonal g € Jj, with k(g) € Z ~ {0}.
Granting Lemma 3.1.6 for now, we finish the proof of Lemma 3.1.5. Note that Lemma 3.1.6(i)
implies that the cokernel of H*(I", Z) — H'(J31, Ad") has A-rank at most one. To see that this
implies the same for H'(I', Z) — H(I", Ad’), it suffices to show the kernels are the same. Let N

be an open normal subgroup of IV contained in J3;. Since NN is open in I it is Zariski dense
in SLy/, so is g~'Ng, where g € GLy(K) is as above. Then Lemma 3.1.4 implies (Ad'/2)N =

(Ad/Z)9"'N9 = {0}. By inflation-restriction, this implies H*(I",Ad'/Z) — HY(N,Ad'/Z) is
injective. Since the map H(I",Ad’) — H'(N,Ad’/Z) factors as

HYI',Ad") — HYI',Ad’'/Z) — H'(J3,,Ad'/Z) — H'(N,Ad'/Z),
we have

ker(H' (T, Ad") — H'(J3x,Ad’'/Z)) = ker(H (T, Ad") — HY(T",Ad'/Z))
= HY(I", 2).

The final statement of Lemma 3.1.5 then follows from parts (ii) and (iii) of Lemma 3.1.6. O

The remainder of this subsection will be devoted to the proof of Lemma 3.1.6, which will
mostly comprise somewhat laborious cocycle computations using relations between elements in
SLa(Kp). The proof of Lemma 3.1.6 will consist of the following four steps.

Step 1. Show that for any v € H' (I, Ad’), there is a cocycle » representing ©™0y such that:

()= ()
(D)= () e ()= ()

for some a,, b;, ¢z, d;; moreover bw’g =0.

(i) for any a € 1 +m§,

for some aq, dy;

(ii) for any z € m§,

Step 2. Show that the a, and d, in Step 1(i) are equal, and that the b, and ¢, in Step 1(ii) are
equal.

Step 3. Step 2 implies that x|, mod Z is uniquely determined by the function z — b,. We then
show that x|z, is uniquely determined by the value b_1.
0

Step 4. Lastly, we show that if bwlo@+1 # 0, then

(7T ) 20

for all sufficiently large, odd n.

Before proceeding, we introduce some notation. For o € 1 + m’{j and x € mlg set
[« 4 (1 =z _ (1
)= (" ) w@=(" 1) ww@=(; ).
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and define the subgroups
Ty = {t(a) € Ji}, UF ={ut(z)e B}, U, ={u (z)€ Ji}.
Step 1. Fix v € HY(I”, Ad’), with k1 : I — Ad’ a cocycle representing ~y. Take (), t(3) € T},

and write
_ (aa ba _(as bs
mite) = (100 and mten = (22 1).
Then using t(a)t(f) = t(B)t(«) and the cocycle relation, we find that

(@® —1bg = (% — )by and (a2 —1)eg = (B2 — 1)ca. (11)

)
Now assume 3 € (1 +mf) ~ (1 +mith). Since Ad’ € wMax2(A) we have bg, cs € m~. Then,

letting
w2ke+2l bﬁ
— 32
X - <w2ke+2l 1 5 ) 9

1=z 8
we have X € w!May2(A) € Ad’ and we can define a cocycle kg : IV — Ad’ by
ra(g) = @t r1(g) — gX + X.
This cocycle represents the cohomology class ww?+et2
see that

v and k2(t(B)) is diagonal. Using (11) we

ka(t(e)) € {(“ d)} (12)
for all t(a) € Ty.

Before proceeding we prove a sublemma.

LEMMA 3.1.7. Let ' : Jy = Ad’ be a I-cocycle and let g = (3 ) € Ji, have order two. Then
N X
o =(2 )

Proof. First note that our assumptions on g and J imply w and at least one of z, y are non-zero.
Since g has order two, the cocycle relation implies gr’(g) = k’(g). This yields equations

with zc = yb.

w?a + wyb + wze + zyd = a, (13)

wza + w?b + x*c + wrd = b, (14)

wya + y2b + wle + wyd = ¢, (15)

zya 4+ wyb + wre + wid = d. (16)
Using w? = 1 + 2y, Equations (13) and (16) both become

zy(a+d) + w(zc+ yb) =0, (17)
Equation (14) becomes

wz(a + d) + z(xc+yb) =0, (18)
and Equation (15) becomes

wy(a + d) + y(xc+ yb) = 0. (19)

If © =0, then (17) implies b = 0 and (19) implies a = d. If = # 0, then (18) implies zc + by =
w(a+d). Substituting this into (17) we have (w? +zy)(a+d) = 0, i.e. a = d. Equation (17) then
implies xzc = yb. O
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By Lemma 3.1.7, we can write

(@)= (* 7).

a

Let u = wewgl € AX. Since Ad’ C w'Maya(A), b € m™. So, letting

uk o2y
= (7).

we have X € wlngg(A) C Ad’. We can then define a cocycle x : I' — Ad’ by

k(g) = wke+2lﬁ2(g) —gX + X.

The cocycle k represents the cohomology class w3k 4~y = Mo~ and an easy computation shows

k(ut(wwh)) € Z. Note that since every t(a) € Ty, commutes with X, k(t(a)) = w2 ky(t(a)) is
diagonal for every t(a) € Tk, by (12). Applying Lemma 3.1.7 to x, we have

m(u+(x)>:<“x bx) and /i(u_(a:)):<dx dx>’ (20)

Gy Cx

with bw’g = 0. This completes Step 1.
Step 2. We show that for any a € 1+ mf, writing

i) = (" ).

we have a, = dg, and that for any = € m%, writing x(u*(x)) and x(u~(x)) as in (20), we have
b, = c;. This will be shown simultaneously by setting o = 1 4+ = and considering the relation
ut(z)u™ (z) = t(a)u™ (z)u™ (z)t(a).

Let g = u™(z)u™ (z) = t(a)u™ (z)ut(z)t(c). Applying the cocycle relation to u™ (x)u™ (x) we
have

Ay + dy + zCs by + x2c,
r(g) = :
Co ay + dy + xCg

Applying the cocycle relation to t(a)u™ (x)u™ (z)t(a) we have

w(g) = az + dy + by + 2% (an + dq) a?b, + a?x(ag + dg)
9) = a"2(cp + 2%by) + x(aq + do)  az +dp + by + 2% (aq +do) )

We may assume z # 0; so, comparing top-left entries,
Cy = by + x(aq + dq). (21)
Comparing top-right entries and using (21)

by + 22c, = aQ(bx + x(aq + dy))

=a’c, = (14 2%)c,.

Hence, b, = ¢, and (21) gives aq = d,. This completes Step 2.
We use the following notation in what follows. For oo € 1 + m’é and x € mlg write

s = () wwte) = (" ) s = () @
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Step 3. Since Jy, = U T}, U, ,:r , k is uniquely determined modulo Z by the values b,,, for x € mlg.
We will show that the values b, for x € m%k are uniquely determined by b_k+1.
0

First we establish some easy relations. For any z € mf, U, act trivially on x(u™(z)) and U,
acts trivially on x(u~(z)). Hence, for any z,y € mk we have

bl’-i—y = bx + by, ax+y = Qg + ay, d:v—l—y = dw =+ dy. (23)

Let a € 1 +m§ and z € mE. Using u*(a?z) = t(a)u™(z)t(a)~! and the cocycle relation we find

(o) = “2‘“> ,

Gy

and similarly for v~ (a?x). So

bozy = Q2by,  Gu2p = gy, dpzy = d. (24)

Now, if y € mk, setting @ = 1 + y and applying (23) and (24) to u*(y?z) = ut(2)ut(a®z) we

have
(25)

0.
Let Fy denote the residue field of Ag. Take z € Fy and n > 3k. Let \/z denote the unique

element of Fy such that (1/2)? = 2. If k and n have the same parity, then setting y = \/Ewé”_k)/ ’e
mk in (25) gives

byze = YPbo, aue, =0, dyp, =

bewyp = zwg_kbwg =0.

If k and n have different parity then, setting y = \/Ew(()n_k_l)/ ’e mk in (25) gives

n—k—1
bzwg = ZW bwngl.

Combining these two equations with (23) we know the value of b, for any x € mgk of the form
T = Z3kw8k + -+ zpwy with 23, ..., 2, € Fo. For arbitrary = € mgk the value b, is then
determined by the continuity of x. This completes Step 3.
Step 4. It remains to show that if b_x1 # 0, then
0
14wy
Z
K ( (1 + wg)fl S ~ {0}7

for all sufficiently large, odd n.
Take x,y € mlg and set « = 1 4+ xy. We have the relation

u (yu” (2) = u” (@7 2)ut (ay)t().

The cocycle relation gives

a 2p
n(u*(y)u(x»—(y*d”ybm by + b )

by ay + dgz + yb,
and
I BN (o + oy + do-1, + " tzby, bay
r(u™ (o z)u” (ay)t(a)) = < 0 222bay, + by-1, o + Gay + d-1, + 0 2oy )
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which, by comparing the diagonal entries, gives
ay + dy + yby = aq + Aoy + dp-1, + a_lxbay. (26)
Using (23)-(25), we see
bay = by py2e = by + Yba,  Gay = Qyry2r =y,  do-1, = dag = dy g2, = do.
So, (26) becomes

ao = yby — a_lx(by + y2bx)
= a Y (yb, — xby). (27)

Let n be an odd integer such that n — k — 1 > 3k. Since n — k — 1 has the same parity as k we
know b_n—k-1 = 0, and, putting r = wg'H and y = wg_k_l in (27), we have
0

—1 —k—1
a1+w61 = (1 —+ wg) wg bwlg+17

which is zero if and only if b_x+1 is. In particular, if b_k+1 # 0 then there are infinitely many n
0 0
such that x(t(1 + w@{)) € Z ~ {0}. This completes Step 4, and the proof of Lemma 3.1.6. O

3.2 Auxiliary primes
We now use the results in the previous subsection to prove the existence of auxiliary primes
similar to [KW09, Lemma 5.10].

3.2.1 Foreachn > 1,let F,, = F(uon). Let Q(uzn)™ denote the maximal totally real subfield
of Q(u2n) and let ng be the largest integer n > 2 such that Q(ugn )™ C F. For each n > 1 let ¢,

be a primitive 2"th root of unity such that C72L+1 =(,. Let o, = %(Cn +¢7Y) and y, = %(x” +1).

For n > ng let F, = Fn(y,lu/)Qn), Gn € F*/(F*)?" denote the image of y,,, and w, € H* (G, jign)

be the image of ¢, under the Kummer map.
LEMMA 3.2.2. Let n > ng. We have:

(i) Fny, (y%él) is a dihedral extension of F' of degree §;
(ii) the extension F, /F, is cyclic of degree 2"~!, and its cyclic subextension of degree 2 is
1/4
Fo(yno );
(iii) wn € HY(GFs,pan), and its order is divisible by 2"~ !;
(iv) any quadratic subextension of F,,/F is contained in F,.

Proof. Parts (ii)—(iii) are proved in [KW09, Lemmas 5.8 and 5.9]. Part (iv) is a consequence of

the first two. Indeed, if M/F' is a quadratic subextension of F, /F, we have either M F,, = F,, or

MEF, = Fn(yyl,,(/f), by part (ii). Since M F,,/F is abelian, part (i) implies M F,, = F,,. O

For any n > 1, let S,,, respectively S'n, denote the places above S in F),, respectively F,.

LEMMA 3.2.3. For any n > ng,

ker(H'(Grs,Ad) - H' (G, 5 ,Ad)) = ker(H' (Grs,Ad) > H'(GF,,.1,5,,1,Ad)) = A%

n0+17
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Proof. Let v € ker(H (Gpgs,Ad) — HI(G};” g.»Ad)), and let vp, denote the image of v in

HY(GF, s,,Ad). Since F,/F, is Galois and AdGFn~: Z, we see that yp, € HY(Gal(F,/F),),
Z) by inflation-restriction. Since the map H'(Gal(F,/F,),Z) — H'(Gf,,Ad) factors through
HY(GE,,Z), vr, maps to zero in H(Gp, s,,Ad/Z). The commutative diagram,

HYGrgs,2) HY(Gpg,Ad) HY(Gps,Ad/Z)

| | i

implies that the image of v in H'(Gpg,Ad/Z) restricts to zero in H'(Gp, s,,Ad/Z). By
Lemma 3.1.4, (Ad/Z)%F = 0, and so the inflation restriction exact sequence implies H!(G g,
Ad/Z) — HY(Gp, s,,Ad/Z) is injective and the image of v in H!(Gps,Ad/Z) is zero. Hence,
7 is in the image of H'(Grg, Z). Then v is a homomorphism from G%bs to Z that is trivial on
Gf, g, Part (iv) of Lemma 3.2.2 implies that v is trivial on G, s,, and we have

ker(H'(Grs,Ad) - H'(Gf, & ,Ad)) = ker(H'(Grs,Ad) — H'(GR,.s,))-
For any n > ng, Gal(F},/F) is the product of Z/2Z and a cyclic 2-group. Then

ker(H'(Grgs,Ad) - HY(GF,.s,)) = Hom(Gal(F,/F), Z)
= Hom(Gal(F,,+1/F), Z)
= ker(H'(Gpgs,Ad) — HI(GFWH,S”()H)),

and Hom(Gal(F,,+1/F), Z) = A2 O

3.2.4 We know, by Lemma 3.1.1, that [G,§] is open in G. By Lemma 3.1.1 again, we see
that the commutator subgroup of the commutator subgroup of G, i.e. [[G,G],[G, G]], is open in
[G,G], hence also in G. Since F,/F, and F,/F are both abelian extension, it follows that p|Gﬁn
contains [[G, G], [G, G]] for all n > 1. This implies that there is 11, which we can assume is greater
than ng, and a finite extension M/F such that if F, denotes the subfield of Q fixed by ker p, we
have F, N F,, = M and p(GEg ) = p(Gum) for all n > ny. Set I' = p(Gar). Since I' is open in G, by
Proposition 3.1.2, there is a finite index subfield K of K such that some conjugate of I is open in
SLa(K)p). Let Ay denote the ring of integers of K\ and let wg be a choice of uniformizer. For the
remainder of this subsection we fix k > 1 such that gI'g~! contains SLa(Ag) N (I + wf Ma(Ay)),
for some g € GLa(K). Let e be the ramification index of K/Kjy and write mg = wyAp.

LEMMA 3.2.5. Let B be a I'-stable subgroup of Ad (not necessarily an A-module). Let m > 1
be such that B € w™Ad. There is a non-negative integer Ny, independent of B, such that some
X € B satisfies either:

(i) val(tr X) < m + No; or
(i) X =2 +Y with val(z) < m+ Ny and Y € w*?()+1Ad.

Proof. Take g € GLo(K) such that IV = gT'g~! contains SLa(Ag) N (I + whMay2(Ap)), with k as
above. Set Ad’ = gAd C Maxo(K) and B’ = gB. Then B’ is a I stable subgroup of Ad’. There
is some non-negative integer I such that w'Mayo(A) C Ad’ C w ™' Mayo(A). Set Ny = I + 4ke.
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Since B € @w" Ad, there is X € B such that, writing

a b
=0 a)

one of a, b, ¢,d is not in m™. If val(tr X) < m + Ny we are done, so we assume otherwise. Write

a v
X' =gX = <c/ d/> .

We know that val(a’ +d') = val(tr X’) = val(tr X) > m + Ng > m+1. Then, if both ¥/, ¢ € m™*
we can write X' = a'I + Y’ with Y’ € @™ Mayxa(A) C w™Ad'. Then X = o'l + g~'Y’ and
g 1Y" € w™Ad. Since X ¢ w™Ad we must have a’ ¢ m™ and we can take z = a’ and Y = g~ Y”.

We are left with the case that one of ¥, ¢’ does not belong to m™*!. Assume b ¢ m™*!. Since
B’ is TV stable, B’ contains

1+ wf ad V\ [((1+wh)! _fd Y
A+af) )\ & 1+ ok d d
2kt
_ wp b
~(araone ™) >
So, B’ also contains
1 wky 1 wiky!
(o ) (e ne ™ ) e ) (rapyrne ™)
(R
- wékb/ wgkb/ )

as well as
(1+wf)t wkb! 1+ wf
1+ ok ) \ @ikt =kt (1+wf)!

3k
_ @y b
- <(wék +w8k)b/ wgkb/> . (29)

Then, using (28) again, B’ contains

1 wiky 1
wb+ @k 1) \(1+ @)~ - 1) ok +wgk 1

- <((1+w2’“) W)
wSk w4k /
_ <( 0" +@o")b >

Subtracting (29) from (30) we have that B’ contains

wgk b/
(" o)

Taking z = wikt/, g~ (21) = zI € B and val(z) = val(V') + 4ke < m + [ + 4ke = m + Ny. The
case of b’ € m™*! but ¢ ¢ m™*! is similar. o
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LEMMA 3.2.6. Let g € GLa(V') have distinct A rational eigenvalues o, 8 and set w = val(a — ().
For z € A non-zero, Y € w &)+t Ad and m > 0, if

zI+Y € (g—1)Ad +@™Ad,
then m < val(z) + w.

Proof. Let V, denote the o eigenspace for g, e, a generator of V,, and eg be any element of V'
mapping to a generator of V/V,. Write geg = Seg + xe, with x € A. Note a splitting of

0— VooV — V/Vy —> 0,

exists if and only if val(z) > val(a + ) and so we cannot, in general, assume x = 0. Identify Ad
with May2(A) using the basis {eq,eg} of V.

Assume there is X € Ad such that zI+Y € (9—1)X +w™Ad. Set j = min{m, val(z)+w+1}.
Then 21 — (g — 1)X € w’Ad. Writing

we have
a z\ (a b\ (ot a7 lp7lz a b
o-ox=(" ) () (A
B a"lze *
N ((a‘l,ﬁ —1)c a‘lxc) '

Then zI — (g — 1)X € w/Ad implies (a™!3 — 1)c € m/, so val(c) > j — w. Then the upper-left
entry implies z — o lxc € m7, so val(z) > j — w. But, j < val(z) + w implies, by definition of j,
that j = m and m < val(z) + w. O

We record another lemma that will be useful below.

LEMMA 3.2.7. Let g € G be such that p(og) has distinct A-rational eigenvalues o and [y, and
det p(00) = 1. Set w = val(tr p(c)). If o € G satisfies det p(c) = 1 and tr p(o) —tr p(og) € m?w+HL,
then p(o) has distinct A-rational eigenvalues and, denoting them by « and 3, val(aw — ) =
val(ag — 50)

Proof. Let f(t) be the characteristic polynomial of p(c), and note that val(tr p(o)) = w. Since
tr p(o) — tr p(op) € m**, we have

flag) = a% —trp(o)ag + 1 = ag(tr p(og) — trp(o)) € m2wtl — (tr p(a))zm = f’(ao)Qm.

