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V.A.Brumberg 
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197042 Leningrad 
U.S.S.K. 

ABSTRACT. Relativistic hierarchy of reference systems (KS) developed in 
recent years by different authors is examined in detail. Metric 
expressions and transformation relations for solar system barycentric KS 
(BKS), heliocentric KS (HKS), Earth-Moon local KS (LKS), geocentric KS 
(GKS), topocentric KS (TKS) and Earth satellite KS (SKS) may be obtained 
explicitly in harmonic coordinates of GKT. The time coordinate of any KS 
involves the corresponding time scale. Particular attention is given to 
the closed form representation of GKS avoiding expansions in powers of 
the geocentric coordinates. GKS has been constructed in both versions of 
dynamically non-rotating GKS (DGKS) or kinematically non-rotating GKS 
(KGKS). DGKS and KGKS differ in their space axes orientation by the 
amount of the geodesic precession. Similarly, taking into account the 
motion of the Sun around the center of the Galaxy one should distinguish 
between dynamically non-rotating BKS (UBKS) and kinematically 
non-rotating BKS (K.BKS) differing in their space axes orientation by the 
amount of the galactic precession. Keduction to the galactic time and 
the galactic space axes may be needed in the nearest future. 

1. INTRODUCTION 

Presently, any theory of astronomical reference systems and time scales 
adequate to the precision of modern observations may be developed only 
within the GKT framework. However, the preliminary discussion by the 1AU 
Working Group on Reference Systems of the corresponding relativistic 
formulations suggested in (Brumberg and Kopejkin, 1989a, 1990) has shown 
that many astronomers are not ready to apprehend these formulations and 
regard them as "too technical". The difficulties of apprehension 
increase when considering not only one approach to develop relativistic 
reference systems but a whole set of the alternative approaches based, 
for instance, on PPN formalism (Will, 1981), generalization of Kermi 
normal coordinates (Ashby and Bertotti, 1986; Eukushima, 1988), tetrad 
formalism (Soffel, 1989), etc. The aim of the present, paper is to 
elucidate the key statements of relativistic formulations and to 
simplify as much as possible their "technical" aspects not diminishing 
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the level of necessary experimental precision and mathematical accuracy. 
The paper is based on the technique to construct the hierarchy of 
reference systems in harmonic coordinates exposed in (Brumberg and 
Kopejkin, 1989a, 1990). 

2. KEEEKENCE SYSTEM IN GKT 

A reference (coordinate) system in GKT is given by the symmetric 
quadratic form ds determining the metric of the four dimensional 
pseudo-Kiemannian space of events of GKT 

ds = g dxtldxv , x° - ct , fi, v = 0,1,2,3 , (1) 

c being the velocity of light. The quantity t is called the coordinate 
time of the system. The spatial coordinates of the system are designated 
by x (i=l,2,3). Einstein summation rule over repeated greek or latin 
index is used everywhere, in absence of the gravitating masses the 
reference system may be chosen so that the components of the metric 
tensor g (the gravitation potentials) take the values i) with 

(IV [ \ i V 

l o = 1 ' \i = ° ' \i = - 5U' i( J = 1'2'3 (2) 

(pseudo-Euclidean or Minkowskian or Galilean metric). These values 
determine the inertial reference system of special relativity theory. In 
presence of the gravitating masses the components g determined by the 

(i V 

Einstein field equations are represented by expansions in powers of v/c 
(v being the characteristic velocity of bodies) 

(3) 

• , (4) 

. , (5) 

(6) 

The upper index in parentheses indicates the order of smallness with 
respect to v/c. The quantity hA is caused not by the gravitating 

