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Abstract

We consider the super-replication problem for a class of exotic options known as life-
contingent options within the framework of the Black–Scholes market model. The option
is allowed to be exercised if the death of the option holder occurs before the expiry date,
otherwise there is a compensation payoff at the expiry date. We show that there exists a
minimal super-replication portfolio and determine the associated initial investment. We
then give a characterisation of when replication of the option is possible. Finally, we give
an example of an explicit super-replicating hedge for a simple life-contingent option.
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1. Introduction

We consider a class of exotic options known as life-contingent options. The name comes
from the fact that such options first arose in the context of insurance, in which they are contin-
gent on the lifetime of the holder. That is, the exercise time is at the time of the holder’s death.
Such options are also known in the literature as equity-linked death benefits, or guaranteed
minimum death benefits (GMDB). These are options that give a general payoff at the exercise
time that is a function of the underlying asset’s price. But unlike the European and American
options, the exercise time is neither fixed nor under the holder’s control. Instead, it is contin-
gent on the time of occurrence of an event of interest. In our case, we assume the event to be
independent of the asset price.

A typical GMDB may have the payoff form max (X1
τ , G), where X1

τ is the time-τ price of
the underlying, G is the guarantee amount, and τ is a stopping time (time until death). Because
max (X1

τ , G) = X1
τ + max (0, G − X1

τ ), the payoff of this GMDB is the sum of the underlying
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price and a life-contingent put option with strike price G and exercise time τ . Thus, the problem
of hedging this GMDB is equivalent to the problem of hedging the life-contingent put option.

There has been considerable work on the valuation problem for life-contingent options. For
instance, [3] determines the expected payoff of life-contingent options within the framework
of the geometric Brownian motion model by using a discounted density approach. There, the
random exercise time is modelled by a linear combination of exponentially distributed ran-
dom variables independent of the underlying price processes. Closed-form expressions for the
expected payoff are obtained for various types of payoffs, including European-type options,
which give the holder the right to buy (respectively sell) a unit of underlying at the expiry date;
as well as digital, lookback, and barrier options. The results are extended to a jump-diffusion
model of stock prices in [4]. An underlying asset price model with jumps is also considered in
[13], where valuation formulae for a class of payoff functions are obtained under the assump-
tion that the risky asset price follows a geometric Lévy process, and the pricing method is
implemented numerically via spline function methods. Meanwhile, the valuation problem for
life-contingent options in a discrete-time model is considered by [5], which uses the technique
of geometric stopping of a random walk to derive closed-form expressions for the expected
payoff of European, barrier, and lookback life-contingent options.

On the other hand, the hedging problem for life-contingent options, an equally important
topic in financial literature, has been far less frequently studied compared to the problem of val-
uation. The hedging problem is considered in [6] in incomplete markets with an independence
assumption for the mortality risk and market risk, giving a concise formula for the optimal
hedging ratio under the framework of local risk minimisation. In this framework, the port-
folio is not required to be self-financing, but its value process is a martingale. The objective
is to hedge the option while minimising the variance of the cumulative cost process of the
portfolio. The hedging problem is considered in [9] in a more intricate market model where
the risky asset price follows a Hawkes jump-diffusion process, which is a jump process with
self-exciting jumps, obtaining explicit expressions for locally risk-minimising strategies for
unit-linked life insurance contracts.

Another hedging framework that is widely used in incomplete markets is that of quantile
hedging. In this framework, one attempts to find a self-financing portfolio that successfully
hedges the option with maximal probability, given constraints on the initial value of the portfo-
lio. This framework is explored in [10]. Under various assumptions, quantile hedges are derived
for life-contingent options, referred to in the paper as guaranteed minimum death benefits.
Meanwhile, [2] considered hedging problems for an insider trader. They studied the hedg-
ing problem for American-style options and modelled it with backward stochastic differential
equations with random terminal time. However, strong additional conditions were included in
the setup. In particular, the portfolio holder is assumed to have access to additional information
not included in the asset filtration, and their portfolio is allowed to consist of an additional asset
other than the two included in the standard market model.

In this paper, we consider the hedging problem for life-contingent options. Since the
exercise time for life-contingent options is itself random, this presents a novel difficulty in
constructing a hedge process, or a replicating portfolio. In [3–5,13], the expected payoff of
the life-contingent option at the exercise time is derived. However, they do not explore the
hedging problem for this type of option. In [6,10], the hedging problem is studied. The frame-
works investigated are, respectively, the local risk minimisation framework and the quantile
hedging framework. This leaves the problem of super-replication unanswered. In [2], the exis-
tence of a super-replication portfolio is obtained, but the authors make crucial additions to
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the scenario—in particular the existence of an additional asset, and additional datum in the
filtration, the so-called insider information. Thus, the question of super-hedging for the life-
contingent option—in the classical setting of a portfolio consisting only of market assets, and
adapted to the market filtration—remains unanswered.