Then f(t) splits over A by Hensel’s lemma, cf. [Bou62, ch. III, § 4 no. 5, Corollary 1 to Theorem 2].
The fact that val(a — ) = val(ag — 5p) follows from the fact that, since the characteristic is two,
a— B =trp(o) and ag — By = tr p(op). O
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3.2.8 We introduce some notation that will be used for the remainder of this section. Let W
be a finitely generated A module. We denote by Wi, the torsion submodule of W and by Wiee
the free A-module W/Wi,.

We now fix certain submodules of H!(Gp g, Ad) that will be used in the proof of auxiliary
primes below. Let F), denote the subfield of Q fixed by ker p and M = F, N Fm. Recall that ng
was chosen so that F, N Fn = M for any n > nq. Let

h=1kaH'(Grg,Ad) — tkaH (Gal(F,, /F),Z) = tkaH' (GFs, Ad) — 2,

and
ho = rka(im(H' (Grg, Ad) — H' (G, Ad)) N HY(Gal(F,/M), Ad)).

Set T' = p(Gar). We know by Lemma 3.1.5 that the A-rank of the cokernel of the map H'(T,
Z) — HYT, Ad) is at most one. For the remainder of this subsection we will assume that it is one
and that there is some v € H' (G, Ad) whose image in H'(Gjs, Ad) lands in H'(Gal(F,/M),
Ad) = HYT,Ad) and maps to a non-torsion element in coker(H(T',Z) — H(T,Ad)).
The case when every element of H!(Gr g, Ad) that lands in H(T', Ad) maps to a torsion element
of coker(HY(T', Z) — H'(T', Ad)), which includes the case when the cokernel is torsion, is easier
as there is one fewer ‘type’ of cohomology class to consider below (in particular one does not
need case (b) of Lemma 3.2.9) and it will be obvious to the reader how to adjust the arguments.
We fix Wi C --- C W), of HY(Gpgs, Ad) such that:

(i) W; is free of rank i for each i;

(ii) W) intersects the image of H'(Gal(F,,/F), Z) trivially;

(iii) the image Wp, in H'(Gpr, Ad) is contained in H!(Gal(F,/M),Ad) = HY(T, Ad);
)

(iv) the image of Wp,_1 in H'(Gps, Ad) is contained in H(Gal(F,/M),Z) = HY(T, Z).
We note:

(a) for all n > ny, the map W), — im(H'(Grgs, Ad) — HI(GFn g+ Ad))free is injective with
finite cokernel by parts (i) and (ii), and Lemma 3.2.3;
(b) for all n > ny, the image of W), under H (G g, Ad) — Hl(GFpFn’ Ad) zero by part (iii);
(c) for all n > ny, the map Wj,/ Wy, — im(H'(Gpg,Ad) — Hl(GFpFn,Ad)) is injective by
parts (ii) and (iii) and the definition of hg.
There are three different types of cohomology classes we will need to consider based on
whether an element v € W), does not belongs to W}, belongs to W, but not to Wp,,_1, or

belongs to Wp,—1. The main tool for guaranteeing the existence of auxiliary primes is the following
lemma.

LEMMA 3.2.9. There are non-negative integers w and N such that if v € W}, and s > 0 are such
that one of the following hold:

(a‘) e Whofl but Y §é wsWhofl;
(b) v € W, but ~y ¢ @ Wiy + Who—1;
(c) v & @ Wp + Why;

then for any n > ny there is a non-empty open set U C G such that:

(i) for every o € U, p(o) has distinct A-rational eigenvalues «, 3 with val(a — ) < w; and
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(ii) for any cocycle k representing vy, o € U, and m > 1, if
wk(0) € (0 — 1)Ad 4+ w™Ad,
then j >m —s— N.
Proof. We prove the three different cases (a)—(c) separately in the next three sublemmas.

LEMMA 3.2.10. There are non-negative integer w, and N, such that if v € Wy and s > 0 are
such that:

(a‘) Y E Whofl but Y ¢ wSWhofl;
then for any n = ny there is a nonempty open set U C G such that:

(i) for every o € U, p(o) has distinct A-rational eigenvalues o, 3 with val(a — ) < w,; and
(ii) for any cocycle k representing v, o € U, and m > 1, if

wk(0) € (0 — 1)Ad 4+ w™Ad,
then j > m — s — N,.

Proof. If p is L-dihedral, fix 7y as in assumption (A5) made at the very beginning of the section,
ie. 19 € Gp ~ G and p(719) has distinct infinite-order A-rational eigenvalues, and set w, =
val(tr p(o)). If p is not L-dihedral, set w, = 0.

The image of Wj,_1 in H*(Gps,Ad) is contained in H'(T, Z), and we identify it with its
image. Since H'(T', Z) is a separated A-module (in fact, it is finitely generated), there is Ny > 1
such that for any § € Wj,_1 with § ¢ @wWj,,_1, 6 ¢ @M HY(T, Z) and N, = N1 + w,.

Since Wp,_1 € HY(T',Z), there is a cocycle kg representing + such that kg is given by a
continuous homomorphism Gy — I' = Z. Let n > ny. We will show below that there is some
oo € GFn such that:

(i) p(op) has distinct A-rational eigenvalues and val(tr p(0)) < wg;
(ii) det p(og) = 1;
(iil) ko(oo) = 2I € Z with z ¢ ms+M,
Granting the existence of such oy, we can define our open set U. Let U be the non-empty open
subset of G consisting of elements ¢ such that:

o trp(o) —trp(og) € m?watl,

e detp(o) = 1;
° H()(O') — /460(00) S wsTNa Ad.

We first show that any element of the set U satisfies the conclusion of the lemma. Part (i)
of the lemma follows from Lemma 3.2.7. To see that part (ii) is satisfied, let x be any cocycle
representing . Then

w/k(o) € (0 — 1)Ad + w™Ad
implies

w’ko(o) € (0 —1)Ad + w™Ad
as k(o) — ko(o) € (0 — 1)Ad. Then, since ko(0) = zI + Y with val(z) < s+ N; and Y €
wval(@)twatl Ad Lemma 3.2.6 gives j > m — s — N,,.
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We now show the existence of o9 € G satisfying parts (i)-(iii) above. By choice of Ny,
v ¢ wt N1 HYT, Z) and so there is some T € G, such that ro(T) ¢ wtMZ.

First assume that p is non-dihedral. Then by Dickson’s classification of subgroups of PGLa(F),
we must have p(Gr) 2 SLa(F') with [F'| > 4. Since this group is simple, p(G 5 ) 2 SLa(IF). Since
Hom(p(G ), Z) = 0, we can find 7 € ker(p|e ) such that ro(7) ¢ @M Z. Fix some o € Gp,
such that p(c) has distinct eigenvalues and determinant 1. If xg(0) ¢ @*™™ Z then we set
oo = o. Otherwise, we set o9 = o7. Note that p(og) = p(0), so p(op) satisfies parts (i) and (ii),
and ko(0g) = ko(o) + ko(T) & Wt Z, so g satisfies part (iii).

Now we assume that p is dihedral and let L denote the unique quadratic extension of F' for
which p is L-dihedral. Note that p(G ) has odd order. We first assume that there is some 7 € G &
such that ko(7) ¢ w**N1Z. Then, by replacing 7 by 7/ for j odd and sufficiently large, we can
assume that 7 € ker(p). Let o be any element of G such that p(o) has distinct eigenvalues and
determinant one. If k(o) ¢ w*+tN1Z then we set o9 = 0. Otherwise, we set og = o7. Note that
p(00) = p(o), so p(og) satisfies parts (i) and (ii) and ko(cg) = ko(o) + ko(T) & @™ Z, so o
satisfies part (iii).

Now assume that all o € G have ko(o) € @w*N1Z. In particular, this implies L ¢ F,.
Let 7 be such that ko(7) ¢ w1, Then 7 maps to the non-trivial element of Gal(LE,/F,).
Let 7 € G 7, be any other element mapping to the non-trivial element of Gal(LF,/F,). By
assumption x(7'771) € w17, so k(') ¢ w*NaZ. Hence, we may assume 7 = 75, where 7y is
the element fixed at the beginning of the proof. Then oy = 7 satisfies parts (i)—(iii) above. O

LEMMA 3.2.11. There are non-negative integers wy and Ny such that if v € Wy and s > 0 are
such that:

(b) e Who but Y ¢ WSWhO + Who—17
then for any n > ny there is a non-empty open set U C G, such that:

(i) for every o € U, p(o) has distinct A-rational eigenvalues «, 8 with val(a — ) < wy; and

(ii) for any cocycle k representing v, o € U, and m > 1, if
@ k(o) € (0 — 1)Ad + w™Ad
then j > m — s — Np.

Proof. Fix § € H'(I', Ad) such that J is a generator for coker(H'(T', Z) — H(T', Ad))ec. By
Lemma 3.1.5, there is Ny > 1 and a cocycle kg representing w!¥0§ such that there are infinitely
many g € I' that have distinct A-rational eigenvalues with xo(g) € Z \ {0}. As [I',T] is open
in T', there is some oy € G such that:

(i) poo) € [I,TT;

(ii) p(op) has distinct A-rational eigenvalues;
(iii) IiQ(Uo) € Z but K}(J()) 75 0.
We now set wy, = val(tr p(0p)). Fix an element ' of Wj,, that maps to a generator of Wy, /Wp,—1
and let Ny > 0 be such that 7' —w¥1§ maps to a torsion element in coker(H'(T', Z) — HY(T', Ad)).
Writing ko(0g) = zI we set N = Ny + val(z) + wp + 1.

Take n > ny and let U be the non-empty open subset of G £, consisting of elements ¢ such
that:
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o trp(c) — trp(og) € m2wrtl;

* p(o) € [I,T];
° 50(0) - Iﬁ;o(O’o) € wiv Ad.

We now check that every o € U satisfies parts (i) and (ii) of the lemma.
Part (i) follows from Lemma 3.2.7 (note p(o) € [I',T'] implies det p(c) = 1). Now let x be a
cocycle representing v and let 0 € U. Let m, j > 1 and be such that

@ k(0) € (0 —1)Ad + w™Ad. (31)

We have v = @w® v’ 4+ 4", where 7/ is as above, v/ € Wj,,_1 and s’ < 5. Let [ > 0 be such that m'
is the annihilator of coker(H(I', Z) — H'(T', Ad))tor. Then, by choice of I and Ny above,

’
wl’y:ws —H’yl—l—wl’y” —

8/+Z+N16 + 5/
with ¢’ € HY(T', Z) = Hom(T'*", Z). Equation (31) implies
TNk (0) € (0 — 1)Ad + w™HFNoAd. (32)

Now w’ti+Noy represents the cohomology class it Noy = i ts'+l4N1+Nog | i +No g/ Since
Ko is a cocycle representing ¢ and ¢’'(0) = 0, as o € [I',T], there is X € Ad such that

wj‘H'HVO/{(U) = wj+s/+l+N1+N°/<;0(o*) +(c-1)X.
This together with (32) yields
@I T HFNANo g (5) € (0 — 1)Ad 4+ @™ TH Vo AQ. (33)
Writing kg(0) = 2 + Y with Y € w™vAd C w*(*)*1Ad, Lemma 3.2.6 and (33) imply
m+1+ Ny <j+s +1+ Ny + No+val(z) + wy,

hence
j=m—s — (Ny+val(z) +wp) >m — s — Ny,

which is part (ii) of the lemma. O

LEMMA 3.2.12. There are non-negative integers w. and N, such that if v € Wp and s > 0 are
such that:

(c) v ¢ @ Wp, + W,
then for any n = ny there is a non-empty open set U C G such that:

(i) for every o € U, p(o) has distinct A-rational eigenvalues o, 8 with val(a — ) < we; and

(ii) for any cocycle k representing vy, o € U, and m > 1, if
k(o) € (0 — 1)Ad + w™Ad

then j > m — s — N,.
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Proof. Since, for all n > ny, Wy /Wy, injects into Hl(GFpFn,Ad)Gal(FPFn/Fn) and p identifies
Gal(F,F,/F,) with T, we have, setting Fi, = Uns1 F},, an injection

W/ Wy, —> Hl(GEFOO,Ad)F = Homp(Gpp_, Ad),

and we identify W), /W}, with its image under this map. Since Homp (G, , Ad) is separated,
there is N1 > 0 such that 6 ¢ wW), /Wy, implies § ¢ leHl(GEFOO,Ad). We set N, = No+ IV}
where Nj is as in Lemma 3.2.5. We set w,. = 0.

Since, for any two cocycles k and k’ representing v, k(o) and /(o) differ by an element of
(0—1)Ad, it suffices to show that part (ii) holds for one particular choice of cocycle representing .
We will show below that there is some 0y € G and a cocycle k representing v such that:

(i) p(op) has distinct eigenvalues; and
(i) either tr (o) & m*tNe or k(og) = 2I + Y with z ¢ m*tNe and YV € w1 (@+1Ad.

Granting the existence of such a op and xk we can define U to be the non-empty open subset of
G consisting of o such that:

o (o) = plon); and
e k(o) — K(og) € wsHNeAd.

Any p(o) with o € U has distinct eigenvalues mod m, so o satisfies part (i) by Hensel’s lemma.
To see that the elements of U satisfy part (ii) of the lemma first consider the case that tr x(og) ¢
m*+Ne, Then, if ¢ € U we have trx(o) ¢ m*Ve and, since tr X = 0 for any X € (0 — 1)Ad,
w/ k(o) € (6—1)Ad+w™Ad implies @’ tr x(c) = m so j > m—s—N.. Now assume x(0g) = 2I+Y
with z ¢ m*+tNe and Y € @' (*)*1Ad. Then k(o) = 2I4+Y’ with Y’ € w"?(*)+1 Ad. The eigenvalues
of p(o) are distinct mod m, so Lemma 3.2.6 implies that if w/(0) € (0 — 1)Ad + @™Ad, then
m < j+val(z),soj>m—s— N,

It remains to show there exists some oy € G £, and some cocycle representing y satisfying
parts (i) and (i) above. First let & be any cocycle representing +. Since Fi,/F is a pro-2 extension,
there is 0 € G such that p(o) has distinct eigenvalues. By Hensel’s lemma, p(c) has distinct
A-rational eigenvalues and we denote them by « and S. Since a and § are distinct mod m, we
can find an eigenbasis of V for p(c) and we identify Ad with Mayx2(A) using this basis. Write

k(o) = (‘C‘ Z) .

Since /5 — 1 and f/a — 1 are units, we can adjust « by the coboundary

-7\ (2 —1)"1
I (2 —1)te I\ - ’

and assume b = ¢ = 0. If at least one of a, d is not in m**"e_ then we have either tr k(o) = a+d ¢

msTNe or
0= )20 1)

with @ ¢ m*+e and val(a + d) > val(a). In either case we take g = 0.
Now assume that both a,d € m**Ve ie. k(o) € w*™™aAd. By the choice of Ny and s we

know that the restriction of vy to HI(GEFOO , Ad)Gal(EFoo/F) = Homr (G _, Ad) does not belong

@R
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to wtM Homp (G _,Ad). So £(Gpp_) is a I' stable subgroup of Ad which is not contained
in '™ Ad. By Lemma 3.2.5, there is some 7 € Gpp. such that either trr(7) ¢ msHNo+N1 —

m*tNe or k(1) = 2I +Y with z ¢ mstNo+tN — stNe and Y € @¥2l(?)+1Ad. Set 0 = 70. Since
p(ta) = p(o), og satisfies part (i). Since x(0g) = k() + k(o) and k(o) € w*NeAd, oy satisfies
part (ii) by choice of 7. O

Setting w = max{wg,wp, w.} and N = max{Ny, Ny, N.}, Lemma 3.2.9 follows from
Lemmas 3.2.10, 3.2.11, and 3.2.12. O

3.2.13 We now apply Lemma 3.2.9 to find our sets of auxiliary primes. Some care has to
be taken in choosing these primes. We will need to consider Selmer groups with coefficients in
Ad,,, and we need to ensure that the dual Selmer groups have size ¢*™, asymptotically in m. To
this end, given a cohomology class v € H'(Ggg, Ad), we not only need to find a prime v of F
such that the image of 7 is non-torsion in H!(G,, Ad), but we need to ensure that it does not lie
too ‘deep’ in H'(G,, Ad). The way we make sure the cohomology class does not lie too ‘deep’ in
H'(G,,Ad) is by using property (ii) of Lemma 3.2.9. There is a complication that arises here.
In order to use property (ii) effectively we need to make sure the value of s in the assumption of
the lemma stays bounded.

Let us elaborate here. We remarked above that we require the dual Selmer groups with
coefficients in Ad,, to have size asymptotic to ¢>™. But, we also need to ensure that the error
term in the asymptotic is bounded in a way that does not depend on the choice of primes. The
way one usually constructs auxiliary primes, and the way we will do it here, is inductively. One
first chooses a cohomology class v € H'(Grs, Ad) and then finds a prime v; that kills 4. Then
we take 9 that lives in the dual Selmer group for the Selmer structure given by the single prime
{v1} and find a prime {v2} that kills 2, etc. The problem is that if the value of s for which o
satisfies part (a), (b), or (c¢) of Lemma 3.2.9 depends on v, then the ‘depth’ for which ~, lies in
the local cohomology group will depend on v;. This will cause the error term in the asymptotic
to depend on the choice of the auxiliary primes. We must be careful to avoid this in the proof of
the following lemma.

LEMMA 3.2.14. There are non-negative integers w and N such that for each n > ny there is a
set of primes Q,, of F, of cardinality h = ranksH'(Gr s, Ad) — 2, satisfying:

(i) for each v € Qy, p is unramified at v and p(Frob,) has distinct A-rational eigenvalues ou,, By
with val(ay, — By) < w;
(ii) each v € Q,, splits in the extension F,/F;
(iii) if the image of v € W}, under the map

Wy — H'(Grg,Ad) — [ H' (G, Ad) — [] H'(Gy, Ad)gree
’UEQn UEQn

lies in w@" DN HveQn H'(Gy, Ad)tree, then v € wW,.
Proof. Let w and N be as in Lemma 3.2.9. Fix elements v1,...,7. € Wy such that for each
1<i<h,{m,...,7%} is a basis for W;. We will inductively construct a set of primes {v1,...,v;},
for 1 < < r, of F such that each v; satisfies parts (i) and (ii) above as well as the following:
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(IND;) if the image of v € W; under the map

Wi — H'(Gpg,Ad) — [[H' Gy, Ad) — [[ H'(Goy Ad)srce
j=1 j=1

lies in DN H;:l Hl(ij,Ad)free, then v € wW;.