01 

masses but by the motion of the reference system. Two cases are typical. 
The first one is related with a system in rotation. If a system is 
originated by rotation of the spatial axes of the inertial system and 
the angular velocity components on the moving axes x are designated 
by u then the metric (1) will be characterized by the occurrence of the 
term 

h{\] = - c ~ Y 4 1 w V = - c ^ toxx ) 1 . (7) 
0 1 1 J K 

e is the three dimensional fully antisymmetric Levi-Civita symbol 
i J K , 

(e = +1). u and x are the triplets of components w' and x~ 

respectively. In the second case a reference system is resulted from 
formal application to the inertial system of three dimensional Galileo 

g - 1) + 
( J V ' ( J V 

00 00 

n = h . + 
ol ol 

h 
( J V 

^00 

. ( 3 ) 

o l 
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transformation characterized by the translatory velocity v. Then the 
metric (1) will contain a typical term 

h , = - c v (8) 
oi 

In what follows we shall be interested only in reference systems 
transforming in absence of the gravitating masses into inertial systems 
of special relativity theory. Metric (1) of such systems cannot contain 
the terms (7) or (8) and expansion (5) begins only with the third order 
terms h . . 

oi 

No matter where to stop in expansions (4)-(6) one obtains different 
accuracies for astrometric problems (based on the equations of light 
propagation) and for celestial mechanics problems (based on the 
equations of motion of celestial bodies). In fact, in neglecting h at 
all,metric (1) yields the Newtonian equations of light propagation. 
Retaining only h enables one to derive the Newtonian equations of 

00 

motion of celestial bodies. This permits also to take into account the 
post-Newtonian terms in the problem of clock synchronization and time 
scale relations. Considering h and h,, results in the post-Newtonian 

00 lj 

equations of light propagation in the static field (ignoring the motion 
(2) (2) (3) 

of the gravitating masses). In taking into account h , A„ and h, 
00 lj 01 

one yields the complete post-Newtonian equations of light propagation 
(3) (considering the motion of the masses). Moreover, the terms h are 

crucial to describe the relativistic rotation of the spatial axes, of the 
reference system. Finally, including h , h,, , h, and h one 

oo ij ol oo 

obtains the post-Newtonian equations of motion. 
Nowadays, one may meet suggestion to define relativistic reference 

systems by fixing only h and h.. . This is sufficient for present day 
00 lj 

astrometry. But this is quite inadequate for modern celestial mechanics 
using the post-Newtonian equations of motion of the solar system bodies 
and will be soon insufficient for high-precision astrometry (millisecond 
pulsar timing, POINTS project, etc.) demanding the complete 
post-Newtonian equations of light propagation. It seems to us that one 
should define a reference system with some excess of accuracy and 
therefore it is reasonable to fix all the terms indicated in expansions 
(4)-(6). 

The dots in (4)-(6) mean the terms of more high order, in particular, 
the terms responsible for gravitational radiation of the system of 
bodies. For ephemeris astronomy problems these terms may be ignored as 
yet. 
3. BRS IN HARMONIC COORDINATES AND IN PPN FORMALISM 

Dynamically non-rotating barycentric reference system for the solar 
system (DBRS) may be represented in the post-Newtonian approximation of 
GRT in arbitrary quasi-Galilean coordinates in the form 
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hU> = - 2c"' 'f , lh\] = - 2ccUb + a . + a. . , ('J) 

/ i^ ' = 4c~V + a + a, . (10) 
oi o , i 1,0 

/ j U ) = 2c'A(U 2- W) + 2a + 2c"£t/ , a + 2 c ^ F ~ - ( a . ) , (11) 
oo o . o , k k 3 k K A 

A C.\\ 
A 

wi th 
.- sc' ... 

W = 4 - $. + $„ + 3$ + 2 - 4 . (12) 
Newtonian p o t e n t i a l (/, v e c t o r - p o t e n t i a l u and complementary p o t e n t i a l s 
$, ) *, > $,> 5. a n d " s a t i s f y f o i s s o n e q u a t i o n s 

L'>kk = - 4*&'p , l/jkk = - 4'16-pv1 , t i j k k = - 4fG'pv , 

$„ , , = - 4ltG'p6' , $. , , = - 4%6'pil , $ , . = " 4fG'p, X . . = U . 
? , k k r ' j , k k r ' 4 , k K ^ , K K 

