THE DOUBLE B-DUAL OF AN INNER PRODUCT MODULE OVER A C^{*}-ALGEBRA B

WILLIAM L. PASCHKE

1. Introduction. The principal result of this paper states that if X is a pre-Hilbert B-module over an arbitrary C^{*}-algebra B, then the B-valued inner product on X can be lifted to a B-valued inner product on $X^{\prime \prime}$ (the B-dual of the B-dual X^{\prime} of X). Appropriate identifications allow us to regard X as a submodule of $X^{\prime \prime}$ and the latter in turn as a submodule of X^{\prime}. In this sense, the inner product on $X^{\prime \prime}$ is an extension of that on X. As an example (and application) of this result, we consider the special case in which X is a right ideal of B and give a topological description of $X^{\prime \prime}$ when in addition B is commutative.

We begin by recalling some definitions and facts from [3]. Let B be a C^{*} algebra and X a right B-module. We denote the right action of $b \in B$ on $x \in X$ by $x \cdot b$; it is assumed that X has a vector space structure compatible with that of B in the sense that $\lambda(x \cdot b)=(\lambda x) \cdot b=x \cdot(\lambda b)$ for all $x \in X, b \in B, \lambda \in \mathbf{C}$ (the complex field). A B-valued inner product on X is a conjugate-bilinear map $\langle\cdot, \cdot\rangle: X \times X \rightarrow B$ satisfying:
(i) $\langle x, x\rangle \geqq 0$;
(ii) $\langle x, x\rangle=0$ only if $x=0$;
(iii) $\langle x, y\rangle=\langle y, x\rangle^{*}$;
(iv) $\langle x \cdot b, y\rangle=\langle x, y\rangle b$ for $x, y \in X, b \in B$.

A pre-Hilbert B-module is a right B-module equipped with a B-valued inner product. Any pre-Hilbert B-module X has a natural norm $\|\cdot\|_{X}$ defined by $\|x\|_{X}=\|\langle x, x\rangle\|^{1 / 2}(x \in X)$ with respect to which X is a normed B-module (i.e. the map $(x, b) \rightarrow x \cdot b$ of $X \times B$ into X is jointly continuous) [3, 2.3].

If Y is a normed B-module, we let Y^{\prime} (the B-dual of Y) denote the set of all bounded module maps (i.e. B-linear maps) of Y into $B . Y^{\prime}$ becomes a vector space if we define scalar multiplication on Y^{\prime} by $(\lambda F)(y)=\bar{\lambda} F(y)(\lambda \in \mathbf{C}$, $F \in Y^{\prime}, y \in Y$) and add maps elementwise. We make Y^{\prime} into a right B-module by setting $(F \cdot b)(y)=b^{*} F(y)\left(F \in Y^{\prime}, b \in B, y \in Y\right)$. For $F \in Y^{\prime},\|F\|_{Y^{\prime}}$ will denote the norm of F as a bounded linear map from Y to B.

If X is a pre-Hilbert B-module, then by [3, 2.8] X^{\prime} is precisely the set of (complex) linear maps $\tau: X \rightarrow B$ such that for some real $K \geqq 0, \tau(x)^{*} \tau(x) \leqq$ $K\langle x, x\rangle$ for all $x \in X$. Moreover, $\|\tau\|_{X^{\prime}}$ for such a map τ is the infimum of the square roots of all such constants K. Each $x \in X$ gives rise to a map $\hat{x} \in X^{\prime}$ defined by $\hat{x}(y)=\langle y, x\rangle(y \in X)$. The map $x \rightarrow \hat{x}$ is an isometric module map of X into X^{\prime}. We may thus regard X as a submodule of X^{\prime} by identifying X with \hat{X}.

Received April 25, 1973. This research was partially supported by NSF Grant GP-16292.

In case $B=\mathbf{C}$ (so X is a pre-Hilbert space), X^{\prime} is of course just the Hilbert space completion of X, but in general the relationship between X and X^{\prime} is less simple. For example, let X denote the set of all sequences $\mathbf{b}=\left(b_{1}, b_{2}, \ldots\right)$ of elements of B such that $\sum_{n=1}^{\infty} b_{n}{ }^{*} b_{n}$ converges in norm. X is a right B-module under coordinatewise right multiplication by elements of B. For $\mathbf{a}, \mathbf{b} \in X$, it is easy to see that $\sum_{n=1}^{\infty} b_{n}{ }^{*} a_{n}$ converges in norm ; if we set

$$
\langle\mathbf{a}, \mathbf{b}\rangle=\sum_{n=1}^{\infty} b_{n}^{*} a_{n},
$$

then $\langle\cdot, \cdot\rangle$ is a B-valued inner product on X. One checks that X is a Hilbert B-module, i.e. is complete with respect to $\|\cdot \cdot\|_{X}$. It also turns out, however, that X^{\prime} may be identified with the right B-module of all sequences \mathbf{b} such that the sequence $\left\{\sum_{k=1}^{n} b_{k}{ }^{*} b_{k}\right\}_{n=1}^{\infty}$ is norm-bounded, normed by setting $\|\mathbf{b}\|_{X^{\prime}}=$ $\sup \left\{\left\|\sum_{k=1}^{n} b_{k}{ }^{*} b_{k}\right\|^{1 / 2}: n=1,2, \ldots\right\}$. In general, then, X^{\prime} may be quite a bit larger than X even when X is complete.

