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Abstract

Athanasiadis [‘A survey of subdivisions and local h-vectors’, in The Mathematical Legacy of Richard
P. Stanley (American Mathematical Society, Providence, RI, 2017), 39–51] asked whether the local h-
polynomials of type A cluster subdivisions have only real zeros. We confirm this conjecture and prove
that the local h-polynomials for all the Cartan–Killing types have only real roots. Our proofs use multiplier
sequences and Chebyshev polynomials of the second kind.
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1. Introduction
In this paper, we answer a question of Athanasiadis [1] and show that the local h-
polynomials of type A cluster subdivisions have only real zeros. We prove this result
for all the Cartan–Killing types.

We first give an overview of local h-polynomials. The local h-polynomials were
introduced by Stanley [12] in his study of the face enumeration of subdivisions of
complexes. Let V be an n-element vertex set. Given a simplicial subdivision Γ of the
abstract simplex 2V , the local h-polynomial `V (Γ, x) is defined as an alternating sum of
the h-polynomials of the restrictions of Γ to the faces of 2V , namely,

`V (Γ, x) =
∑
F⊆V

(−1)n−|F| h(ΓF , x),

where h(ΓF , x) is the h-polynomial of ΓF . Stanley [12] showed that `V (Γ, x) has
nonnegative and symmetric coefficients, so that it can be expressed as

`V (Γ, x) =

bn/2c∑
i=0

ξi xi(1 + x)n−2i. (1.1)
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In his survey, Athanasiadis [1] asked whether local h-polynomials for several families
of subdivisions have only real zeros.

This paper is concerned with cluster subdivisions. Let I be an n-element set and
Φ = {ai : i ∈ I} be a root system. The cluster complex ∆(Φ), studied by Fomin and
Zelevinsky [6, 7], is a simplicial complex on the vertex set of positive roots and
negative simple roots. The positive cluster complex ∆+(Φ) is the restriction of ∆(Φ)
to the positive roots. It naturally defines a geometric subdivision of the simplex on
the vertex set of simple roots of Φ, the so-called cluster subdivision Γ(Φ). The local
h-polynomial `I(Γ(Φ), x) is given by

`I(Γ(Φ), x) =
∑
J⊆I

(−1)|I\J|h(∆+(ΦJ), x),

where ΦJ is the parabolic root subsystem of Φ with respect to J.
Although closed form expressions for the local h-polynomials of type A and type B

are not yet known, the following result of Athanasiadis and Savvidou [2] gives explicit
formulae for the numbers ξi defined by (1.1).

Lemma 1.1 [2, Theorem 1.2]. Let Φ be an irreducible root system of rank n and
Cartan–Killing type X and let ξi(Φ) be the integers uniquely defined by (1.1). Then
ξ0(Φ) = 0 and

ξi(Φ) =



1
n − i + 1

(
n
i

)(
n − i − 1

i − 1

)
if X = An,(

n
i

)(
n − i − 1

i − 1

)
if X = Bn,

n − 2
i

(
2i − 2
i − 1

)(
n − 2
2i − 2

)
if X = Dn

for 1 ≤ i ≤ bn/2c. Moreover,

bn/2c∑
i=0

ξi(Φ)xi =



(m − 2)x if X = I2(m),
8x if X = H3,

42x + 40x2 if X = H4,

10x + 9x2 if X = F4,

7x + 35x2 + 13x3 if X = E6,

16x + 124x2 + 112x3 if X = E7,

44x + 484x2 + 784x3 + 120x4 if X = E8.

Athanasiadis [1] asked the following specific question.

Question 1.2. Do the local h-polynomials of type A cluster subdivisions of the simplex
have only real zeros?

In this paper, we answer this question and prove that the local h-polynomials for all
the cluster types have only real roots.
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Theorem 1.3. For any irreducible root system, the local h-polynomial of the cluster
subdivision of the simplex has only real zeros.

The remainder of this paper is organised as follows. In Section 2, we give an
overview of the theory of multiplier sequences. In Section 3, we present our proof
of Theorem 1.3.

2. Preliminaries

A sequence of real numbers {λk}
∞
k=0 is a multiplier sequence if, for every polynomial∑n

k=0 akzk whose zeros are all real, the polynomial
∑n

k=0 λkakzk is either identically zero
or has only real zeros. In this section, we list some properties of multiplier sequences
which will be used later. For a complete introduction to multiplier sequences, we refer
the reader to [4, 5, 11].