Comma with subsequent index denotes the derivative with respect to the 
corresponding variable.p is the conserved density, v is the velocity of 
the matter, p is the pressure and II is the internal energy. G is the 
gravitational constant, a and a. are four arbitrary functions (a. arc 

k 

of the second order of smallness, a is of the third order). \'(t) are 
o A 

the spatial coordinates of body .4, (a,) means the regular part of a in 
k k 

substituting ,Y = x. It is of importance to note that function a 
A o 

entering in the Lagrangian in form of total derivative has no influence 
on the post-Newtonian equations of motion of bodies. 

functions a and a, are specified by the coordinate conditions 
0 1 

represented by four differential or algebraic relations for the metric 
tensor components and their first derivatives. These functions determine 
the type of the coordinates employed. One uses rather often the harmonic 
coordinate conditions. Their main mathematical advantage is the 
existence of explicit, mathematical formulation 

l(-g)U?/V] = 0 , g= det(g ) , g*'*g = 6!< . (14) 
, v (t v v a 

If the tilde denotes harmonic coordinates then the relationship °f the 
arbitrary coordinates used above with the harmonic ones is of the form 

(15) 

This means that metric (l)-(6), (9) — (11) becomes harmonic with a_=a =0. 

Potential X in the point mass approximation has the form 

1 -~ 2 ? 6 V A ' rA = < r i V ' rA = X ~ XA U b ) 

A 
so that 

d^l 1 v ,-u 11 r / k k \£ s T ^ k k \ k k / , -, - » 
Ot A A 

k k 
\\ and a. being velocity and acceleration of the center of mass of body 
A A 

A , In Newtonian approximation 

0 

— 
n 

x~ + flo 

"k 
X -

k 
x -- \ 
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,k _ k 

k r .,„ *B *A r, k k.w. k k 1/2 

B?A r AB 
At infinity (but let us remember that BKS is not valid for too large 
distances from the solar system) all potentials except for I vanish and 
coefficients (9)-<11) will contain only one non-zero term 

,U) -i r ,,„ k k , 10, h = c L UMnak . (IB) 
oo " A A A 

A 
Hence, ar infinity the spatial part of the BKS metric in harmonic 
coordinates takes the Euclidean form but there remains in g 

00 

relativistic term (18). 
Along with harmonic representation the BKS metric in FPN formalism 

coordinates is also widely used (Misner et al., 1973; Will, 1981). The 
FFN system is characterized by its spatial isotropy (as well as the 
harmonic representation) and its Galilean form at infinity. This 
involves the choice of the coordinate functions as follows: 

ai = u • ao = c Tt • (1J) 

In so doing, function (17) disappears from (11) and in the right-hand 
side of (10) there will be an additive term 

-3 dCl 1 -3 r A k,. i k. 
a = c = - -r c >. ^.(6 ~ nri ) 
o,i 3 ^ . 3 1 2 . F, A lk A A 

Ot OX A A 
It is easy to see that at infinity all coefficients (9)-(11) for the BKS 
metric in FPN coordinates vanish resulting in Galilean form for the BKS 
metric. 

Hence, the spatial harmonic and FFN coordinates are the same 
A"1 = X1 (ZO) 

whereas the time coordinates are related by the equation 
+ . ^ - 4 <?X d l 1 r , ,„ k k .... . 
t = t + c Tt ' ^ = " 2 ? 6A,AVA • ( ^ 

A 
Using physical terminology one says that KPN and harmonic coordinate 
systems belong to one and the same reference frame differing only by the 
time coordinates. 