It was shown in [3] that if B is a W^{*}-algebra, then the B-valued inner product on any pre-Hilbert B-module X lifts to a B-valued inner product on X^{\prime} satisfying $\langle\hat{x}, \tau\rangle=\tau(x)$ for all $x \in X, \tau \in X^{\prime}$. The proposition below shows that this extension cannot be carried out for even the simplest sort of preHilbert B-module unless B is at least an $A W^{*}$-algebra. (Notice that any right ideal J of B is a pre-Hilbert B-module with B-valued inner product given by $\langle x, y\rangle=y^{*} x(x, y \in J)$.)
1.1 Proposition. Let B be a C^{*}-algebra with the property that for every right ideal J of B, there is a B-valued inner product $\langle\cdot, \cdot\rangle$ on J^{\prime} satisfying $\langle\hat{x}, \tau\rangle=\tau(x)$ for all $x \in J, \tau \in J^{\prime}$. Then B is an $A W^{*}$-algebra.

Proof. Let J be a right ideal of B. It will suffice to show that $L(J)=B p$ for some projection $p \in B$, where $L(J)$ is the left annihilator of J. For $a \in B$, define $\tilde{a} \in J^{\prime}$ by $\tilde{a}(x)=a^{*} x(x \in J)$ and let $\tau_{i} \in J^{\prime}$ denote the inclusion map of J into B. Notice $\tau_{i} \cdot a=\tilde{a}$ for $a \in B$ and that $\tilde{x}=\hat{x}$ for $x \in J$. Set $q=\left\langle\tau_{i}, \tau_{i}\right\rangle$. Then $q=q^{*}$ and, for $x \in J, q x=\tilde{q}(x)=\left\langle\tau_{i} \cdot x, \tau_{i}\right\rangle=\left\langle\tilde{x}, \tau_{i}\right\rangle=\left\langle\hat{x}, \tau_{i}\right\rangle=$ $\tau_{i}(x)=x$. (In the case $J=B$, this reasoning shows that B necessarily has 1.) We thus have $\tilde{q}=\tau_{i}$, so $q^{2}=\left\langle\tau_{i} \cdot q, \tau_{i}\right\rangle=\left\langle\tilde{q}, \tau_{i}\right\rangle=\left\langle\tau_{i}, \tau_{i}\right\rangle=q$, i.e., q is a projection. Set $p=1-q$, so p is a projection in $L(J)$. For $a \in L(J)^{*}$, we have $\tilde{a}=0$, so $q a=\left\langle\tau_{i} \cdot a, \tau_{i}\right\rangle=\left\langle\tilde{a}, \tau_{i}\right\rangle=0$, which shows that $a p=a$ for all $a \in L(J)$. Hence $L(J)=B p$, as required.

For an arbitrary C^{*}-algebra B and an arbitrary pre-Hilbert B-module X, then, we cannot expect to be able to extend the inner product on X to an inner product on X^{\prime}. The next best thing would be to lift the inner product to the right B-module $X^{\prime \prime}$ (the B-dual of the normed B-module X^{\prime}). We will show in the next section that this can be done in general.

Before embarking on the construction of the lifted inner product, we establish some more notation. For $x \in X$, define $\dot{x} \in X^{\prime \prime}$ by $\dot{x}(\tau)=\tau(x)^{*}\left(\tau \in X^{\prime}\right)$.

The map $x \rightarrow \dot{x}$ is an isometric module map of X into $X^{\prime \prime}$. For $\Gamma \in X^{\prime \prime}$, define $\tilde{\Gamma} \in X^{\prime}$ by $\tilde{\Gamma}(x)=\Gamma(\hat{x})(x \in X)$. If we identify X with $\hat{X}, \tilde{\Gamma}$ is just the restriction of Γ to X. Notice that $(\dot{x})^{\sim}=\hat{x}$ for all $x \in X$. It is clear that the map $\Gamma \rightarrow \tilde{\Gamma}$ is a module map of $X^{\prime \prime}$ into X^{\prime} and that $\|\tilde{\Gamma}\|_{X^{\prime}} \leqq\|\Gamma\|_{X^{\prime}}$, for $\Gamma \in X^{\prime \prime}$. We will show among other things that this map is in fact an isometry. After making all permissible identifications, we can then array the modules X, X^{\prime}, and $X^{\prime \prime}$ as $X \subseteq X^{\prime \prime} \subseteq X^{\prime}$.
2. The inner product on $X^{\prime \prime}$. Throughout this section, B will denote an arbitrary C^{*}-algebra (not assumed to possess a unit), and X an arbitrary preHilbert B-module. Our candidate for a B-valued inner product on $X^{\prime \prime}$ is a fairly obvious one; we define $\langle\cdot, \cdot\rangle: X^{\prime \prime} \times X^{\prime \prime} \rightarrow B$ by $\langle\Gamma, \Phi\rangle=\Phi(\tilde{\Gamma})\left(\Gamma, \Phi \in X^{\prime \prime}\right)$. This map is conjugate-bilinear and satisfies $\langle\Gamma \cdot b, \Phi\rangle=\langle\Gamma, \Phi\rangle b$ for Γ, $\Phi \in X^{\prime \prime}, b \in B$. For $x, y \in X$, we have $\langle\dot{x}, \dot{y}\rangle=\dot{y}\left((\dot{x})^{\sim}\right)=\dot{y}(\hat{x})=\hat{x}(y)^{*}=$ $\langle x, y\rangle$, so $\langle\cdot, \cdot\rangle$ is an extension of the original inner product on X in the appropriate sense. Our problem is to show that $\langle\Gamma, \Gamma\rangle \geqq 0$ for all $\Gamma \in X^{\prime \prime}$ and that $\langle\Gamma, \Gamma\rangle=0$ only if $\Gamma=0$. (It will follow easily from this that $\langle\Gamma, \Phi\rangle^{*}=\langle\Phi, \Gamma\rangle$ for all $\Gamma, \Phi \in X^{\prime \prime}$.)