As such, we are interested in the case where the additional devices in [2] are not provided.
We explore the super-replication problem for life-contingent options. Given that the market is
incomplete, exact replication will rarely be possible, thus we examine the possibility of super-
replication instead, that is, a portfolio that almost surely pays off more than or equal to the
option payoff at the exercise time. First, we derive the minimal price of a super-replicating
portfolio for the life-contingent option. We then show that there exists a minimal hedge for
the life-contingent option, given only access to the asset price process as information, and
consisting of only the two assets in the market. Next, we give a characterisation of when repli-
cation of the life-contingent option is possible, and finally derive an explicit expression for a
super-replicating portfolio in a simple case.

The rest of this paper is organised as follows. Section 2 introduces the model settings and
our notation. Section 3 presents the existence of a minimal super-replication portfolio and
gives an explicit super-replicating hedge for a simple life-contingent option. Section 4 presents
necessary and sufficient conditions under which a replication portfolio exists. In Section 5,
we summarise our findings and present potential directions for further research. Finally, in the
Appendix, we collect some technical proofs.

2. The setup

We first introduce the setup for the problem. Let (�,F , F, P) be a filtered probability space
satisfying the usual conditions. The probability measure P is referred to as the physical mea-
sure. We consider the processes X0, X1 : [0, T] × � →R+, known as the bond and stock prices
respectively, satisfying the stochastic differential equations (SDE)

dX0
t = rX0

t dt,

dX1
t = X1

t (μ dt + σ dWt), (2.1)

with X0
0 = 1, X1

0 = x0 almost surely (a.s.) for some x0 ∈R+, and W = {Wt}t∈[0,T] a standard
Brownian motion with T denoting a fixed and finite time horizon. Here, r, μ, σ ∈R are positive
constants, respectively known as the risk-free interest rate, expected return rate, and volatil-
ity of the stock. The filtration F= {Ft}t≥0 is the natural filtration generated by the Brownian
motion W. We assume that F satisfies the usual conditions, that is, it is right continuous and
contains all P-null sets.

To describe the randomness of the exercise time of life-contingent options, we let τ be an
a.s. finite random variable independent of F taking finitely many values 0 < t1 < · · · < tn <

tn+1 = T , representing the possible exercise and expiry times. We interpret the times t1 . . . tn
as being the possible occurrence times of the event of interest (e.g. the death of the policy
holder) at which time the option may be exercised. On the other hand, if τ = tn+1 = T , we
interpret it as the option having expired before the event of interest occurs. We denote by G the
natural filtration of the process G : [0, T] × � →R given by G(t, ·) = 1{τ≤t}. By construction,
τ is then a bounded stopping time of G.

We now introduce some key definitions.
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Definition 2.1. (T-year life-contingent option.) Let T be the fixed expiration date of the life-
contingent option, and 0 ≤ τ ≤ T be the stopping time of an event of interest. The payoff of
a life-contingent option is an (FT ∨ Gτ )-measurable random variable, where Gτ denotes the
σ -algebra of the stopping time τ , and FT ∨ Gτ denotes the σ -algebra generated by FT and Gτ .
The time-τ payoff of the life-contingent option is of the form

fτ := 1{τ<T}b(X1
τ ) + 1{τ=T}c(X1

T ),

where X1 is the underlying price process satisfying (2.1) and τ is the random exercise time.
b, c : R+ →R+ are bounded Borel-measurable functions called the death benefit payoff and
compensation payoff , respectively.

Thus, the policy pays death benefit b(X1
τ ) if the policy holder dies at time τ but before time

T = tn+1, and otherwise the compensation payoff is c(X1
T ) at time T .

Definition 2.2. (Self-financing portfolio.) A self-financing portfolio is a pair of processes
H := (H0, H1) with values in R2 that is adapted to the filtration F, and satisfies the following
conditions:

(C1) The portfolio must be self-financing, i.e. X0
t dH0

t + X1
t dH1

t = 0 a.s.

(C2) The portfolio must have a nonnegative value at all times: X0
t H0

t + X1
t H1

t ≥ 0 a.s. for all
t ∈ [0, T].

We denote by Vt(H) := X0
t H0

t + X1
t H1

t the value process of the portfolio H at time t, and
V0(H) the initial investment of the portfolio. The set of self-financing portfolios is denoted
by SF.

Remark 2.1. Note that the initial values H0
0, H1

0 may be freely chosen, so long as the
nonnegativity condition (C2) in Definition 2.2 is satisfied.

Definition 2.3. (Super-replication portfolio.) A super-replication portfolio for the lifetime-
contingent option f is a self-financing portfolio whose associated value process V satisfies
Vτ ≥ fτ almost surely. More precisely, a super-replication portfolio is an element of the set
S(f , τ ) defined by

S(f,τ ) := {H | H ∈ SF; X0
τ H0

τ + X1
τ H1

τ ≥ fτ a.s.}.
Definition 2.4. (Minimal super-replication price.) We define the minimal super-replication
price π0(f ) for the life-contingent option (f , τ ) to be the infimal value of a super-replication
portfolio for (f , τ ), i.e.

