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Abstract
The current study aimed to investigate the protective effects of dietary thiamine supplementation on the regulation of colonic integrity and
mucosal inflammation in goats fed a high-concentrate (HC) diet. Twenty-four Boer goats (live weight of 35·62 (SEM 2·4) kg) were allocated
to three groups (CON: concentrate/forage = 30:70; HC; concentrate/forage = 70:30 and HCT: concentrate/forage = 70:30 with 200 mg thi-
amine/kg DMI) for 12 weeks. Results showed that compared with the HC treatment, the HCT group had a significantly higher ruminal pH value
from 0 to 12 h after the feeding. The haematoxylin–eosin staining showed that desquamation and severe cellular damage were observed in the
colon epithelium of the HC group, whereas the HCT group exhibited more structural integrity of the epithelial cell morphology. Compared with
the HC treatment, the HCT group showed a markedly increase in pyruvate dehydrogenase and α-ketoglutarate dehydrogenase enzymes
activity. The mRNA expressions in the colonic epithelium of SLC19A2, SLC19A3, SLC25A19, Bcl-2, occludin, claudin-1, claudin-4 and ZO-1
in the HCT group were significantly increased in comparison with the HC diet treatment. Compared with the HC treatment, the HCT diet sig-
nificantly increased the protein expression of claudin-1 and significantly decreased the protein expression of NF-κB-related proteins p65. The
results show that dietary thiamine supplementation could improve the colon epithelial barrier function and alleviate mucosal inflammation
injury in goats after lipopolysaccharide and low pH challenge.
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In the current ruminant production systems, large amounts of
high-concentrate (HC) diets are fed to goats or dairy cows to
maximise the yield of meats and milk(1). Although these short-
term feeding regimens might be effective to support energy
requirements, the excessive amounts of non-structural ferment-
able carbohydrates lead to a lot of negative influences as the
accumulation of SCFA and microbial translocation in rumen
and hindgut(2,3). Moreover, the decline of pH in the rumen
and gastrointestinal tract likely results in the lysis of gram-
negative bacteria and the release of lipopolysaccharide (LPS)
that translocate into the blood circulation system, which enhances
mucosal damage of the hindgut(4). Under normal physiological
conditions, only a small amount of LPS penetrates the

gastrointestinal epithelial barrier by a special immunemechanism
as a consequence of an endocytotic pathway(5,6). In contrast,
under physiological stresses caused by endotoxin and cytokines,
the barrier properties of tight junctions (TJ) can be provoked,
causing increased epithelial permeability and shift of LPS(7).

Accumulation evidence shows that the large intestine is
invaded easily by gut LPS translocation in ruminants.
Furthermore, not onlymultiple approaches of transcellular trans-
port but the monolayer intestinal mucosa is also more prone to
damage by low pH resulting in an increase in the paracellular
permeability compared with the rumen epithelial structure(8).
Ruminants can experience hindgut acidosis if the rumen cannot
maintain physiological degradability, increasing the flow rate of
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substrates for gastrointestinal (caecum and colon) microbial
fermentation(9). Bertok (2004) testified that bile acids cause
degradation of LPS in the small intestine(10). LPS is more easily
degraded in the small intestine due to the detoxification by intes-
tinal alkaline phosphatase and antimicrobial peptide(11–13).
Moreover, the animal’s colon or caecum has a higher permeabil-
ity to macromolecules than the small intestine, probably
connected with a peculiar paracellular pathway(14). Thus, the
large intestine is more LPS susceptible than the small intestine.
After translocation from the rumen to the hindgut, LPS interacts
with LPS-binding protein (LBP), which markedly enhances LPS
activity and augments the production of pro-inflammatory
cytokines(15). Subsequently, the LPS–LBP conjugates were
transferred to cell surfaces and interact with toll-like receptors
4 (TLR4), and then NF-κB were activated, which resulting in a
range of cascade immune responses(16).

As a water-soluble vitamin, thiamine plays an important role
not only in energy metabolism but also in the regulation of
barrier function(17,18). Studies have shown the fact that an
increase of dietary non-fibre carbohydrate levels (HC diet) can
decrease the content of thiamine in the rumen and may cause
thiamine deficiency(19,20). Feeding on long-term HC diets caused
a low ruminal pH and microbial activity(21) and may, therefore,
affect thiamine production(22). Pan et al. (2017) revealed that
excessive feeding of HC diets caused disturbance of bacterial
community associated with thiamine metabolism, resulting in
thiamine deficiency(23). Our prior studies have confirmed that
exogenous thiamine supplementation not only relieved inflam-
mation in ruminal epithelium via regulating the NF-KB pathway
but promoted epithelial development in goats(18,24). However,
the literature revealed no data regarding thiamine regulation
of inflammation and intestinal integrity in the colon during a long
period of feeding HC diet. Thus, we hypothesised that thiamine
supplementation could protect colonic integrity via modulating
mucosal inflammation injury. The aim of this study focuses on
the evaluation of the anti-inflammatory properties of thiamine
and enzyme activities related to thiamine function in colonic
mucosa during long-term HC diet feeding.