Consider the right B-module $B \times X$. This module possesses a natural B valued inner product $\{\cdot, \cdot\}$ defined by $\{(a, x),(b, y)\}=b^{*} a+\langle x, y\rangle$ $(a, b \in B, x, y \in X)$. It will be useful for us to define some other inner products on $B \times X$ in the following manner. Take $\tau \in X^{\prime}(\tau \neq 0)$ and $t>\|\tau\|_{X^{\prime}}$. For $(a, x),(b, y) \in B \times X$, set

$$
[(a, x),(b, y)]_{\tau, t}=t^{2} b^{*} a+b^{*} \tau(x)+\tau(y)^{*} a+\langle x, y\rangle .
$$

The map $[\cdot, \cdot]_{\tau, t}:(B \times X) \times(B \times X) \rightarrow B$ is clearly conjugate-bilinear and satisfies (iii) and (iv) of the definition of a B-valued inner product. To check that (i) and (ii) hold also, take $(a, x) \in B \times X$ and observe that

$$
\begin{aligned}
{[(a, x),(a, x)]_{\tau, t} } & =t^{2} a^{*} a+a^{*} \tau(x)+\tau(x)^{*} a+\langle x, x\rangle \\
& \geqq t^{2} a^{*} a+a^{*} \tau(x)+\tau(x)^{*} a+\|\tau\|_{x^{\prime}}{ }^{-2} \tau(x)^{*} \tau(x) \\
& \geqq t^{2} a^{*} a+a^{*} \tau(x)+\tau(x)^{*} a+t^{-2} \tau(x)^{*} \tau(x) \\
& =\left(t a+t^{-1} \tau(x)\right)^{*}\left(t a+t^{-1} \tau(x)\right) \geqq 0
\end{aligned}
$$

where we have used the fact that $\tau(x)^{*} \tau(x) \leqq\|\tau\|_{X^{\prime}}{ }^{2}\langle x, x\rangle$ to obtain the first inequality. Hence, (i) holds. If $[(a, x),(a, x)]_{\tau, t}=0$, then we have equality at each step above and in particular $\left(\|\tau\|_{X^{\prime}}{ }^{-2}-t^{-2}\right) \tau(x)^{*} \tau(x)=0$, so $\tau(x)=0$, so $t^{2} a^{*} a+\langle x, x\rangle=0$, so $a=0$ and $x=0$, which establishes (ii). The map $[\cdot, \cdot]_{\tau, t}$ is thus a B-valued inner product on X.

Let $\|\cdot\|_{\tau, t}$ be the norm on $B \times X$ gotten from this inner product. Observe that $\|x\|_{X}=\|(0, x)\|_{\tau, t}$ for all $x \in X$. For $x, y \in X, b \in B$, we have
$\|(\tau \cdot b+\hat{y})(x)\|=\left\|b^{*} \tau(x)+\langle x, y\rangle\right\|$
$=\left\|[(0, x),(b, y)]_{\tau, t}\right\|$
$\leqq\|(0, x)\|_{\tau, t}\|(b, y)\|_{\tau, t}$
$=\|x\|_{x}\|(b, y)\|_{\tau, t}$,
the inequality holding by virtue of $[3,2.3]$. We conclude that $\|\tau \cdot b+\hat{y}\|_{X^{\prime}} \leqq$ $\|(b, y)\|_{\tau, t}$ for all $y \in X, b \in B$.

This construction is the main ingredient in the proof of our next proposition.
2.1. Proposition. Let Y be a submodule of X^{\prime} containing \hat{X}. For any $F \in Y^{\prime}$, we have $\|F\|_{Y^{\prime}}=\left\|\left.F\right|_{\hat{X}}\right\|$.

Proof. We may assume without loss of generality that $\|F\|_{Y^{\prime}}=1$. Define $\tau \in X^{\prime}$ by $\tau(x)=F(\hat{x})(x \in X)$. We have $\|\tau\|_{X^{\prime}} \leqq 1$ and must establish the reverse inequality.

Take $\psi \in Y$ with $\|\psi\|_{x^{\prime}}<1$ and set $c=\Gamma(\psi)$. For brevity, let $[\cdot, \cdot]$ denote the B-valued inner product $[\cdot, \cdot]_{\psi, 1}$ on $B \times X$ defined above and let $\|\cdot\|$ be the corresponding norm on $B \times X$. For $a \in B, x \in X$, we have

$$
\|c a+\tau(x)\|=\|F(\psi \cdot a+\hat{x})\| \leqq\|\psi \cdot a+\hat{x}\|_{x^{\prime}} \leqq\|(a, x)\|,
$$

so the map $(a, x) \rightarrow c a+\tau(x)$ of $B \times X$ into B is a bounded module map of norm $\leqq 1$ with respect to the inner product [., •]. By [3, 2.8], we have $(c a+\tau(x))^{*}(c a+\tau(x)) \leqq[(a, x),(a, x)]$ for all $a \in B, x \in X$. That is,

$$
a^{*} c^{*} c a+a^{*} c^{*} \tau(x)+\tau(x)^{*} c a+\tau(x)^{*} \tau(x) \leqq a^{*} a+a^{*} \psi(x)+\psi(x)^{*} a+\langle x, x\rangle .
$$