Kelations (20) and (21) enable one to conclude that FFN formulation 
and harmonic representation of BKS are practically equivalent within the 
present accuracy (vc/c). Only in dealing with the higher order effects 
(v /c as in discussing POINTS observations) this difference might be 
taken into account. As pointed above, the advantage of harmonic 
coordinates is due to their explicit mathematical formulation. In 
transforming to any other reference system (geocentric, topocentric, 
etc.) it is easy to impose the harmonic conditions on new metric 
coefficients and to ensure therewith the harmonic form of the coordinate 
transformation. On the contrary, the FFN formulation has been developed 
only for BKS and, moreover, only in the post-Newtonian approximation. 
The transformation within the FFN framework to other systems has not 
been elaborated so far. 'i'here is no definite FFN procedure to take into 
account the higher order terms. With respect to these two aspects the 
harmonic representation is more advantageous. 
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Let us make one technical remark useful for comparison with 
formulations of (Misner et al., 1973; Will, 1981). One often uses the 
density p satisfying the relation 

(-g) p dx = pete 

°r * -2 1 £ 
p = p [1 + c (± v + 31/)] . 

Therefore, + 1 

1/ = U + c" (̂  $j + 3$,,) 
where. (/ is the same Newtonian potential as V but expressed with the aid 
of p (all other potentials are the same within the adopted accuracy). 
Hence, in virtue of (3), (9), (11) and (19) coefficient g of the FPN 

00 

formalism BKS metr ic takes the form 

g = 1 - 2c'lU* + c'\2U 2 - 4«, - # „ - 2$ - 6$ ) . 
oo 1 2 3 4, 

In (Misner et al., 1973; Wi^.1, 1981) p (designated by p ) is used in the 
equations of motion and p (designated by p) is used in the field 
metric. Taking into account the difference in designations and signature 
we obtain the expressions of these papers (with the GKT values for the 
F-PN parameters). We think it reasonable to use one and the same 
conserved density p both for the field metric and the equations of 
motion. 

4. H1EKAKCHY OF ASTRONOMICAL KEFEKENCE SYSTEMS 

For astronomical purposes it is suitable to have the hierarchy of 
relativistic reference systems (KS) as follows: 

HKS LKS SKS 
t / * / t 

BKS —• GKS —» 'i'KS 

with BKS (solar system barycentric KS), HKS (heliocentric KS), LKS 
(local Earth-Moon barycentric KS), GKS (geocentric KS), TKS (topocentric 
KS) and SKS (satellite KS). Such an hierarchy (except for HKS and LKS 
which may be constructed by analogy) has been constructed in (Brumberg 
and Ropejkin, 1989a,b) conforming with three principles: 

1) harmonic coordinates are used for each system; 
2) the principle of equivalence is met in each system, i.e. the 

influence of the external masses is described only by tidal terms (in 
particular, the terms like (8) are absent); 

3) each system is dynamically non-rotating (there are no terms like 
(7) or similar third order terms in h, ) . 

01 

For BKS there are no external bodies (in ignoring the influence of 
the Galaxy) and all the solar system bodies taken into account are 
considered as internal ones. For LKS the internal bodies are the Earth 
and the Moon whereas all remaining bodies are considered as external 
ones. Both HKS and GKS have one internal body, the Sun or the Earth 
respectively. For TKS and SKS all the bodies are external. 

The matching procedure of two reference systems used in (Brumberg and 
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kopejkin, l'J89a,b) starts from the known metric coefficients of one 
system and permits to determine 1) metric coefficients of the second 
system, 2) transformation formulae relating two metrics and 3) the 
equations of motion of the origin of the second system with respect to 
the first system. 

Obviously, a similar hierarchy may be constructed using alternative 
approaches mentioned above. But the use of one and the same type of 
coordinate conditions for all systems in combination with the matching 
procedure has definite advantages, for instance: 

1) the finite transformation formulae for spatial coordinates of two 
systems (quadratic functions in contrast to the power series of the 
alternative approaches); 

2) unambiguous determination of the required functions; 
3) no difficulties in considering figure characteristics and proper 

rotation of the bodies. 
So far, in all papers indicated above the GKS metric has been 

constructed in form of the series in powers of the geocentric spatial 
coordinates, it is to be noted that to derive the GKS post-Newtonian 
rigorous (avoiding expansions in powers of geocentric coordinates) 
equations of motion of Earth distant satellites it is sufficient to 
apply to the known rigorous BKS equations the finite transformation 
formulae from BKS to GKS. Just in the same manner one can get the 
post-Newtonian HKS equations of motion of the planets. It is not evident 
how to solve these two problems with the alternative approaches based on 
power series expansions. tor astrometric purposes (reduction of 
observations) GKS within the level of h , h.. and h\ is quite 