Methods

Ethics statement

Animal care and procedures were under the Chinese guidelines
for animal welfare and approved by the Guidelines for the Ethics
Committee of Yangzhou University (SXXY 2015-0054).

Animals and experimental design

The experimental sample size was determined according to the
prior studies on the function of thiamine during a long period of
HC feeding(18,24,25). We expanded the sample size in the study to
obtain more valid information. Twenty-four female Boer goats
(body weight= 35·62 (SEM 2·4) kg, body condition score= 3·15
(SEM 0·14), where 0 = emaciated and 5 = obese)(26) bought from
Lingtang, a village in Jiangsu province, were used in this study.
During the 2-week adaptation period, all trial animals were
housed in separate pens (1·5× 1·5 m) and receiving ad libitum

the same diet (concentrate:forage= 30:70). At the end of the
dietary adaptation period, goats (dry period) in parity 1 or 2 were
randomly allocated to three groups (complete randomised
design). The first group were fed a low-concentrate diet compris-
ing 70 % forage and 30% mixed concentrate (CON, n 8), the sec-
ond group were offered a HC diet containing 70% mixed
concentrate and 30% forage (HC, n 8), while the last group
received a a HC diet supplemented with 200 mg of thiamine/
kg DMI (HCT, n 8). Based on NRC standard (2007)(27), the diets
components and nutrient compositions were formulated to meet
the nutrient and energy requirements of 35-kg Boer goats (online
supplementary Table S1). The feedstuff thiamine content was
determined using thiamine measurement kits (TSZ Biological
Trade Co. Ltd), according to the manufacturer protocols. The
dietary supplementation dose of thiamine was confirmed
according to our previous research(28). For daily thiamine supple-
mentation method, 100 g of concentrate diet mixed with thiamine
(half of daily thiamine total intake) (T283819, thiamine hydrochlo-
ride, purity≥99%, Aladdin) was firstly fed to each animal. Then,
the remaining ration was fed until the goats had consumed the
entire 100 g of concentrate to ensure full intake of thiamine.
The goats were fed the respective diets twice daily at 07.00 h
and 18.00 h for 12weeks and had free access to freshwater during
the experimental period. All goats were dewormedwith 0·2mg of
ivermectin/kg (I8411, Solarbio) of BW for controlling gastrointes-
tinal parasites once a week during the entire experiment.
Moreover, diets and orts of goatswere tracked and gathered daily.
At the end of the experimental period, all goats were euthanised
with an intravenous injection of sodiumpentobarbital (200mg/kg
BM, provided by Experiment Management Center of Yangzhou
University).

Sample collection and analysis

On the last day of weeks 10, 11 and 12, approximately 30 ml of
representative rumen fluid samplewas collected via the oral can-
nula at 0, 1, 2, 4, 6, 8, 10 and 12 h after feeding to measure the pH
value by a high-accuracy portable pH metre (Testo 205, Testo
AG) as described by Gozho et al. (2005)(29). The pH value of
each sample was measured three times to avoid anthropogenic
errors. After death, approximately 50 ml of colonic digesta from
the proximal colon was collected, following by the immediate
determination of pH values using a portable pH metre (Testo
205, Testo AG). Colonic digesta samples were divided into three
portions. One portion was mixed with an equal amount of
physiological saline (0·90 % wt/vol of NaCl), immediately centri-
fuged at 10 000 × g for 15 min at 4 °C, and the supernatants were
taken and stored at −20°C until subsequent analyses for VFA
according to previous studies(18,23,25,28,30). The second portion
of each of the colon samples was transferred into pyrogen-free
tubes and processed for LPS concentration analyses using Rogers
et al. (1985)method, and a lowermeasurement limit of LPS as 0·1
endotoxin units/ml(31). The last portion of the colon samples was
used to determine the concentration of thiamine and lactate
using a similar method described by Ma et al. (2021b)(18).
Within 5 min after slaughtering, representative colonic epi-
thelium fragments were collected from the same position from
each animal and the muscular layer was stripped using blunt
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dissection. Then immediately, they were washed three times in
precooled PBS buffer, followed by snap-freezing in liquidN2 and
preservation under −80 °C until further analysis. In addition, 2
cm of the colonic fragments were fixed in 4 % paraformaldehyde
(Sigma) for histomorphometric microscopic analysis.

Histological analysis

Samples of the intestinal wall of the colonic mucosa were col-
lected for histological observation, fixing in 4 % formaldehyde
buffered solution (Beyotime Institute of Biotechnology),
embedded in paraffin and then sectioned. Specimens were mea-
sured for injury after haematoxylin–eosin staining as described
by Yue et al. (2012)(32). A scoring criterion was adopted for
determining histological damage as described previously(33).

Immunohistochemistry of colonictight junction analysis

The expression and distribution of the intestinal wall of the
colonic mucosa TJ proteins were conducted using immunohis-
tochemistry. The following antibodieswere used in the immuno-
histochemistry assay: claudin-1 (diluted at 1:100, ab15098;
Abcam), claudin-4 (diluted at 1:100, ab210796; Abcam), occludin
(diluted at 1:100, ab167161; Abcam) and ZO-1 (diluted at 1:100,
ab214228; Abcam). Histological sections were prepared by
embedding in paraffin, based on the method of histological
analysis. Then sectionswere incubatedwith antibodies and dyed
with hematein for light microscope observation. Image-Pro Plus
v.6.0 software (Media Cybernetics) was used to choose the same
brown colour as the consistent criterion for estimating all photos.
Each photo was measured to acquire the cumulative optical
density of each image.