Setting $a=-2 \psi(x)$ and collecting terms, we obtain

$$
4 \psi(x)^{*} c^{*} c \psi(x)+\tau(x)^{*} \tau(x) \leqq\langle x, x\rangle+2\left(\psi(x)^{*} c^{*} \tau(x)+\tau(x)^{*} c \psi(x)\right)
$$

for $x \in X$. But

$$
\psi(x)^{*} c^{*} \tau(x)+\tau(x)^{*} c \psi(x) \leqq \psi(x)^{*} c^{*} c \psi(x)+\tau(x)^{*} \tau(x)
$$

so

$$
\begin{aligned}
2 \psi(x)^{*} c^{*} c \psi(x) & \leqq\langle x, x\rangle+\tau(x)^{*} \tau(x) \\
& \leqq\left(1+\|\tau\|_{x^{\prime}}\right)\langle x, x\rangle
\end{aligned}
$$

for all $x \in X$. Hence $\left\|\psi \cdot c^{*}\right\| \|_{X^{\prime}} \leqq 2^{-1 / 2}\left(1+\|\tau\|_{X^{\prime}}\right)^{1 / 2}$ and consequently

$$
\left\|F\left(\psi \cdot c^{*}\right)\right\|=\left\|c c^{*}\right\|=\|c\|^{2} \leqq 2^{-1 / 2}\left(1+\|\tau\|_{x^{\prime}}\right)^{1 / 2}
$$

This holds for any $\psi \in Y$ with $\|\psi\|_{X^{\prime}}<1$; since $\|F\|_{Y^{\prime}}=1$, we must therefore have $1 \leqq 2^{-1 / 2}\left(1+\|\tau\|_{X^{\prime}}\right)^{1 / 2}$, which forces $\|\tau\|_{X^{\prime}} \geqq 1$. This completes the proof.

Notice that if we take $Y=X^{\prime}$, then 2.1 shows in particular that the map $\Gamma \rightarrow \tilde{\Gamma}$ is an isometry of $X^{\prime \prime}$ into X^{\prime}.

We will need the following lemma to show that $\langle\Gamma, \Gamma\rangle \geqq 0$ for $\Gamma \in X^{\prime \prime}$.
2.2. Lemma. Suppose $c \in B$ is such that for every $a \in B$ with $a \geqq 0$, there is a state f of B such that $f(a c a)=\|a c a\|$. Then $c \geqq 0$.

Proof. Write $c=h+i k$ with $h=h^{*}$ and $k=k^{*}$. We first claim that $\|a c a\|=\|a h a\|$ for every $a \in B$ with $a \geqq 0$. To see this, let f be a state of B
such that $f(a c a)=\|a c a\|$. Since $a h a$ and $a k a$ are self-adjoint, we must have $f(a k a)=0$, so $\|a c a\|=f(a h a) \leqq\|a h a\|$. Now let g be a state of B such that $|g(a h a)|=\|a h a\|$. We have

$$
\begin{aligned}
|g(a c a)|^{2} & =|g(a h a)+i g(a k a)|^{2} \\
& =g(a h a)^{2}+g(a k a)^{2} \\
& \leqq\|a c a\|^{2} \leqq\|a h a\|^{2}=g(a h a)^{2} .
\end{aligned}
$$

This forces $g(a k a)=0$ and $\|a c a\|=\|a h a\|$.
Now write $k=k^{+}-k^{-}$, where $k^{+}, k^{-} \geqq 0$ and $k^{+} k^{-}=k^{-} k^{+}=0$. We claim that $k^{+}=0$. For this, let g be a state of B such that $\left|g\left(k^{+} h k^{+}\right)\right|=\left\|k^{+} h k^{+}\right\|$. As in the reasoning above, we must have $g\left(k^{+} k k^{+}\right)=g\left(\left(k^{+}\right)^{3}\right)=0$, so k^{+}belongs to the left kernel of g, so $g\left(k^{+} h k^{+}\right)=0$, so $k^{+} h k^{+}=0$. But we know that $\left\|k^{+} h k^{+}\right\|=\left\|k^{+} c k^{+}\right\|$, so $0=k^{+} c k^{+}=k^{+} h k^{+}+i k^{+} k k^{+}=i\left(k^{+}\right)^{3}$, so $k^{+}=0$.
The hypothesis of the lemma is satisfied by $c^{*}=h+i k^{-}$as well as by c, so in like manner we have $k^{-}=0$, so $k=0$, i.e., $c=c^{*}$.

The lemma now follows by application of the functional calculus. If $\operatorname{sp}(c) \cap(-\infty, 0)$ were non-empty, we could find a non-zero, non-negative continuous function F on $\operatorname{sp}(c)$ such that $F([0,+\infty) \cap \operatorname{sp}(c))=\{0\}$. Setting $a=F(c)$, we would then have $a \geqq 0$ and $a c a \leqq 0$, a contradiction.
2.3 Proposition. $\langle\Gamma, \Gamma\rangle \geqq 0$ and $\|\langle\Gamma, \Gamma\rangle\|=\|\Gamma\|_{X^{\prime}},{ }^{2}$ for all $\Gamma \in X^{\prime \prime}$.

Proof. Take $\Gamma \in X^{\prime \prime}(\Gamma \neq 0)$ and set $c=\Gamma(\tilde{\Gamma}), D=\|\Gamma\|_{X^{\prime \prime}} \quad\left(=\|\tilde{\Gamma}\|_{X^{\prime}}\right.$ by 2.1). We first show that $D^{2} \in \operatorname{sp}(c)$. For $t>D$, consider the B-valued inner product $[\cdot, \cdot]_{\tilde{\Gamma}, t}$ on $B \times X$. The map $(a, x) \rightarrow \Gamma(\tilde{\Gamma} \cdot a+\hat{x})=c a+\tilde{\Gamma}(x)$ is a bounded module map of $B \times X$ into B of norm $\leqq D$ with respect to this inner product (since $\|\tilde{\Gamma} \cdot a+\hat{x}\|_{X^{\prime}} \leqq\|(a, x)\|_{\tilde{\Gamma}, t}$ for $\left.(a, x) \in B \times X\right)$. Hence