π0(f ) := inf{V0(H) | H = (H0, H1) ∈ S(f , τ )},
where V0(H) is the initial investment for the portfolio H.

Definition 2.5. (Minimal super-replication portfolio.) A minimal super-replication portfolio
for (f , τ ), if it exists, is a super-replication portfolio whose initial value equals the minimal
hedging price π0(f ).

Recall that the market involving the two assets X0 and X1 is complete. This implies that there
exists a unique equivalent martingale measure Q, which is a probability measure equivalent to
P such that the discounted asset prices are martingales.
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3. Existence of a minimal super-replication portfolio

We are now ready to state the first main theorem of the paper.

Theorem 3.1. Let b, c, f, and τ be as in the setup in Section 2. There exists a minimal hedge
for the life-contingent option (f , τ ) whose associated initial investment π0 is

π0 = D0 . . . Dn(U), (3.1)

where the random variable U is defined by

U :=
⎧⎨
⎩

c(X1
T ) if P(τ = T) �= 0,

0 if P(τ = T) = 0,

and the operators Dk : L1(�) →R are defined as follows. For any random variable Y ∈ L1(�),
D0(Y) := EQ[e−rt1 Y]; for 1 ≤ k ≤ n,

Dk(Y) := max
(
b(X1

tk ),EQ
[
e−r(tk+1−tk)Y |Ftk

])
.

Here, EQ denotes the expectation under the probability measure Q, and we recall that
t1, . . . , tn+1 are the possible exercise or expiry times of the option.

Remark 3.1. The operators Dk above correspond to a discretised version of the Snell envelope
in the theory of optimal stopping. See, for instance, [12, Chapter 6] for more details.

For the proof of Theorem 3.1, we will need the following lemma on independence of
filtrations, as well as a standard result from the theory of option pricing.

Lemma 3.1. Let H= {Ht} and K= {Kt} be two independent filtrations under the probability
measure P. If Q is another probability measure such that dQ= Z dP for some H∞-measurable
random variable Z, then H and K remain independent under Q.

Proof. Let H ∈Ht and K ∈ Kr for some t, r ≥ 0. Then

Q(H ∩ K) =EQ[1H1K] =EP[Z1H1K]

=EP[Z1H]EP[1K]

=EP[Z1H]EP[1K]EP[Z]

=EP[Z1H]EP[Z1K] =EQ[1H]EQ[1K] =Q(H)Q(K),

where the equality on the third line is valid because EP[Z] = ∫
�

Z dP= ∫
�

dQ= 1. �

We now recall a key result in the theory of option pricing, which can be found in references
such as [1, Theorem 7.5.10, p. 190]: given a geometric Brownian motion market model with
two assets, the minimal initial investment for a hedge of a European option with payoff hT is
EQ[e−rThT ], where Q denotes an equivalent martingale measure and T is the exercise time.
Stated more precisely, the form of this result we will need is as follows.

Proposition 3.1. Let W be a standard Brownian motion on a filtered probability space.
Suppose X0 and X1 are solutions to the SDE

dX0
t = rX0

t dt, (3.2)
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dX1
t = X1

t (μ dt + σ dWt) (3.3)

for t ∈ [q, s] with initial conditions X0
q = x0 and X1

q = x1 for some x0, x1 ∈R+. Let fs be an

Fs-measurable random variable. Suppose (Z0, Z1) is a super-replication portfolio consisting
of X0 and X1 on [q, s]. Then

Z0
qX0

q + Z1
qX1

q ≥EQ[er(q−s)fs |Fq] a.s.,

where Q is a probability measure equivalent to P under which the discounted process
e−r(t−q)X1

t is a martingale on [q, s] with respect to the filtration F. Further, there exists a
self-financing portfolio H = (H0, H1) with X0

s H0
s + X1

s H1
s = fs a.s., in which case

X0
qH0

q + X1
qH1

q =EQ[er(q−s)fs |Fq].

As a first step to proving Theorem 3.1, we obtain a lower bound on the value of any (f , τ )
hedge at the times t1, . . . , tn+1. For convenience, we write t0 = 0.

Proposition 3.2. Let b, c, f, and τ be as in the setup in Section 2, and suppose H ∈ S(f , τ ). Then
the associated value process V must satisfy Vti ≥ Di . . . Dn(U) for each 0 ≤ i ≤ n a.s., where
the random variables U and the operators Di are defined as in Theorem 3.1. If P(τ = T) �= 0,
V must further satisfy VT ≥ c(X1

T ) a.s.

Proof. Let V(H) be the value process of a hedging portfolio H = (H0, H1). Assuming first
that P(τ = T) �= 0, we will show that VT (H) ≥ c(X1

T ) a.s. Indeed, assume otherwise; then the
event A := {VT (H) < c(X1

T )} has nonzero probability. Since the two variables involved in the
defining inequality are FT -measurable, A is FT -measurable.