Taking @, = {v1,...,v,} establishes the lemma. In what follows, given primes vy,...,v; of F,
we will denote the map

H'Y(Gps,Ad) — [[ H'(Gy,, Ad) — [] H' (G, Ad)free
j=1 j=1
by res;.
First take ¢ = 1. Then W; = A~v; and ~; satisfies either part (a) or (b) of Lemma 3.2.9

(depending on whether 79 = 1 or 79 > 1) with s = 0. Hence, there is an open subset U of Gg g
such that:

(a) for every o € U, p(o) has distinct A-rational eigenvalues «, 5 with val(a — ) < w; and

(b) for any cocycle k representing v; and o € U,
wk(o) € (0 —1)Ad + w™Ad
implies j > m — N.

Viewing U as a subset of Grg and applying Chebotarev density we obtain a prime v; of F'
satisfying (i) and (ii) of the lemma. To see that (IND;) holds, take v = ay; € W such that
resy (7) € @NHY(Gy,, Ad)gee. Take I > 0 such that ! annihilates H'(G,,, Ad)tor. Then the image
of wly in H'(G,,, Ad) lies in otV ! (Gy,,Ad). So, for any choice of cocycle k representing 71,
we have

aw'k(Frob,) € (Frob, — 1)Ad + @™V Ad,

and part (b) implies val(a) +1 > [, i.e. v € wW, which is (INDy).
Now assume, for 1 < i < r, we have primes vy, ...,v; of F satisfying parts (i) and (ii) of the
proposition as well as (IND;). If there is no v € Wi11 ~ @wW,11 such that

res;(7) € S@F-DN HHI(ij,Ad)free,
j=1

then (IND;y1) is automatically satisfied for any choice of v;y;. In this case we can apply
Lemma 3.2.9 to ;41 with s = 0, and we obtain a non-empty open set U of G 7.5, to which we
can apply Chebotarev density as in the ¢ = 1 case to we get a prime v;4; of F satisfying parts (i)
and (ii) of the lemma.

Now assume there is some v € W11 ~\ wW;41 such that

res;(7y) € @@ DN H H' Gy, Ad)free.
j=1

The idea is now to replace {v1,...,7vi+1} with a basis for W, that includes v and then apply
Lemma 3.2.9 to 7.
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Write v = a1y1 + -+ + @j+17i+1- Since v ¢ wWiiq, there is at least one 1 < j < i+ 1
such that a; is a unit. Let jo be the largest such index. Then {v1,...,%jo—1,7: Vjo-r1»-- s Vit1}
is a basis for W;;1. We first show that (IND;) also holds with W; replaced by the A-span of

{’)/1, <oy Yjo—15 Yjo+1s - - - ,’}/Z'+1}. Let ’7/ =b1y1 + - + bip17vi41 with bjo = 0. We will show that if

i
res; (') € wZ—DN H Hl(GU‘j,Ad)free,
j=1
then b; e mforall 1 <j<i+1.
First assume that val(b;+1) < val(a;+1). Then v — (a;+1/bi+1)y € W;, and when written

in terms of the basis {v1,...,7:}, the jo coefficient is aj, — (ai+1/bi+1)bj, = aj,, a unit. Thus,
v — (ai41/biy1)y ¢ wW;. But

i
a; a; i
res; <’y — ZJr1*)/’) =res;(y) — ZJrlresi(’y’) € @ -DN H Hl(GUj,Ad)free, (34)
bit1 it+1 e
contradicting (IND;). So we must have val(b;11) > val(a;+1). Then v — (bj11/a;4+1)y € Wi, and
similar to (34), we see that

bi ; i
res; <'Y/ - aill ’Y) € w(2 —bN H H' (ij ) Ad)free-

j=1
By (IND;), we have v — (bi1/ai+1)y € @Wi. Now o' — (biv1/ait1)y = (b1 — (bit1/aiv1)a)y +
e (bz — (bi+1/ai+1)ai)’yi, SO bj — (b¢+1/al~+1)aj € m for each 1 < ] < . Then Val(bi_;,_l) > Val<ai+1)
implies b; € m for all 1 < j < i+ 1, which is what we wanted to show.
We let {01,...,0i+1} = {71s- -+ Vjo—1,7 Vjo+1, - - - s YVi+1}, ordered so that §;11 = 7. By the
above claim, if

i
res;(b161 + -+ + bid;) € @ TON [ H'Y(Gy,, Ad)gree  then val(bj) > 1 for all 1< j <i. (35)
j=1
We wish to apply Lemma 3.2.9 to §;41, but first we need a little more information. In particular,
we need to know the value of s for which ;41 satisfies either part (a), (b) or (c) of Lemma 3.2.9.
Recall we have written ;11 = a1y1 + - - + a;117i+1. We have val(a;11) < (2 — 1)N. Indeed, if
aj+1 is not a unit, then jy <4 and (IND;) implies

resi(ary + -+ aiyi) ¢ @ TN ] HY (G, Ad)see.

j=1
Then A
(2
reSi(al’Yl + -+ ai+1%~+1) S w(Ql_l)N H Hl(ij,Ad)free,
j=1
gives

resi(air17i+1) € @OV ] HY(Go,;, Ad)frces
j=1

hence val(a;11) < (2° — 1)N.
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By the way 71,...,7 were chosen, the above claim implies ;41 satisfies one of (a), (b) or
(c) of Lemma 3.2.9 with s = (28 — 1)N. Let U be the open subset of Gf, g, given by applying
Lemma 3.2.9 to §;41. Applying Chebotarev density to U we get a prime v;11 of F' that, as in
explained in the case i = 1, satisfies (i) and (ii) of the lemma and such that for any cocycle
representing d;41, if
@’ k(Frobiy1) € (Frobj1; — 1)Ad + w™Ad
then j > m — (20 —1)N — N = m — 2'N. As explained in the i = 1 case, this implies that the
image of d;11 in Hl(GUi+1,Ad)free does not belong to w2iNH1(Gvi+l,Ad)free.
It remains to show (IND;1) holds. Take § € W, 1 and assume that
_ i+l
resi11(0) € w® " TN TT HY(Go,, Ad)free.

j=1

Write § = b161 + -+ - + biy10;+1. We will show val(b;) > 1 for all 1 < j < i+ 1. Since

res;(0i11) € T TON T HY (G, Ad)gee
j=1

we have '
reSi(bl(Sl + -+ biéi) S w(QiH_l)N H H! (ij,Ad)free.
j=1
By (35), we know that val(b;) > (21 —1)N — (28 —=1)N = 2N for each 1 < j <. But then the
image of @ DN (b1 +- - -+ b;8;) in H (G, ,, Ad)gree lands in w7 "ONHY(G,,, ., Ad)free- So,
w@=DNp, 16,11 also maps to w(21+1_1)NH1(G Ad)free. Since the image of §;,1 in H(G
Ad)gee does not belong to w? VN HY(G Ad)free, we must have

Vi+19 Vi1

Vi41
(28 —1)N +val(biy1) > (27 —1)N — 2'N,
which implies val(b; 1) > 1. This establishes (IND;11). ]

3.2.15 If V. C W are finite sets of primes in F' and M is an A-module with a continuous G
action which is unramified outside W, we denote by H{,(Ggw, M) the subgroup of H (Grw, M)
consisting of elements whose image in [], o, H'(G,, M) under the restriction map is trivial.

We introduce some notation as in [SWO00]. For each n,m > 1, let Cy, ,,, and D, ,, be positive
integers. We write

Cn,m = Dn,m

if there are constants 0 < a < b such that

for all n,m > 1.

PROPOSITION 3.2.16. For each n > ny, there is a set of primes @Q,, of F', disjoint from S and of
cardinality h = rankaH'(G s, Ad) — 2, such that:
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(i) for v € Qn, p is unramified at v, p(Frob,) has distinct A-rational eigenvalues, and
val(tr p(Frob,)) < w, with w not depending on n or m;

) v splits in the extension F, /F;

) for each v € Q,, |[H*(Gy, Ady)| < ¢*™;
(iv) |Hg, (GrsuQ., Adm)| =< ¢*™;

) letting Fngn denote the maximal abelian extension of F of degree a power of 2 which is
unramified outside @Q,, and split at primes in S, Gy, = Gal(FSn/F), we have G, /2" 2G,, =
(Z)2"2Z)t, with t = 2 — | S| + |Qn]-

Proof. We let @, be the set of primes given by Lemma 3.2.14. Then parts (i) and (ii) of the
proposition are given by parts (i) and (ii) of Lemma 3.2.14. In particular, the bound on the
valuation of the trace follows from part (i) of Lemma 3.2.14, since the characteristic is 2.

Take v € @, and let @ and ( denote the eigenvalues of p(Frob, ). Take g € GLo(K) such that

gp(Frob,)g~" = (a ﬁ> :

Identify Ad with Maoyo(A) using our fixed basis of V, and set Ad’ = gAd C Maya(K). Letting
Frob, act on Ad’ via gp(Frob,)g~!, and setting Ad},, = Ad’/w™Ad’, we see that H*(G,, Ad,,) =
H°(G,,Ad,)). There is some [ > 0 such that

w!'Ad C Ad' € w'Ad. (36)

() E DT )= (e ) o

This and Ad’ D w!Ad imply
{ <“ d) +w™Ad :a,d € ml}/wmAd’ C HY(G,,Ad,).
Now w™Ad' C @™ *Ad then implies
H (“ d) +wmAd :a,d € ml}/wmAd’

> H <a d> + @™ Ad a,d € ml}/wm_ZAd‘ = g¥m4

and
|HY(Gy, Adyy)| = |H(Gy, Ad),)| = ¢*™ 4. (38)

To get a lower bound, recall that by part (i) of Lemma 3.2.14, there is an integer w that does
not depend on v such that val(a~! — 1) = val(a™!8 — 1) < w. Using this, together with (37)
and (36), we have

HY(G,,Ad,) C { (i Z) +@wmAd ra,d e m b and b, c € mm“U} Jw™Ad'.
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Now w™Ad' D w™*t Ad then implies

H <CCL 2) +wmAd s a,d e mand b, c € mm_l_w} /wmAd/

< '{ <‘CL Z) +w™HAd:a,demand b, c € mmZW} /meAd‘ = gFmHsitw
hence
|H(G,, Ad,,)| = |H(G,, Ad])| < g2 H8H2w, (39)

Since [ and w do not depend on n or m, (39) and (38) imply part (iii) of the proposition.
We now check part (iv) of the proposition. Since p is unramified at each v € @,,, the injection

Hclgn (GFVSUQn ) Ad) - Hl (GF,SUQn ) Ad)

factors through H'(Gp g, Ad). Similarly with Ad,, in place of Ad. From the exact sequence

0— Ad Z5 Ad — Adyp —> 0 (40)

we have

0 — HY(Gpgs,Ad)/w™ — HY(Grgs,Adp) — H*(Grgs,Ad).
Since the size of the torsion subgroups of H'(G r,5,Ad) do not depend on n or on m, we have
|HY(Grs, Ady)| = |HY(Grg, Ad) /™| < |(A/m™)h+2| = gmh+2), (41)

Consider our fixed submodule W), of H'(Gpgs,Ad). Say v € W), is such that it maps to
@™ [Leq, H'Y(G,,Ad). Then v maps to @™ [Leo, HY(Gy, Ad)free. Writing v = w’/+' with
v ¢ wWy, part (iii) of Lemma 3.2.14 implies j > m — (2" — 1)N. Tt follows that

im(W, > [[ H'(Go, Ad) /wm)' > ghm=2"-)N), (42)
vEQR

Applying local cohomology to (40) we have an injection
0— J[ #'(Gw,Ad)/=™ — [] H'(Gv,Adm).
UeQn UEQ’VL

Combining this with (42) and the commutativity of

W, HY(Gp.g, Ad) g, H'(Gy, Ad)

| |

H'(Grs, Adp) — [Toeo, H' (G, Adyy)

we conclude that

im(H'(Grs, Adm) > [] Hl(Gv,Adm))‘ > ghm=(@"-1N), (43)
’UEQn

But, since each v € Q,, splits in Fn, we also have injections

(A/m™)? =2 HY(Gal(F,/F), Zn) —> H'(Gal(F,/F), (Adw) ") — HY (Gpsuq,. Adm),
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SO
|Hp, (GE50Q, Adm)| = ¢*™.

This combined with (41) and (43) imply
|, (Grsug. Adm)| =< ¢*",

which is part (iv) of the proposition.
It remains to show part (v). Using part (iii) of Lemma 3.2.2, it is shown in [KWO09] that
part (v) holds with

t = dimp Hg, (Grsuq,, F) = 5]+ @l
and so we only have to show dimy H, clgn (Grsuq,.F) =2.If M is any A-module on which G acts
trivially, H, clgn(G F,SUQ,» M) is the group of continuous homomorphisms from Gal(F’ 3" /F) to M,

where F 3” is the maximal abelian Galois extension of F' of exponent 2, unramified outside S
and split at the primes in @,,. Hence,

dimg Hp, (Gr,s00,.F) = tkaH}, (Grsug,, Z)-
We have a series of injections
HY(Gal(F,/F), Z) — Hp, (Grsug., Z) — Hp,(Grsuo,,Ad),

where the last inclusion comes from the fact that (Ad/Z)“F = {0}. Since rky H*(Gal(E,/F), Z) =
2, rkAHén(GF,SUQna Z) > 2. Part (iii) of Lemma 3.2.14 implies W}, intersects Hén(Gﬂqun, Ad)
trivially, so rkaHp, (GrsuQ.,Ad) < tkaH'(Grs, Ad) —rkaW), = 2. Part (v) of the proposition
now follows. O

4. Pro-modularity

The purpose of this section is to prove a certain R™% = T theorem, where R is a quotient of
a universal deformation ring tensored with an Iwasawa algebra as in §1.6, and T is a quotient
of the universal nearly ordinary Hecke algebra as in §2.3 by a minimal prime of the Iwasawa
algebra.

In the first subsection, we state assumptions on our field and residual representation, recall
notation and properties of the deformation rings, Hecke algebras, and Hecke modules, and we
then state the localized ‘R = T’ theorem, see Proposition 4.1.8. An important technical point is
Lemma 4.1.6, where we prove normality of certain localizations of our local deformation ring. This
will be important in the patching argument because we will have to perform a completion after
localizing at a dimension 1 prime. The normality implies that the completed local deformation
ring is still a domain. Without this, it does not seem clear how to show the completed Hecke
module is supported on the whole deformation ring.

In the next subsection, we state some reductions, introduce the auxiliary level data, and
recall its relevant properties.

In the following subsection, we perform the patching argument to prove the localized ‘R =T"
theorem. The patching is carried out in a similar way as [KW09, Proposition 9.3], except that
we must control ‘error terms’ generated from the fact that our auxiliary data is associated to
a dimension 1 primes ideal, as opposed to the maximal ideal. After performing the patching
we localize and complete the limiting objects at our fixed dimension 1 prime ideal. It is worth
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pointing out that we must perform the patching first and then the localization and completion
second. This is due to the fact that the backbone of the patching argument is the pigeonhole
principle, i.e. one has infinitely many finite objects, so a projective system can be extracted. The
remainder of the argument is then still quite similar to [KW09, Proposition 9.3], due to the fact
that we can ensure the completed local deformation ring remains a domain.

In the last subsection, we complete the proof of R™4 = T using the localized version together
with our connectivity result Corollary 1.1.7. The argument is almost exactly the same as that
of [SWO01, Proposition 4.1].

Throughout this section we take p = 2.

4.1 Notation and statement of the localized R**d = T theorem

4.1.1 Recall F C Q denotes a totally real number field and G = Gal(Q/F). We assume that
[F: Q)] is even and that for each v|2, either F, contains a fourth root of unity or [F, : Qq] > 3.
For each place v of F, we let G, = Gal(F,/F). Let E be a finite extension of Qy with ring
of integers O and residue field F. We assume that for any v|2, the image of each embedding
F, — Q, is contained in E. In what follows, all completed tensor products will be taken over O
unless otherwise noted.

Fix an absolutely irreducible continuous representation

p: Gr — GLQ(F)

We assume that all eigenvalues of elements of p(Gr) lie in F. We assume that for all v|2, p|¢q, is
trivial or has order 2.
We fix a continuous character ¢ : F*\(A%¥)* — O such that:

(i) 7 is totally even and unramified outside {v|2};
(ii) on some open subgroup of (A%¥)*, ¥(z) = Nmp/g(22)' ™ for some w € Z;
(iii) ez = det p.
Fix a finite set of finite places % of F' of even cardinality not containing any places above p.
For each v € X, we fix unramified characters v, : Gal(F,/F,) — O, and we assume:

(i) for each € ¥, plg, = (W 'Yiv)’
(ii) for each v € ¥, v2 = ¥|q,;
(iii) p is unramified outside of ¥ U {v|2} U {v|oc}.
We fix a finite place vg of F' disjoint from X U{v|2} U{v|oco}. This place will be used to ensure
a certain neatness property below.

4.1.2 Let D denote the quaternion algebra with centre £, ramified at all Archimedean places
as well as all of the places in ¥. Fix a maximal order Op of D and an algebraic weight k = (k, w)
for F'. Let U be the open subgroup of (D ®p A%)* given by:

(i) Uy = Iwi(v) for v|2;
(ii) U, = D) for v € ¥;
(iii) U, = GL2(Op,) for v not above 2 and not in X.

We choose an open subgroup Uy of U by letting (Up), = U, for v # vy and letting (Up)., = Iwi(v()
with n sufficiently large so that (Up(A®)* N¢~1Dt)/F* =1 for every t € (D ®p AR)*, cf.
Lemma 2.1.5.

1313

https://doi.org/10.1112/50010437X1300780X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1300780X

P. B. ALLEN

We let U act on W, (O) as in §2.1. In particular, for v € X, D acts on W, (O) as v, L ovp,
where vp is the reduced norm of D. We assume that U N (AS)* acts on W, (O) via ¢!, and
let SE%(U, O) denote the corresponding nearly ordinary space of quaternionic modular forms,
cf. §§2.1 and 2.2. We let TE%(U, O) denote the nearly ordinary Hecke algebra as in §2.2, and
Ty (U) the universal nearly ordinary Hecke algebra as in §2.3. We also let Sy, (U) be the universal
family of nearly ordinary modular forms as in §2.3, i.e. Sy,(U) = (h_I)na So.4(U(p™*), E/O))Y. We
have similar algebras and modules for Uy in place of U.

Say we have a finite set of places @ of F' disjoint from Sp. Note that Nm(v) =1 (mod 2) for
each v € Q. For each v € @, let A, be the maximal 2-power quotient of k. We define Ug to be
the open subgroup of Uy given by (Ug), = (Uop)y if v ¢ @, and for v € Q

(Ug)w = {(CCL Z) clw(v):ad™ —1¢ Av} .

We then define 539, (Ug, O), Ty y(Ug, O), Ty(Ug), and Sy (Ug) as before. Recall that for V' any
of U, Uy, or Ug, Ty (V) is a A(UU3)-algebra, and the natural maps between them are A (U )-algebra
morphisms, where A(Us) = O[[Us]] with Uy = ker(I[, o O, = I1,2(OF,/@vOF,)*).