00 1J Ol 

adequate. As shown in the next section, the technique of (Brumberg and 
Kopejkin, 1989a,b) permits easily to construct GKS within this level of 
accuracy in the closed form. Needless to say that the same is valid for 
any other reference system. 

Let us add that each system entering in the hierarchy under 
consideration may be subjected to the rigid body spatial rotation. The 
resulting system (KS ) is not harmonic anymore. Its metric will contain 
a term like (7). Such a system is used for solving astrometric problems. 

5. CLOSED EOKM OF GKS METK1C (DGKS AND KGKS) 

Transformation from UBKS determined by relations (l)-(6) and (9)-(ll) 
with a = a = 0 to GKS defined by 

ds - g dwt dw , w = cu (22) 

and having its origin in the center of mass of the Earth E is given by 
the formulae generalizing the Lorentz transformation of special 
relativity theory (Brumberg and Kopejkin, 1989a,b) 

u = t - c'hs(t) + v*r*] + c"*[a<t,rB) - \ v ^ r * ] + ... , (23) 

•/ = rj + c'd{{\ v\v\ + qElk(t) + //k(t)]rJ + Uiik(t)r^} + ...(24) 

in transformation (24) of the spatial coordinates functions 
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and |P = lfki determine the relativistic contraction of length. 
ik ki Antisymmetric function b - -b acts as the angular velocity of 

rotation of the spatial axes. Indeed, introducing the triplet F = (b , 

* ' * } With i 1 Jk 

one has 
bXkr\ = rEXF (26) 

resulting in rotation of the spatial axes, q is the scalar parameter to 
be defined below. The inverse transformation is of the form 

t = u + c'hs(t) + v£(t)wk] - c'lBiu, w) + v^qb^ + J*)* + 

+ v*Di3kwV] + ... , (27) 

x1 = xUt) + w~ - c " 2 [ ( | v V + <j/k + z/k)wk + i / 3 k v V ] + . . . ( 2 8 ) 
a 6 k E 

i k 

Substituting the derivatives of t and A' with respect to u and v into 
the tensor transformation of metric matching 

^ R ( U - w> = *UM> x) —.^h (29) 

one ge ts A 

£ = 1 + c (- 2</ + 26 - v + 2a„w ) , (30) 

** = c'z^ - K - * , i + ^* - i 4 > + ( I VE4 + 

1 k 1 x yk ± ' i k . k , * i jk i k, | 0 1 . 
+ ^ VB*D + 9* + / / )w + i> w w ] , (31) 

Function B may be presented in the form 

£f(u, w) = B (u) + B w + B w w + B (u, w) . (ii) 

Function B cannot be determined within the adopted accuracy of the 
matching procedure. Its expression may be found in (Kopejkin, 1989a,b; 

Brumberg and Kopejkin, 1990). Functions 6', i/1), BiZ), ]?, J*, //* 
l and a are determined on the basis of the conditions resulted from the 

tidal form of the external mass action. Separating Newtonian potential U 
and vector-potential If into the parts u and LL due to the Earth alone 

E E 

and the p a r t s 1JV and 7£ caused by the e x t e r n a l masses one has 

u\ , (34) 

(35) 

i ( 6 i / E
 + 6ikaE - v i > . <36> 

s - i < i J , V j k ( v ' (37) 

(38) 

u = \ + \ > u i •• 

's-\v\+ VV 
"lk = 8 i k * v • 

*E = " B , 1 ( X 1 > " «1 • 

« ; 1 ) = 4 l / E ( x E ) - 3 v B 

" 4 * 
» 