But then, since τ is independent of the filtration generated by the Brownian motion, we have
that A ∩ {τ = T} has nonzero probability as well. Thus Vτ < c(Xτ ) with nonzero probability,
contradicting the definition of a hedge.

By exactly the same reasoning, we conclude that

Vti(H) ≥ b(X1
ti) a.s, (3.4)

for each 1 ≤ i ≤ n.
It remains to show the inequalities

Vti(H) ≥ Di . . . Dn(U) a.s, (3.5)

for each 0 ≤ i ≤ n. We treat the cases 1 ≤ i ≤ n and i = 0 separately. For the former, we take a
dynamic programming approach and induct backwards on i.

For the base case, we must show that

Vtn (H) ≥ Dn(U) a.s. (3.6)

We first note that by the Markov property of Itô SDEs, conditional on Ftn , we find that X0, X1,
and the portfolio H0, H1 restricted to [tn, T] satisfy the hypotheses of Proposition 3.1.

Indeed, X0 and X1 satisfy the SDEs (3.2) and (3.3) on the interval [tn, T], and, from above,
VT (H) = X0

TH0
T + X1

TH1
T ≥ c(X1

T ) a.s. Thus Vtn (H) ≥EQ[er(tn−T)c(X1
T ) |Ftn ]. Combining this

with the fact that Vtn (H) ≥ b(Xtn ) from (3.4), we conclude the inequality (3.6) as desired.

https://doi.org/10.1017/jpr.2024.10 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.10


Super-replication of life-contingent options 1269

For the induction step, let 2 ≤ k ≤ n, and assume that Vtk (H) ≥ Dk . . . Dn(U) a.s. We must
show that Vtk−1 (H) ≥ Dk−1 . . . Dn(U) a.s. However, conditional on Ftk−1 , we again find that
X0, X1, and the portfolio H0, H1 restricted to [tk−1, tk], satisfy the hypotheses of Proposition
3.1. Indeed, we again check that X0 and X1 satisfy the SDEs (3.2) and (3.3) on the interval
[tk−1, tk] and, by the induction hypothesis,

Vtk (H) = X0
tk H0

tk + X1
tk H1

tk ≥ Dk . . . Dn(U), a.s.

Together with (3.4), we deduce that

Vtk−1 (H) ≥ max
(
b(X1

tk−1
),EQ

[
er(tk−1−tk)Dk . . . Dn(U) |Ftk−1

]) = Dk−1 . . . Dn(U) a.s,

which proves the case 1 ≤ i ≤ n in (3.5) as required. Finally, one more application of
Proposition 3.2 proves the case i = 0 in (3.5).

In the case where P(τ = T) = 0, we note that by similar considerations to earlier, we still
have the inequality Vtn (H) ≥ b(X1

tn ) a.s., whence the rest of the proof proceeds verbatim. �

Now we set out to construct a minimal hedge. Before we do so, we need the following
generalities on regular conditional probabilities. The definitions below are largely based on
[7].

Definition 3.1. (Transition probability.) Let (�,F , P) be a probability space and (E, E) a mea-
surable space. A transition probability from E to � is a function ν : E ×F → [0, 1] which
satisfies the following conditions:

(i) ν(x, ·) is a probability measure on (�,F) for all x ∈ E;

(ii) ν(·, A) is an E-measurable function on E for all A ∈F .

Definition 3.2. (Regular conditional probability.) Let T : � → E be a measurable function. A
regular conditional probability with respect to T is a transition probability ν : E ×F → [0, 1]
from (E, E) to (�,F) such that

P[A ∩ T−1(B)] =
∫

B
ν(x, A) T∗P(dx)

for all x ∈ E, A ∈F , and B ∈ E , where T∗P denotes the image measure of P under T.

Definition 3.3. (Sub-σ -algebra regular conditional probability.) Let H be a sub-σ -algebra of
F . A sub-σ -algebra regular conditional probability (with respect to H) is a regular conditional
probability with respect to the identity map I : (�,H) → (�,F).

The following is [11, Proposition 1.9], and gives sufficient conditions for regular condi-
tional probabilities to exist. We then state a proposition which ensures that regular conditional
probabilities exist in our setting.

Proposition 3.3. Let (�,F , P) be a Radon probability space, and H a sub-σ -algebra of F .
Then there exists a regular conditional probability with respect to H.

We shall need the following technical proposition, whose proof we relegate to the Appendix.

Proposition 3.4. The market model (�,F , P) in the setup in Section 2 can be taken to be a
Radon probability space.

We are now ready to construct our minimal hedge and, in doing so, prove Theorem 3.1.
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Proof of Theorem 3.1. Denote by 0 < t1 < · · · < tn < tn+1 = T the values of τ that occur
with nonzero probability, with the exception of P(τ = tn+1) which is permitted to possibly be
0. In the notation introduced in the statement of the theorem, write, for convenience, Ji :=
Di . . . Dn(U) for 1 ≤ i ≤ n.