$$
(c a+\tilde{\Gamma}(x))^{*}(c a+\tilde{\Gamma}(x)) \leqq D^{2}[(a, x),(a, x)]_{\tilde{\Gamma}, t}
$$

for $a \in B, x \in X$ by [3,2.8]. This holds for every $t<D$, so we have

$$
(c a+\tilde{\Gamma}(x))^{*}(c a+\tilde{\Gamma}(x)) \leqq D^{2}\left(D^{2} a^{*} a+\tilde{\Gamma}(x)^{*} a+a^{*} \tilde{\Gamma}(x)+\langle x, x\rangle\right)
$$

for $a \in B, x \in X$. Setting $a=-D^{-2} \widetilde{\Gamma}(x)$, we obtain

$$
\tilde{\Gamma}(x)^{*}\left(D^{-2} c-1\right)^{*}\left(D^{-2} c-1\right) \tilde{\Gamma}(x) \leqq D^{2}\left(-D^{-2} \tilde{\Gamma}(x)^{*} \Gamma(x)+\langle x, x\rangle\right)
$$

and hence

$$
\tilde{\Gamma}(x)^{*}\left(\left(D^{-2} c-1\right)^{*}\left(D^{-2} c-1\right)+1\right) \tilde{\Gamma}(x) \leqq D^{2}\langle x, x\rangle, \quad x \in X
$$

Now if $D^{2} \notin \operatorname{sp}(c)$, we can find a $\delta>0$ such that

$$
\tilde{\Gamma}(x)^{*}\left(\left(D^{-2} c-1\right)^{*}\left(D^{-2} c-1\right)\right) \tilde{\Gamma}(x) \geqq \delta \tilde{\Gamma}(x)^{*} \Gamma(x), \quad x \in X
$$

We would then have

$$
\tilde{\Gamma}(x)^{*} \tilde{\Gamma}(x) \leqq D^{2}(1+\delta)^{-1}\langle x, x\rangle, \quad x \in X
$$

forcing

$$
D^{2}=\|\tilde{\Gamma}\|_{X^{\prime}}{ }^{2} \leqq D^{2}(1+\delta)^{-1},
$$

a contradiction. Hence $D^{2} \in \operatorname{sp}(c)$.
But $\|c\|=\|\Gamma(\tilde{\Gamma})\| \leqq\|\Gamma\|_{X^{\prime}}\|\tilde{\Gamma}\|_{X^{\prime}}=D^{2}$, so $\|c\|=D^{2}$, i.e., $\|\langle\Gamma, \Gamma\rangle\|=\|\Gamma\|_{X^{\prime}}{ }^{2}$
and $\|\langle\Gamma, \Gamma\rangle\| \in \operatorname{sp}(\langle\Gamma, \Gamma\rangle)$. For $a \in B, a \geqq 0$, we have

$$
\|a c a\|=\left\|a^{*} \Gamma(\tilde{\Gamma} \cdot a)\right\|=\|\langle\Gamma \cdot a, \Gamma \cdot a\rangle\| \in \operatorname{sp}(\langle\Gamma \cdot a, \Gamma \cdot a\rangle)=\operatorname{sp}(a c a),
$$

so $c \geqq 0$ by 2.2. This completes the proof.
We have shown in 2.3 that the map $\langle\cdot, \cdot\rangle$ satisfies (i) and (ii) of the definition of a B-valued inner product. Property (iii) now follows routinely from the fact that $\langle\Gamma+\Phi, \Gamma+\Phi\rangle \geqq 0$ and $\langle\Gamma+i \Phi, \Gamma+i \Phi\rangle \geqq 0$ for all $\Gamma, \Phi \in X^{\prime \prime} . X^{\prime \prime}$ is a Hilbert B-module with respect to the inner product we have introduced since (by 2.3) the norm on $X^{\prime \prime}$ gotten from this inner product coincides with the operator norm $\|\cdot\|_{X^{\prime \prime}}$. For $F \in\left(X^{\prime \prime}\right)^{\prime}$, define $\tau_{F} \in X^{\prime}$ by $\tau_{F}(x)=F(\dot{x})(x \in X)$ and for $\tau \in X^{\prime}$ define $F_{\tau} \in\left(X^{\prime \prime}\right)^{\prime}$ by $F_{\tau}(\Gamma)=\Gamma(\tau)^{*}\left(\Gamma \in X^{\prime \prime}\right)$. The maps $F \rightarrow \tau_{F}$ and $\tau \rightarrow F_{\tau}$ are module maps; using 2.1, one checks that they are isometries and inverses of each other. We thus have $\left(X^{\prime \prime}\right)^{\prime}=X^{\prime}$ and $\left(X^{\prime \prime}\right)^{\prime \prime}=X^{\prime \prime}$. We summarize the results of this section in the theorem below.
2.4. Theorem. The map $\langle\cdot, \cdot\rangle: X^{\prime \prime} \times X^{\prime \prime} \rightarrow B$ defined by $\langle\Gamma, \Phi\rangle=\Phi(\tilde{\Gamma})$ $\left(\Gamma, \Phi \in X^{\prime \prime}\right)$ is a B-valued inner product on $X^{\prime \prime}$. The norm obtained from this inner product coincides with the operator norm on $X^{\prime \prime}$. The map $\Gamma \rightarrow \Gamma$ is an isometry of $X^{\prime \prime}$ into X^{\prime}.
3. Right ideals of B. In this section we investigate the double B-dual of a right ideal J of a C^{*}-algebra B, where J is considered as a pre-Hilbert B-module with B-valued inner product defined by $\langle x, y\rangle=y^{*} x(x, y \in J)$.