Enzyme activities assay of pyruvate dehydrogenase,
α-ketoglutarate dehydrogenase and lactate
dehydrogenase in colon tissue

The pyruvate dehydrogenase (PDH), α-ketoglutarate dehydro-
genase (α-KGDH) and lactate dehydrogenase (LDH) enzyme
activities in the colonic tissue were measured using commercial
high-precision kits (Jiehuigao biological technology Co., Ltd),
according to the supplier protocols. The absorbance of all
samples was read at 605 nm and 340 nm, using a multi-function
microplate reader (FLx800, Bio-Tek Instruments, Inc.). All trial
tissue samples were normalised to total protein concentration
by the BCA kits (Beyotime Biotechnology Institute).

Assay of matrix metalloproteinase activity in colon tissue

The matrix metalloproteinase (MMP)-2 and MMP-9 activities
were determined using gelatin zymography. Total protein was
extracted from 100 mg of a ground colon tissue sample based
on a previous method(34). Briefly, 60 μg of total protein was
utilised to electrophoresis with a 12 % polyacrylamide gel con-
taining 1 % gelatin for 90 min. Subsequently, the gel was incu-
bated with a renaturation buffer and a developing buffer at 37
°C, respectively. Then, the gel was stained with 0·5 %
Coomassie blue R-250 for the following analysis. The Quantity
One software (Bio-Rad Laboratories Inc.) was used to analyse
the relative zymographic intensity of each sample(28). All

experiments were repetitively conducted thrice, and all values
were expressed as fold changes compared with the CON group.

Caspase-3 and caspase-8 activities assay in colon tissue

Caspase-3 and caspase-8 enzyme activities in the colonic
mucosa tissue were determined using a caspase activity Assay
Kit (Nanjing Jiancheng Bioengineering Institute) according to
the manufacturer instructions. In brief, 7-amino-4-trifluorome-
thylcoumarin (AFC) was used to label the caspase molecule in
each sample, then fluorescence value were detected by an
automatic fluorescence microplate reader (FLx800, Bio-Tek
Instruments, Inc.) at 405 nm(35). All valueswere expressed as fold
changes relative to the CON group.

Total RNA extraction and real-time quantitative PCR

Total RNA for all samples were extracted from approximately
100 mg of colonic tissues by using total RNAiso Plus Kit V2
(Vazyme Biotech Co., Ltd) according to the manufacturer’s pro-
tocols. Total RNA was quantified using a Nanodrop (NC2000,
Thermo Fisher), and RNA integrity number (RIN) was measured
on a Bioanalyzer (Bioanalyzer2100, Agilent). The experiment of
electrophoresis with a 1·2 % (wt/vol) denaturing agarose gel was
conducted tomeasure the integrity of RNA, and clear 28S and 18S
RNA bands were confirmed in each sample before being used in
the additional trials. Subsequently, 2 μg of total RNAwas reverse-
transcribed into cDNA using a PrimeScript RT reagent Kit
(Vazyme Biotech Co., Ltd) based on the manufacturer’s guid-
ance. The primers information of reference and target genes
were displayed in Table 1 (Sangon Biotech). Primers were
designed to span exon-exon junctions, where possible and
were assessed for amplification efficiency (calculated as
−1þ 10(−1/slope) × 100) using a serial 10-fold dilution of pooled
cDNA using a serial dilution of pooled cDNA. Melt curves for
primers were checked to verify the presence of a single product
and avoid dimer formation. Based on Gao et al. (2013)’s method
in the screening of reference genes, RefFinder (http://www.
leonxie.com/referencegene.php), including Normfinder, geNorm
and the comparative ΔCT method, was used to select the
first-rank reference gene (ACTB, glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) and hypoxanthine phosphoribosyl-
transferase (HPRT)) by determining the candidate genes’ rank-
ing(36). A lower gene geomean of ranking value means a
higher expression stability. The order of gene expression stabil-
ity, from most to least stable, was HPRT1, ACTB and GAPDH.
Therefore, GAPDHwas chosen as the reference gene to normal-
ise mRNA expression. The quantitative reverse transcription PCR
experiments were performed as described by Ma et al. (2021b)
using SYBR green plus reagent kit (Vazyme Biotech Co., Ltd)(24).
Final reference genes were used to standardise target gene
abundance using the 2−ΔΔCt method (Livak and Schmittgen,
2001)(37). All reactions were performed in triplicate.