We define our hedging process H on [0, t1] by H0 = Y0, H1 = Y1, where Y0, Y1 are defined
as follows. By Proposition 3.2, given X0, X1 as in the setup, there exists an F-adapted solution
(Y0, Y1, V) to the following system (FBSDE 1) of forward–backward stochastic differential
equations,

dX0
t = rX0

t dt, (3.7)

dX1
t = X1

t (μ dt + σ dWt), (3.8)

dVt = Y0
t dX0

t + Y1
t dX1

t , (3.9)

0 = X0
t dY0

t + X1
t dY1

t (3.10)

for t ∈ [0, t1] under P with initial conditions X0
0 = 1, X1

0 = x, and terminal condition Vt1 = J1
almost surely.

Suppose now inductively our processes (H0, H1, V(H)) have already been defined on [0, ti]
for some 1 ≤ i ≤ n and satisfy (3.7)–(3.10), and further that Vtk (H) ≥ Jk for each 1 ≤ k ≤ i.
Consider the regular conditional probability ξ of P given Fti .

Now fix x ∈R+ and ω ∈ � such that X1
ti(ω) = x, and consider the system (FBSDE 2)

dX0
t = rX0

t dt,

dX1
t = X1

t (μ dt + σ dWt),

dRt = Z0
t dX0

t + Z1
t dX1

t ,

0 = X0
t dZ0

t + X1
t dZ1

t

for t ∈ [ti, ti+1] under the probability measure ξ (ω, ·) with initial conditions X0
ti = erti , X1

ti = x,
and terminal condition Rti+1 = Ji+1, ξ (ω, ·)-a.s. Note that ξ (ω, ·) is supported on the event
{X1

ti = x}, since X1
ti is Fti-measurable, and X1

ti (ω) = x.
By Proposition 3.1, for each such ω ∈ � there exists a ξ (ω, ·)-a.s. well-defined solution

(Z0, Z1, R) =: (Z0,x, Z1,x, Rx) to (FBSDE 2). We define our process for t ∈ (ti, ti+1] by

H0
t = Z0,x

t + e−rti (Vti(H) − Z0,x
ti X0

ti − Z1,x
ti X1

ti ),

H1
t = Z1,x

t ,

Vt(H) = e−rti (Vti(H) − Z0,x
ti X0

ti − Z1,x
ti X1

ti )X
0
t + Z0,x

t X0
t + Z1,x

t X1
t = H0

t X0
t + H1

t X1
t

on the event {X1
ti = x}. This defines (H0, H1, V) P-a.s. up to [0, ti+1].

Indeed, denoting by E the set on which (H0, H1, V) is well defined up to [0, ti+1), we
have
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P(E) =
∫

�

ξ (ω, E) P(dω) =
∫

�

1 P(dω) = 1.

We now show that (H0, H1, V(H)) satisfies the system (FBSDE 1) on [0, tn+1] under P with
initial conditions X0

0 = 1, X1
0 = x, and terminal condition Vti+1 (H) ≥ Ji+1, almost surely. That

(3.7) and (3.8) are satisfied has already been established a priori in the construction of the mar-
ket model. For t ∈ [ti, ti+1], (3.9) is satisfied. Indeed, writing Eti := e−rti (Vti(H) − Z0,x

ti X0
ti −

Z1,x
ti X1

ti), we get

dVt(H) = Eti dX0
t + dZ0,x

t X0
t + dZ1,x

t X1
t + Z0,x

t dX0
t + Z1,x

t dX1
t

= Eti dX0
t + Z0,x

t dX0
t + Z1,x

t dX1
t

= H0
t dX0

t + H1
t dX1

t .

But we may also compute, for s ∈ [0, ti] and t ∈ [ti, ti+1],

Vt(H) − Vs(H) = (Vt(H) − Vti (H)) + (Vti(H) − Vs(H))

=
∫ t

ti
H0

r dX0
r +

∫ t

ti
H1

r dX1
r +

∫ ti

s
H0

r dX0
r +

∫ ti

s
H1

r dX1
r

=
∫ t

s
H0

r dX0
r +

∫ t

s
H1

r dX1
r ,

which shows that (3.9) holds on [0, ti+1]. Finally, we check the self-financing condition (3.10).
Recall that we have assumed inductively that (3.10) holds on [0, ti]. Thus we need only check
that (3.10) is satisfied for times s, t in the interval [0, ti+1], with s < t, and t ∈ (ti, ti+1].

Assume first that s ≤ ti. Then we have∫ t

s
X0

r dH0
r +

∫ t

s
X1

r dH1
r =

∫
[s,ti)

X0
r dH0

r +
∫

[s,ti)
X1

r dH1
r +

∫
(ti,t]

X0
r dH0

r +
∫

(ti,t]
X1

r dH1
r

+ X0
ti (H

0+
ti − H0

ti ) + X1
ti (H

1+
ti − H1

ti).