An entire function φ(x) =
∑∞

i=0 γk xk/k! is in the Laguerre–Pólya class, written
φ ∈L –P , if it has the form

φ(x) = cxme−ax2+bx
ω∏

k=1

(
1 +

x
xk

)
e−x/xk ,

where 0 ≤ ω ≤ ∞, m is a nonnegative integer, a ≥ 0, b, c, xk ∈ R, xk , 0 and∑ω
k=1 1/x2

k < ∞. Let L –P+ denote the set of functions in the Laguerre–Pólya class
with nonnegative coefficients and L –P(−∞, 0] denote the set of functions in the
Laguerre–Pólya class that have only nonpositive zeros. A remarkable property is that
an entire function is in the Laguerre–Pólya class if and only if it is a locally uniform
limit of real polynomials which have only real zeros.

A complete characterisation of multiplier sequences was given by Pólya and Schur.

Theorem 2.1 (Pólya–Schur [10]). Let {λk}
∞
k=0 be a sequence of real numbers. The

following statements are equivalent:

(i) {λk}
∞
k=0 is a multiplier sequence;

(ii) for any nonnegative integer n, either the polynomial
∑n

k=0

(
n
k

)
λk xk has only real

zeros of the same sign or it is identically zero;
(iii) either

∑∞
k=0 λk xk/k! or

∑∞
k=0(−1)kλk xk/k! belongs to L –P+.

For convenience, we let 1/k! be zero whenever k is a negative integer. By
Theorem 2.1, we obtain the following result.

Lemma 2.2. For any positive integer n, the sequence {1/(n − k)!}∞k=0 is a multiplier
sequence.

Proof. Clearly, the function
∞∑

k=0

1
(n − k)!

xk

k!
=

1
n!

(1 + x)n

has only real zeros. This completes the proof by Theorem 2.1. �
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The following result of Laguerre can be used to produce multiplier sequences.

Theorem 2.3 [5]. If φ(x) ∈L –P(−∞, 0], then {φ(k)}∞k=0 is a multiplier sequence.

The following identity for the gamma function, due to Weierstrass,

Γ(x) =
1
x

exp(−γx)
∞∏

n=1

(
1 +

x
n

)−1
exp

( x
n

)
,

where γ ≈ 0.577216 . . . is the Euler–Mascheroni constant, shows that 1/Γ(x) belongs
to L –P(−∞, 0]. Hence, Theorem 2.3 gives the following result.

Lemma 2.4. The sequence {1/k!}∞k=0 = {1/Γ(k + 1)}∞k=0 is a multiplier sequence.

We give another multiplier sequence which will be used in the next section.

Lemma 2.5. For any positive integer n, the sequence {1/i!(n − i)!}i≥0 is a multiplier
sequence.

Proof. From the definition, the Hadamard product (termwise product) of two
multiplier sequences is also a multiplier sequence. The result therefore follows from
Lemmas 2.2 and 2.4. �

We will also use the following elementary fact.

Lemma 2.6 [9, Observation 4.2]. If a polynomial `(x) has symmetric coefficients,

`(x) =

bn/2c∑
i=1

ξi xi(1 + x)n−2i

has only negative real zeros if and only if this property also holds for the polynomial

ξ(x) =

bn/2c∑
i=1

ξi xi.

3. Local h-polynomials of cluster subdivisions

In this section, we give the proof of Theorem 1.3. From Lemmas 1.1 and 2.6, it is
easy to check that the local h-polynomials for the exceptional groups have only real
zeros. It remains to discuss the cases for type A, type B and type D.

3.1. Type A. In this subsection, we deal with the local h-polynomial

`I(Γ(An), x) =

bn/2c∑
i=1

1
n − i + 1

(
n
i

)(
n − i − 1

i − 1

)
xi(1 + x)n−2i.

In view of Lemma 2.6, we turn our attention to the polynomial

ξI(Γ(An), x) =

bn/2c∑
i=1

n!
i!(n − i + 1)!

(
n − i − 1

i − 1

)
xi.
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Theorem 3.1. For any positive integer n, the polynomial ξI(Γ(An), x) has only real
zeros.