Western blotting analysis

The ground colonic tissue samples (about 100 mg) were pyro-
lysed with RIPA lysis and extraction buffer (Solabio Biotech
Co., Ltd) for 10 min. Colonic lysates were centrifuged at
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12 000 × g at 4 °C for 30 min and then the supernatant was col-
lected. Total protein concentrations were measured in triplicate
using an Enhanced BCA Protein Detection Kit (Vazyme Biotech
Co., Ltd). The protein samples were denatured at 100 °C for
5 min, and then 60 mg of protein was run on a 12 % SDS-
PAGE gel electrophoresis at 60 V for 30 min, then 100 V for 2 h
and then transferred to a nitrocellulose membrane (Millipore).
These membranes were blocked with 5 % BSA (Beyotime
Biotechnology) for 1 h at 25 °C, and then incubated overnight
at 4 °C with primary antibodies, including anti-ZO-1 (ab214228,
diluted at 1:1000, Abcam), anti-occludin (ab167161, diluted at
1:1000, Abcam), anti-claudin-1 (ab15098, diluted at 1:1000,
Abcam) and anti-β-actin (diluted at 1:1500, Santa Cruz).
β-Actin was used as a loading control for standardisation of target
protein by Western blotting. After washing step with Tris-
Buffered Saline Tween (TBST), membranes were incubated
with the secondary antibody horseradish peroxidase (HRP-
conjugated goat anti-rabbit IgG, diluted at 1:1000, Beyotime)

for 45 min at room temperature. Then, enhanced chemilumines-
cence Plus kit (Vazyme Biotech Co., Ltd) was used to visualise
the protein bands. The signals were captured using a LAS4000
imaging system (GE Healthcare Bio-Sciences AB) and converted
to grey values by Image-Pro Plus 6.0 (Media Cybernetics Inc.)
software. The protein expression was showed as fold change
relative to the average value of the CON(38).

Statistical analysis

Shapiro–Wilk’s and Levene’s tests were used to test for normality
and homogeneity of variances, respectively. The general linear
model repeated measures was repetitively performed to analyse
ruminal pH by IBM SPSS 21.0 statistics (SPSS Inc.). For each goat,
pH value resluts for the last day of consecutive weeks 10, 11 and
12 were averaged before analysis(39). Other data were analysed
using one-way ANOVA with Dunnett’s post-test(39,40). The fixed
effect of parity, which was included in the original models and

Table 1. Primers for quantitative real-time PCR

Gene name Sequences (5 0-3 0) GenBank accession Product size (bp) Efficiency* (%)

