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SUMS OF SQUARES FORMULAE WITH 
INTEGER COEFFICIENTS 

BY 

PAUL Y. H. YIU 

ABSTRACT. Hidden behind a sums of squares formula 

(x] + . . . + x;)(y] + ... + y;)=f]+...+fl 

are other such formulae not obtainable by restriction. This drastically 
simplifies the combinatorics involved in the existence problem of sums of 
squares formulae, and leads to a proof that the product of two sums of 
16 squares cannot be rewritten as a sum of 28 squares, if only integer 
coefficients are permitted. We also construct all [10, 10, 16]/ formulae. 

Introduction. For given integers r and s, denote by r*zs the least integer n for which 
there exists an [r,s,n]z formula of the type 

(*î + . . . + *ï)(yî+... + y)) =/? + ... +fl 

where f\,. . . ,/„ are bilinear forms with integer coefficients in JCI, . . . ,xr and 
V|,. . . ,ys. Historically, the problem of determining r*zs arose from the nonexistence 
of a [16, 16,16]/ formula ([2], [3]); even the precise value of 16*z 16 remains un
decided to date. Adem [1] has constructed a [16, 16, 32]z formula, showing that 
16*z 16 < 32. On the other hand, we prove in [13] that 16*z 16 > 25. The construction 
of an [r,s,n]z formula can be regarded as a combinatoric problem of "appropriately 
signing an intercalate matrix of type ( r , s ,n)" (Section 1 below). In this paper, we 
simplify the formidable combinatorics by the recent geometric and topological results 
of [6], [7] and [13] to show that 16*z 16 > 29. We shall also construct all [10, 10, 16]z 

formulae. For background notions and results, we refer to [13]. 
This paper is a revision of part of the doctoral thesis of the author, written under the 

supervision of Professor Kee Yuen Lam. The author wishes to express his sincere 
thanks to Professor Lam for guidance and encouragement. 

1. Intercalate matrices. Consider an [r,s,n]z formula with 

/* = S aki,jXiyj, \ < k< n, 
ij 
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where each coefficient atJ is an integer. Comparison of coefficients shows that for 
given / = 1,. . . , r and j - 1,. . . , s, there is exactly one index k = k(ij) for which 
ai} is nonzero, this nonzero coefficient being necessarily ±1 . We can, therefore, 
represent the [r, s, n]z formula as a Hadamard product A oK where 

(i) A is the (1, — l)-matrix (<z,-,,-) with aÉJ = aLj\ 
(ii) K = (cLj) is an r x s matrix whose entries are "colors" cu ..., c„; precisely, 

Further comparison of coefficients shows that 

(1.1) the colors along each row (respectively column) of K are distinct; 
(1.2) if Ci j = Ci>j>, i ± ï,j i= j f , then cU}< = crj, 
(1.3) aijajj'dj'j'arj = - 1 under the same hypothesis of (1.2). 
For convenience, we shall call K an intercalate matrix of type (r, s, n) if it satisfies 

(1.1) and (1.2) above. Such an intercalate matrix can be signed to give an [r,s,n]z 

formula if there is a (1, — l)-matrix A satisfying (1.3). Compare [14]. Without loss of 
generality, such a signing matrix A can be taken to be standard: each entry in the first 
row and the first column being 1. 

There is an obvious notion of equivalence of intercalate matrices of type (r, s, n)\ two 
such matrices are equivalent if one can be brought to the other by permutations of rows 
and columns, and relabelling of colors. 

There is also an obvious notion of tensor product of intercalate matrices. Let 
K' = (cjj) and K" = (c"j) be intercalate matrices of types (ri,,s,,/i,) and (r2,5,

2,n2) 
respectively. There is an intercalate matrix K' ® K" = (c ; /) of type (rxr2, S\S29 n\n2), 
where cu = (cr,r,cr,r) if i = i'r2 + /", 0 < /" < r2, and j = j's2 + j \ 
0<j"<s2. 

Up to equivalence, Dx = [, 0] is the only intercalate matrix of type (2,2,2). The 
fc-fold tensor product Dk — D\ ® . . .® D\ (k copies) is an intercalate matrix of type 
(2*, 2*, 2*). For convenience, we relabel the color {au . . . ,ak) of Dk by the integer 
1 + S ^ j f l ^ - 1 . 

In a square intercalate matrix of type (r,r,n), call a color ubiquitous if it appears in 
every row and every column. It is clear from (1.2) that, up to equivalence, a square 
intercalate matrix with at least one ubiquitous color is symmetric. 

LEMMA 1.1. Suppose an intercalate matrix K of type (r,r,n) has two ubiquitous 
colors. Then r and n are even, and K is equivalent to a tensor product Kx (x) K2, where 
Kx and K2 are intercalate matrices of types (r',r',n') and (2,2,2) respectively, 
r = 2r', n = In'. 