We assume that there is some eigenform f € SE%(U , O) such that py = p, with py the Galois
representation as in § 2.4. Denote by m the corresponding maximal ideal of Tgi’w(U , O0), and again
denote by m its pullback to any of Ty (U), Ty (Up), or Ty (Ug).

Recall that we have A(I,) = O[[I2P(2)]], where I2"(2) is the inertia subgroup of G2P(2),
the maximal pro-2 quotient of the abelianization of G,. We set A(J2) = ®,2 A(I,). Local class
field theory gives an isomorphism A(Iy) = A(Uy). Also recall that A(Ga) = @, A(G,), where
A(Gy) = O[[G2(p)]]. For V any of U, Uy, or Ug as above, the A (U3 )-algebra structure on Ty (U )
extends to a A(G2)-algebra structure, cf. §2.4.6.

Let p denote the torsion subgroup of U;. Since E contains all embedding F, — Q, for all
v|2, the minimal primes of A(l4}) and A(G2) are in one-to-one correspondence with O* valued
characters of u. We let n be the character of p given by our fixed eigenform f above, and denote
by q, the corresponding minimal primes of A(Uj) and A(G2). Set A(Us,n) = A(U3)/q, and
A(Ga,n) = A(G2)/q,. Note that A3, n) and A(G2,n) are isomorphic to power series rings over
O in [F : Q] and [{v|2}| + [F : Q] variables, respectively.

4.1.3 We now specify some finite places of F' at which our deformation problem will be
unramified. This may seem redundant, but is important for two reasons. The first is that below
we will chose a dimension 1, characteristic 2 prime ideal of the Hecke algebra and it will be
important that (after a choice of framing) the local deformation ring surjects onto the Hecke
algebra modulo the prime ideal in order to compare tangent spaces of the local and global
deformation rings localized at our fixed prime ideal. The second is to guarantee the freeness of a
certain group action, cf. Lemma 1.6.8, which is necessary for the 2-adic patching method. To these
ends, first choose a finite set of places {v1, ..., v} disjoint from U{v|2}U{v|co}U{vp}, such that
Ty (U,n)m E AU T, ... Ty [T, ]u|2, cf. Corollary 2.4.5. By enlarging {v1, ..., vy} if necessary
we can assume that if p is dihedral, and L denotes the unique quadratic extension of F' for which
pla, is abelian, there is some v; € {v1,..., v} that is inert in L. We set Sy = {v1,..., v} and

S =X U{v|2} U{v|co} U Sy.

We then set Sp =S U{vp}.
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4.1.4 Let Q be a (possibly empty) set of places of F' disjoint from S. We let Rﬁ suq denote
the universal deformation ring for Grgug-deformations of p with determinant ¢e;. We let

RE’;@UQ denote the universal framed deformation ring for framed G'r sug-deformations of p with

determinant ey and frames at places in S, cf. §1.6. We let R% SUQ denote the universal framed
deformation ring for G r sug-deformations of p with frames at S, and with determinant yes|q, for

each v € S, but not fixed globally, cf. §1.6. We similarly define Rﬁ SoUQ" EﬁouQ’ and R% SoUQ"

For each v € Sp, we let R denote the universal lifting ring for lifts of p|q, with determinant
ey, Set Rg’w = Qyes R and Rgéw = ®ues, R For each v € So, we define quotients of R3’¢
of RS if vt p, and of RF"Y & A(Gy,m) for v]2, as follows.

. SUY S A . A . . A L
(i) Forv|2, R, = Ry (Gone) with Ry (G 8810 §1.4.3. Since we are assuming p|¢, is either

trivial or has order 2 image, and that F, contains a fourth root of unity or satisfies [F) :
Q2] = 3, we have the following.

(a) By Proposition 1.4.12, EE’w is a domain of relative O-dimension 3 + 2[F, : Q.
Moreover, if Z, denotes the closed subscheme of Spec A(Gy,1,) defined by (X%fi")2 =
1eg, and V,, denotes its complement,

—0,
(Spec Rv v XSpec A(Go,m0) Vv) ®o F

is integral.
(b) By Proposition 1.4.18, if x = (ps, xz) is a closed point of Specﬁ?’w[l/p] such that
X2 # 1 or ey, then EE Y s formally smooth over F at z.

(ii) Forwv e X, RE,@D = Ry asin Proposition 1.5.4. It is a domain of relative O-dimension 3,
RE ’¢[1 /p] is formally smooth over E, and EE " @0 F is a domain.

(iii) For v|oo, EE’¢ — R as in Proposition 1.5.6. It is a domain of relative O-dimension 2,
RE ’w[l /p] is formally smooth over E, and EE v ®o F is a domain.

(iv) For v € Sy, RUD’w = RJ"™ as in part (ii) of Proposition 1.5.2. It is formally smooth over
O of relative dimension 3.

(v) We take ng as in Proposition 1.5.2. It is equidimensional and O-flat of relative O-
dimension 3. There is a minimal prime gy, such that a lift factors through REO’w /Gur if
and only if it is unramified. The quotient EEOW/ qur is formally smooth over O.
-0 ~ =0 -0 - -0
We set Rsﬂp = Ques R, ¥ and Rséw = Ques, Iy v
LEMMA 4.1.5. Eg(’)w is O-flat and equidimensional of relative dimension 3|Sy| + [F : Q). Any
minimal prime of Rg(’)w is of the form qﬁg(;d} with q a minimal prime of R?O’w.

Proof. By Propositions 1.4.12, 1.5.2, 1.5.4, and 1.5.6, and part (iii) of Proposition 1.1.4, Egg)w is
O-flat of relative dimension

S342F @+ Y 2+ > 3=3IS|+[F: Q)

v|2 v]oo vEXUSurU{vo}
and the claim regarding minimal primes follows from part (iv) of Proposition 1.1.4. O
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In particular, for gy, the minimal prime of REO“” corresponding to unramified lifts,
Lemma 4.1.5 implies that q,; generates a minimal prime of ng which we again denote by qyr.
Let Xum" : Gy = MGy, )™ denote the universal A(G,,n,)-valued character.

LEMMA 4.1.6. Let Z; denote the closed subscheme of Spec A(Ga,7) defined by (xj™V)? = 1) for
some v|2, and Zs the closed subscheme defined by (x “m") = ey for some v|2. Let U denote the
complement of Z1 U Zy, and let f : Spec RSO /qQur = Spec A(G2,n) denote the natural morphism.
Ifp € f~Y(U), then (Egéw/qur)p is normal.

Proof. For ease of notation, we set R = Rg;w/qur, R, = RUD’w for v € S, and Ry, = RUDO’¢/qur.
Note that R & @yes, Ry. We check Serre’s conditions (S2) and (Rp). Since f~1(U) is open it
suffices to check:

(a) for any p € f~1(U), we have depthR, > min{i, htp}; and

(b) for any p € f~1(U) with htp = 1, R, is regular.

Take p € f~1(U). First assume that 2 ¢ p. Since R[1/2] is Jacobson, we can find a finite
extension E’/E and an E’ valued point x : R[1/2] — E’ whose kernel lies in f~!(U) and contains
p. Write z = (z,) for ,, : R, — E’', for each v € Sy. Part (ii) of Propositions 1.5.2, 1.5.4, and 1.5.6,
imply that R, is smooth over E for each v € Sy with v { 2. For v|2, since the kernel of z lies in
f~1(U), Proposition 1.4.18 implies that R, is smooth over E at m,. Part (i) of Proposition 1.1.4
shows that R[1/2] is smooth over E at x. Since p is contained in the kernel of z, p is regular.
This establishes both (a) and (b) for primes in f~(U)[1/2].

Now take p € f~1(U) with 2 € p. Let wp denote a uniformizer of E. Let N denote the
nilradical of R/wgR, and for each v € Sy, let N,, denote the nilradical of R,/wgR,. Part (ii)
of Propositions 1.5.2, 1.5.4, and 1.5.6, imply that N, = 0 for each v € Sy with v { 2. For v|2,
Proposition 1.4.12 implies that the support of N, in Spec A(G,,n,) is contained in the closed
subscheme defined by (x “m") = 1eg. Then part (iv) of Proposition 1.1.4 implies that the support
of N is contained in f~1(Z5), so Ry/wrRy, = (R/wgR)y is reduced. If htp = 1, then R,/wgR,
is a field, and p is regular. If htp > 1, then that R,/wgR, is reduced and of dimension at least
1 implies the existence of a non-zero divisor in its maximal ideal; hence, depth R, > 2. O

As in §1.6.3, we define quotients:
() Rpbug®AG2n) > Ribug:
(i) RE% o ®A(G2,1) — Rpko; and
(i) R7 ' SoUQ & MG, ) — RZE,SOUQ;
by letting:

7D7w 7D’w
(a) RFSUQ = Rg RO RFSUQ’
—O,4
(b) RF SoUQ = RS() RE;/) RF,S()UQ; and

- S0 O
(c) RF,SQUQ = Ry, ®R§6w RE sou0-
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We define a quotient R?SUQ@)A(Gg,n) — E}@,SUQ by letting R?SUQ be the image of
R%SUQ ® A(G2,7n) under the natural map

R?SUQ ©A(Ga,n) — RE‘,’SUQ — Relsug:
and similarly with Sy in place of S. Note that if E'/FE is finite with ring of integers O/, a
local 0-algebra morphism Elﬂ’ﬁo — Op has kernel lying over gy € Spec Rgéw if and only if the
induced morphism Rg s, — Op factors through E}@ 5
By §2.4.6, the existence of f in §4.1.2 yields surjective morphisms R}@,S — Ty (U,n)m,

E}Z;,SO — Ty (U, 7)m, and E?SOUQ — Ty (Ug, N)m- These are all morphisms of A(G2,n)-algebras,
and the natural diagrams all commute.

If R is either of R?SUQ or E}@,SOUQ, A is a CNLp-algebra, and = € SpfR(A), we let p,
denote the pushforward of the universal deformation by x. If p € Spec R, we denote by p, the
pushforward of the universal deformation by R — R/p.

4.1.7 As in [SWO00, SWO01], we say a prime p € Spec E}Z;,S is pro-modular if it is the inverse

image of a prime of Ty (U,n)n. We say a closed subset of Spec R}@,S is pro-modular if every
prime in it is pro-modular. Note that an irreducible component is pro-modular if and only if its

corresponding minimal prime is pro-modular. We say a prime p € Spec E% g is nice if:

(a) p is pro-modular;

(b) p is dimension 1 and containing 2;

(c) pp is absolutely irreducible and non-dihedral;

(d) for each v|2, the image of p in Spec A(Gy,n,) does not lie in the closed subscheme defined

by OGt)? = e
(e) the image of p, contains a non-trivial unipotent element.

We are now in a position to state the localized ‘R = T’ theorem.

ProrosiTIiON 4.1.8. With the notation and assumptions as above, if p € Specﬁ?s is a nice

prime, then every prime of Elfv’ g contained in p is pro-modular.

4.2 The setup
The proof of Proposition 4.1.8 will be carried out in a number of steps. Fix a nice prime p and

let A =Ry g/p.

4.2.1 We have a commutative diagram

14
Rp gy — Ty(Uo, M)m

L

Ry —— Ty(U.nn

with all arrows surjective. Pull back p to a prime pg of Ty (U, n)m, and denote again by po
its pullback to E% s,- Let X denote the Zariski closure in Specﬁ? s, of the set of points = €

Spfﬁ? s, (Opr) whose corresponding deformations are unramified at vg, as E’ ranges over all finite
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extensions of E. Note that X is the image of Spec (Rﬁ’ﬁo/ qur) under Spec E%’SO — Spec Rﬁ So-

From this it follows that X is also equal to the image of Spec E? g — Spec Eﬁ 5, Consider the
commutative diagram given below.

Spec T(U, n)m — Spec R}?S

| |

Spec T(Ug, n)m — Spec ngo

Let q be a minimal prime of Ty (Uy, n)m whose image in Specﬁ? s, lies in X. We know that
any arithmetic prime contained in q is in the image of Spec Ty (U, n)w. By Zariski density of
arithmetic primes, cf. Corollary 2.3.12, ¢ must be in the image of Spec T (U, )w. It thus suffices
to prove that any element of X N Spec (F;’So)po C Spec EL}Z;,SO is in the image of Spec T(Uy, 1), -

Recall that E?;ﬁo is isomorphic to a power series ring over E}pp s, in 4|Sg| — 1 variables,
cf. §1.6.5. Set j = 4]Sy| — 1, and choose a presentation RE{?O = E%SO[[yl, ..., yj]]. Let Egﬁo —
E}{%SD be the map sending each y; to zero. Set TE(UO, Mm = EE{?O ®§1£ . Ty (Up, N)m. We have a
map TE(UO, Mm — Ty (U, M)m, by sending each y; to zero. Pull back ]’300 to ideals of TS(UO, 7)m
and Eg’?, and denote each again by pg. In order to show that any element of X N Spec (Rﬁ So)wo C
Spec Rﬁ s, is in the image of Spec T'(Uy, 1)y, , it suffices to show that any element of Spec (Ei’ﬁo )ro
lying over qu, € Spec Rgéw is in the image of Spec TS(UO, N)po — Spec (Rgﬁo)po.

Finally, recall that we have a faithful Ty (Up,n)m-module Sy (Up,n)m. Set SE(Ug,n)m =
RE{?O ®E$s Sy (Uo, M)m; this is a faithful Tg(Uo, n)m-module. To prove Proposition 4.1.8,
it suffices t(;j show that if q € Spec (Ele:go)lﬂo lies over q,r € Spec Rgo’w, then q is in the support of
55(U07 7)m- This is what we will prove.

4.2.2 For ease of notation, set A = A(Z/{;, n) =AIp,n), Rioc = Rﬁ;w, R} = E}D;,SO, Ry = E}D,{go,
and My = SE(Uo,n)m. Also set B = A[[y1, ...,y;]]. Let pp denote the pullback of p to A. Note
that R, and Ry are B-algebras, and the surjection R, — Ry is a B-algebra morphism. We
denote by p{, the pullback of p to Ry, and pjo. its pullback to Rjec. By our assumption on (Up).,,
Proposition 2.3.3 and Corollary 2.3.8 imply that Sy (U, n)n is finite free over A, thus My is finite
free of the same rank over B.

LEMMA 4.2.3. There is a prime q € Spec Ry contained in py and in the support of My such that
the irreducible component of Spec Ry, determined by gy, is the unique irreducible component
containing the image of q.

Proof. By Lemma 4.1.5, Spec R}, — Spec R?O’Qﬁ induces a bijection on irreducible components.
Hence, it suffices to show the existence of q € Spec Ry contained in pg and in the support of My
such that the irreducible component of Spec EEO’w determined by gy is the unique irreducible

. : =0,
component containing the image of q under Spec Ry — Spec Rvow.

Let g be a minimal prime of TFZ}(U)m contained in p, and write q again for its pullback
to Rg. Choose an arithmetic O-morphism A; : TE(U ) = Q, whose kernel contains q. Since

pf is unramified at vg, we know that the image of ker Ay in Spec R?O’w lies in the irreducible
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component determined by . If it was contained in more than one irreducible component,
Proposition 1.5.2 shows that p f|Gv0 = vey B vy, for some unramified character v of G,,. But using
local-global compatibility, this contradicts the fact that the automorphic representation 7y of
GL2(Ap) corresponding to f via the Jacquet—Langlands—Shimizu correspondence is generic at

vg. Since the irreducible component of Rvo’w determined by ¢y, is the unique one containing ker x,
it is also the unique one containing q. O

4.2.4 Note that the map Ry — A determines a fixed tuple (Vy, {X'u}v|27 {Baw}ves,), with
Va a deformation of p to A, x, an A valued character of G, for each v|2, and 4, a basis for
V4 reducing to our fixed basis of p for each v € Sj.

We need to use the results of §3. Let K be the fraction field of A, and let A’ be the integral
closure of A in K. If we view p; as taking values in GL2(A’), then all of the assumptions of § 3 are
satisfied (with p = p, and A’ in place of A), except possibly for the assumption (A5), i.e. that
in the case where p is L-dihedral, there is some 79 € Gp \ Gp, such that py(79) has distinct
infinite-order A’-rational eigenvalues (note that (d) of the definition of nice primes ensures that
(A2) holds even in the case that p is not dihedral). Assuming p is dihedral, Corollary 1.7.6 implies
there is some 79 € G such that p(79) has order 2, but p,(79) has infinite order. Since 2 € p,
det py is finite, and unipotent elements of p,(Gr) have finite order, we deduce that p,(79) has
distinct infinite-order eigenvalues. Since p(79) does not have distinct eigenvalues, the eigenvalues
of pp(70) lie in the ring of integers A” of a quadratic ramified extension K” /K. The representation
pp ®4 A” then satisfies the assumptions of § 3. Applying the results of that section, we fix n; > 1
as in §3.2.4, and for each n > n; we fix a finite set of finite places @), as in Proposition 3.2.16.
Recall that |@Q,| has cardinality independent of n, and we denote it by h. For each n > 1, in the
notation of §§4.1.2 and 4.1.4, we set

-U *‘:W’
R’;L = RF,SOUQn and Rn = RFysOUQn'

Fix a choice for the framing of Rpg g, over Rps,uq, compatible with the surjection

-0 —=0 . .
Rps,u0, — Rps,- This then gives a B-algebra structure to R; and R, and we have a
commutative diagram in CNLp

Rloc - R{n — R,
R, —— R,

such that each is a morphism of A-algebras, and each of R/, — R,, R, — R{, and R, — Ry
are surjective morphisms of B-algebras. Let p,, and p] denote the pullbacks of p to R, and R/,
respectively.

LEMMA 4.2.5.
(i) Let k =1+ 2h. For any n > nq, there an injection of A-modules
Ak e p%/((p%)z + ploc)

whose cokernel is finite of size bounded independent of n.

(ii) The minimal number of generators of the maximal ideal of R,, is bounded independently
of n.
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Proof. We first prove part (i). Recall that K is the fraction field of A. Let t, = p,/((p],)? + Ploc)-
Take x1,...,xy, € t, such that the images of x1, ..., zy, in t,/my4 are linearly independent and
such that z1,...,zy, form a basis for t, ®4 K. This gives a map ¢ : Akn s ¢, We will show
that k, = k and coker(yp)) is finite of size bounded independently of 7.

Recall that A" denotes the integral closure of A in K. Set t, =t, ®4 A". I claim that t, — t,
is an injection. As both are finitely generated over A, it suffices to show injectivity modulo my,
by Nakayama’s lemma. This follows from the fact that the composite

ty/mg —> t,/mg —> t, /mas

is the isomorphism t, @4 F = (¢, ® 4 A") @4/ F.
Identifying x1, ..., xy, with their images in t,, we have the commutative diagram

0 Az + - Axy,, LA coker(p) ——0

L

0——=Axy+--+ Auy, LA t, —— coker(¢') ——=0

and the snake lemma gives an injection ker(f) — (A’/A)¥n. If k,, = k, then (A’/A)*" is finite of
size bounded independently of n. So, it suffices to show the A’-rank of t, is k, and that coker(¢’)
is finite of size bounded independently of n.