NF-κB F: TGGCGAGAGGAGCACAGACAC XM_018043384·1 92 99·26
R: TGACCAGCGAGATGCGGACTG

IL-1β F: CATGTGTGCTGAAGGCTCTC XM_013967700·2 172 94·35
R: AGTGTCGGCGTATCACCTTT

IL-6 F: ACACTGACATGCTGGAGAAGATGC NM_001285640·1 116 95·08
R: CCGAATAGCTCTCAGGCTGAACTG

IL-10 F: AAACAAGAGCAAGGCGGTGGAG XM_005690416·3 83 97·42
R: ACTCACTCATGGCTTTGTAGACACC

CXCL-10 F: CCACGTGTCGAGATTATTGCCA NM_001285721·1 141 102·90
R: TGCCTCTTTCCGTGTTCGAG

CXCL-13 F: CTCTCCTGTCCACGGTGTTC XM_005681804·3 121 99·35
R: CCCACGGGGGATGATTTGAA

MMP-9 F: TTGAGGGCGAACTCAAGTGG NM_001314269·1 206 99·82
R: CCCATCTCCGTGCTCTCTAAC

MMP-13 F: TGTTGCTGCCCATGAGTTTG XM_005689359·3 159 92·05
R: TCATCTCCTGGACCGTAGAG

Bcl-2 F: AGGCTCACAGCACACTCTTC XM_018039337·1 193 101·54
R: GGCCTGTGGGCTTCACTTAT

Bax F: TGAAGCGCATTGGAGATG XM_013971446·2 185 97·90
R: GGCCTTGAGCACCAGTTT

Occludin F: GCCTGTGTTGCCTCCACTCTTG XM_018065677·1 118 95·62
R: CATAGCCATAGCCACTTCCGTAGC

Claudin-1 F: GCTGTGGATGTCGTGCGTGTC XM_005675123·3 161 95·54
R: TGCCTCCTCGTCGTAACTGTCC

Claudin-4 F: TCATCGGCAGCAACATCGTCAC XM_005697785·2 109 91·76
R: CAGCAGCGAGTCGTACACCTTG

ZO-1 F: TGGCAATGGTTAATGGCGTCTCC XM_018066118·1 185 96·55
R: TGCCTCCTCGTCGTAACTGTCC

SLC19A2 F: GAGGAACAGGAATCCAAGCCAGAC XM_018060285·1 90 97·48
R: GAGCAGAGGGCGAGAGGAGTAG

SLC19A3 F: TGGACCTACTCTTACCTGGCACTAC XM_005676643·3 84 97·31
R: CTGGAGGATGATGACTGGCTTGTAG

SLC25A19 F: CAGCTCCTTGAAGCGTGCCTAC XM_013972239·2 126 93·12
R: TCCAGTGGGTATGTGAGGGTCTTG

GAPDH F: GGGTCATCATCTCTGCACCT XM_005680968·3 176 103·68
R: GGTCATAAGTCCCTCCACGA

β-actin F: CTGGCACCACACCTTCTACA NM_001314342·1 189 96·79
R: GGGTCATCTTCTCACGGTTG

HPRT1 F: CACCAGCTGGCTCCGTTATG XM_018044253·1 163 94·22
R: AGTCGTTCGGTCCTGTCCAT

CXCL, C-X-C motif chemokine ligand; MMP-9, matrix metalloproteinase 9; Bcl-2, B-cell lymphoma/leukaemia 2; Bax, Bcl-2-associated X protein; ZO-1, zonula occludens-1;
SLC25A2, solute carrier family 19, member 2; SLC19A3, solute carrier family 19; SLC25A19, mitochondrial thiamine pyrophosphate transporter; GAPDH, glyceraldehyde-3-phos-
phate dehydrogenase; HPRT1, hypoxanthine phosphoribosyltransferase 1; F, forward; R, reverse.
* Efficiency = –1þ 10(–1/slope) × 100.
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was not significant (P> 0·05), was excluded from the final
model, in which only treatment was the fixed effect. The data
were considered statistically significant at P< 0·05.

Results

Changes in the ruminal pH

Compared with the CON group, the HC group had (P< 0·05)
lower ruminal pH value (P< 0·05; Fig. 1), and pH was below
6·0 within 12 h after feeding. The HCT group had a significantly
higher pH value than the HC groups from 0 to 12 h (P< 0·05)
after the feeding, and ruminal pH was above 6·0 after 4 h of
feeding.

SCFA, lipopolysaccharide, thiamine and lactate
concentrations and pH in colonic digesta

Compared with the CON group, the HC group showed a mark-
edly decrease (Table 2; P< 0·05) in pH value and thiamine con-
centration of colonic digesta, but a markedly increase (P< 0·05)
in free LPS, lactate, acetate, propionate, butyrate and total SCFA
concentrations. On the contrary, the pH value and thiamine
concentration of colonic digesta were significantly increased
(P< 0·05) in the HCT group compared with the HC goats, but
free LPS, lactate, acetate, propionate, butyrate and total SCFA
concentrations were significantly decreased (P< 0·05).

Morphological analysis in colon tissue

Haematoxylin–eosin staining showed desquamation and severe
cellular damage that was observed in the colon epithelium of the
HC group, whereas the CON and HCT goats exhibited structural
integrity of the epithelial cell morphology (Fig. 2(a)–(c)).
Meanwhile, the colonic epithelial damage scorewas significantly
higher in the HC group compared with the CON and HCT
group (P< 0·05).

Matrix metalloproteinase-, caspase- and thiamine-
dependent enzyme activities in the colonic mucosa tissues

As shown in Table 3, the HC goats showed significantly higher
levels of MMP-2, MMP-9, caspase-3, caspase-8 and LDH enzyme
activities (P< 0·05) and lower levels of PDH and α-KGDH
enzyme activities (P< 0·05) in the colonic mucosal tissue than
that in the CON goats. Moreover, compared with the HC goats,
the HCT group showed a markedly increase (P< 0·05) in PDH
and α-KGDH enzyme activities and a markedly decrease
(P< 0·05) in MMP-2, MMP-9, caspase-3, caspase-8 and LDH
enzyme activities.

Immunohistochemistry of colonic epithelium tight junction

To investigate the differences in colonic epithelium barrier with
different diet treatments, we examined the expression and
distribution of TJ (zonula occludens-1, occludin, claudin-1 and
claudin-4). The HC diet treatment showed significantly downre-
gulated protein expression levels (P< 0·05; Fig. 3) in occludens-
1 (ZO-1), occludin, claudin-1 and claudin-4 that in the CON
goats, whereas the HCT had a significant increase (P< 0·05)

in protein expression levels of ZO-1, occludin, claudin-1
and claudin-4.

Gene expression in colon tissue

The relative mRNA expression of SLC19A2, SLC19A3, SLC25A19,
Bcl-2, occludin, claudin-1, claudin-4 and ZO-1 were lower
(P< 0·05; Table 4) and NF-κB, IL-1β, IL-6, IL-10, CXCL-10,
CXCL-13, MMP-9, MMP-13 and Bax were higher (P< 0·05) in
the HC group than that in the CON group. Compared with the
HC treatment, dietary thiamine supplementation (HCT group)
reversed this change for the expression of the above
genes (P< 0·05).

Protein expression in colon tissue

Western blotting analysis showed significantly higher p65 pro-
tein levels (P< 0·05; Fig. 4) and markedly lower claudin-1 pro-
tein levels (P< 0·05) than those in the CON group, whereas the
expression levels of p65 were lower (P< 0·05) and claudin-1
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Fig. 1. Ruminal pH values for goats fed the low-concentrate diet (CON), high-
concentrate diet (HC) and HC diet supplemented with 200 mg of thiamine/kg of
DMI (HCT). Data are shown as means values with their standard errors. Means
with different letters (a–c) are significantly different (P< 0·05) at 0–12 h.