^ , k = 

« i = 

VXB> 
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i- J 1 * ik - i - k i k 
B " = -r U' " + U (X ) + U (X ) - ( V Q + V Q ) -ik Z E,kv E' E,iv E' V ETC E V 

- ^ v 5 + y X > • (39) 

+ § ( v X - v ; ) • (40) 

ik • o i 
in distinction to other quantities functions S, t and B are 
determined by differential relations. Function S yields (in the 
post-Newtonian approximation) the difference of BKS and GKS coordinate 
time scales in the geocenter (r" = .v' - x = 0 ) . Function t describes 

E E 

in its main part the geodesic precession. Equations (37) represent the 
BKS Newtonian equations of motion of the Earth (at the next step of 
approximation the matching procedure results in the post-Newtonian 
equations). Function Q, is the correction for the non-geodesic motion of 

the Earth due to the interaction of the Earth quadrupole moment and the 
external masses. One has therewith 

( i k̂ c ' k .3 
M - § odx , 1 = 9 pr'r_(d .v 
E ' E E fi 

(El ( B) 

In consequence, the closed form UKS metric for approximation (30)-(32) 
will be 

Ko =l - 2cfZ{K + vk+ vv w ) - ~ w - V'v-^---'*41) 
go± ~- chd[ + ( g - l ) W + 4[^(xE +w) - l/(xE) - l\ U)<?} -

4 I'E[ Z ,E( XE+ W )- V V - V k 1 ^ ^ 1 " < i + W " } + . . . , ( 4 2 ) 

+ . . . ( 43 ) 
with A ' i i -

t/ = Uv , U^ - If - vli' . (44) 
E E E E E h 

Function B' is determined by the harmonic conditions for the GKS 
metric. These conditions within the adopted accuracy result in the 

equations (with g = 11 + h ) 
(IV '(11' fiV 

h . - h.. + 2h.. = 0 , (45) 
oo,i kk,i ik,k 

h + k , - 2/3 , , = 0 (46) 
oo,o kk,o ok,k 

Equation (45) is satisfied identically in virtue of the structure of 
expressions (41) and (43). Equation (46) involves the equation 

cl/_ + hi = 0 (47) 
E , o E , k 

satisfied in virtue of the equation of continuity and the Poisson 
equation determining function B 

https://doi.org/10.1017/S0252921100063557 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100063557


45 

B "• = Ht', (x +w) - L< ,(xj] - 4r:[t-L . (x„+w) - 6.. . (xj] + 

+ 4[civ, (x +w) - r,(x.)] - alwk . (48) 
E , 0 i, c a JS 

Function B~" and its derivatives of the first and second order with 
respect to the spatial coordinates should vanish with w = 0. Using 
explicit expressions of scalar and vector potentials it is easy to 
verify the i d e 11111 y 

Z" , (x>w) - v_;7/_ . (x.,+w) + c!_, (x„+w) = 0 (49) 

(relation (46) is imposed on expressions (4l)-(43) and the substitution 
x = x̂  + w is perfon 

s 
takes the simple form 

x = x_ + w is performed before differentiating'). Hence, equation (48) 
a 

• 3 1 k k 

B , . - - a.w . (t)U) 
, K K IS 

As a particular solution of this equation one may choose, for example 

so that 

Bl '" - - -i A W (51) 

1 3 i 1 * k k i 1*1 k k 
, i ti E 1U E 

Construction of the GKS metric in the closed form is completed by 
substituting (52) into (42). 

Numerical parameter q plays an important role. Value q - 1 
corresponds to dynamically non-rotating GKS (UGKS). In this case there 

are no terms due to geodesic precession in g .. But the UGKS spatial 
01 

axes rotate with respect to the BKS spatial axes as seen from 
transformation (24). Value q - 0 corresponds to kinematicaliy 
non-rotating GKS (KGKS). Jit this case the spatial coordinate 
transformation (24) between BKS and GKS does not involve terms due to 
geodesic precession. Such terms occur in g .. in investigating Earth 

satellite motion it is suitable to use UGKS (Brumberg and Kopejkin, 
1989b). for reduction of observations both systems might be useful. 