Recall that A” is the ring of integers in a quadratic ramified extension K" /K so that p,®4 A"
satisfies the assumptions of § 3. Set t/! =t/ ® 4+ A” = t,®4 A”. Since A” is free of rank two over A’,
it suffices to show that the A”-rank of ! is k, and that the cokernel of " : A2y +--- A"xy, — !
is finite of order bounded independently of n.

We recall some notation from §3.2.15. For each n,m > 1, given positive C}, ,,, and D, ,,, we
write

Cn,m = Dn,m

if there are constants 0 < a < b such that

n,m

—— <b
Dn,m

a <

for all n,m > 1. If M is a finite abelian group with a continuous GFg,uq,-action and
V C Sp U Qn, we let H,(Gpsyuq,, M) denote the subgroup of H!,(Gps,uq,, M) consisting of
elements whose restriction to H* (G, M) is trivial for each v € V. Let Ad denote the set of 2 x 2
matrices over A” with the adjoint Grg,uq,-action. Set Ad,, = Ad/m’}, Ad. Let ¢ = |F|.

Since t is a finitely generated A”-module, we can write t/ 2 (A"”)k» @ T;,, with T;, finite. By
our choice of z1, ..., zg, , coker(¢”) = T,. Since T}, is finite, Hom 4 (T, K" JA") 2 T,,, and

Hom 4 (!, K" JA") = (K" JA")*n x T,.

It then suffices to show that Hom 4~ (£, A” /m"},) < (¢™)*. Let wx~ be a uniformizer for K”. We
have
HOH]A// (t;;, A///m%/) = HOH]A (tn, A”/m%/)

and this latter space is identified with the set of ¢ € Homp, (R, A”[€]/(?, wkre)) such that

R, %5 A"[€])(e2, whe) 29 A7

is the map R}, - A — A”. This Hom set is then identified with tuples (V, {5, }ves,), where:
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(i) V is a GF,s,uq,-deformation to A”[e]/(e%, wi.e) that lifts the A”-deformation V4 ®4 A",
where V4 is our fixed deformation corresponding to p;

(ii) each B, is a basis of V lifting the basis of V4 ®4 A” determined by our fixed basis 84, of
Va;

such that:

(iii) for each v € Sp, the lift determined by Vg, and the basis 3, is equal to the lift given by
Valg, ®a A"[e]/ (€2, wie) and B4,

Note that there is no need to specify the characters of G, as they are determined by the fact that
our morphisms are Rj,.-morphisms. The set of such tuples surjects onto the set of deformations
lifting V4 ®4 A” with fixed restriction to G, for each v € Sy. A standard argument shows
that this space of deformations is isomorphic to H éO(G F.S0UQy > Adp ). The fibre over any given
deformation V is given by sets of basis {3, },es, reducing to our fixed set of bases modulo €, such
that the lift given by V|, and 3, is independent of the element in the fibre, up to equivalence by
automorphisms of V' reducing to the identity modulo € that commute with the G g s,uq,-action.
Putting this all together, we have

‘H})'O (GF,SOUQM Adm)| H’L}GSO ‘HO(GW Adm)’

H tn A// m// —
[Hom  (t,, A” /m})| |HO(Gr, Adyp)|

(44)

Since the trace pairing on Ad,, is perfect and the characteristic of K" is 2, the Pontryagin dual
of Ad,, is GF,s,uQ,-isomorphic to itself, and the dual Selmer group to H éo (GFSouQn, Adp,) is
Hén (GF,50uQy, Ady). Then, the Greenberg-Wiles formula, cf. [DDT94, Theorem 2.19], together
with (44) yields

’ Q (GFS()UQ >Ad )|
"ymoN| n n
[Hom 4 (t,, A” /m})| = |HO(G, Adyy) H |H0 m)|.

Local Tate duality and Euler—Poincaré characteristic give

|Hp, (GF.500qQ., Adin)

1! m —
[Homa(tn, A%/ min)| = — 5 G Adyy)]

T 109G AL (45)

Since V4 ®4 A” is absolutely irreducible, |HY(G g, Ad,,)| < ¢™. Then parts (iii) and (iv) of
Proposition 3.2.16 with (45) imply

[Hom 4 (t,, A" /m'},)| = (¢™) ' F2@nl = gmk

which is what was required to prove.

To see part (ii), it suffices to show the minimal number of generators of R], over Rj, is
bounded independently of n. Letting Adrp denote the space of 2 x 2 matrices over F with
the adjoint G'rg,ug,-action, a similar argument to above shows that the minimal number of
generators is bounded above by

dimﬁr Hén (GF,SOUQn y Ad]}r) — dimF H GF, AdIF Z dlmﬂr Gv, Ad]F)
VEQn
< dimp H'(Gr sy, Adp) — 1 + 4h. O

1321

https://doi.org/10.1112/50010437X1300780X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1300780X

P. B. ALLEN

4.2.6 Welet F, 52 denote the maximal abelian p-extension unramified outside @,, and split at
all primes in Sp. Set G,, = Gal(FSZ/F). Part (v) of Proposition 3.2.16 shows that G, /2" %G, =
(Z)2"27) with t = 2 — | S| + |Qn|. Let G, denote the diagonalizable O-group associated to G,
as in § 1.6.7. Recall that an element of G (A) is a character y : G,, = A* reducing to the trivial
character modulo the maximal ideal of A.

By Lemma 1.6.8 and our assumptions on S, cf. §4.1.3, there is a free action of G} on SpfR/,
and the morphism SpfR], — SpfRj.. is constant on orbits. We also have an action of G2, the
2-torsion of G5, on SpfR,,, and a function d¢,, : SpfR], — G}, such that R}, — R,, identifies SpfR,,
with the closed sub-formal-scheme of SpfR], defined by dg, = 1, and for any CNLp-algebra A,
a € Gi(A), and z € SpfR),(A), we have &g, (ax) = a?dqg, (), cf. §1.6.7. We also note that for
any CNLp-algebra A, the structure map O — A gives a group homomorphism G (O) — G} (A).
In this way the finite group G;,(O) acts on SpfR;; hence, also on R;,. Similarly, G}, ,(O) acts
on R,.

4.2.7 For each n > ny, let Sy (Ug,,n) be as in §4.1.2. We set M,, = R,E:;”OUQ” 5y

F,SoUQn,
Sy (Uq,» M) m- Note that M, is an R,-module and we have a surjection M,, — Mgh of R,-modules
induced by the degeneracy map in §2.5.1. Here, R, acts on My via the surjection R,, = Ry.

Write @, = {v1,...,v,} and define two power series rings Bl[si,...,s;]] and Bl[ti,...,
tn)]. We view Bl[t1,...,t,]] as a subring of B[[s1,...,s5]] by ti = (1 +s;) + (1 +8;)7 1 — 2.
For each v; € @y, fix a generator o; of the p-part of the tame inertia group of F,,. The map
I,, — (9;%_ — k:UXI — A,, given by class field theory sends o; to a generator 9; of A,,. Let V be
tautological deformation to Rp s,uq, - We define a local B-algebra morphism Bl[t1,...,tn)]] > R,
by sending 2 +t; to the trace of o; acting on V. We also define a B[s1, ..., sp]]-module structure
on M, by letting s; act via the action of §; on Sy (Uq, )m- By Lemma 2.5.6, the two Bl[[t1,. .., t4]]-
module structures on M, given by B][s1, ..., s]] and R,, coincide. Note that under the surjection
R, — Ry, each t; is mapped to zero.

We remark that the power series ring B][t1, .. ., t3]] is introduced because we may not be able
to define a B|[s1, ..., sp]]-algebra structure on R,. Although p is unramified at each v € @y, its
Frobenius eigenvalues may not be distinct, so the local lift to R, may not be split and we may
not have a morphism A, — RX. This is why we introduce this subring B[[t1,. .., ts]] of ‘traces’.

LEMMA 4.2.8.

(i) There is s > 1, independent of n, such that letting b, denote the annihilator of M,, in
Bl[s1,.--,8h]],

b, C(L+s1)* —1,....,(L+s,)" —1)

and M, is free over B|[s1,...,Sp]]/bn of rank s.

(ii) We have (s1,...,sn)M, C ker(M, — MZ2").

(iii) There is App € A, Ay € pa and independent of n such that letting N,, = ker(My,/(s1,. ..,
Sh)Mn g Mgh); )\MNn - pnNn

(iv) There is an action of the finite group G}, ,(O) on M, such that for a € G}, 5(O), 7 € Ry,
and m € M, r(am) = a((ar)m).

(v) Letting Gy, 5(O) act on B[s1,...,sn]] by xsi = x(6;)(1 + s;) — 1, we also have s;(am) =
a(asi)m).

Proof. Parts (i) and (ii) follow immediately from Lemma 2.5.5 and our assumption on vg. Parts

(iv) and (v) follow from Lemma 2.5.7.
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We now show part (iii). By part (i) of Proposition 3.2.16, there is w independent of n such
that for any v € @, valg(pp(Frob,)) < w, where valg denotes the valuation of the fraction
field K of A, normalized to give a uniformizer valuation 1. Let Aj; € A be any element whose
image in A is non-zero and has valuation at least 2w. By Lemma 2.5.3, there is y, € R, lifting
(tr pp(FI“ObU))2 such that y, N, = 0. In particular, y,(N,/p,N,) = 0. Since the valuation of y,
modulo p,, is bounded above by 2w, we have Ay (N, /pnNy) = 0. O

4.3 Patching and proof of Proposition 4.1.8
Denote by T the formal CNLp-torus (Z!)*, where t = 2 — |Sp| + |Qp|, cf. §4.2.6. For any n > 1,
we let Ton denote the 2™-torsion subgroup of ¥.

LEMMA 4.3.1. Let k =1 + 4h = 1 + 4|Sy| as in Lemma 4.2.5. Let CNL, denote the full
subcategory of CNLp consisting of A-algebras. We have:

(a) CNLp objects R._, Roo, a power series Rioc|[x1, . .., xk]], and an Roo X B[[s1, . . ., sp]]-module
Meo;

(b) CNLp morphisms Rioc[[z1, . .., 25]] & R, — Reo, RL, — R}, Roo — Ry, and B|[t1,. .., t1]]
— R, and a morphism of Ry, X B[s1,. .., sp]|]-modules My, — Mgh;

such that the following hold.
(i) The diagrams

Rioe[[z1, ..., z)]] —= R, — Roo and Bl[t1,...,th]] — R
Rioe R}, Ry B Ry
both commute and the two Bl[t1,...,t,]]-module structures on My, (coming from R., and
Bl[s1,-.-.,s4]]) coincide.

(ii) The morphisms R, — Ro, R., — R, Roc = Ro, and My, — Mgh are all surjections.

(ili) We have (t1,...,ty)Rs € ker(Roo — Ro) and (s1,...,s,) My € ker(Moy, — Mozh).

(iv) Letting Noo = ker(Mso/(s1,...,81) — Mozh) and letting p~ be the pullback of pg to R,
Noo/PooNso Is a torsion A-module.

(v) Letting p’, be the pullback of pjy to R.., (Ploc, T1, - - -, Tk) Rhy C ph and i /(p5e)? + (Ploc,
x1,...,x5)RL.) is a torsion A-module.

(vi) There is a free action of T on SpfR._ and a map d : SpfR., — ¥ such that:

(a) the morphism SpfR. — SpfR),. is constant on orbits of T;
(b) the closed immersion SpfR., — SpfR._ identifies Spf R, with the closed subfunctor
of points x with do(z) = 1; and
(c) for any object A in CNLg, x € SpfR._(A) and a € T(A), we have Joo(ax) = aJ00 ().
(vii) The subfunctor Spf R, — SpfR._ is stable under the action of T, and there is an action of
%2(0) on My, satisfying the following compatibility condition: for any m € My, 7 € R,
and a € T5(0) we have r(am) = a((ar)m).

Proof. The proof is similar to the construction in [KW09, Proposition 9.3].

For a CNLp-algebra A with maximal ideal m4 and r > 1, we let mg) denote the ideal of
A generated by elements of m4 that are rth powers. Note that if m4 can be generated by g
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elements, then mi( C mg). Let s > 1 be as in part (i) of Lemma 4.2.8. For each m > 1, set
rm = sm(h + 7)2™ and

O = (mT,y%m,...,y?m,(l +51)2" —1,...,(1+s,)%" —1) C B[s1,--.,5n]]-

Let 9y, = ¢y N B([t1, ..., t4]]. As in the proof of [Kis09a, Proposition 3.3.1] we can show that for
any m > 1, My/¢, My is an Ry/ (0, Ro + mg?))—module. Similarly, for any n > ny and m > 1,
we can show that M, /¢, M, is an R, /(0 R, + mg:))—module.

Fix Ag € A with non-zero image in A such that Agz annihilates the cokernel of the map in
part (i) of Lemma 4.2.5 for all n > n;. Also let Ay be as in part (iii) of Lemma 4.2.8.

Let G, = G, /2" 2G,,. As in [KW09], we fix a surjection Z! — G, for each n > ng. By §4.2.6,
this induces an isomorphism Z/2"2Z = !, and a closed embedding G — T which identifies
Gf: with Ton—2.

Let g by such that the maximal ideal of R, is generated by at most g elements for all n > ny,
cf. part (ii) of Lemma 4.2.5.

We let CNLpg, . denote the full subcategory of CNLp consisting of Rj,.-algebras. We recall

some notation of §1.2.4. We let CNL[g] and CNL[g] be the full subcategories of CNLp and
CNLg,,., respectively, consisting of objects A such that mj = 0. Given a CNLp-algebra A, we

let Al = A/mff‘. Given X = SpfA in CNL?, we let X4 = SpfAldl. For m > 1, a patching datum
of level m, denoted (D),,, Dy, Ly,), consists of the following.

(a) A surjective CNLp, . morphism
Dy —> Ro/(@mRo +m§™)

which is also a B([t1,...,]]-algebra morphism, such that m(DT::) = (0).
(b) A object D! of CNL%;T} such that mp, can be generated by g elements, a surjective
CNLE%Z:} morphism
D!, — Dy,

a free action of ‘Z[zmrm} on D/ such that the map SpfD!, — SpfRj.. is constant on orbits

of ngmrm}, and a morphism &, : SpfD!, — T, such that J,,(ax) = a?6,,(x) for any A in
CNL[ng], z € SpfD], (A) and a € Tom(A). Let D!/ be the object in CNL[(grm] representing
the closed subfunctor of SpfD), given by points x with d,,(z) = 1. We further demand that
the surjection D), — D,, factors through D] — D! and that the kernel of D! — D,, is
contained in m’}, .

(¢) A Dy, x B|[[s1,...,sp]]-module L,,, which is finite free of rank s over B|[s1,..., sp]|/¢m and

a surjection of D,,-modules L, — Mgh/cmMgh (the D,,-module structure on Mgh/cmMOQh

is via the surjection D,,, = Ry/(0p, —l—mg;”)) in (a)), such that letting a,, denote the inverse

image in D,, of the image of py in Ro/(0mRo + mg;”)),

A ker(Ly, /(s1,. .., 80) — Mgh/cmMOQh) Capker(Ly,/(s1,-..,80) = Mgh/cmMgh).

(d) A CNLpg,,, morphism
RlOC[[:El’ s ,LL‘kH - D7In
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such that, letting a/, denote the inverse image in D], of the image of py in Ro/(0,,Ro +
mgg”)), we have (Pioc, 21, . - ., k) D), C al, and

)\R(a;n/((a;W)Z + (plOC7m‘17 s ,xk)D%)) g mg%

We define a morphism (D,!, D} Ll) — (D2 D2 L2) of patching data of level m to be
surjective CNLg,__ morphisms D} ! — D/ ? and D} — D2, and a surjection of D} -modules
L} — L2  such that:

(i) DL — D2 is a BJ[t1,...,t3]]-algebra morphism and is compatible with the surjections to

Ro/ (@ +my™

(ii) D.!— D!? is compatible with the ‘Z[ngrm]—action and with the morphisms &, : SpfD.} — T
from part (b), and

) of part (a);

/1 1
Dm Dm

_

/2 2
Dm Dm

commutes;
(iii) D! ! — D! 2 is compatible with the morphisms Rio¢[[z1,...,7x]] — D.! from part (d).

Fixn > nq and n1 < m < n. We now show how to define a patching datum (D;n,n, Dypny L)
of level m, from R}, 5, Ryq2, and My o.

Set Dy = Rio/m§y” D = Rusa/@mBusz + myp™ ), and Ling = Mo /n M.
The surjection R, — Ry is an Ry X B][t1,...,ts]]-algebra morphism, so we get a morphism

Dy = Ro/(0mRo —i—mg;")) satisfying the properties of (a) in the definition of a patching datum
of level m.
As noted above, Ly, 5, is a Dy, ,-module and the surjection M,, — Mgh of R,,-modules induces

a surjection Ly, ,, —> Mgh / cmMgh of Dy, n-modules. That L, ,, satisfies the required properties
follows from Lemma 4.2.8.

We now show part (b). By choice of g, mp, ~ can be generated by g elements. As noted
above, we have m%i" C mg;")
From

, so the surjection R;, — R, induces a surjection D}, , = Dpn.

~

‘ZQm e Szn = G;’;zk+2 — G:;‘FQ’
the free action of G}, , on SpfR/, ,, yields a free action of Tym on SpfR;,  ,. This gives rise to a free
group action chunk in CNL[Cng}7 cf. §1.2.4, of T[zgn:m] on SpfDy, ,,. Now let ¢ : SpfR; ., — Gj o
be as in §4.2.6. With our fixed immersion G, — T we define J,, to be the composite

SpfD;, ,, — SpfR, , — G, — <.

The fact that §,,(ax) = a?,,(z) for any A in CNL[Ogrm]7 x € SpfDy, ,(A) and o € Tam(A)

now follows from §4.2.6. Let Dy, ,, be the object in CNL[(,%T’”] representing the closed subfunctor
of SpfDy, ,, given by points x with J,,(z) = 1. The surjection D}, ,, — Dy, » factors through

m,n
g,:i - mgilﬂ, the kernel of Dy, ,, — Dy, p is

contained in m7, . We have verified all the conditions of part (b).

Dy, n = Dy, . We also see that, since 0, R;, 5 +m
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To realize part (d), first note that a,, is the image in Dy, ,, of

(rm)

/ / T / m
pn+2 + amRn+2 + mR’n+2 g pn+2 + mR;H-? .

By Lemma 4.2.5, we can choose a CNLpg, . morphism
Rioc[[z1, .. xk]] — R;L+2

such that (proc, z1, ..., 2k) R}, o € P}, 19, and such that pl, /(1] 12)% + (Ploc, Z1, - - ., Tk) R, o) 18
annihilated by Ar. This then induces the desired morphism of part (d).