PROOF. Assume one ubiquitous color is along the principal diagonal so that K is 
symmetric. Permute the rows and columns if necessary to arrange a second ubiquitous 
color along the principal 2 x 2 blocks. From this, it is clear that r is even, say r = 2rf. 
Furthermore, we have a partition of A' into 2 x 2 blocks, each of which is an intercalate 
matrix of type (2,2,2). "Contraction" of these 2 x 2 matrices leads to an intercalate 
matrix K\ of type (rf, r', «'), n = 2ri. • 
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PROPOSITION 1.2. An intercalate matrix of type (n,n,n) exists if and only if n = 2* 

for some integer k. Furthermore, every intercalate matrix of type (2k, 2k, 2k) is 

equivalent to Dk. • 

For r, s < 2 \ denote by £>r, the submatrix of Dk consisting of the first r rows and 

first s columns. 

PROPOSITION 1.3. The intercalate matrix D10, io can be signed to give a [10, 10, 16]z 

formula, but this is not possible with D\0tU. 

PROOF. Every standard signing matrix of D10, io is of the form 

1 
- 1 

-ax 

CL\ 

-a2 

a2 

a3 

-a3 

~ « 8 

« 8 

1 

0 i 

- 1 
- a , 
—a4 

-a5 

a4 

a5 

- 1 
- 1 

1 
-a\ 

a] 

- 1 

~ « 6 

« 7 

-a1 

a6 

—a9 

a9 

1 
a2 

a4 

a6 

- 1 

- « 2 

—a4 

- 0 6 

- 1 
- 1 

1 
-a2 

a5 

-a7 

a2 

- 1 
a7 

-a5 

- a , o 

« 1 0 

1 

- 0 3 

— tf4 

« 7 

a4 

- « 7 

- 1 

« 3 

- 1 
- 1 

1 
a3 

~a5 

- « 6 

« 6 

0 5 

- 0 3 

- 1 
0 1 1 

- 0 1 1 

1 

0 8 

1 

«9 

1 

0 1 0 

1 
- 0 1 1 

- 1 
- 0 8 

where a\, a2, a3, a4, as — ± 1, and a5 = a2a^a4, a6 = a\a3a4, a7 = axa2a4, a9 = a\a%, 

0 i o = 0 2 0 8 , 0 i i = 0308-

However, extension to a standard signing matrix A' = (aLJ) for Di0,n is impossible: 

putting d\AX = 1, we find a9AX = 1 and al0J] = —a9. Condition (1.3) gives a5AX = 

a4 with / = 5, /' = 9,7 = l,j' = 11. On the other hand, with / = 5, /' = 10,7 = 8, 

y — 11, we have a 5 J i = — a6a9an = — a4, a contradiction. • 

2. Hidden sums of squares formulae. Suppose an intercalate matrix K of type 

(r,s,n) is signed by a ( 1 , — l)-matrixA to give an [r,s,n]z formula. This is equivalent 

to a normed bilinear mapf:Rr x Rs-> R" with Hopf construction F:Sr + s~] - » S". Let 

c be a color of K corresponding to an equatorial lattice point q = (0, c) E 5". In [13], 

we showed that hidden at q there is a sums of squares formula. This formula also has 

integer coefficients, and can be easily retrieved as follows. For details, we refer to [8]. 

THEOREM 2.1 (Theorem 8 of [8]). Suppose the color c appears k times in the signed 

intercalate matrix AoK representing an [r,s,n]z formula. Permute the rows and 

columns, and change the signs of all colors along certain rows of AoK if necessary 

to bring AOK into the form 

Ku Kl2 

I I ' 
|_A21 ^22 J 

in which each diagonal entry of the k X k submatrix Kx , is the color c with a positive 
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sign. Then the signed intercalate matrix 

[Kn Kn K2\\ 

gives the [k,r + s — k,n]z formula hidden at q = (0,c) E Sn'. • 

REMARK. The original [r, s, n]z formula can be regarded as hidden at the north and 
south poles (±1,0) G S". 

3. Structure of [10,10,16]z formulae. 

LEMMA 3.1. Every [10,10,16] formula, not necessarily with integer coefficients, 
represents a nontrivial homotopy class, which is an even multiple of the generator v 
of the stable 3-stem IT 3. 

PROOF. Let / b e a normed bilinear map of type [10, 10,16]. Then the adjoint 
h:S9 —» Vi6,io m ust be nontrivial, for otherwise it admits an extension to a skew map 
S]0 -» VV io- This gives 10 sections of the bundle 16^0 over the real projective space 
RP10, which is impossible according to the tables of [4]. 

Observe that the homomorphism J:TT9(V]6,]0) —» TT19(5
16) maps Z12 injectively into 

Z24: Lam [5] has exhibited a [10, 10, 16]zformula representing ±2v, showing that the 
image of J is a group of order 12. It follows that J is injective and/represents a nonzero 
homotopy class. 

It further follows that the Hopf construction off is surjective, and there is a regular 
value by Sard's theorem. The sums of squares formula hidden at a regular value is of 
type [4,16,16], and so represents ±v±v±v±v, an even multiple of v. • 

For later reference, we record a useful lemma which follows by an argument similar 
to Step 4 of the proof of Theorem 8.2 of [13]. 