Let $\tau_{i} \in J^{\prime}$ denote the inclusion map of J into B and set

$$
\widetilde{J}=\left\{\Gamma\left(\tau_{i}\right)^{*}: \Gamma \in J^{\prime \prime}\right\} .
$$

\widetilde{J} is clearly a linear subspace of B and in fact a right ideal, since for $b \in B, \Gamma \in J^{\prime \prime}$, we have $\Gamma\left(\tau_{i}\right)^{*} b=\left(b^{*} \Gamma\left(\tau_{i}\right)\right)^{*}=\left((\Gamma \cdot b)\left(\tau_{i}\right)\right)^{*}$. For $x \in J$, we have $\dot{x}\left(\tau_{i}\right)^{*}=x$, so $J \subseteq \widetilde{J}$.
3.1. Proposition. \widetilde{J} is closed. $J^{\prime \prime}$ and \widetilde{J} are isomorphic as Hilbert B-modules via the map $\Gamma \rightarrow \Gamma\left(\tau_{i}\right)^{*}$.

Proof. We have observed that the map in question is a module map; it is contractive since $\left\|\tau_{i}\right\|_{J^{\prime}}=1$. Observe that for $x, y \in J$, we have $\left(\tau_{i} \cdot x\right)(y)=$ $x^{*} \tau_{i}(y)=x^{*} y=\hat{x}(y)$, so $\tau_{i} \cdot x=\hat{x}(x \in J)$. Hence

$$
\begin{aligned}
\|\Gamma\|_{J^{\prime}}=\|\tilde{\Gamma}\|_{J^{\prime}} & =\sup \{\|\tilde{\Gamma}(x)\|: x \in J,\|x\| \leqq 1\} \\
& =\sup \left\{\left\|\Gamma\left(\tau_{i} \cdot x\right)\right\|: x \in J,\|x\| \leqq 1\right\} \\
& =\sup \left\{\left\|\Gamma\left(\tau_{i}\right) x\right\|: x \in J,\|x\| \leqq 1\right\} \\
& \leqq\left\|\Gamma\left(\tau_{i}\right)\right\|=\left\|\Gamma\left(\tau_{i}\right)^{*}\right\|
\end{aligned}
$$

for all $\Gamma \in J^{\prime \prime}$. The map $\Gamma \rightarrow \Gamma\left(\tau_{i}\right)^{*}$ is thus an isometry of $J^{\prime \prime}$ onto \widetilde{J}. By $[3,2.8]$, applied to this map and its inverse, we have $\langle\Gamma, \Gamma\rangle=\left\langle\Gamma\left(\tau_{i}\right)^{*}, \Gamma\left(\tau_{i}\right)^{*}\right\rangle=$ $\Gamma\left(\tau_{i}\right) \Gamma\left(\tau_{i}\right)^{*}, \Gamma \in J^{\prime \prime}$. It now follows (just as for an isometry between Hilbert spaces) that $\langle\Gamma, \Phi\rangle=\Phi\left(\tau_{i}\right) \Gamma\left(\tau_{i}\right)^{*}$, for $\Gamma, \Phi \in J^{\prime \prime}$. \widetilde{J} is closed because $J^{\prime \prime}$ is complete with respect to $\|\cdot\|_{J^{\prime \prime}}$.

If X is a pre-Hilbert B-module, every map in X^{\prime} lifts to a unique map in $\left(X^{\prime \prime}\right)^{\prime}$, so in particular every map in J^{\prime} extends uniquely to a map in \widetilde{J}^{\prime}. Suppose K is a right ideal of B containing J such that each $\tau \in J^{\prime}$ extends uniquely to a map $\bar{\tau} \in K^{\prime}$. Given $a \in K$, define $\Gamma \in J^{\prime \prime}$ by $\Gamma(\tau)=\bar{\tau}(a)^{*}$. By uniqueness, $\bar{\tau}_{i}$ is the inclusion map of K into B, so for this Γ we have $\Gamma\left(\tau_{i}\right)^{*}=\bar{\tau}_{i}(a)=a$, and we conclude that $K \subseteq \widetilde{J}$. We may thus describe \widetilde{J} as the unique largest right ideal K of B such that every bounded module map of J into B extends uniquely to a bounded module map of K into B.

Since $\left(X^{\prime \prime}\right)^{\prime \prime}=X^{\prime \prime}$ for any pre-Hilbert B-module X, we have $(\widetilde{J})^{\sim}=\widetilde{J}$ for any right ideal J of B. If J and K are two right ideals of B with $J \subseteq K$, then for any $\Gamma \in J^{\prime \prime}$, the map $\psi \rightarrow \Gamma\left(\left.\psi\right|_{J}\right)$ of K^{\prime} into B belongs to $K^{\prime \prime}$, whence it follows that $\widetilde{J} \subseteq \widetilde{K}$. \widetilde{J} might thus be thought of as a "closure" of J, albeit in a rather restricted sense. In fact, if B is a W^{*}-algebra, \widetilde{J} is precisely the ultraweak closure of J. (This follows from the fact that every map in J^{\prime} can be realized as right multiplication by a unique element b^{*}, where b belongs to the ultraweak closure of J-which fact in turn is easily proved by making use of a bounded left approximate unit for J.)

We will shortly examine the topological relationship between J and \widetilde{J} in the commutative case. When B is not assumed to be commutative, we can at least obtain some rudimentary information about the relationship between the open projections in $B^{* *}$ corresponding to J and \widetilde{J}. (See [1] for a discussion of open and closed projections in the second dual of a C^{*}-algebra. For a projection $p \in B^{* *}, \bar{p}$ denotes the smallest closed projection in $B^{* *}$ majorizing p.)