For any n > n; and n; < m < n we have natural surjections D;n—l—l,n — D
and Ly, 41y — Lp,, that induce an isomorphism

/
m,n’

Dm—|—1,n - Dm,n

( ;n—l—l,n/m%niirl . Dm+1,n/(0mDm+1,n + mg:il,n), Lm+1,n/cmLm+1,n) = (Dfm,n’ D, Lm,n)

of patching data of level m. Since, for each m > 1 there are only finitely many isomorphism
classes of patching data of level m, after extracting a subsequence of (n),>,, we can assume that
(D> Dy Linin) = (Dyy s Dinyms Lim,m) for all n > m and denoting this common isomorphism
class by (D)., D, Li,), we get a projective system in m > ny. Set RL = l(iI_nD,’n, R = lim Dy,
and My, = l(i£1Lm. The fact that for each m > ny the maximal ideal of D/, can be generated by
g objects ensures that both R/ and R, are Noetherian.

Just as in [KW09, Proposition 9.3] we get a commutative diagram in CNLpg,__

R, —— R

|

R, —— Ry

with Roo — Ro a B][t1, ..., t]]-algebra morphism, and an Ry X B[[s1, . . ., Sp]]-module morphism
My — MOQh satisfying parts (i)—(iii) and (vi) of the lemma. Parts (i)—(iii) all follow directly from
the analogous statements at finite level. To see part (vi), first note that the free action of T on
SpfR/_ follows from Proposition 1.2.5 and the fact that the group action chunks of ‘I[gm“"] on
Spf Dy, ,, are free. The morphism do is defined by the limit of the d,,. From the corresponding
properties of d,,, it is immediate that the morphism SpfR._ — SpfR),. is constant on orbits of ¥,
and that for any object A in CNLp, = € SpfR._(A) and o € T(A), we have 6 () = a5 ().
It remains to see that immersion SpfR., — SpfR._ identifies Spf R~ with the closed subfunctor
of points = with ds(x) = 1. Note that at finite level, the subfunctor defined by 4, = 1, is
represented by D! and there is a surjection D!\ — D,,, with kernel contained in m7,, . Then the
closed the closed subfunctor defined by o = 1 is @Dfn &~ LiLan = R.

We now show parts (iv) and (v). Let a,, denote the ideal of D,, as in part (c) of patching
datum. Because I(LII is exact on systems of finite objects, we have

h h
Noo/emNoo 2 Ker(Lon/ (51, . 5n) = M3 femMZ").

Then, since p = l<i£1am, we have Ay Noo C PooNoo, which implies Noo /PooNoo is a torsion A
module since Aj; has non-zero image in A.
The morphisms Rioc[[z1, ..., x;]] = D), for each m > 1 yield a CNLp, . morphism Rjy.[[z1,
., xk]] = RL.. Let a/, be the ideal of D, as in part (d) of the definition of a patching datum
of level m. Since p, = lima;, and

Ar(a7,/((a7,)° + (Ploes 21, - -+, 21) D)) © m,
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we have
Ar(pho/ ((95)% + (Plocs 21, - - -, ak) RL,)) = (0),

which implies part (ii) of the lemma since A has non-zero image in A.

It remains to show part (vii) of the lemma. The fact that Spf R« is stable under the action of
T, follows immediately from part (vi). Note that for n > 2, the isomorphism G}y 2 T ,n—2 induces
an isomorphism G}, , = . If m > n the action of T2(0) on B[s1, ..., sp]| as in Lemma 4.2.8

stabilizes the ideal ¢, and the compatible actions of To(O) on R,i2 and M, o descend to

compatible actions on Dy, ,, and Ly, ,,. Also note that for a € T(0), if we let o’ € Z[Qgrm} (O/mZ™)
denote the corresponding truncated group element, the diagram

D! ——= Dy,

-

D, —= D,

commutes. It follows that, after taking limits, the action of T5(0) on My is compatible with
the action of T3(O) on Rs. This establishes part (vii) and the lemma is proven. 0

By part (i) of Proposition 1.2.3, we have a CNLp-algebra R that represents the orbits for
the action of T on SpfR’_, and the morphism RZY — R/ _ is formally smooth of relative dimension
t. Note that as Spf R, — Spf Ry, is constant on T-orbits, we have a CNLp morphism Rjo. — RILY
and RZY — R/ is a morphism of Rj,.-algebras. Part (ii) of Proposition 1.2.3 then shows that
the map RZY — R, makes Ry a torsor over R with group T2. Let pil¥ denote pullback
to RV of po. Note that R., is finite over RV, so dim R /pilV = dim Ry /Poo = dim Ro/po,
and 2 € p'V. Let p1,p2 € Spec Ry lie over piV € Spec R. Choose a characteristic 2 field L
with embeddings R /p1 — L and R /ps — L. Since Ry is a To-torsor over Rgg’, there is
a € %5(L) such that if x denotes the point Roo — Roo/p1 — L of SpfR (L), then ax is the
point Ry, — Roo/p2 — L. Since L has characteristic 2, To(L) is trivial, and p; = p2. S0, Poo
is the unique prime of R, above piV. It follows that (Roo)pinv is local and the natural map
(Roo)pinv = (Roo)p., is an isomorphism. It also follows that the piv-adic topology on (Ruo)yp.. is
the same as the poo-adic topology on (R )p.. » since (Roo)p.. /P2 (Roo)p.. 18 a finite local algebra
over the field (Rgg’)pg%v /piLV; hence is Artinian. Similar statements hold for any R..-module, in
particular the natural map of (Rf)%")pgv—modules (Moo)pinv = (Moo)p.,, is an isomorphism and
the topologies defined on (M), by p2V and poo are equivalent. Also note that this module is

non-zero as the surjection Mo, — M induces a surjection (Msg)p,, — (MOQh)p.

LEMMA 4.3.2. If q € Spec (Roo)p., contains qur(Roo)p.., then q is in the support of (Mso),

o] oo’

Proof. We first show that Supp(g_,),__ (Mx)p.. is a union of irreducible components. Since M,
is finite free over B|[s1,...,s]] and B[[s1,...,sy]] is finite free over B|[[t1,...,t]], we see that
the (A, Y1,---, ¥, t1, ..., tp)-depth of My, as a B[[t1,...,ty]]-module, is

ht(pA,yl,...,yj,tl,...,th) = d+] + h.
Since the image of (pa,y1,...,Yj,t1,...,ty) in Ry is contained in po,

depth(g,)n (Moo)y,, = depthp  (poo, Moo) = d +j + h.
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In particular, if g is an associated prime of (M), in Spec (Ruo)p. , We have
dim((Roo))., /) > d+j + h. (46)

Consider the morphism Rjoc[[z1, - .., zk]] = R., of Lemma 4.3.1. By part (iii) of Lemma 4.3.1,
this map induces a surjection

(Rioc)pyo, 121, - 2] — (Rio)p,

Since R’ is formally smooth over RV of relative dimension ¢, and RV /plv = R/ /p  there
is an isomorphism R._ = RIWV[[z1, ..., 2]] that sends p’ to piZ¥ + (z1,...,2). It follows that

(R/ )/\ ~ (Rmv)pmv[[zl, e Zt]]-
We have

dim(Roo)p., = dim (R )y = dim(RL ), —t <1+ d+3|So| +k =t =d +j+h.
Combining this with (46), we see that the support of (M), in Spec(Reo)p, is a
union of irreducible components. Then [Bou62, ch. 2, §4, Proposition 19] implies that
SUPP(R.)p., (Moo)pe. 1S @ union of irreducible components. We are now reduced to showing
that any minimal prime q of (Ru)p,, containing qur(Reo)p.. is in the support of (M)p.. -

The commutativity of

(RIOC)MOC - (ROO)poo

L

(Ro)po

and Lemma 4.2.3 imply that there is an element of Suppg.), (Mo)p, Whose image in
Spec (Rioe)py,. 1s contained in the irreducible component determined by g, and no other. Thus,
there is a minimal prime q of (R)p., containing qu(Roo)p.. and in the support of (M )y, - Set
qinv =q N (Rinv)plnv

We now show that ¢V = gy, (RZ Y )pinv; in particular, Jur(RID Y )pinv 18 prime. Since (Rm")plnv —
(Roo)p., is finite, g™V € Supp RIZY) oy (Moo)p.. - Let Q™ be a minimal prime of (Rg;")pgév above

g™V Using the isomorphism
(R/OO)'/J\IOO % (Riorév)'/g\lol'év[[zl? MR | Zt]]7

we see that QY (Rgo)g, is a minimal prime of (R.))/ . Recall we have a surjection

AN
(RIOC)pIOC[[xl’ o TE]] —> (R:)o);/)\’oo’

and that both of these rings have the same dimension. By Lemma 4.1.6 and part (d) of the
definition of nice prime, cf. §4.1.7, (Rioc/qur)p,,. 1S normal; hence, so is (Rioc/qur)y. . by [Gro65,

Ploc .
Scholie 7.8.3(vii)]. This implies that qur(Rioc)p,, is a minimal prime. The pullback of Q™ to

(Rloc)ploc[[xl, ..., x| is a minimal prime that contains gy, so must be equal to qur(Rloc)ploc[[xl,
xr]]. From thls we conclude that Q"™ (R. ) = qur (R )I/J\’oo’ that QY = qur(RgéV) iny and
ﬁnal]y that qll'lV = CIur(R )plIlV .
We know that there is some minimal prime q.of (Roo)poe above qur(R5)pmv and in the
support of (Mu)p.. - Since Ry is a To-torsor on R5. and under this action ps, is the unique
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prime above p'%V, we see that Ty acts transitively on the set of minimal primes in (Ruo)p., above
Gur (125 ) ginv- We are reduced to showing that the support of (M )y, is stable under this action.
Let q1, g2 € Spec (R )p., lie above qur(RiO%V)pi&Jv. If A is a CNLp-algebra domain, then the natural
map T2(0) — Ty(A) is surjective; hence, there is a € To(0), such that the automorphism of
(Rso)po. induced by « sends g1 to go2. By part (v) of Lemma 4.3.1, there is a compatible action of
T2(0) on M. It follows that q1 € Supp(g,,),.. (Moo)p.. if and only if g2 € Supp (g,  (Moc)pe
i.e. the support of M, is stable under the action of Ts. O

4.3.3 We can now complete the proof of Proposition 4.1.8. Let q € Spec (Rp)y, contain
qur(Ro)p,- Pull g back to a prime of (Rx)p, and call it . By Lemma 4.3.2, q is in
the support of (Muo)p,.. Since ti,...,t, € ker((Roo)poe = (Ro)po), We see that qoo/(t1,...,
tn) € Spec ((Roo)pos/(t15-- -, tn)) is in the support of (Ms)p.. /(t1,-..,ts). Since s? € (t1,...,
th) (Mo )p.. for each i, we further deduce that qo/(t1,...,ts) is in the support of (M )p../(51,
.o.ysp) as an (Roo)p./(t1,-..,th)-module. But, by parts (iii) and (iv) of Lemma 4.3.1,
(Moo )poo /(815 .-, 8p) = (Mgh)po. Then, since the action of (Rx)p../(t1,...,t) on (MOQh)pO
factors through (Rp),, and this map sends qoo/(t1,...,t,) to q, we conclude that q is in the
support of (Mozh)po. O

4.4 An R4 = T theorem
Unless specifically noted otherwise, keep the assumptions and notation of the previous
subsubsections. If p is dihedral we let L/F denote the unique quadratic extension of F' such
that p|g, is abelian. Let L%b denote the maximal pro-2 extension of L unramified outside places
above S. Let Ly denote the maximal subextension of Lgb /L such that the nontrivial element of
Gal(L/F) acts on Gal(Lg/L) by —1.

We further assume that:

(i) for each v|2, [F, : Q2] > 4;
(ii) if L/F is CM, then there is some v|2 in F' that does not split in L;
(iii) if L/F' is not CM, then rankz, Gal(Lg/F) < [F : Q] — 3.

LEMMA 4.4.1. Take Q € Spec Ty, (U, n)m with 2 € Q such that dim(Ty (U, n)n/Q) > [F : Q] — 3.

univ
Nv
(ii) The specialization pq of pym at Q is non-dihedral.

(i) The specialization xq, of x;™V|1, at Q is infinite order.

Proof. Since Ty (U, n)m is finite and torsion-free over A(Ip,n) = @,aA(1y, 1), part (i) follows
from the fact that dim(A (7, 7y) ®0F) = [F, : Q2] > 4, and so QNA(I,, 7,) defines a non-maximal
prime ideal in A(L,,n,)/(@E).

Part (ii) is trivial if p is not dihedral, so assume p is L-dihedral. First assume that L/F is
CM. Let v|2 in F' be such that v does not split in L. If pq where dihedral, then part (iii) of
Proposition 2.4.4 together with Lemma 1.7.9 contradict the fact that xq , is infinite order.

Now assume that L/F is not CM. Let B denote the subring of Ty (U, 7)n/Q generated by
traces of pg, and note that Ty (U, n)n/Q is integral over B. So, dim B > [F : Q] — 3. We know
that the image of Rp g — Ty (U,1)n/Q contains B, and so has dimension at least [F': Q] —3. The
result now follows from Lemma 1.7.8 as we have assumed rankz, Gal(Lg/F) < [F: Q] -3. O

LEMMA 4.4.2. Let X C Specﬁ%s be closed and pro-modular. If dim X > [F': Q] — 1, then X is
contains a nice prime.
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Proof. Since X is pro-modular, we have to show that X contains a prime p such that:

(a) p has dimension 1 and contains 2;
(b) pp is not dihedral;

(c) for each v|2, the image of p in Spec A(G,7,) is not contained in Z,, the closed subscheme
of Spec A(Gy, 1) defined by (x umV) = ey;

(d) the image of p, contains a non-trivial unipotent element.

Let I be some ideal of RY F,s giving rise to X. Fix some o9 € G F such that p(og) has order

2 and let T' € RFS denote the trace of op under the universal RFS deformation. Note that

T e My since p(op) has order 2. Let Q be a minimal prime of RRS/(I,WE, T). Then 9 is
pro- modular and dim Ry Fs/Q>[F:Q] -3

By part (i) of Lemma 4.4.1, QNA(Gy,ny) is not contained in Z, for any v|2, and by part (ii)

it is not dihedral. The dihedral locus is closed, cf. § 1.7.7, so the locus of primes in Spec E}{i’ /9

satisfying parts (b) and (c) above is open and non-empty. Since Spec (E?S/Q) N {my /D} is

’ F,S
Jacobson, this open set contains a dimension 1 prime; let p be such a prime. It remains to show
that the image of p, contains a non-trivial unipotent element. Since T" € p, trpp(ao) = 0. Since

wg € p, det py(0p) = det p(og) = 1. From this we see that py(00)? = 1. Since p(op) has order
two, so does pp(0p), and it is unipotent. O

ProPOSITION 4.4.3. Every prime ofﬁ?s is pro-modular.

Proof. This proof is essentially the same as [SWO01, Proposition 4.1]. By applying Lemma 4.4.2 to
any minimal prime of Ty (U, 17)m, which has dimension 14 [F : Q], we see that E}@ g contains a nice
prime. By Proposition 4.1.8, any irreducible component of Spec E% g containing p is pro-modular.
Fix one such irreducible component C. Let C’ be any other irreducible component of Spec E% g

By Proposition 1.6.6, there is a presentation E?S = A/(f1,..., fr), with A a complete local
domain and dim A — 7 > 1+ [F : Q] — dimg H(GF, (Ad%)*(1)). Since 7 is absolutely irreducible,
dimp H°(GF, (Ad2)*(1)) = dimp H*(Gr, Adg/Z) < 1. Then Corollary 1.1.7 implies that R%s is
[F : Q] — 1-connected, so there is a sequence of irreducible components

C =0y Ch,....,Cp=C"

such that dim(C; N Ciy1) = [F: Q] — 1 for each 0 < i < n. By Lemma 4.4.2, Cy N C contains a
nice prime, and Proposition 4.1.8 implies (' is pro-modular. Continuing in this way, we deduce
that C; is pro-modular for each 0 <4 < n; in particular, C,, = C’ is pro-modular. O

5. The main theorem

We are now in a position to prove the main theorem. Before doing so, in the first subsection we
recall some congruences proved in [Kis09a, KW09] that are necessary to be able to satisfy the
assumptions of the R™ = T theorem. We also prove a small lemma that shows the existence
of ordinary lifts in the residually dihedral case. This is an application of a result of Wiles that
allows one to insert a p-ordinary Hilbert modular form of parallel weight 1 into a p-adic family.
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In the second subsection we prove the main theorem. This is mostly routine, except that
we must use some known cases of Leopoldt’s conjecture in our base changes, to ensure the
assumptions of Proposition 4.4.3 are met.

In the last subsection we show how the main theorem implies the corollary from the
introduction on modularity of (certain) elliptic curves, and give some examples of elliptic curves
satisfying the hypotheses.

5.1 Congruences o
For simplicity we fix an isomorphism @Q, = C throughout this subsection.

5.1.1 We fix a continuous absolutely irreducible

such that for each v|p, p|g, is reducible. Write

(X x

o= (% 1),
Let X denote the tuple X = (X, )y|p- If we are given any finite field extension F'/F we will still
denote by X the tuple (X,|c., )w|v,|p-

Given a cuspidal automorphic representation m of GLa(Ar), we say that 7 lifts p if, letting
pr be the representation as in §2.4.1, there is a G p-stable lattice in the representation space
of pr whose reduction is equal to p (after extension of scalars, if necessary). If 7 is a p-nearly
ordinary lift of p, we say that it is X-good lift if for each v|p we have

| 2(* *>
priG = Xo

with x, a lift of ¥,. Similarly, if f is an eigenfunction in some S;% (U, 0) as in §2.2.2,
and 7y denotes the cuspidal automorphic representation of GLy(Ap) associated to it by
Proposition 2.1.10, we say f lifts p if m; does, and that f is a X-good lift of p if 7y is. We keep
track of Y-good lifts in what follows. This is not necessary for our applications to modularity
of Galois representations (we will perform a base change to assume that p|g, is either trivial or
unipotent for each v|p), but we do so because it entails relatively little extra work.

LEMMA 5.1.2. Ifp is dihedral, then it has a x-good p-nearly ordinary regular algebraic cuspidal
lift.

Proof. Let x, be the Teichmiiller lift of ¥,, and view it as taking values in Q™. It suffices to
prove the lemma in the case that %, is unramified for each v|p. Otherwise, we take a finite-order

character 6 : F*\A} — Q" such that 0lpx = Xv|px for each v|p, cf. [AT68, §10, Theorem 5].
Fp Fp

Then letting m denote the resulting lift of ﬁ®§_1, the twist 7 ® 0 will be the desired Y-good lift
of p.

