BULL. AUSTRAL. MATH. SOC. MOS 46J35

VOL. 3 (1970), 39-47.

On Lebesgue-type decompositions
for Banach algebras

Howard Anton 7

If the maximal ideal space of a commutative complex unitary
Banach algebra, X , is equipped with a nonnegative, finite,
regular Borel measure, m , then for each element, = , in X ,

a complex regular Borel measure, mx , can be obtained by

integrating the Gelfand transform of & with respect to m over
the Borel sets. This paper considers the possibility of direct

sum decompositions of the form X = Ax G)P& where

4, ={z € x:m <«<m} and P = {z€x: mz_l_mx} .

1. Introduction

Let X be a commutative complex Banach slgebra with identity and let
M designate the maximal ideal space of X . Suppose also that M has
the Gelfand topology, m is a nonnegative, finite, regular Borel measure
on M, and xz -2z is the Gelfand mapping from X into ((M) . Since 2z
is continuous, it follows from the compactness of M that 2 ¢ Ll(m) .

Let mx denote the complex regular Borel measure defined by
mx(E) = I z(M)dn where E varies over the Borel sets of M . By means
E

of the mapping x -+ m. we can associate a complex regular Borel measure
with each element of X .

It will be shown that the sets A, = {z € X: m, << mx} and
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P = {z € x: m, l_mx} form closed ideals in X . If a mild condition is
imposed on m , then Ax n Px = {0} . The results of this paper provide
solutions to the following problems:
(a) find sufficient conditions for an element of X to lie in the
subspace Ax @ Rx H
(b) find necessary and sufficient conditions for X to admit a
Lebesgue-type decomposition X = Ax @)Pi for some x in X ,
with Ax and P& non-zero ideals;
(¢c) for a given x in X , find necessary and sufficient conditions
for X to admit the decomposition X = Ax E)P& with Ax and

Px non-zero ideals.

We will adhere throughout to the following conventions and notation:
e denotes the identity of X and is assumed to have a norm of 1 ;
rad(x) denotes the spectral radius of x ;

S denotes the sigma-algebra of Borel sets in M ; and

B(M) denotes the Banach space of complex regular Borel measures on

M with the total variation norm.

Our measure theoretic terminology follows that used in [4].

2. Lebesgue-type decompositions
The map ©6: X » B(M) defined by 6(x) = m. is a continuous linear

transformation with normm(M) . If © is one-to-one, then the measure m
is said to have property o . Since property o is equivalent to the
assertion that (M) = 0 a.e. (m) implies « = O , it is clear that in
the Banach algebra C(f2) where § 1is a compact Hausdorff space, every
nonnegative Borel measure on § which assumes positive values on the
non-empty open sets has property o . In particular, Lebesgue measure on
[a, b1 has property o . Further, the Gelfand transform « - z may be

regarded as a continuous embedding of X into LM, m) . If m has
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property o , then it follows that X 1is semi-simple and the Gelfand
. - ] ©
transform is an isomorphism into L (M, m) .

LEMMA 1. If x and y € X then
' E) = 7 = o~
(7) mxy( ) '[E y(M)dmx JE ac(M)dmy »

(i2) m_ <<m_ and m_ <<m .
xYy x XY Y

Proof. Using Radon-Nikodym derivatives we can write dm = §(M)dm
Y
and dm = £(M)dn . Since mxy(E) =J 2(M)G(M)dn for all E in S,
x E

(1) follows. (Z1) is an immediate consequence of (7).

LEMMA 2.
(i) A, = {z € x: m, << mx} ig a closed ideal containing x ;
(i) P ={z € x:m, j_mx} is a closed ideal;

(i11) Ax n Px

{z € x: m, = 0} ;
(iv) if m has property o, A 0 P = {0} .

Proof. (i) Let y,z €4 . If |mx|(E) = 0 then my(E’) =0 and
mz(E) = 0 . By linearity of 0 , my+z(E’) = 0 . It now follows that
y+z€Ax.Let yGAx and w € X . By part (i) of Lemma 1,

m ~<<m <<m_ so that yw € X . To see that Aac is closed, let

yw Y x

zj + 2 where (zj) is a sequence in Ax . It follows from the

continuity of © that m, (E) +mz(E') for a1l E in S . 1If

|mx|(E) =0, then m(E) =0 sothat z €A, . It is clear that

x €A .
x
(it) Let y, z € P_ . We can find sets A and B 1in S such that

|my|(.4) = |m |(4°) =0 ana |m|(B) = Im |(B°) =0 . Let c=4nB.