Table 2. Effects of dietary thiamine supplementation in colonic digesta
parameters, contents of thiamine and lipopolysaccharide of goats fed
with a high-concentrate diet at the time of slaughter
(means values with their standard errors)*

Item

Dietary treatment

SEM PCON HC HCT

Ph 7·24* 5·86 6·31 0·18 0·001
Thiamine (μg/l) 5·47* 1·13 2·56 0·32 0·003
Free LPS (×103 EU/ml) 18·29 36·75* 22·53 4·21 0·024
Lactate (mM) 0·47 0·82* 0·51 0·06 0·022
Acetate (mM) 26·28 48·36* 35·92 4·67 0·013
Propionate (mM) 12·32 19·45* 16·18 1·81 0·018
Butyrate (mM) 7·92 11·54* 8·78 0·67 0·013
Acetate: Propionate 2·13 2·48* 2·22 0·06 0·012
TSCFA (mM) 48·67 83·21* 64·58 6·36 0·007

CON, control; HC, high-concentrate diet; HC, high-concentrate diet supplementedwith
200 mg of thiamine/kg of DMI; LPS, lipopolysaccharide; EU, endotoxin unit; TSCFA,
total SCFA.
* Data are expressed as means values with their standard errors. Mean values with
different superscripts are significantly as determined by Tukey’s test (P< 0 05).

n 8 goats/treatment.

Thiamine supplementation enhances colonic integrity 2151

https://doi.org/10.1017/S0007114522000174  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114522000174


were higher (P< 0·05) in the HCT group compared with the
HC group.

Discussion

This study was designed to investigate the potential regulatory
effects of thiamine in simulated prolonged feeding of excess
HC diets (extreme conditions); thus, we chose a diet with a
higher concentrate to forage ratio (concentrate:forage= 30:70).
The study can provide some guidances for intensive production
in ruminants through the overfeeding of HC diets. Feeding the
HC diets to ruminants causes a high risk to damage the hindgut

epithelial structure(41,42). Prior studies demonstrated that dietary
thiamine supplementation alleviates the HC diets-induced
oxidative stress, apoptosis and promotes rumen epithelial devel-
opment in goats(18,24). Therefore, we focused on the regulation
role of thiamine on colonic integrity and mucosal inflammation
injury. Our current results showed that long-term feeding of the
HC diets can cause a decrease in the pH values, the SCFA and
thiamine concentration and an increase in LPS concentration
in the colon, while thiamine supplementation reversed these
changes. These data revealed that thiamine addition improved
microbial fermentation and the hindgut environment. Plaizier
et al. (2012) uncovered that the fluid flows out of the rumen into
the omasum and subsequently into the hindgut contains LPS(43).
Therefore, it is expected that part of the LPS found in the large
intestine is derived from gram-negative bacteria of the rumen.
This decline in ruminal pH (pH value has been below 5·6 for
a long time) can cause the lysis of gram-negative bacteria and
release LPS that translocate into the bloodstream and hindgut(4).
In the current study, dietary thiamine supplementation elevated
pH value compared with the HC groups from 0 to 12 h after
feeding, and ruminal pH was above 6·0 after 4 h of feeding.
Thiamine is essential for the growth of most bacteria strains of
Ruminococcus, such as Ruminococcus albus (cellulolytic bacte-
ria) and Ruminococcus flavefasciens (cellulolytic bacteria)(23,44).
Moreover, Wetzels et al. (2016) demonstrated that exogenous
thiamine supplementation facilitates higher pH, which helped
in the proliferation of Succinivibrio(45). Although the exact
mechanism of inhibition of HC diet-induced LPS production
via thiamine supplementation is unclear, these data may show
more valid evidence for us to study the protective effect of thi-
amine on colonic integrity.
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Table 3. Effects of dietary thiamine supplementation on enzyme activities
in the colonic mucosa of goats fed with a high-concentrate diet
(means values with their standard errors)*

Item

Dietary treatment

SEM PCON HC HCT

MMP-2 (fold change) 1·00 3·64* 2·73 0·25 0·008
MMP-9 (fold change) 1·00 2·88* 2·19 0·28 0·014
Caspase-3 (fold change) 1·00 1·65* 1·42 0·12 0·007
Caspase-8 (fold change) 1·00 1·49* 1·22 0·12 0·013
PDH (nmol/mg protein) 2·23* 1·36 2·14* 0·13 0·016
α-KGDH (nmol/mg protein) 1·48* 0·62 1·56* 0·07 0·021
LDH (U/g of protein) 254·28 371·64* 239·73 18·43 0·019

CON, control; HC, high-concentrate diet; HCT, high-concentrate diet supplemented with
200 mg of thiamine/kg of DMI; MMP-2, matrix metalloproteinase 2; PDH, pyruvate dehy-
drogenase; α-KGDH, α-ketoglutarate dehydrogenase; LDH, lactate dehydrogenase.
* Data are expressed as means values with their standard errors. Mean values with
different superscripts are significantly as determined by Tukey’s test (P< 0 05).

n 8 goats/treatment.
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The thiamine concentration in colonic digesta under different
dietary concentrate diet levels has rarely been reported. In the
present study, the thiamine concentrations in colonic digesta
of three groups were 5·47, 1·13 and 2·56 μg/l, respectively.