The first two terms are 0 by the induction hypothesis. We claim that the third and fourth terms
are also 0. Indeed, on [ti, ti+1), we have H0 = Z0,x

t + Eti and H1 = Z1,x
t , so that for, t ∈ [ti, ti+1),

dH0
t = dZ0,x

t and dH1
t = dZ1,x

t , and thus, by (FBSDE 2),∫
(ti,t]

X0
r dH0

r +
∫

(ti,t]
X1

r dH1
r =

∫
(ti,t]

X0
r dZ0

r +
∫

(ti,t]
X1

r dZ1
r = 0.

Now, for the last two terms, we note that X0
ti H

0
ti + X1

ti H
1
ti = Vti a.s., so

∫ t

s
X0

r dH0
r +

∫ t

s
X1

r dH1
r = X0

ti H
0+
r + X1

ti H
1+
r − Vti(H)

= X0
ti

[
Z0,x

ti + 1

X0
ti

(Vti(H) − Z0,x
ti X0

ti − Z1,x
ti X1

ti )

]
+ X1

ti Z
1,x
ti − Vti (H)

= X0
ti Z

0,x + Vti (H) − X0
tiZ

0,x
ti − X1

tiZ
1,x
ti + X1

ti Z
1,x
ti − Vti (H) = 0.
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Next, assume s ∈ (ti, ti+1]. Then we simply have

∫ t

s
X0

r dH0
r +

∫ t

s
X1

r dH1
r =

∫ t

s
X0

r dZ0
r +

∫ t

s
X1

r dZ1
r = 0.

Thus, X0
t dH0

t + X1
t dH1

t = 0 for t ∈ [0, ti+1], and so the self-financing condition (3.10) is
verified.

It remains to check that the terminal condition Vti+1 ≥ Ji+1 holds almost surely. But, by
construction, Vti+1 ≥ Ji+1, μ(ω, ·)-a.s. for each ω, so we have, denoting by F the event {Vti+1 ≥
Ji+1},

P(F) =
∫

�

ξ (ω, F) P|Fti
(dω) =

∫
�

1 P|Fti
(dω) = 1,

where P|Fti
denotes the pushforward measure I∗P of P under the identity map I : (�,Fti) →

(�,F). Hence, we conclude that the FBSDE holds on the interval [0, ti+1]. Inductively, we
obtain a solution (V, H0, H1) on the whole interval [0, T].

To see that this is a minimal hedge, we note that non-negativity holds since on each inter-
val [ti, ti+1] the value process is the sum of the two non-negative portfolios (Z0, Z1) and(
e−rti (Vti (H) − Z0

ti X
0
ti − Z1

ti X
1
ti), 0

)
, where the non-negativity of the second portfolio follows

from the fact that Vti (H) ≥ Jti . Further, the hedging property holds since Vti(H) ≥ Ji ≥ b(X1
ti )

for all i, so Vτ (H) ≥ b(Xτ ) almost surely. And finally, since Vt1 = J1, the initial investment V0
is V0 = D0(J1) = D0 . . . Dn(U). So the hedge achieves the infimal hedging price, and is thus a
minimal hedge. �

Next, we derive an explicit expression for the minimal super-replicating hedge and hedging
price associated to a particular life-contingent option. Due to the iterated conditional expec-
tations in (3.1), it is in general difficult or impossible to obtain closed-form solutions for the
super-replication price and minimal hedge. However, we are able to do so here for a very
simple case.

Proposition 3.5. Let the market model be as in Section 2. Consider a life-contingent option
fτ = b(Xτ )1{τ<T} + c(Xτ )1{τ=T} with only two exercise times 0 < t1 < t2 = T, where we assume
P(τ = ti) �= 0 for each i = 1, 2. We suppose that the payoffs b, c are given by b(x) = max (K, x)
and c(x) = x respectively, where K > 0 is a strike price. We note that b(x) = x + (K − x)+,
i.e. it is the combination of a long position in the stock and a put option on the stock.
Then the minimal initial investment for a super-replicating portfolio, π0, is given by π0 =
X1

0 +EQ
[
e−rt1

(
K − X1

t1

)+]
, where we recall that Q is an equivalent probability measure under

which the discounted asset prices are martingales.
A minimal super-replicating hedge H := (H0, H1) is given by

H0
t :=

⎧⎪⎨
⎪⎩

Ke−rt1

(
1 − 	

(
log (X1

t /K) + (t1 − t)(r − (σ 2/2))

σ
√

t1 − t

))
for 0 ≤ t ≤ t1,

e−rt1
(
K − X1

t1

)+
for t1 < t ≤ T,

H1
t :=

⎧⎪⎨
⎪⎩

	

(
log (X1

t /K) + (t1 − t)(r + (σ 2/2))

σ
√

t1 − t

)
for 0 ≤ t ≤ t1,

1 for t1 < t ≤ T,
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where 	(y) := (1/
√

2π )
∫ y
−∞ e−z2/2 dz denotes the cumulative distribution function of the

standard normal random variable.