Let p be an open projection in $B^{* *}$ and set $J=p B^{* *} \cap B$ (so J is the unique norm-closed right ideal of B whose $w^{* *}$-closure in $B^{* *}$ is $p B^{* *}$). Let \tilde{p} be the (open) projection in $B^{* *}$ which generates the $w^{* *}$-closure of \widetilde{J}.

3.2. Proposition. $p \leqq \tilde{p} \leqq \bar{p}$ and $\|p a\|=\|\tilde{p} a\|$ for all $a \in B$.

Proof. We have $p \leqq \tilde{p}$ because $J \subseteq \widetilde{J}$. The projection $1-\bar{p}$ is open, so there is a net $\left\{a_{\alpha}\right\}$ consisting of positive elements of B majorized by $1-\bar{p}$ and converging $w^{* *}$ to $1-\bar{p}$. We have $\bar{p} a_{\alpha}=a_{\alpha} \bar{p}=0$ for all α and $\bar{p} x=x, x \in J$. As before, we let $\tau_{i} \in J^{\prime}$ denote the inclusion map of J into B. We have $\left(\tau_{i} \cdot a_{\alpha}\right)(x)=a_{\alpha} \tau_{i}(x)=a_{\alpha} x=a_{\alpha} \bar{p} x=0$ for all $x \in J, \alpha$, so $\tau_{i} \cdot a_{\alpha}=0$ for all α. Thus $\Gamma\left(\tau_{i}\right) a_{\alpha}=0$ and hence $\Gamma\left(\tau_{i}\right)(1-\bar{p})=0$, for $\Gamma \in J^{\prime \prime}$. This shows that $\tilde{J} \subseteq \bar{p} B^{* *}$, so $\tilde{p} \leqq \bar{p}$.

For the second part of the proposition, let $\left\{b_{\alpha}\right\}$ be a net of positive elements of B majorized by \tilde{p} (and hence belonging to \widetilde{J}) and converging $w^{* *}$ to \tilde{p}. For each b_{α} let $\Gamma_{\alpha} \in J^{\prime \prime}$ be such that $\Gamma_{\alpha}\left(\tau_{i}\right)=b_{\alpha}$. Notice that $\left\|\Gamma_{\alpha}\right\|_{J^{\prime \prime}}=\left\|b_{\alpha}\right\|$.

Take $a \in B$. For each α we have

$$
\begin{aligned}
\left\|b_{\alpha} a\right\| & =\left\|\Gamma_{\alpha}\left(\tau_{i} \cdot a\right)\right\| \leqq\left\|b_{\alpha}\right\|\left\|\tau_{i} \cdot a\right\|_{J^{\prime}} \\
& \leqq\left\|\tau_{i} \cdot a\right\|_{J^{\prime}}=\sup \left\{\left\|a^{*} x\right\|: x \in J,\|x\| \leqq 1\right\} \\
& =\sup \left\{\left\|a^{*} p x\right\|: x \in J,\|x\| \leqq 1\right\} \\
& \leqq\left\|a^{*} p\right\|=\|p a\| .
\end{aligned}
$$

Hence $\|\tilde{p} a\| \leqq\|p a\|$. Since $p \leqq \tilde{p}$, the reverse inequality holds also and we have $\|\tilde{p} a\|=\|p a\|$.

Let Ω be a locally compact space. We denote by $C_{0}(\Omega)$ the algebra of all complex-valued continuous functions on Ω which vanish at infinity. For a subset S of $\Omega, C(S)$ will denote the algebra of all bounded complex-valued continuous functions on S, and we will write $k(S)$ for the ideal of $C_{0}(\Omega)$ consisting of those functions in $C_{0}(\Omega)$ which vanish identically on S. Given an open set W in Ω, it is not hard to see that there is a unique largest open set \tilde{W} containing W such that every function in $C(W)$ extends uniquely to a function in $C(\widetilde{W})$. (Indeed, our proof of 3.4 will show this in a roundabout fashion.) Clearly $\tilde{W} \subseteq \bar{W}$. If Ω is a metric space, it can be shown without too much difficulty that $\tilde{W}=W$ for every open subset W of Ω. In general, though, it can happen that W is a proper subset of \widetilde{W}. For instance, if Ω is a Stonian space and W is a dense open subset of Ω, it follows from $[2,4.2]$ that $\tilde{W}=\Omega$.

Let $B=C_{0}(\Omega)$. Let E be a closed subset of Ω and let $J=k(E), U=\Omega \backslash E$. We will show in 3.4 that $\widetilde{J}=k(\Omega \backslash \tilde{U})$ but before we can do that we must describe J^{\prime} in this setting. Let Y be the space of all bounded complex-valued functions on Ω which vanish identically on E and whose restrictions to U are continuous on U, normed with the uniform norm. Notice that Y is naturally a B-module (under pointwise multiplication) and that the product of any function in Y with any function in J belongs to J. For $f \in Y$, define $\tau_{f} \in J^{\prime}$ by $\tau_{f}(x)=\bar{f} x(x \in J)$.
3.3. Proposition. Y and J^{\prime} are isometrically isomorphic as normed B-modules via the map $f \rightarrow \tau_{f}$.