Let us add a technical remark. Function (51) differs from the 
function used in (Kopejkin, 1988; Brumberg and Kopejkin, 1989a,b). 
Function BJ has been constructed in these papers in form of the series 
in powers of the geocentric coordinates starting with the terms 

B i ' = B, ft-W + . . . , (53) 

"i*= i [ IU(v + z^fV + ZU(V] - f ^ ^ v + 

+ 'ft.ki'v + "Swv1 + 4f[5jA,i(xE>+ 5
kA, : f v + 

It is easy to see that «,, = - - a and equation (50) is satisfied. Such 
ikk b E 
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a choice of B J provides the fulfillment of some relations of symmetry 

in the expansion of g ., in particular, the condition C, - C . in 
01 :m mi 

quadratic terms 
-:,.'' \ i . . * i k V k m 3 ' K i 

g. - 4c L(... + TUrD/- >v + =• r. w * - 77; « " » + 
oi a 4 i jk jm 1U K 

+ j^ «. >vV + . . . ] . (55) 

6. CONSIDERATION OF THF INFLUENCE OF THE GALAXY 

in ignoring the influence of the Galaxy BUS described by expressions 
(9)-(ll) (with a - a - 0) is non-rotating system both dynamically and 

kinematicaily. But in not so distant future consideration of the 
influence of the Galaxy may become necessary. Ignoring ail local 
irregularities and considering the mass N of the Galaxy as being 
concentrated at its center one may relate galactic time T and̂ galactic-
spatial coordinates .r with BKS time-space coordinates t and .Y" just in 
the same way as BKS-GKS transformation 

t = T - c'd[sA'n + i-Vj + .... nt - / - XUT) , (56) 

k + • • • k k ( 5 7 ) 

with A ( T) and VA T) - dXA T)/dT being galactic coordinates and velocity 
B B B 

components of the solar system barycenter B. q, is a constant leading to 
'.J 

dynamically (q, = 1) or kinematicaily (a, = 0) non-rotating BKS 

respectively (UBKS or RBKS). Assuming the galactic circular motion of 
the solar system barycenter with radius .K = (AA) c and mean motion 

D B B 

A'= 2f/F =(CM)1/2/Afc one h a s l£ = GM/.L and 

' *fl " 2 7 U B I 'B " V B ' ' ( ; ) 8 ) 

/ i l k K &'A/ J I 1 J k 1 k'M.,, i „ k j . , - 0 , 

^ G = 6 i k - ' ^G = 2 7 ( 5 H - A B " 5 i J A B " & i k V * ( 3 9 ) 

' B 

Function K~ is responsible for the galactic precession caused by the 
G 

motion of the Sun around the center of the Galaxy (quite similar to the 
geodesic precession due to the heliocentric motion of the Earth). 
Introducing as in (25) triplet F one has 

F. = \ & (XXVJ = § flfU , (60) 

\ B 

k being a unit vector normal to the plane of the orbit of the Sun. in 
vector notation the transformation (57) is rewritten in the form 

= 

5 , 
-L 

3 UM 

1 XB 

GM 

k AB 
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X = KB + c*[ |(VBKB)VB + f KB + 5G(KBXFG) + | f (Kj) XB -

B AB 

-̂ wv + ••• • (6l) 
B 

Using numerical values Af = 1.6'1011 MQ, X = 2.5*10^ cm, t> = 2.2*10 

years = 6.6*10 s, c UMQ - 1.5 km, c = 3*10 cm/s one finds that the 

DBKS spatial axes rotate with respect to the galactic axes with angular 

velocity c F = 0.85"'10 per century. The term c in the time 
G B B 

transformation (56) applied to the Earth represents an annual periodic 
term with the amplitude 0.4 s. The coefficient in the secular term of 
this transformation is c S = 1.44*10 . 