Im up1(6) = Im 1(0) + | [(C) = |m [(4) + |m_|(B) = 0 . Also
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|m, | (%) = |m_| (4° v B°) = m,| (4°) + |m_|(B°) = 0 . It now follows that
my+z-|-mx and y +z €P . Let y € P as before and let w € X . By

art (7Z) of Lemma 1, m_ << m_ so that |[m << m . 8ince
P » Tay T Ty Iy | <<,

]my](A) = 0 it follows that [(4) =0 . since |m |(4°) =0,

|m
wy
M l'mx so that wy € P . To see that P_ is closed, let (zj) be a

sequence in Px such that zj > 2 . There exist sets Bj in § such

oo
that lm I(B .} =0 and |m I[B‘?J =0. Let B= N B, . Clearly
zj J x J =1 J

0 for 4g=1,2, ... . From the continuity of 8 ,

IszI (B)

¥

Imsz(B)

Imzi(B) so that . Imz|(B) =0 . But

1A

|m | (B°) = § |m |[Bc.] =0 . It now follows that z € P_ so that P
x je1 o ® U x x

is closed.

(i21) By a standard measure theory result, m, << m and m, l_mx

both hold if and only if m, = 0.

(tv) If m has property o , m, = 0 implies =z = 0 so that this
part is immediate from (ZiZ).

The next few results describe the relationship between the absolute

continuity statement mx << my and the behavior of m on M . 1In the

ensuing discussion, J(x) denotes the compact set 5—1{0} = {M € M: x € M}

and m_=m denotes that m_<<m and m_ << m
x Y x Y ] x

LEMMA 3. The following statements are equivalent:
(<) |mx|(E) =0 ;
(ii) m(E - j(x)) =0 ;

(¢i2) m(E) =m(E n j(x)) .

Proof. The equivalence follows directly from the observation that
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ImxI(E) = J |Z(M)|dn  so that |mx|(E) =0 if and only if (M) = 0 a.e.
E

on E .

LEMMA 4. m << m, if and only if m{G(y) - 4(x)) =0

Proof. Let m(j(y)—j(x)) = (0 and assume lmy!(E) =0 . From part

(i7) of Lemma 3, m(E‘-j(y)) =0 . Since

E - jlz) € (B-g(y)) v (§(y)-d(x)) , we obtain

m(E-g(x)) =m(B-j(y)}) + m(F(y)-g(x)} = 0 so that m(E-j(x))
part (Z) of Lemma 3, Imx|(E‘) =0 . It now follows that m << L
or equivalently lmxl <m, . Since it is

0. From

Conversely, assume mx << my
=0

evident that |my| (5 () , we have |mx| (7(y)} = 0 and consequently

m{i(y)-d(x)) =0 .
PROPOSITION 1. The following are equivalent:

() m_=m ;
x Y

(i) Ax = Ay 3

(111) m(j(x) A j(y)] = 0 , where A represents set symmetric
difference.
Proof. By Lemma L, m, = m, if and only if m(j(xz)-j(y)) = 0 and
m(j(y)—j(x)) = 0 . This is clearly equivalent to (Z2Z). The equivalence
of (7) and (i7) is an immediate consequence of the fact that & € Ax and

€4 .
¥y =4y

COROLLARY 1. If =x is an invertible element of X , then

(z) m

x

1]

m s

(i) A =X ;
x

]

(i) if m has property o , then P_ {o} .

Proof. If x is invertible, then j(x) = § . In particular
jle) = ¢ , so that m(j(x) A j(e)) = 0 . By Proposition 1 and the fact
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m, =m, we obtain m =m . Since Ae = X , (i1) also follows from
Proposition 1. Part (iZi) follows from the last part of Lemma 2.
If y =x) +x, where x; € Ax and x; € Px then we say that y

is decomposable with respect to x . It should be noted that if m has
property o , and if y 1is decomposable with respect to & , then part

(iv) of Lemma 2 guarantees that the decomposition of y 1is unique.
PROPOSITION 2. If m has property o and if there exist elements
w and z in X such that my(E nglz)) = m,(E) and
my(E n j(x)c) = mw(E) for all E in S, then y <is decomposable with
respect to x . Further, the decomposition is y = w + z where w € A,
and z € P
Proof. Let A4 = j{(x) and suppose w and 2z are elements with the
above stated properties. Since mZ(E) = 0 for every measurable subset of

4%, we have |mz|(Ac) =0 . By Lemma 3, ]mx|(A) =0 so that m, J_mx .