LEMMA 3.2. Suppose an [r,s,n] formula contains a hidden [k,r + s — k,n] 
formula. There is a diagram 

^ ^ J7r + s-k+ 1 i ^^ h 

commutative up to sign in which the top row is exact. • 

PROPOSITION 3.3. The sums of squares formulae hidden behind a [10, 10,16] formula 
are of types [k,20 - k, 16], where k = 4 ,8 , 10. 

PROOF. For k = 5,6, ^-1(^16,20-*) = 0 from the tables of [11]. No hidden 
[k, 20 - k, 16] formula with k = 5,6 can represent the nonzero homotopy class of the 
[10,10, 16] formula. From this k =£ 5,6. For k = 9, 13, we obtain a contradiction to 
Lemma 3.2 by noting that in each case, the 2-primary component of Ker j* is zero 
according to the tables of [10]. • 
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THEOREM 3.4 Every [10, 10, 16]z formula is obtained by signing Dw 10. 

PROOF. Let K be an intercalate matrix of type (10, 10, 16) that can be signed to give 
a [10, 10, 16]i formula. By Theorem 2.1 and Proposition 3.3, each color of K appears 
with frequency 4, 8, or 10. A simple enumeration gives the following possible 
distributions of colors. 

Number of 
of colors 

Frequency 

(i) 
(ii) 
(iii) 
(iv) 

4 

7 
8 
9 

10 

8 

9 
6 
3 
0 

10 

0 
2 
4 
6 

The last two cases can be easily eliminated by observing that it is impossible to 
arrange 3 or more ubiquitous in an intercalate 10 x 10 matrix. We omit the lengthy 
elimination of case (i) and refer to [12] for details. Granted this, we know, by Lemma 
1.1, that AT is a tensor product Kx (x) K2, where Kx and K2 are respectively intercalate 
matrices of types (5,5,8) and (2,2,2) respectively. Furthermore, K] has four colors 
with frequency 2, three colors with frequency 4, and one ubiquitous color (with 
frequency 5). It is easy to check that Kx is equivalent to D5 5. From this the result 
follows. • 

REMARK. With a hidden [4, 16, 16]z formula explicitly written down according to 
Theorem 2.1, it can be shown that every [10, 10, 16]z formula represents ±2v. 

4. Nonexistence of [16,16,28]z formulae. For given r and s, denote by r#s the 
least integer n for which there exists a nonsingular bilinear map Rr x Rs —» R". 

LEMMA 4.1. 12#20 - 28. 

PROOF. According to [9], there is a nonsingular bilinear map R]2 x R20 —» R2S. On 
the other hand, a nonsingular bilinear map of type Rn x R20 —» R21 would give 20 
sections of the vector bundle 27 £n over the real projective space RPU, which is 
impossible according to the tables of [4]. • 

THEOREM 4.2. There is no [16, l6,2S]zformula. Consequently, 16*z16 > 29. 

PROOF. We assume that there is one such formula/obtained by signing an intercalate 
matrix K of type (16,16,28), and derive a contradiction in the following steps. 

Step 1. By the Hopf-Stiefel condition, the only hidden sums of squares formulae are 
of types [ifc,32-fc,28], k = 4,8,12,16. 

Step 2. Treating/as a hidden [16, 16,28]z formula (Remark following Theorem 
2.1), and applying Lemma 3.2 with the 2-primary component of Kery* = Z4 from the 
tables of [10], we note that / represents an even multiple of v E TTJ. 
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Step 3. Consequently, there is no hidden [4,28,28] formula, for such a hidden 
formula would represent an odd multiple of v. It follows from Sard's theorem that/ 
cannot be surjective. Hence, fin fact represents the zero homotopy class. 

Step 4. We further exclude the possiblity k — 12. Note that every (hidden) normed 
bilinear map g of type [12,20,28], if it exists, must be surjective, for otherwise, we 
obtain a nonsingular bilinear map Rn x R20 —» R21 by projecting onto the orthogonal 
complement of any vector not in the image of g, contradicting Lemma 4.1. 

Step 5. It follows, by Theorem 2.1, that in the intercalate matrix K of type 
(16,16,28), each color appears either 8 or 16 times. A simple enumeration shows that 
there are 24 colors with frequency 8 and 4 ubiquitous colors (with frequency 16). By 
Lemma 1.1, K is equivalent to a tensor product K{ ® K2, where Kx and K2 are 
intercalate matrices of types (4,4,7) and (4,4,4) respectively, and Kx has one ubiq
uitous color (with frequency 4). 

Step 6. It is easy to see that every intercalate matrix of type (4,4,7) with a ubiquitous 
color is equivalent to 

T l 2 3 4"] 
2 1 5 6 
3 5 1 7 

l_4 6 7 1 J . 

Thus, Kx contains an intercalate submatrix of type (3,3,4). It follows that K contains 
an intercalate submatrix of type (12,12,16), which can be signed by the corresponding 
restriction of the signing matrix of K to give a [12,12,16]z formula. We arrive at the 
desired contradiction by observing that not even a [12,12,20] formula can exist 
([13]). • 
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