G 

Component g_, of BKS metric (9)-( 11) with a = a. = 0 is represented 
01 0 1 

now in the form 
A*;1 = c 3[4(/1 + (a - l ) / k x ] . (62) 
0 1 u b 

Let us repeat once again that with a = 1 we have DBKS whose spatial 
u 

axes rotate with respect to the galactic axes. With q, = 0 we have RBKS 
u 

whose spatial axes do not rotate with respect to the galactic axes. But 
the KBKS equations of motion of the solar system bodies contain Coriolis 
terms. For celestial mechanics purposes DBKS is preferable. For 
astrometric purposes both systems are useful. 7. TIME SCALES 

The problem of time scales is to be solved finally by the 1AU 
recommendations. But irrespective of definitions given by these 
recommendations the problem is based actually on the relations between 
the coordinate times of BKS (t), UKS (u) and TKS (t) (in future the 
galactic time scale T may be needed). Relation between t and u is given 
in the form (23) (presently, 0(c ) terms therewith may be omitted). 
Function S determined by (35) is presented in the form 

S(t) = S*t + S (t) (63) 
* p 

where S is a constant and S (t) includes both periodic terms as well as 
p 

non-periodic terms due to the secular evolution of the planetary orbits. 
Therefore, relation (23) is rewritten in the form 

u = (1 - c~2S*)t - c'hs (t) + v V ] + ... . (64) 
p & h 

Just in the same manner the relation between u and t is 

\ = u - c'hviu) + v*Uk - ttt)] + ... (65) 
k k 

with w and v being the UKS coordinates and velocity components of the 

TKS origin. Function V( u) is determined by the differential relation 
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its solution is represented in the form 

V{u) = V*u + V (u) (67) 
* p 

with 1/ being a constant one and the same for all possible TRS and hence 
independent both of time and coordinates of the TKS origin. Function 
V (u) includes corrections for the height of the ground station above 
p 

the surface of geoid, for lunar and solar tidal influence and for the 
geophysical factors (deviation of the Farth rotation from the rigid body 
rotation). Substitution of (67) into (65) yields 

T = (1 - c ' V ) u - c~2[kp(u) + vju
k - wk

f)] . (68) 
Relations (64) and (68) are crucial for the relativistic theory of time 
scales (Brumberg and Kopejkin, 1990). 

8. CONCLUSION 

The aim of this paper is to elucidate some key questions of relativistic 
theory of reference systems avoiding technical aspects as much as 
possible. The main results of the paper may be formulated as follows: 

1. BRS metrics in the FPN formalism coordinates and in the harmonic 
representation are practically equivalent. Harmonic coordinates have 
advantage of being used for constructing the hierarchy of astronomical 
reference systems. 

2. To elaborate the definitions of time scales it is presently 
sufficient to retain in the BRS metric only 0(c ) terms in g 

00 

(Newtonian potential). For relativistic reduction of observations in the 
static field (ignoring the motion of the masses) the 0(c ) terms in g 

00 

and g are sufficient. For relativistic reduction of observations 
taking into account the motion of the masses and for rigorous 
formulation of dynamically or kinematically non-rotating reference 
system (DRS or KRS) the terms 0(c~ ) in g, should be added. For 

01 

unambiguous formulation of the post-Newtonian equations of motion of 
celestial bodies the terms 0 ( c ) in g should be also taken into 

00 

account. 
3. Each system entering in the hierarchy of relativistic reference 

systems may be considered in version of dynamically non-rotating system 
(DRS) or kinematically non-rotating system (KRS). For celestial 
mechanics problems it is suitable to use DRS implying the absence of the 
Coriolis terms in the equations of motion. For astrometric problems both 
types are of importance. 

4. The metric of each system may be presented in the closed form (as 
illustrated by the URS metric taking into account only 0(c ) and 0(c ) 
terms). 

Technical details of constructing reference systems and their 
relationships discussed here may be found in (Kopejkin, 1988, 1989a,b; 
Brumberg and Kopejkin, 1989a,b, 1990; Voinov, 1990; Brumberg, 1991). 
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