We first consider the polynomial

bn/2c∑
i=1

(
n − i − 1

i − 1

)
xi.

Since
bn/2c∑
i=1

(
n − i − 1

i − 1

)
xi =

bn/2c∑
i=1

(
n − 2 − (i − 1)

i − 1

)
xi = x

bn/2c−1∑
j=0

(
n − 2 − j

j

)
x j,

we focus on the polynomial

Hn(x) =

bn/2c∑
j=0

(
n − j

j

)
x j.

Lemma 3.2. For any positive integer n, the polynomial Hn(x) has only negative and
simple zeros.

Proof. The polynomial Hn(x) is closely related to the Chebyshev polynomial of the
second kind,

Un(y) =

bn/2c∑
k=0

(−1)k
(
n − k

k

)
(2y)n−2k.

Replacing y by 1/2y,

ynUn

( 1
2y

)
=

bn/2c∑
k=0

(
n − k

k

)
(−y2)k. (3.1)

From its trigonometric definition, the Chebyshev polynomial of the second kind
satisfies

Un(cos θ) =
sin(n + 1)θ

sin θ
.

Hence, the zeros of Un(y) are cos(πk/(n + 1)), where k = 1, 2, . . . , n. From (3.1), it
follows that the zeros of Hn(x) are − 1

4 sec2(πk/(n + 1)), where k = 1, 2, . . . , bn/2c.
Therefore, the zeros of Hn(x) are real and simple. This completes the proof. �

Now we are able to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.2, the polynomial

bn/2c∑
i=1

(
n − i − 1

i − 1

)
xi = xHn−2(x)

https://doi.org/10.1017/S0004972718000564 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000564


[6] Local h-polynomials of cluster subdivisions 263

has only real zeros. By Lemma 2.5, the sequence {1/i!(n − i + 1)!}i≥0 is a multiplier
sequence. Hence,

ξI(Γ(An), x) =

bn/2c∑
i=1

n!
i!(n − i + 1)!

(
n − i − 1

i − 1

)
xi

has only real zeros. This completes the proof. �

3.2. Type B. We next consider the polynomials

`I(Γ(Bn), x) =

bn/2c∑
i=1

(
n
i

)(
n − i − 1

i − 1

)
xi(1 + x)n−2i

for any positive integer n.

Theorem 3.3. For any positive integer n, the polynomial `I(Γ(Bn), x) has only real
zeros.

Proof. By Lemma 3.2, the polynomial
bn/2c∑
i=1

(
n − i − 1

i − 1

)
xi = xHn−2(x)

has only real zeros. By Lemma 2.5, the sequence {1/i!(n − i)!}i≥0 is a multiplier
sequence. For any positive integer n, the polynomial

ξI(Γ(Bn), x) =

bn/2c∑
i=1

(
n
i

)(
n − i − 1

i − 1

)
xi = n!

bn/2c∑
i=1

1
i!(n − i)!

(
n − i − 1

i − 1

)
xi

has only real zeros and so, by Lemma 2.6, `I(Γ(Bn), x) has only real zeros. �

3.3. Type D. Finally we consider the polynomials

`I(Γ(Dn), x) =

bn/2c∑
i=1

n − 2
i

(
2i − 2
i − 1

)(
n − 2
2i − 2

)
xi(1 + x)n−2i

for any positive integer n ≥ 2. From an identity for Narayana polynomials [3]:
bn/2c∑
i=0

1
i + 1

(
2i
i

)(
n
2i

)
xi(1 + x)n−2i =

n∑
i=0

1
n + 1

(
n + 1

i

)(
n + 1
i + 1

)
xi,

it follows that

`I(Γ(Dn), x) =

bn/2c∑
i=1

n − 2
i

(
2i − 2
i − 1

)(
n − 2
2i − 2

)
xi(1 + x)n−2i

= (n − 2)x
b(n−2)/2c∑

i=0

1
i + 1

(
2i
i

)(
n − 2

2i

)
xi(1 + x)n−2−2i

= (n − 2)x
n−2∑
i=0

1
n − 1

(
n − 1

i

)(
n − 1
i + 1

)
xi.
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The Narayana polynomials have only real roots (see [3, 8]) and this gives the
conclusion for Type D.

Theorem 3.4. For any positive integer n ≥ 2, the polynomial `I(Γ(Dn), x) has only real
zeros.
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