Dabak andGul et al. (2004) demonstrated that long-termHC diet
feeding decreased thiamine concentration in the rumen due to
the reduction in the microbial thiamine synthesis and the degra-
dation by thiaminase under lower pH(22). Thus, we supposed
that the decrease of thiamine concentration in the colon was
associated with thiaminase and microbial community. The
absorption of thiamine ismediated by carriers(46–47). In this study,
the HC diet reduced the gene expression of SLC19A2, SLC19A3
and SLC25A19 in the colonic epithelium. The transport carriers of
thiamine were pH-sensitive(48), and the LPS and pro-inflamma-
tory cytokines could also downregulate the expressions of
SLC19A2 and SLC19A3(47). The current research observed that
dietary thiamine supplementation increased the gene expression
of transport carriers of thiamine. Our previous results have dem-
onstrated that excessive feeding of the HC diet leading to a
decrease in thiamine-related enzyme activities such as PDH,
α-KGDH and transketolase in rumen epithelium tissues(24). In
order to investigate whether a similar effect would occur in
the colonic mucosa under the stimulation of LPS, we measured
the PDH, α-KGDH and LDH enzyme activities in the colonic
mucosal epithelium and obtained the same results as the pre-
vious study in rumen epithelium, while the supplementation
of exogenous thiamine reverse the change. The one possible
reason was that exogenous supplementation of thiamine main-
tains the colon homoeostasis by higher pH and lower LPS, which
stimulated the expression of thiamine transport carriers in
colonic epithelium. In addition, supplementary thiamine pro-
moted carbohydrate metabolism and production of energy(49),
while energy is also a crucial factor for the active transport of
thiamine(50).

In intensive production, injury of epithelial barrier function in
the hindgut is repeatedly diagnosed in ruminants which are con-
tinually fed a HC diet. In contrast to the multilayered structure
cellular structure of the ruminal epithelium, the colon only is
composed of a monolayer structure(51). Thus, the integrity of
the colon is more easily attacked by a high concentration of
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Table 4. Effect of dietary thiamine on the expression of genes in the
colonic mucosal tissue of goats
(means values with their standard errors)*

Item

Dietary treatment

SEM PCON HC HCT

Thiamine transport
SLC19A2 1·0* 0·71 1·13* 0·05 0·034
SLC19A3 1·0 0·42 2·06* 0·12 0·008
SLC25A19 1·0 0·37 4·12* 0·24 0·002

Inflammation
NF-κB 1·00 1·91* 1·13 0·17 0·023
IL-1β 1·00 2·46* 1·58 0·22 0·016
IL-6 1·00 3·73* 2·54 0·11 0·027
IL-10 1·00 2·15* 1·72 0·13 0·032
CXCL-10 1·00 3·22* 2·94* 0·37 0·041
CXCL-13 1·00 4·27* 2·55 0·42 0·038
MMP-9 1·00 1·75* 1·38 0·09 0·013
MMP-13 1·00 2·08* 1·10 0·11 0·022

Apoptosis
Bcl-2 1·00* 0·32 0·69 0·08 0·007
Bax 1·00 1·75* 0·91 0·15 0·014
Bcl-2/Bax 1·00* 0·18 0·76 0·11 0·008

Barrier function
Occludin 1·00* 0·54 0·82 0·06 0·012
Claudin-1 1·00* 0·35 0·93 0·10 0·015
Claudin-4 1·00* 0·56 0·90* 0·13 0·032
ZO-1 1·00* 0·49 0·72 0·15 0·026

CON, control; HC, high-concentrate diet; HCT, high-concentrate diet supplemented
with 200 mg of thiamine/kg of DMI; SLC25A2, solute carrier family 19, member 2;
SLC19A3, solute carrier family 19; SLC25A19, mitochondrial thiamine pyrophosphate
transporter; CXCL, C-X-C motif chemokine ligand; MMP, matrix metalloproteinase;
Bcl-2, B-cell lymphoma/leukaemia 2; Bax, Bcl-2 associated X protein; ZO-1, zonula
occludens-1.
* Data are expressed as means values with their standard errors. Mean values with
different superscripts are significantly as determined by Tukey’s test (P< 0 05).

n 8 goats/treatment.
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LPS(52). Besides, the acidity in the gastrointestinal tract also plays
a vital role in maintaining the integrity of the epithelial barrier(53).
The histological analysis showed that dietary thiamine supple-
mentation during long-term the HC diets feeding protects the
colonic barrier function, which may be explained that the thi-
amine supplementation decreases the accumulation of SCFA,
lactate and LPS in the colon and weakens the intense stimulation
for the colonic epithelial barrier.

As highly dynamic structures, TJ proteins dedicate to the
maintenance of physical barrier function(18). Moreover, TJ also
play a crucial role in promoting cell–cell interactions and stabil-
ising the transcellular pathways(54). Our immunohistochemistry
data showed that dietary thiamine supplementation promoted
the colon epithelial barrier integrity in comparison with the
HC group as confirmed by the markedly changed expression
and distribution of TJ in colon epithelium (occludin, claudin-1,
claudin-4 and ZO-1). The expression of the TJ gene and protein
were also in accord with the data results of immunohistochem-
istry. Several stimulating factors including lower pH and cumu-
lative toxic compounds from bacterial metabolism have been
reported to involve in the process of TJ inhibition caused by
feeding the HC diet(55). Occludin protein is responsible for the
transport of the macromolecule(56), with ZO-1 as an organising
component of the TJ link occludin to the cortical actin cytoske-
leton(57). Thus, the coordination of occludin and ZO-1 is of
profound significance for the integrity of the epithelium and
the transport of nutrients. Claudins consist of several gene
families, which have the role to enhance cell proliferation(58).
Dietary thiamine supplementation promotes an increase in pH
and a decrease in LPS levels in colon, which may be one of
the reasons for the protection of the colon integrity. Although
our previous studies have confirmed that thiamine can promote
the development of rumen epithelium(24), the exact action

mechanism of thiamine for the promotion of TJ expression is still
unclear.