Proof. It is clear that the map in question is an isometric module map of Y into J^{\prime}. Given $\tau \in J^{\prime}$, we must show that $\tau=\tau_{f}$ for some $f \in Y$. For simplicity, we may assume that $\|\tau\|_{J^{\prime}} \leqq 1$. We then have $\overline{\tau(x)} \tau(x) \leqq \bar{x} x(x \in J)$, whence $|\tau(x)(t)| \leqq|x(t)|$ for $x \in J, t \in \Omega$. For each $t \in U$, select $x_{t} \in J$ such that $x_{t}(t)=1$. Define $g: U \rightarrow \mathbf{C}$ by $g(t)=\tau\left(x_{t}\right)(t)$. Notice that $|g(t)| \leqq 1$ for all $t \in U$. For any $y \in J, t \in U$, we have $\left(y x_{t}-y\right)(t)=0$, so $\tau\left(y x_{t}-y\right)(t)=0$. Hence

$$
\tau(y)(t)=\tau\left(y x_{t}\right)(t)=\tau\left(x_{t}\right)(t) y(t)=g(t) y(t) \quad, \quad y \in J, t \in U
$$

Now since τ maps J into $B, g y$ must be continuous on U for every $y \in J$. It follows that g is continuous on U. Let f be that function in Y whose restriction to U is \vec{g}. Then $\tau=\tau_{f}$ and the proof is complete.

We will thus identify $J^{\prime \prime}$ with the space of all bounded B-module maps of Y into B. Let $p \in Y$ be the characteristic function of U (so τ_{p} is the inclusion map of J into B). We then have $\widetilde{J}=\left\{\Gamma(p): \Gamma \in Y^{\prime}\right\}$.

3.4. Proposition. $\widetilde{J}=k(\Omega \backslash \tilde{U})$.

Proof. \widetilde{J} is a closed ideal of B, so $\widetilde{J}=k(F)$, where F is the intersection of the zero sets of all the functions $\Gamma(p)\left(\Gamma \in Y^{\prime}\right)$. Notice that $F \subseteq E$, since $J \subseteq \tilde{J}$. Set $V=\Omega \backslash F$. It follows from 3.2 (or by a simple direct argument) that $V \subseteq \bar{U}$. We must show that $V=\tilde{U}$, i.e. that every function in $C(U)$ extends uniquely to a function in $C(V)$, and that if W is an open set containing U such that every function in $C(U)$ extends uniquely to a function in $C(W)$, then $W \subseteq V$.

We begin by observing that $\Gamma(f)(t)=\Gamma(p)(t) f(t)$ for all, $\Gamma \in Y^{\prime}, f \in Y$, $t \in U$. Indeed, take $x \in J$ such that $x(t)=1$ and notice that $f x \in B$. Since also $f x=p f x$, we have $\Gamma(f)(t)=\Gamma(f)(t) x(t)=\Gamma(f x)(t)=\Gamma(p(f x))(t)=\Gamma(p)(t)(f x)(t)$ $=\Gamma(p)(t) f(t)$.

Now consider $\varphi \in C(U)$; we show that φ can be extended to a bounded continuous function on V. (The extension will necessarily be unique, since $V \subseteq \bar{U}$.) Let f be the function in Y whose restriction to U is φ. Let W be a relatively compact open set whose closure is contained in V. We can find a $\Gamma \in Y^{\prime}$ such that $\Gamma(p)(W)=\{1\}$ and $\|\Gamma(p)\|\left(=\|\Gamma\|_{Y^{\prime}}\right.$ by 3.1$)=1$. Define $\tilde{\varphi}$ on W by $\tilde{\varphi}(t)=\Gamma(f)(t)(t \in W)$, so $\tilde{\varphi}$ is continuous on W and $|\tilde{\varphi}| \leqq\|f\|=\|\varphi\|$. For any $t \in W$ and any net $\left\{t_{\alpha}\right\}$ in U with $t_{\alpha} \rightarrow t$, we have $\Gamma(f)\left(t_{\alpha}\right)=$ $\Gamma(p)\left(t_{\alpha}\right) f\left(t_{\alpha}\right)=\Gamma(p)\left(t_{\alpha}\right) \varphi\left(t_{\alpha}\right)=\varphi\left(t_{\alpha}\right)$ for sufficiently large α (the first equality holding by virtue of our observation above), so $\varphi\left(t_{\alpha}\right) \rightarrow \tilde{\varphi}(t)$. We may therefore define $\tilde{\varphi}(t)(t \in W)$ unambiguously as

$$
\lim _{\alpha} \varphi\left(t_{\alpha}\right),
$$

where $\left\{t_{\alpha}\right\}$ is any net in U with $t_{\alpha} \rightarrow t$. Since every $t \in V$ is contained in some such neighborhood W, we may define $\tilde{\varphi}$ on all of V in this way. The function $\tilde{\varphi}$ is then the desired extension of φ.

Now let W be an open set containing U such that every function in $C(U)$ extends uniquely to a function in $C(W)$. We must show that $W \subseteq V$. Take $t \in W$ and let $b \in B$ be such that $b(t)=1$ and $b(\Omega \backslash W)=\{0\}$. For $f \in Y$, let \tilde{f} denote the unique bounded continuous extension of $f \mid U$ to W. Define $\Gamma: Y \rightarrow B$ by setting $\Gamma(f)(s)=\tilde{f}(s) b(s)$ for $s \in W$ and $\Gamma(f)(s)=0$ for $s \notin W$. It is immediate that $\Gamma \in Y^{\prime}$. We have $\Gamma(p)(t)=\tilde{p}(t) b(t)=1$, so $t \notin F$, i.e., $t \in V$. This shows that $W \subseteq V$, which completes the proof.

References

1. Charles A. Akemann, The general Stone-Weierstrass problem, J. Functional Analysis 4 (1969), 277-294.
2. Ronald G. Douglas and Carl Pearcy, On the spectral theorem for normal operators, Proc. Cambridge Philos. Soc. 68 (1970), 393-400.
3. William L. Paschke, Inner product modules over B^{*}-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.

University of Kansas,
Lawrence, Kansas