Proof. Recall the notation

D0(Y) := EQ[e−rt1 Y], Dk(Y) := max
(
b(X1

tk ),EQ
[
e−r(tk+1−tk)Y |Ftk

])

for any random variable Y . By Theorem 3.1, the minimal super-replication price π0 is then
given by π0 = D0D1

[
c
(
X1

T

)]
. First, note that

D1
[
c
(
X1

T

)] = D1
[
X1

T

] = max
(
b
(
X1

t1

)
,EQ

[
e−r(T−t1)X1

T |Ft1

])

= max
(
b
(
X1

t1

)
, X1

t1

)

= max
(

max
(
K, X1

t1

)
, X1

t1

) = max
(
K, X1

t1

)
,

where on the second line we have used the martingale property of the discounted stock price
under Q. To compute π0, we have

π0 = D0D1
[
c
(
X1

T

)] = D0
[

max
(
K, X1

t1

)]

= EQ
[
e−rt1 max

(
K, X1

t1

)]

= EQ
[
e−rt1 X1

t1 + e−rt1
(
K − X1

t1

)+]

= X1
0 + EQ

[
e−rt1

(
K − X1

t1

)+]
,

where again in the third line we have used the martingale property of the discounted stock
price. Note that the minimal super-replication portfolio can be viewed as a combination of a
long position in the underlying and a long position of an European put option with exercise
time t1.

Next, we derive the expression for the hedge. First, we show that the given portfolio H :=
(H0, H1) is well defined, i.e. it satisfies assumptions (C1) and (C2) in Definition 2.2. To this
end, consider a European put option on the underlying with exercise time t1 and strike price K,
with corresponding payoff g

(
X1

t1

) = (
K − X1

t1

)+. By standard results (see [1, Theorem 7.6.2]),
a replicating portfolio R := (R0, R1) of the European put option with exercise time t1 for t ∈
[0, t1] is given by

R0
t := Ke−rt1

(
1 − 	

(
log (X1

t /K) + (t1 − t)(r − (σ 2/2))

σ
√

t1 − t

))
,

R1
t := 	

(
log (X1

t /K) + (t1 − t)(r + (σ 2/2))

σ
√

t1 − t

)
− 1.
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Noting this, we may write our portfolio H as

H0
t :=

⎧⎨
⎩

R0
t + J0

t for 0 ≤ t ≤ t1,

e−rt1
(
K − X1

t1

)+ for t1 < t ≤ T,

H1
t :=

⎧⎨
⎩

R1
t + J1

t for 0 ≤ t ≤ t1,

1 for t1 < t ≤ T,

where J0
t = 0, J1

t = 1. Now we check that assumption (C2) holds. Indeed, H is clearly
non-negative on (t1, T], since the holdings in both the riskless and underlying assets are non-
negative, while on (0, t1) it is the sum of the two non-negative portfolios R and J = (J0, J1) :=
(0, 1).

Next, we check the self-financing condition (C1). On (0, t1], it is the sum of the two self-
financing portfolios R and J, and thus is self-financing on this interval. On the other hand, on
the interval (t1, T], dH0 = dH1 = 0, and thus we need only check the self-financing condition
for times s, t with s < t1 < t. To this end, we compute
∫ t

s
X0

t dH0
t +

∫ t

s
X1

t dH1
t =

∫ t1

s
X0

t dH0
t +

∫ t1

s
X1

t dH1
t + X0

t1

(
H0+

t1 − H0
t1

) + X1
t1

(
H1+

t1 − H1
t1

)

= X0
t1

(
H0+

t1 − H0
t1

) + X1
t1

(
H1+

t1 − H1
t1

)

= X0
t1 H0+

t1 + X1
t1 H1+

t1 − Vt1 (H)

= ert1
(
e−rt1

(
K − X1

t1

)+) + X1
t1 − [(

K − X1
t1

)+ + X1
t1

] = 0,

where we have written H0+
t1 to denote limt→t+1

H0
t , and likewise for H1+

t1 .
Thus, the portfolio H is a self-financing portfolio. Now we check that it is indeed a super-

replicating portfolio for the contingent option. It is sufficient to check that Vti (H) ≥ fti a.s. for
i = 1, 2. But for i = 1, we see that

Vt1 (H) = Vt1 (R) + Vti(J) = (
K − X1

t1

)+ + X1
t1 = max

(
K, X1

t1

) = ft1,

while for i = 2, i.e. at time t2 = T , we have

VT (H) = X1
T + X0

Te−rt1
(
K − X1

T

)+ ≥ X1
T = fT .

This shows that the portfolio is super-replicating, as desired. Finally, we check that H is a
minimal super-replicating portfolio. It is sufficient to check that H achieves the minimal super-
replication price, which by Theorem 3.1 we know is

π0 := X1
0 +EQ

[
e−rt1

(
K − X1

t1

)+]
.