1t |m,|(E) = 0 then since f |z(M)|dm = 0 and |Z(M)| > 0 for M in

E
e . c 3
E n 4" , we obtain m(E n A ) =0 . Since my << m , we have
my(E n Ac) = Q0 so that mw(E) =0 and consequently m, << m. o Clearly
my = mw + mz = mw+z . Since m has property & , we have the

decomposition Yy = w + z .

The remaining theorems depend on the following two well-known results
on direct-sum decompositions of Banach algebras. (See [3] pp. 95-96 or

[51.)

Result 1. Let X be a commutative complex Banach algebra with
identity. If I; and I, are non-zero ideals and X = I} ® I, , then M
is disconnected. Further, if e = e) + e, 1is the representation of e ;
then M is the disjoint union of the non-empty closed sets
My = {M : e (M) =1} and My = (M : 2,(M) = 1} .

Result 2. Let X be a commutative complex Banach algebra with
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identity. If M = M; u M, 1is a partition of M into disjoint non-empty
closed sets, there exist non-zero idempotents e and e; such that

My = (M : ey (M) =1}, My={M:2,(M) =1} , end e = e + e, . Further,
X admits the decomposition X =I; ® I, where I; and I, are the

non-zero ideals e)X and esX respectively.

For the duration of this paper, we assume that X is a commutative
complex Banach algebra with identity and that m has property o . Also i

X = A®B will be called a non-trivial decomposition if A and B are

non-zero ideals.

PROPOSITION 3. X adnits a non~trivial decomposition X = A ®P,
for some x in X if and only if M <is disconnected.

Proof. If X has a non-trivial decomposition X = Ax C)Px for some

x in X , then M is disconnected by Result 1. Conversely, assume M

is disconnected and that M = M; u M, is a partition of M into disjoint
non-empty closed sets. Let e; and e, be the idempotents described in
Result 2 and let X = 1) @ I, be the direct sum decomposition described

there. To complete the proof we will show I; = Ae and I, = Pe .
1 1

If z €I, then 2 =e;2 . By part (iZ) of Lemma 1, it follows that

m_ << m so that I, € 4 . Let 2 €4 . We will show m_ =m
2 e e =31 2

e}’ :
By property o , it will follow that =z = e;2 and consequently that

Ae ¢ I, . Since 3 € Ae and since m, vanishes on every measurable
1 1 1

subset of M, , we have mz(E nMy}) =0 for all E in S . Consequently,
if F=EnM and G=EnMy then

fF SGn)dm + jG 3()dm = jE 51(M)3 (M)dm

S, that is m_=m . We will now show I, =P . If 2z € I, , then
2 €12 23]

m (E) for all E in

mZ(E) €13

z = ez so that |mz|(M1) = J- |e,(M)z2(M)|dn = 0 . Clearly
My
lmell(Mz) = 0 so that m, l_mel and consequently I, C Pe1 . Let
z €P . We will show m_=m . By property o , it will follow that
ey 2 €r2

z = ¢33 and consequently that Pel C I, . Bince 3z € Pe1 R

https://doi.org/10.1017/50004972700045627 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700045627

46 Howard Anton

lmell(A) = |mz|(Ac) =0 for some A €S . Nowlet H=EnAa®,
J=EnAnM ,and X=EnAnMy . Straightforward calculations show

that for all E in S, m_ (E) = f &2 (M)dm + f é22(M)dm and
H X

m (E) = | 2Z(M)dn + | &Eja(M)dm + | &,3(M)dn . Since < m
z e J X e12 e
N
< i = =
and ,mezz‘ <m, it follows that mezz(E) mz(E') L{ epz(M)dm , that
is, m, ,=m,

PROPOSITION 4. For a given x in X, X admits a non-trivial
decomposition X = 4. ®P, if and only if there exists an idempotent ¢

other than 0 or e such that e, = mq

Proof. Assume X = Ax ® Px is & non-trivial decomposition and

e = e] + ep is the representation of e . Since x € Ax , it follows
that ejx = X so that mx << me1 . The reverse relation is clear so that
", = me1 . €)1 1is thus the desired idempotent. Conversely, let

My = {M:q(M) =1} and M, = {M:&5(M) =1} . M=M UM isa
partition of M into non-empty disjoint closed sets. Proceeding as in
the proof of Proposition 3 with g and e-q in place of e; and €,

respectively, it follows that X = Aq ® Pq is & non-trivial decomposition.

Since m, = mq , we have Ax = Aq and Px = Pq so that X = A:z: @Px .
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