Note that the reducibility of p|g, together with the assumption that p is dihedral implies
that p|g, is split or X, = X, and p = 2. If p is odd, we let X/, be the Teichmuller lift of X, for
each v|p. If p = 2, we let x} be the Teichmuller lift of Y/, for each v|2 such that p|g, is split. If
p =2 and pl¢g, is non-split, define x} as follows. Let L/F denote the unique quadratic extension
such that p|g, is abelian, and let w denote the unique prime above v in L. Since x, has odd
order, the fixed field of its kernel is disjoint from L,,/F,, and we let x} be the product of x, with
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the non-trivial character of Gal(L,,/F,). In all of the above cases, we view X/ as taking values
in @X.

We first construct a totally odd dihedral representation pg : Gp — GL2(Q) lifting p. Write
P = Indgiy for a quadratic extension L/F and X : G — F*, enlarging F if necessary. Let

v : G — Q" denote the Teichmiiller lift of y. If p(c) # 1 for any choice ¢ of complex conjugation,
we set p1 = Indgf X. If there is some choice of complex conjugation at which p is trivial, we use a
trick of Serre. Note that in this case p = 2. Let {71, ..., 7} denote the set of embeddings F' — R
where p is trivial. Then each 7; splits in L/F', and we write o; and o, for the two embeddings

above 7;. By [AT68, §10, Theorem 5|, there is a character £ : G — @X of order either two

or four, such that £ is non-trivial at each {o1,...,0;} and trivial at each {o7,...,0}} as well
as at every place above 2. Note that if ¢ denotes the conjugate of & by Gal(L/F), we have
£(e)¢'(c) = —1 if ¢ is the complex conjugation corresponding to any 7 € {r,...,7x}. We set

p1 = Indgf x&. Since € has order two or four, it is trivial mod 2, and p; is a lift of p. By the
choice of &, the lift p; is totally odd. Also, because £ is trivial at any place above 2 we have

/
pila, = <X” N )
v
for x!, and x, as above.

A classical construction yields a cuspidal Hilbert modular newform f; of weight ((1,...,1),
(0,...,0)), such that ps, = p;. Let 7y, denote the corresponding automorphic representation.
For each v|p, the local representation (y, ), is the principal series w(x},, xv). If X}, is unramified,
then the double coset operator

|:GL2(OFU) <wv 1) GL2((9FU)}

acts on (X", xv)2(OF) via ¥/ (w,) + Xo(w,). In this case we replace f; with the v-stabilized

eigenform on which the double coset operator

(7 ]

acts via xy(wy). We may then assume that T, fi = xo(wy)fi for each v|p. Then [Wil88,
Theorem 3] allows us to insert f; in an ordinary p-adic analytic family and letting f; denote
a classical specialization at some parallel weight k > 2, for each v|p we have Ty, fi = o, fx for
some «j, congruent to ,(w,). The automorphic representation generated by this fj is then a

X-good lift of p. O

5.1.3 Let k = (k,w) be an algebraic weight and let ¢ : F*\Ax — O* be a continuous
character such that ¢(z) = gfk*ZW on some open subgroup of Aj. We denote by ¢
the character ¢¢c : F*\A; — C* given by t¢c(z) = ¢(z)z},‘+2w—2z§gk_2w, using our fixed

isomorphism C = @p. Conversely, given a character ¢c : F*\A} — C* such that ¢c(z) =
22-k=2% on some open subgroup of A%, we let ¢ denote the character ¢ : F*\AY — O
(enlarging O if necessary) given by t(z) = tg(z) 252V 2227k H2wW,

In what follows we can always ensure that the base changes performed are disjoint from any
fixed finite extension K/F as follows. Let K’ denote the normal closure of K. Let {v} be a finite

set of places of F, unramified in K" and such that every conjugacy class in Gal(K’/F) contains
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one such Frob,. Note that this set can always be chosen to be disjoint from any given finite set
of places of F. We then demand that our extension F’/F splits at all places in {v}. We will not
repeat this argument in each of the lemmas below.

We will call an extension F’/F a p-split allowable base change if:

(i) F'/F is finite of even degree, solvable, and totally real;
(ii) F'/F is disjoint from F7;
(iii) any v|p in F splits completely in F".

For a given quadratic extension L/F, we say that an extension F'/F is an L-allowable base
change if:

(i) F'/F is finite of even degree, solvable, and totally real;

(ii) F'/F is disjoint from F*7;

(iii) if p|, is abelian, and v|p in F' does not split in L, then no w|v in F” splits in F'L.

Clearly, for any quadratic L/F, a p-split allowable base change is an L-allowable base change.
In order to show that our automorphic representations have the desired central character, we
are forced to perform base changes that are (possibly) ramified at places above p. However, in
order to apply the results of §4.4 in the case that p is induced from a quadratic CM extension
L/F, we need to ensure that ﬁ\GF, still satisfies the assumptions of that section; in particular,
that there is some v'|2 in F’ such that p|q, , is non-split. This is why we introduce the notion of
an L-allowable base change.

LEMMA 5.1.4. Let w be a regular algebraic cuspidal automorphic representation of GLa(AR)
of weight x and central character ¢c. Assume that w is p-nearly ordinary and a Y-good lift
of p. Let k¥ = (K',w') be another algebraic weight and let ¢ : F*\A} — C* be such that
Ye(z) = 227K =2%" o0 some open subgroup of A%. Let L/F be some fixed quadratic extension.

Assume that v = 1’ modulo the maximal ideal of O. Then, there is an L-allowable base
change F'/F and a p-nearly ordinary regular algebraic cuspidal automorphic representation 7’
of GLy(A ) such that:

(i) the central character of 7' is Nmp/p o Y¢;

(ii) if w is an Archimedean place of F' that extends the embedding 7 : F — R, then ), is
discrete series of lowest weight k. — 1 and central character z, — sgn(z,)r|z,|>~*—2wr;

(iii) for v|p, we have (! )"1() o£ (;
(iv) 7' is a x-good lift of p.
Proof. Take some v|p. If v does not split in L, we let L, be the completion of L at the unique

prime above v. Let U! be the maximal pro-p subgroup of (’)XU, and recall that Jg, denotes the
set of embeddings F, — E. Let ¢, be the finite-order O-valued character of U} given by

Po(20) = ¢,(Zv) H Zg_k;_w;-

TEJFU

We want a finite totally ramified extension F) /F, of order a power of p such that ¢, oNm F/F, 18
trivial. However, if v does not split in L, we further require this extension is disjoint from L, /F,.
If p is odd or if L, /F, is unramified, this is automatic. In the case that L, /F;, is ramified, there
is a choice of uniformizer w, in F, such that w, is not a norm from L,. By class field theory,
the subgroup of F,* generated by the kernel of ¢,, the group of prime-to-p roots of unity, and
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the element w, then gives the desired extension. We fix such an F /F, for each v|p. We now let
F'/F be a finite solvable, totally real extension of even degree such that for any v|p in F' and
wl|v in F’, the completion of F” at w is our fixed extension F)/F,. Note that by choice of the F,
we have:

(a) ¢/ (zp)oNmp//p = zf,_k'_Q“” for every 2, € (U,
of (OF’ (N Zp)x;

(b) if ple, is abelian and v|p in F does not split in L, then no wlv in F’ splits in F’L.

)1, where (Z/{y’,)1 is the maximal pro-p subgroup

We again denote by k and x’ the weights of F’ obtained from x and x’ in the obvious way.
We also again write ¢ and ¢ instead of ¥c o Nmp /r and e o Nmp /r- We again denote by
7 the base change of 7w to F”.

Let D be the quaternion algebra over F’ ramified at all infinite places and split at all finite
places. Since 7, is either principal series or Steinberg at each v|p, there is some a > 1 such that
m},wl(va) # 0 for any v|p in F’. Let U C GLy (O ®z Z) be a compact open subgroup such that
U, = Iw (v®) for all v|p, and small enough such that 7V # 0 and

(UAF) N DX 1) /(F)* =1 (47)

for every t € (D ®@pr A%)*.
Using the Jacquet—Langlands—Shimizu correspondence, cf. Proposition 2.1.10, we transfer =

o

to a Hecke eigenform in S7 (U, O) (enlarging O if necessary). Since U satisfies (47), we have
(U, 0) @0 F = 530, (U, F),

and similarly for S%° (U, O). Since U = U (pt!) and v =2 ¢’ modulo the maximal ideal of O,
Proposition 2.3.7 gives Hecke equivariant isomorphisms

no(UF) 2= 539U F) = 532 (U F).

This implies the existence of a Hecke eigenform g in 528¢,(U, O) that is a y-good lift of p. The
fact that the lift is }-good follows from the fact that the above isomorphism is equivariant for
T, for each v|p, and for (y)"° for each y € (Op @z Z,)*.

Now let V C GL2(Opr ®7 2) be another compact open subgroup such that V,, = Iw;(v) for
all v|p, such that V,, C U, for all v { p, and small enough such that V also satisfies (47) (with V'
in place of U). Note that VN U = V(p*®). Viewing g as a Hecke eigenform in S, (V (p**), O),
we let m denote the corresponding maximal ideal of the universal nearly ordinary Hecke algebra
Ty (V). In particular, SpP ,(V(p**), O)m # 0. Since V' satisfies (47) (with V' in place of U)
and V(p®*)/V is a p-group, we get that SiP ,(V(p™?),O)m is free over OV (p®)/V]; hence,
Sk (V,O)m # 0. Letting f” be any Hecke eigenform in S,y (V, O)m, its transfer 7’ to GLa(Apr)
satisfies the requirements of the lemma. O

LEMMA 5.1.5. Let m be a regular algebraic cuspidal automorphic representation of GLa(AF)
with central character 1¢c. Assume that 7 is a p-nearly ordinary X-good lift of p. Let 3 be some
(possibly empty) set of finite places of F', disjoint from {v|p}, such that for each v € ¥, we have
Ty = (7, o det) ® St with v, a character of F}.

There is a p-split allowable base change F'/F and a p-nearly ordinary regular algebraic
cuspidal automorphic representation ' of GLg(Agr), such that:

(i) the central character of 7' is ¢ o Nmpr/p;
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(ii) for any Archimedean place v of F' and w|v in F', 7, = 7, as (gly, O(2))-modules;

)
(iii) for any finite place w not above p or any of the places of ¥, 7l is unramified;
(iv) forv e ¥ and w|v, T, = (v, o Nmp, /p, odet) @ St;
)

(v) for any v|p in F, if a > 1 is such that ml,wl(va) # 0, then for any wlv in F', we have

(=107 20
(vi) 7’ is a x-good lift of p.

Proof. For ease of notation, we will throughout denote the base change of a character by the
same letter, in particular again write ¢ and v, for ¢ o Nmp//p and v, o Nmpr /p, , respectively.

Twq (v

For each v|p in F, let a,, > 1 be minimal such that m, *) #0.

Let F1/F be a p-split allowable base change such that, letting 7; denote the base change of 7
to Fy, if v is a finite place of F} with vt p at which (), is ramified, then (), is an unramified
twist of the Steinberg representation, and such that the number of places above ¥ in F} is even.
Let X1 denote the set of places of F; above X. Let Q1 denote the set of places v in Fy such that
(71)y is ramified and v ¢ X1 U {v|p}.

Choose a finite place wy ¢ ¥ U Q U {v|p}, and let N, be the order of GLa(ky,). Choose
a p-split allowable base change F5/Fy, split at wp, such that for any finite place v above @1,
the order of the p-subgroup of k0 is divisible by the p-part of 2p(4Ny,). Let X5 denote the
set of places of F5 above ¥; and similarly for (J3. Let mo denote the base change of m to Fb.
Because Fy/F is split completely at places above p in F, for any v|p in F' and w|v in F,,, we
have (mg)y = m, as GLo(Fy) = GLa(F,) representations; in particular, (71'2){;”1(10%) # 0.

Let D denote the quaternion algebra over Fj ramified at all Archimedean places and all places
in 3o, and split elsewhere. Fix a maximal order Op of D and isomorphisms (Op), = Max2(OF,)
for every split v. Let U denote the open subgroup of (D ®p, AZ)* such that:

By our choice of F5, if V' denotes the open compact subgroup of GLQ(A%‘;) given by V, = U,
for v ¢ ¥ and V,, = Iw(v) for v € Xg, then 7y # 0. Let x denote the weight of my. Via the
Jacquet—Langlands—Shimizu correspondence, w9 is generated by a Hecke eigenform in SQ%(U ,O)
(enlarging O if necessary).

Define an open subgroup U’ of (D ®p, A%)* be letting U, = U, for v ¢ Qa, and for v € Q9

we set
’ a b PR
U, = {<c d> € Iw(v) .a—dmodmv}.

k) — O of p-power order, and
X

By Lemma 2.1.4, we can take a non-trivial character x : Hvng
of order divisible by 4 if p = 2, such that when viewed as a character of U(A%)*, with kernel
containing U’(A%)*, it is trivial on (U(A%)* Nt~ 1D*t)/F* for any t € (D @, Af)*.

Viewing W, (O) ®o O(x) as a representation of U(A%)*, we let Sygy,»(U, O) denote the
space of functions

[ D\(D®r AR)™ — Wi (0) @0 O(x)

such that f(zu) = u=tf(x) for all z € U and f(zx) = ¢(2) f(z) for all z € (Ag)*. Fixing a set of
representatives {t} for the double cosets D*\(D ®@p, A% )* /U (A% )™, we have an isomorphism
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of O-modules
SR®X¢ (U, 0) @W (U(A°°) mt—lDXt)/FZX‘
{t}
Since x is trivial on each of the (U(A)* Nt~ D*t)/F;*, and x is of p-power order, Segy, (U, O)
and Sy, (U, O) have the same O-rank and the same image in Sy, (U, F). The isomorphism

S/@,w(Uv O) Qo F= Sﬁ®x,¢(Ua O) ®o F (48)

then implies the existence of a nearly ordinary maximal ideal m in the Hecke subalgebra of
End(Skay,¢(U, 0)), with p,, = p. Note that the nearly ordinary condition is preserved since Q
does not containing any places above p, so the isomorphism (48) is equivariant for Ty, for each
v|p, and for (y)"° for each y € (Op ®@z Zp)™.

Choose a Hecke eigenform in Sigy,4(U, O)m, and 75 denotes the cuspidal automorphic
representation of GLa(A g, ) obtained from it via the Jacquet-Langlands—Shimizu correspondence.
Then we have:

(i) the central character of 75 is ¥ic o Nmp, /p;

for any Archimedean place v of F' and w|v in Fy, (7)., = m, as (gly, O(2))-modules;

for any finite place w ¢ X9 U Q2 and not above p, (), is unramified;

for any v € X, (7)), = (7, o det) ® St;

for any v € Q2, (7}), is a ramified principal series;

7h is p-nearly ordinary;

for each v|p, (7r2)lw1 # 0;

(viii) m is a X-good lift of p|ay, -

We can then find another p-split allowable base change F’/F5, such that the characters defining

the principal series representations (5),, for v € Q2, become unramified. Letting 7’ denote the
base change of 7}, to F’ gives the result. O

LEMMA 5.1.6. Assume p = 2. Let D be a quaternion algebra with centre F, ramified at all
Archimedean places and at a nonempty set 3 of finite places not containing any places above p.
Fix a maximal order Op of D. Fix an algebraic weight , a continuous character ¢ : F*\(A¥)* —
O*, and an open subgroup U of (D @ A¥)* such that:

(i) Uy C GLo(Op,) for v at which D is split;

(ii) Uy, = D} for eachv € ¥;

(iii) U, 2 Iw(v) for each v|p;

(iv) the action of U N (A%)* on W, (O) is given by ¢~ 1;
(v) (UAR)* Nt~ ID*t)/F* =1 for each t € (D ®@p AX)*.

- o 2 =2

Let U’ denote the maximal compact subgroup of U. Let m be a maximal ideal of T}, (U’, O)
and let f € 539 (U’, O)wm be an eigenform such that for each v € ¥, the action of D} on f is via
Yo © Vp, With 7, : F, — O an unramified character and vp the reduced norm of D.

For eachv € ¥ let vy, : F — O be either v, or —,. There is a Hecke eigenform f' € S;5, (U’,
O)m such that D) acts on f’ via ~, for each v € X.

Proof. Let A = [],cx )/ (FUX)QO;,U. The reduced norm defines an isomorphism

UAF)*JU'(AF)* — A
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Fix coset representative {t} for D*\(D ®p AY)* /U(A¥)*. By Lemma 2.1.7, our assumptions
on U imply that we have an isomorphism of O[A]-modules

S (U (09), 0) = @D Wi(0) 20 O[],
{t}

and Sy ,(U’, O) is free over O[A]. Since A is a 2-group, O[A] is a local ring and S35, (U’ (p**), O)m
is also free over O[A]. Since

we see that the O-rank of the submodule of S¢9 (U ', O)m consisting of elements on which D

acts via v, for all v € ¥ is equal to the O-rank of the submodule on which D acts via 7, for all
v E . O

LEMMA 5.1.7. Let 7 be a p-nearly ordinary regular algebraic cuspidal automorphic representation
of GLa(AF) that is a x-good lift of p, and let 1c denote its central character. Let ¥ be a finite
set of finite places not containing any above p such that for every v € X, m, is unramified and
pla, is an extension of j, by 7¥,&p, for some unramified character v, : G, — O* with v2 = ¢|q, .

Fix some finite place wgy not in ¥ and not above p. There is a p-split allowable base change
F'/F and a p-nearly ordinary regular algebraic cuspidal representation ©’ of GLy(A;) such that:

(i) the central character of 7' is ¢ o Nmp/ /p;
(ii) for any Archimedean place v of F' and w|v in F', 7, = 7, as (gly, O(2))-modules;
(iii) 7 is unramified outside the places above ¥, the places above p, and the places above wy;

(v) for any v|p in F and w|v in F', if a > 1 is such that 7TIW1 v?) # 0, then (7, )le( ) #0;

(vi

Proof. We prove this as in [Kis09a, Lemma 3.5.3]. For ease of notation, we will throughout denote
the base change of a character by the same letter, in particular again write 1) and -, for YyoNmpg/ /p
and vy, for v, o Nmp /p, , respectively. Also, given an algebraic weight x = (k, w) for F we will
again denote by k = (k, w) the algebraic weight for F’ given by letting (k,/, w,/) = (k;,w;) if

)
)
(iv) for any v € ¥ and w|v in F', m, = (7, o Nmp /5, o det) @ St;
)
)

7' is a x-good lift of p.

7' F' — R extends 7 : F' — R. For each v|p, let a, > 1 be minimal such that ml,w(vav) #0.

By first performing a quadratic p-split allowable base change if necessary, we may assume that
[F: Q] is even. Let x = (k,w) denote the weight of 7, and ¢ denote the O*-valued character
of (A%)* corresponding to the central character of m. Let Dy denote the quaternion algebra
ramified at all Archimedean places of F' and split at all finite places of F'. Fix some finite place
wo ¢ ¥ U {v|p}. Let U be an open compact subgroup of GLy(Op ®7 Z) such that:

(a) Uy, = GLa(Op,) for all finite places v { pwg such that m, is unramified;
(b) U, = Iwy(v®™) for each v|p;
(c) ©¥ #0;

(d) (UAR)* Nt tD*t)/F* =1 for every t € (D ®p AF)*.

