ON THE DEGREE OF AN INDECOMPOSABLE REPRESENTATION OF A FINITE GROUP

GERALD H. CLIFF

(Received 24 August 1978)

Communicated by D. E. Taylor

Abstract

Let k be an algebraically closed field of characteristic p, and G a finite group. Let M be an indecomposable kG-module with vertex V and source X, and let P be a Sylow p-subgroup of G containing V. Theorem: If dim_k X is prime to p and if $N_G(V)$ is p-solvable, then the p-part of $\dim_k M$ equals [P: V]; $\dim_k X$ is prime to p if V is cyclic.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 C 20.

Let k be an algebraically closed field of characteristic p. Suppose that M is an indecomposable kG-module, where G is a finite group. If V is a vertex of M and V is contained in a Sylow p-subgroup P of G, then Green (1959) has shown that [P:V] divides the dimension of M over k. In this note, we show that [P:V] is equal to the p-part of $\dim_k M$ if a source of M has dimension prime to p and if $N_G(V)$ is p-solvable. We may therefore determine the p-part of dim_k M if V is cyclic and $N_G(V)$ is *p*-solvable.

NOTATION. All modules are finitely generated left modules. We understand $L \mid M$ to mean that L is isomorphic to a direct summand of M. If M is a kH-module, where H is a subgroup of G, then M^{G} denotes the induced module. For a positive integer n, we denote the p-part of n by n_n .

THEOREM. Let G be a finite group and let M be an indecomposable kG-module with vertex V and source X. If $p \not\mid \dim_k X$, and $N_G(V)$ is p-solvable, then $(\dim_k M)_p = [G:V]_p.$ 11

PROOF. We first assume that V is normal in G, so $G = N_G(V)$ is p-solvable. Let T be the inertia group of X in G:

$$T = \{g \in G \colon g \otimes X \cong X\}.$$

According to the results of Conlon (1964) and Tucker (1965), there exists a twisted group algebra A on T/V over k with the following property: if $A = \sum_{i=1}^{n} U_i$ is a decomposition of A into a direct sum of indecomposable left ideals, then there is a decomposition $X^G = \sum_{i=1}^{n} M_i$ into indecomposable kG-submodules of X^G such that

(1)
$$\dim_k M_i = (\dim_k X) (\dim_k U_i) [G:T], \quad 1 \le i \le n.$$

(The algebra A is a homomorphic image of $\operatorname{End}_{kT}(X^T)$.) Since M has source X, then $M | X^G$, so M is isomorphic to one of the U_i . We show that $(\dim_k U_i)_p = [T : V]_p$.

We prove that if U is an indecomposable summand of a twisted group algebra on a finite p-solvable group H over k, then $(\dim_k U)_p = |H|_p$. We use induction on |H|. Denote the twisted group algebra by $(kH)_{\alpha}$, where α is the factor set on H of the algebra. Let R be a normal subgroup of H such that H/R is a p-group or a p'-group; let $(kR)_{\alpha}$ be the twisted group algebra on R whose factor set is the restriction of α to R. Then there is an indecomposable $(kR)_{\alpha}$ -module W such that $U|W^H = W \otimes_{(kR)_{\alpha}} (kH)_{\alpha}$. We apply the results of Conlon (1964) to W^H . Let S be the inertial group of W in H; then there is a twisted group algebra A' on S/R over k, with an indecomposable summand U', such that

(2)
$$\dim_k U = (\dim_k W) (\dim_k U') [H:S].$$

By induction on |H|, we have $(\dim_k W)_p = |R|_p$. If H/R is a p-group, then so is S/R, hence A' is isomorphic to the (untwisted) group algebra k(S/R) and is therefore indecomposable. Thus U' = k(S/R), so $\dim_k U' = [S:R]$. We have, from (2),

$$(\dim_k U)_p = |R|_p [S:R]_p [H:S]_p = |H|_p.$$

If H/R is a p'-group, then A' is a twisted group algebra on a group whose order is prime to the characteristic of the field and is therefore semi-simple. Then U is irreducible over A', and by Curtis and Reiner (1962), Theorem 53.16, we have $\dim_k U'|[S:R]$, hence $\dim_k U'$ is prime to p. (Theorem 53.16 is proved in Curtis and Reiner (1962) when k is the field of complex numbers, but is valid for any algebraically closed field of characteristic prime to the group order.) Now by (2),

$$(\dim_k U)_p = |R|_p [H:S]_p = |H|_p,$$

since S/R being a p'-group implies that $|R|_p = |S|_p$.

Returning to the calculation of $(\dim_k M_p)$, we have from (1) that

$$(\dim_k M)_p = [T:V]_p [G:T]_p = |V|_p$$

since $(\dim_k X)_p = 1$ by hypothesis.

We now drop the assumption that V is normal in G. Set $N = N_G(V)$. By the Green correspondence (Green (1964), Theorem 2), there exists an indecomposable kN-module L, with vertex V and source X, such that

$$L^G = M \oplus \sum_{i=1}^m L_i,$$

where each L_i is an indecomposable kG-module with vertex V_i conjugate to a subgroup of $V \cap V^{g_i}$ for some $g_i \in G-N$. Thus $|V_i| < |V|$, so the fact that $[G:V_i]_p$ divides dim_k L_i implies that

$$[G:V]_p < (\dim_k L_i)_p, \quad 1 \le i \le m.$$

Now the kN-module L has vertex V which is normal in N, and the source of L has dimension prime to p, so we have proved above that $(\dim_k L)_p = [N:V]_p$. Since $(\dim_k L^G)_p = [G:N]_p (\dim_k L)_p$, we have

(5)
$$(\dim_k L^G)_p = [G:V]_p$$

Taking the dimensions of both sides of (3) and applying (4) and (5), we have $(\dim_k M)_p = [G:V]_p$, proving the theorem.

COROLLARY. Let M be an indecomposable kG-module with cyclic vertex V, such that $N_G(V)$ is p-solvable. Then $(\dim_k M)_p = [G:V]_p$.

PROOF. Let X be a source of M. Since V is cyclic, the indecomposable kV-modules are well known: there is (up to isomorphism) precisely one indecomposable kV-module of dimension n, for $1 \le n \le |V|$. Suppose that $\dim_k X = pm$; let V_1 be the subgroup of V of index p, and let X_1 be the indecomposable kV_1 -module of dimension m. Then X and X_1^V are both indecomposable kV-modules of dimension pm, hence are isomorphic. However, X has vertex V, so X cannot be an induced module. We conclude that $p \nmid \dim_k X$, and the corollary follows from the theorem.

REMARK. These results need not hold if $N_G(V)$ is not *p*-solvable. Let G be the symmetric group on 5 letters, and let k have characteristic 3. There is an indecomposable summand M of kG with dim_k M = 9 but M has vertex 1 and trivial source, and $[G:1]_3 = 3$.

References

- S. B. Conlon (1964), 'Twisted group algebras and their representations', J. Austral. Math. Soc. 4, 152-173.
- C. W. Curtis and I. Reiner (1962), Representation theory of finite groups and associative algebras (Interscience, New York).
- J. A. Green (1959), 'On the indecomposable representations of a finite group', Math. Z. 70, 430-445.
- J. A. Green (1964), 'A transfer theorem for modular representations', J. Algebra 1, 73-84.
- P. A. Tucker (1965), 'On the reduction of induced indecomposable representations', Amer. J. Math. 87, 798-806.

Department of Mathematics University of Alberta Edmonton, Alberta Canada