The HC diet-induced LPS triggers the injury and death of
intestinal mucosal epithelial cells involved in apoptotic signal
transduction pathway, which impairedmucosal barrier function,
leading to epithelial leakage(59). The caspases family play a vital
role during the initiation and effector stages of cell apoptotic
among the multiple molecules involved in the apoptotic pro-
gramme(60). By regulation of apoptotic components, cytochrome
C forms complex, then the apoptosome which via caspase
9 triggers executioner caspase 3 and eventually induces cell
death(61). The caspase 8 regulates and controls ligand binding
triggers apoptosis in the extrinsic pathway(42). The Bcl-2 families
of proteins, including Bax (pro-apoptotic) and Bcl-2 (anti-
apoptotic), are vital regulators in the early phase of the apoptotic
pathway. The change in the expression of the Bcl2/Bax ratio
would affect dramatically the apoptotic rate and would eventu-
ally alter the phenotypic status of the cell(59). Samo et al. (2020)
revealed that long-term HC diet feeding can induce epithelial
injury and apoptosis in the colon. In the present study(42), Bax
mRNA levels were significantly decreased, whereas the Bcl-2
mRNA level and the Bcl2/bax ratio were significantly increased
in HCT goats compared with that in the HC goats. Moreover, the
results of enzyme activity analysis in colonic mucosa showed
that the HCT group had a markedly decrease in caspase-3 and
caspase-8 enzyme activity compared with the only HC diet
feeding, which suggests that thiamine contributes to the attenu-
ation of the HC diet-induced apoptosis through the regulation of
the Bax/Bcl-2 ratio and the caspase pathway.

Alleviation of inflammation in the colonic mucosa can
improve the integrity of the colon. Zhang et al. (2020) confirmed
that the effects of thiamine supplementation on local inflamma-
tion in the ruminal epithelium could be associated with a
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reduced ruminal LPS content(28). In addition, SCFA have also
been demonstrated to involve leucocytemigration andmodulate
the production of certain cytokines such as TNF-α and IL-6(62).
Therefore, we analysed the mRNA expression levels of NF-κB
and other related inflammatory genes, and the results suggested
that the gene expression levels of NF-κB, IL-1β, IL-6 and IL-10
were lower in the HCT treatment than in the HC goats.
Western blot data showed the decline of NF-κB-associated pro-
teins p65 in HCT goats. Long-term exposure of rumen epithelial
cells to LPS significantly upregulates the expression of chemo-
kines and induces acute inflammatory responses(63). These che-
mokines are crucial chemo-attractants for the recruitment of
leucocytes during inflammatory responses. Thus, the mRNA
expression levels of CXCL-10 and CXCL-13 were also lower in
the HCT goats than in HC group, though the decrease of
CXCL-10 mRNA expression was not significant. These results
revealed that thiamine regulates the expression of inflammatory
cytokines and chemokines in the colonic mucosa of goats,
which may be attributed to the inhibitory effect of thiamine-
supplemented HC diet compared with long-term HC diet
to induce inflammation. Prior research has also suggested
that NF-κB signal pathway can damage barrier function by
motivating the release of inflammatory factors(64), while the fact
has been confirmed that thiamine alleviates inflammation
and protects barrier function by regulating the NF-κB/TLR4
pathway(18,28).

In this study, we also measured the expression of MMP2,
MMP9 and MMP13 related to defence functions in the gastroin-
testinal tract. Thiamine caused a significant down-regulation in
mRNA expression of MMP-9 and MMP-13 in colonic mucosa
epithelium during long-term HC diet feeding. Furthermore, the
enzyme activities of MMP2 and MMP9 were assessed using
gelatin zymography, and our results also demonstrated that
dietary thiamine supplementation decreased the activation of
MMP2 and MMP9 enzymes. The TJ along with the extracellular
matrix are the dominating substrates for MMP(65). Furthermore,
Wu and Schmid-Schonbein (2011) found that NF-κB involves
in the activation of MMP(66). As a result, thiamine supplementa-
tion can downregulate the expression of MMP that may be
associated with alleviation of inflammation.

In general, the results from this study demonstrate that
colonic inflammation will be induced in goats fed the HC diet
for 12weeks that is reflected in desquamation and severe cellular
damage in colon epithelium. However, thiamine, as a water-
soluble vitamin, reversed the adverse effects and decreased
the cells apoptosis by suppressing the NF-κB activation and
the production of inflammatory cytokines. Thus, these findings
provide a new strategy that thiamine could potentially serve as a
dietary supplementation to contribute to alleviating the negative
effects of the trigger of the HC diet.
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