But, by writing

V0(H) = V0(J) + V0(R) = X1
0 +EQ

[
e−rt1

(
K − X1

t1

)+] = π0,

we verify this immediately. This concludes the proof. �
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4. Existence of a replicating portfolio

Given that a super-replication trading strategy exists, a natural question to ask is: when is
this super-replication portfolio a replicating portfolio? That is, the payoff of the portfolio is
exactly the same as the option payoff at the exercise time. To make the above precise, we
record here a few initial definitions.

Definition 4.1. (Replicating portfolio.) A replicating portfolio for the life-contingent option
(f , τ ) is a self-financing portfolio H := (H0, H1) with associated value process V such that
Vτ (H) = fτ almost surely.

Definition 4.2. (Universally replicable.) We say that the life-contingent option f is universally
replicable if, for all stopping times τ independent of the process taking finitely many values,
there exists a replicating portfolio for (f , τ ).

Now we state the main theorem of this section.

Theorem 4.1. The life-contingent option is universally replicable if and only if the discounted
option price process f̃t := 1{t<T}e−rtb(X1

t ) + 1{t=T}e−rTc
(
X1

T

)
is an Ft-martingale on (0, T]

under the equivalent martingale measure Q.

Proof. Suppose first that the discounted option price process f̃t is a martingale. Consider
the Black–Scholes replicating portfolio H for the simple European claim with payoff fT at
time T given by Proposition 3.1. By [1, Lemma 7.5.9], the discounted value process Ṽ of
the replicating portfolio satisfies Ṽr =EQ[f̃T |Fr] for r ∈ [0, T]. Hence, Ṽr = EQ[f̃T |Fr] = f̃r
almost surely for each r ∈ [0, t], where in the last equality we have applied the martingale
property of f̃ . Thus, the undiscounted values also satisfy Vr = fr a.s. We hence conclude that for
any given stopping time τ , Vτ = fτ a.s., i.e. H is a replicating portfolio for the life-contingent
option with terminal time τ , as desired.

For the other direction, suppose the life-contingent option is universally replicable, and
let s, t ∈ [0, T], s < t, be arbitrary times. We want to show that f̃s =EQ[f̃t |Fs] almost surely.
To this end, let τ be a stopping time independent of the asset filtration taking value s or
t with probability 1

2 each. Since the life-contingent option is universally replicable, there
exists a replicating portfolio H associated with this τ . By the same argument as in the proof
of Proposition 3.2, we must have that the value process V of H satisfies Vt = ft a.s., and
Vs = fs a.s.

From the equality Vt = ft a.s., we deduce that H is a replicating portfolio for the simple
European-style claim with payoff ft at time t. By [8, Theorem 7.13], the replicating portfolio for
such a payoff is unique, and hence the equality in Proposition 3.1 holds, i.e. Vs =EQ[er(s−t)ft |
Fs]. Since Vs = fs a.s., we have fs =EQ[er(s−t)ft |Fs], and rearranging the equality leads to the
desired result f̃s =EQ[f̃t |Fs] a.s. �

5. Conclusion

We have investigated the super-replication problem for life-contingent options. We proved
the existence of a minimal super-replication portfolio, and found necessary and sufficient
conditions for the existence of a replication portfolio.

There are several potential directions for future research. It would be of interest to extend
the analysis to include stopping times that do not take a discrete set of values, but rather have
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continuous support. It may also be of interest to investigate life-contingent options whose pay-
offs are functions of the entire path of the asset process. In this case, the option payoff process
would be non-Markovian, presenting a novel difficulty in the analysis. An extension of the
work to life-contingent options depending on multiple risky assets also seems to be a fruitful
line of research. In addition to market models with multiple risky assets, other extensions of
the market model, such as including the possibility of jumps in the asset prices, might also be
considered. Finally, we could extend the analysis to exercise times that are not independent of
the risky asset, but depend on it crucially. For example, in a Lévy market with jumps, we could
take the exercise time to be the first time a large jump in stock prices is made.

Appendix A. Proof of Proposition 3.4

Proof. Let (C,B(C)) denote the Wiener space of continuous functions f : [0, ∞) →R with
f (0) = 0. Consider also (R,B(R)), the space of real numbers with its usual Borel sigma-
algebra. Further, let P0 denote the Wiener measure on C, i.e. the law of a standard Brownian
motion. Let P1 be an arbitrary probability measure on R supported on finitely many values in
(0, T], to be interpreted as the law of the stopping time τ .

Now let (�,F , P) := (C ×R,B(C) ⊗B(R), P), where P := P0 × P1. Then the probabil-
ity space supports a Brownian motion W and a stopping time τ independent of each other.
Indeed, we may set W(ω, r) = ω and τ (ω, r) = r. By construction, W is a Brownian motion,
τ is a stopping time with prescribed law P1, and since P is a product measure, W and τ are
independent of each other.

Finally, we note that �, being the product of Radon probability spaces, is itself a Radon
probability space. This concludes the proof. �
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