The last condition can be ensured by taking U,, small enough. By the Jacquet-Langlands—

Shimizu correspondence, 7 is generated by some T}, (U, O)-eigenform in S;% (U, O) (enlarging
O if necessary).
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Take 2 < k < p+ 1 and w € Z such that k + 2w = k; + 2w, for any 7 € I, and let
ko = ((k, ,k), (w, w)). We have a Hecke equivariant isomorphism, cf. Proposition 2.3.7,

kU, 0) @0 F = 500 (U, 0) @0 F.

So, there is an eigenfunction fo € Si¢ (U, O) that is a X-good lift of p.

Write ¥ = {v1, ..., v, }. Choose a tower of quadratic extensions F' = Fy C Fy C --- C F,., with
each F;/F;_1 a p-split allowable base change such that for any 1 < j < r, any w € F;_; above v;
splits in F; if ¢ = 7 and is inert in F; otherwise. Let D; be the quaternion algebra with centre Fj,
ramified at all Archimedean places and all places above vy, ..., v;, and split elsewhere. Let Op,
be a fixed maximal order of D;. We will show, by induction, that there is an open subgroup U;
of (D; ®F, A%‘;)X and an eigenfunction f; € Sggw(Ui, O) such that:

(a) for any 1 < j <4, if w|v; then (U;), = (D;),, acting on W, (O) by 'yv_jl ovp,, with vp, the
reduced norm of D;;

(b) (Ui)w = Iwi(w®) for any v|p in F' and w|v in Fj;
(c) (Ui)w = GL2(OF, ) for any finite w not above {v1,...,v;, wo} such that U, = GL2(OF,);
(d) (Ui(AF)* Nt~ 1D- t)/F =1 for any t € (D; ®@p, AF)™;

)

(e) fiis a x-good lift of p.

Take 0 < i < r, and denote by m the maximal ideal of T237w(Ui, O) corresponding to f;.
Since 2 < k < p + 1, there is a perfect pairing ( , ) on Wi(O), cf. [Tay06, §1], and thus a
perfect pairing on W, (O), which we also denote by (, ). Fix a set of coset representatives
{t} for D\(D; @, AR)* /U(AE)*. Assumption (c) allows us to define a perfect pairing on
Srout(Us, O) by

(h1,ha)i = > (ha(t), ha(t))e o vp, ().
{t}

Define an open subgroup U] of (D; ®F, A%)* by letting (U])w = (Ui)w if w is not above ;1
and (U/), = Iw(w) if w is the unique place in F; above v;;1. By our assumption on Pl we
see that

(Tor,, = (Nm(vis1) + 1)%%(@v,.,)) S0 (Ui, O) € mSy,4(Us, O).

Vi+1

Pulling back m to a maximal ideal of Tﬁg »(Uj,0), [Kis09a, Corollary 3.1.11] shows there is
an eigenfunction h € SE° (U;, O) that is in the support of m and is w-new, for w the unique
i)u;,, does not act on h by v, o vp,, then we must have p = 2

place of F; above viy1. If (D
and (D;);; ., acts on h via —vy,,, o vp,. Applying Lemma 5.1.6 allows us to assume (D),

acts on h by vy, o vp,. Considering the base change of h to Fj1 together with the Jacquet—
Langlands—Shimizu correspondence then yields the desired f;11, and with U;4+1 an open subgroup
of (Dit; ®F,, A%jﬂ)x such that:

(i

) (Uig1)w = (Dig1), for any 1 < j < i+ 1 and wlv;;
(i) (Uss1)a = Iy (1) for amy vlp in F and wlo in Fia;
)

(iii) (Uit1)w = GL2(OF,,,) for any finite w not above {vi,...,vi11,we} such that U, =
GL2(OF, );
(iv) for w|wp in Fj41, we take (U;41)y small enough so that (UZ-H(AOF‘Z_’H) ﬂt_lDZﬁ_l )/ F} a1 =1

for any t € (D1 ®F,, A(X;H)X'
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Having obtained f,, we again use Proposition 2.3.7 to obtain a y-good lift f; of p of level
U, and weight &', where (k/,w,/) = (k;,w;) for any 7/ € I extending 7 € I. Then, applying
Jacquet-Langlands—Shimizu to f] yields the result. O

We now group most of the above lemmas into one proposition.

ProproSITION 5.1.8. Let m be a p-nearly ordinary regular algebraic cuspidal automorphic
representation of GLa(Ap) that is a Xx-good lift of p. Let k = (k,w) be an algebraic weight
and ¢c : F*\A} — C* a character such that ic(z) = 225%=2W on some open subgroup of A%
Let 3 be a finite set of finite places not containing any places above p. For each v € X, fix an
unramified character v, : F,, - O such that p|g, is an extension of 7, by 7,€, and such that
Yo(w@y)? = (w,). Fix a quadratic extension L/F.

There is an L-allowable base change F'/F and a p-nearly ordinary cuspidal automorphic
representation ' of GLa(Ap/) such that:

(i) 7 has central character 1c o Nmp/p;

(ii) if w is an Archimedean place of F' that extends the embedding 7 : F — R, then ), is

discrete series of lowest weight k, — 1 and central character z,, +> sgn(z, )" |z,|?~F =27 ;

(iii) ifw is a finite place of F’ with w t p and w not above any place in 3, then T, is unramified;

(iv) if w is a finite place of F' lying above some place in v € ¥, then T, = (y,c o Nmp /p, o
det) ® St;

(v) for any w|p, (x)W1(w) £ ;

(vi) 7’ is a x-good lift of p.

Proof. Note that if p is odd, the unramified characters =, are determined uniquely by ¥ and p,
but if p = 2, then they are only determined up to sign. We first apply Lemma 5.1.4 to obtain m
with the right weight and central character, and such that (Wl)bwl(w) # 0 for any w|p. We then
apply Lemma 5.1.5 to obtain 7o that is unramified for every v { p. We then apply Lemma 5.1.7
to obtain 73 such that w3 is our desired twist of Steinberg at each w above v € X. However, 73
may no longer be unramified at all places not above 3 and p. So, we apply Lemma 5.1.5 one
more time to get our desired 7’. Note that when applying Lemma 5.1.5 this last time we can

ensure that the places above those in X remain the desired twist of Steinberg. O

5.2 Proof of the main theorem
We can now prove our main theorem.

THEOREM 5.2.1. Let F be a totally real subfield of Q. Let Jp denote the set of embeddings
F < Q. Fix embeddings Q — Q, and Q — C. Via these embeddings we view Jr as the set
of embeddings {F — R} as well as the set of embeddings {F — Q,}. For any v|2 in F, let
Jrw € Jr denote the subset of T that give rise to v. We identify Jg, with the set of embedding
Fy, — Qs.
Let
p: GF —> GLQ(QQ)

be a continuous representation unramified outside finitely many primes. Assume there is some
(k,w) € J%, with k; > 2 for each 7 € Jp and w = k; + 2w, independent of T, and such that:

(i) detp = qbe;”_l, with ¢ a finite-order character;

(ii) for each v|2, p|a, = (*y,) such that viewing x, as a character of F,* via class field theory,

Yo(y) = HTEJF,U Yy~ on some open subgroup of O;ﬂ;
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(iii) for each choice of complex conjugation ¢, det p(c) = —1.

Let p: Gp — GLo(FF) denote the residual representation associated to p. We assume:

(iv) p is absolutely irreducible;

(v) if L/F is a CM extension such that p|q, is abelian, then there is some v|2 in F' that does
not split in L;

(vi) there is a 2-nearly ordinary regular algebraic cuspidal automorphic representation my of
GL2(Ap) with pry = .

Under these assumptions p is modular, i.e. there is a 2-nearly ordinary regular algebraic
cuspidal automorphic representation m of GLa(Ap) such that p = p;.

Proof. First note that by solvable base change, it suffices to prove the theorem after replacing
F with any finite solvable totally real extension of F'.

In the case that p|q, is split for v|2, we fix x, as in part (ii). Recall that if the image of p is
solvable, then there is a unique quadratic extension L/F such that p|g, is abelian. Thus, there
are three distinct cases:

(a) the image of p is non-solvable;
(b) there is a quadratic CM extension L/F such that p|g, is abelian;
(c) there is a quadratic non-CM extension L/F such that p|g, is abelian.

If we are in case (b), then we fix a vg|p satisfying part (v). We can find a totally real solvable
extension F’/F of even degree such that:

e F'/F is disjoint from the fixed field of ker p;

e for any v|2 in F’, we have [F] : Q3] > 4;

e for any v|2 in F’, the image of p|g, has order two if v is above our fixed place vy, and is
trivial otherwise.

Now assume we are in case (c), i.e. that p is dihedral and L/F is not CM. Let r and s denote
the number of real and complex embeddings of L into C, respectively. By assumption, r > 1. Let
L%b denote the maximal pro-p abelian extension of L unramified outside S. Let Lg denote the
maximal subextension of L% /L such that the non-trivial element of Gal(L/F) act on Gal(Lg /L)
by —1. We distinguish two subcases depending on whether or not L is contained in the 2-adic
cyclotomic extension of F.

First assume that L/F is not contained in the 2-adic cyclotomic extension. Let F,, denote the
totally real subfield of the cyclotomic extension F'(ugn). Set L, = F, L, and let r, and s,, denote
the number of real and complex embeddings of L, into C, respectively. Note that r,, > [F), : F].
The subgroup of Of ~on which Gal(L,,/F,) acts via the non-trivial character has rank
F, : F]

r
n>[ .

Tn"'sn_[Fn:Q]:? 9

The weak Leopoldt conjecture is known to hold for the tower {L,/L},>1, see [NSWOO,
Theorem 10.3.25]. Hence, letting O ~denote the closure of OF in (Of, ®z Z2)* and letting

((’)Zn)l denote its maximal pro-2 subgroup, there is a constant ¢ such that

rankzOF — rankz, ((’)Zn)l <c
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for all n. Then, we have

rankz, Gal((Ly)g/Lyn) < [Fn : Q] — [FnzF] +c

for all n. By replacing I’ with I, for n sufficiently large, we may assume that rankz, Gal(Lg /L) <
[F: Q] — 3.

In the case that L/ F is contained in the 2-adic cyclotomic extension, we use an idea of [Ski09].
Note that, if Ly denotes the maximal abelian subextension of L/Q, then L = LyF. Set Fy N Ly.
Choose an odd prime ¢ such that Q(u) is disjoint from the fixed field of ker p. Let M,, denote
the subextension of Q(py~)/Q of degree £™; in particular, M, is totally real. Since L/ Fy is not
CM, there is a subgroup of Oy, ; ~of rank at least £ — 1 on which Gal(M,,Lo/M, Fy) acts via
the non-trivial character. Since Leopoldt’s conjecture is known for abelian extensions of Q, the
closure of this subgroup has a maximal pro-2 subgroup of Zs-rank at least ¢ — 1. The same is
then true for M, L/M,F, and

rankz, Gal((M, L) /(M,L)) < [M,F : Q] — " 4 1.

By replacing F' with M, F for n sufficiently large we may assume that rankz,Gal(Lg /L) < [F':
Q] -3.

Let X denote the set of finite places not above p at which p is ramified. Recall that an
L-allowable base change is an extension F’/F such that:

e F'/F is finite of even degree, solvable, and totally real;
e F'/F is disjoint from errp;
e if p|¢, is abelian, and v|p in F' does not split in L, then no w|v in F’ splits in F'L.

By replacing F' with an L-allowable base change we may assume that [F' : Q] and X are both
even.

By replacing F' with an L-allowable base change we may assume that for any v € ¥, the
local representation p|g, is an extension of 7, by v,€,, for some unramified character v,. By
further replacing F' with an allowable base change, Proposition 5.1.8 implies we may assume the
same properties for pr,, with the same characters v, for v € ¥, as well as that my has weight
(k,w), and that det p = det pr,. Moreover, because Proposition 5.1.8 allows us to assume that

(wo)iwl(v) # 0 for each v|2, writing
%k
T0lGy —
P 0| ( Xg)

with X lifting %, we have x2(y) = | T y~ v for every y € U}, the maximal pro-2 subgroup
of Of,.

For each v|2, let ¢, denote the finite-order character of U} given by ¢, (y) = x4 (v) HTGJM Y
We want a finite totally ramified extension F) /F,, of order a power of 2 such that ¢, oNm F;g /F, 18
trivial. However, if v does not split in L, we further require this extension is disjoint from L, /F,,
where L, denotes the completion of L at the unique prime above v. We require this in order to
ensure the resulting base change still satisfies condition (v) of the theorem. If L, / F,, is unramified,
this is automatic. In the case that L, /F), is ramified, there is a choice of uniformizer w, in F,
such that w, is not a norm from L,. By class field theory, the subgroup of F, generated by the
kernel of ¢,, the group of prime-to-2 roots of unity, and the element w, then gives the desired

Wr
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extension. We fix such an F /F, for each v|p. Let F'/F be a finite solvable, totally real extension

of even degree, disjoint from errﬁ, such that for any v|2 in F' and w|v in F’, the completion of
F’ at w is our fixed extension F)/F,. Then, F'/F is L-allowable, and replacing F with F’, we

can now assume that for every v|2 in F' and every y € U}, we have x,(y) = HreJFU T

Let E be a finite subextension of Q,/Qy that contains the image of p and pr,, and let
O denote its ring of integers. For each v|2, recall that G2 denotes the abelianization of G,
12 denotes it inertia subgroup, and G2°(2) and I2P(2) denote their respective maximal pro-2
quotients. Recall also the notation A(G,) = O[[G2P(2)]] for v|2, and A(Gs) = ®p2 A(Gy). By
our choice of base changes, for every v|2, the restrictions of x, and x¥ to the maximal pro-2
subgroup of Iﬁb are equal. In particular, the restrictions of y, and x! to the 2-torsion subgroup
of G2 are equal. Viewing x, and X! as lifts of X, for each v|2, this implies that the O-valued
points of A(G2) determined by (xu)y|2 and (XS)U‘Q lie on the same irreducible component.

Let S = X U {v|p} U {v|oo}. Using the Jacquet—Langlands—Shimizu correspondence, the
properties of my allow us to transfer 7y to a nearly ordinary eigenform f as in §4.1.2. The field F
and residual representations satisfy the assumptions of §4.1.1 as well as Proposition 4.4.3. Then
letting R?S be the quotient of Rp,5 ® A(G)p) as in §4.1.4, we see that (p, (xv),[2) defines a point of

Spfﬁﬁ 5- By Proposition 4.4.3, the representation p arises as a specialization of the big modular
Galois representation in Proposition 2.4.4 via an O-algebra homomorphism Ty, (U) — Q, (for
appropriate U). By our assumptions on the determinant and local behaviour of p, the kernel
of this specialization is an arithmetic prime, and it factors through T}, (U(p®?), O) for some
a > 1 by Corollary 2.3.11. The theorem now follows from the Jacquet—Langlands—Shimizu
correspondence Proposition 2.1.10. |

Our theorem from the introduction is a result of Theorem 5.2.1 above together with
Lemma 5.1.2.

5.3 An application to elliptic curves

We show how the main theorem implies the corollary from the introduction and conclude by
giving some examples of elliptic curves satisfying the assumptions of the corollary from the
introduction. For any finite place v of F', we normalize the valuation val, at v so that a uniformizer
has valuation 1.

5.3.1. Proof of the main corollary. Let E be an elliptic curve over F' given by the Weierstrass
equation
y* =23 + azx +b.

The curve E has 2-torsion defined over F if and only if 22 4 ax + b is reducible. Further, the
G p-representation E[2](Q) is absolutely irreducible if and only if the splitting field of 3+ ax +b
is an S3-extension, which happens if and only if 22 + ax + b is irreducible and the discriminant

A = —16(4a® + 27b%)

of the Weierstrass equation is not a square in F. If the action of G on E[2](Q) is absolutely
irreducible, then the unique quadratic extension L/F for which the action of G, on E[2](Q) is
abelian is F(\/Z) Lastly, E has multiplicative reduction at v|2 if and only if jg is non-integral
at v, and has potentially ordinary reduction if and only if jg is a unit at v, cf. [Sil86, ch. V,
Exercise 5.7]. The corollary now follows from the main theorem. O
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Note that any elliptic curve satisfying our assumptions is not CM. If it were, then there
would be a quadratic CM extension L/F such that the representation pg|g, is abelian. By
the absolute irreducibility of E[2](Q), we have L = F(v/A), and A is totally negative. The
reducibility of pg|q, for each v|2 then implies that every v|2 splits in F(v/A), a contradiction.

5.3.2. An example. We give some examples of elliptic curves satisfying the assumptions of
the corollary. Let jo € F' be any real number satisfying:

(a) valy(jo) < 0 for all v|2;

(b) there is some v 1 6 such that val,(jo) = 1;
(c) jo — 1728 is not a square in F;

(d) either:

(i) there is some o : F' — R such that o(jp) > 1728; or
(ii) there is some v|2 such that val,(jo) is odd.

Note that condition (c) can be ensured by assuming either that there is some real embedding o
such that o(jo) < 1728, or by assuming there is some finite place v such that val,(jo — 1728) is
odd.

We will show that any elliptic curve E over F' with j(E) = jo satisfies the conditions of the
corollary. Note that if £ and E’ are non-CM elliptic curves over F' with the same j-invariant,
then they are quadratic twists of each other. Since a quadratic twist has no effect on 2-torsion,
it suffices to show one elliptic curve with j-invariant jy satisfies the hypotheses of the corollary.

Let Ey be the elliptic curve over F' given by the Weierstrass equation

. 200 . 2T
4(jo — 1728)"  4(jo — 1728)

One computes that the j-invariant of this elliptic curve is equal to jy, and that the discriminant
A of the cubic in the above Weierstrass equation is

97 3 . 2 6. 912 2
A =—16 _.¢ +97 _.2& — 2'37]0,
4(jo — 1728) 4(jo — 1728) (jo — 1728)3
which is not a square in F' since jp — 1728 is not a square in F'. Since there is some finite v { 6
such that val,(jo) = 1, we have val,(jo — 1728) = 0 and val,(—27j/4(jo — 1728)) = 1. Then,

3 27jo 27jo

4(jo — 1728)"  4(jo — 1728)

is irreducible by the Eisenstein criterion at v. Lastly, if there is a real embedding ¢ of F' such

that o(jo) > 1728, we have
26 . 312 . j2
A)=c ——=2)>0
7(&) U((jo - 1728>3> -0

and A is not totally negative. If there is some v|2 such that val,(jo) is odd, then since it is also
less than or equal to zero, val,(jo — 1728) = val,(jo). Then, jo — 1728 is not a square in F,, and
neither is A.
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