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1. In t roduc t ion . In (1) Fan showed that if A is a Hermitian matrix 
with eigenvalues Xi < . . . < Xn then, for k < n, 

k k 

max Y^ (Axjyxj) = ] £ K-j+u 

k k 

min 22 (A*h x^ — 2Z ^ji 

where Xi, . . . , xk run over all sets of k orthonormal (o.n.) vectors in unitary 
w-space V. 

It is the purpose of this paper to extend this result to the compound of a 
non-negative Hermitian (n.n.h.) matrix and investigate some of the con
sequences of this extension. 

In the sequel tr(L) will denote the trace of the matrix L and the Euclidean 
norm of L will be designated by ||L|| = (tr(L*Z,))* where L* is the conjugate 
transpose of L. F(L) is the convex image of the unit sphere ||x|| = 1 in the 
complex plane under the mapping x —* (Lx, x). 

For 1 < r < n let F ( r ) denote the rth compound space of V. A vector 
z Ç V(r) will be designated by 

z = xi A . . . A xTt Xi Ç V, 

where the indicated product is the usual Grassmann notation for the exterior 
product (2). The inner product in V(T) is defined by 

(xi A . . . A xr, 3>i A . . . A yr) = det{(xi,yJ)}iJmmi r. 

If A is a linear transformation on F to F then the induced compound of A 
on V(r) to F ( r ) is denoted by Cr{A) and is defined by 

CT(A)xi A . . . A xr = Axi A . . . A Axr. 

We list some of the essential properties of Cr(A) that will subsequently be 
used (6). 

(i) Cr(AB) = CT{A) Cr(B). 

(ii) If A is non-singular, normal, Hermitian, unitary, non-negative, then 
Cr(A) has the corresponding property. 
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EXTREMAL PROPERTIES OF MATRICES 5 2 5 

(iii) The eigenvalues of CT(A) are all possible ( J products of r of the 

eigenvalues of A. 

To state subsequent results more compactly we introduce some notation. 

The set of ( J distinct choices of integers satisfying 1 < ii < i2 < . . . < ir < k 

will be denoted by Qkr and a typical sequence in Qkr will be denoted by o>. 
If Xi, . . . , xk is a choice of k vectors in V then a typical product 

xtl A . . . A xir £ V{r) 

will be denoted by xœ. Er(ai, . . . , ak) will denote the rth elementary sym
metric function of the numbers a,\, . . . , ak: 

r 

ET(au ...,ak)= 2 n % -

2. Results on Hermitian matrices. The basic result is contained in 

THEOREM 1. Let 1 < r < k < n and let A be an n-square positive definite 
Hermitian matrix with eigenvalues 0 < «i < a2 < . . . < an. Then 

max 2 ] (Cr(A) xa, xa) = Er(ani . . . , aw_fc+i), 

min X) (Cr(A) xm xa) = Er(au . . . , « * ) 
ueQjcr 

where both max and min are taken over all sets of k o.n. vectors Xi, . . , xk in V. 

Proof. Set 

g(xu . . . , xk) = J2 (CT(A) xa, xu). 
wtQkr 

First it is clear that a set of maximizing (minimizing) o.n. vectors exist. 
This is easily seen using a standard continuity argument. If k = n then 

g(xu . . . , * » ) = tr Cr(A) = Er(au . . . ,an) 

and the result thus follows trivially whenever the number of vectors is equal 
to the dimension of the space. Now for k < n let yu . . . , yk be a minimizing 
set for g. The following argument is the same if yu . . . , yk is a maximizing 
set. Consider the linear subspace L of V spanned by yt, . . . , yk. Let P be 
the orthogonal projection onto L. Consider the mapping PA on L to L. 
Clearly if x and y belong to L then 

(PAx,y) = (Ax,Py) = (Ax, y) = (x, Ay) 

= (Px,Ay) = (x,PAy), 

so that PA is positive definite Hermitian on L to L. Let u\, . . . , uk be o.n. 
eigenvectors of PA in L. Then 
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g(yu • • • > y*) = Y, (Cr(A) yœj ya) 
weQkr 

= J2det{(Ayi81yit)}Stt=1 r 

= T,tet{(PAyu,yit)} 

= T,(Cr(PA)y„,y„) = trCr(PA) 

= Z) (CT(PA) Ua, Uœ) = £ ) (Cr(A) Uu, Uu) 

= g ( « i , . . . ,Uk). 

At this point we prove a lemma reducing this situation to the case k = n. 

LEMMA 1. L is an invariant sub space of A. 

Proof. If L is not invariant under A we lose no generality in assuming that 
Au\ $ L. Then there exists a unit vector v in the orthogonal complement of 
L such that 

p = (Aui, v) ?£ 0. 

We define 
, U\ — t pV 

u\ = 
V I + *2IPI2 

u'i = uj, j = 2, . . . ,k, 

where t is a real number. It is easy to check that u\ , . . . , uk is an o.n. set. 
Since g{u\, . . . , uk) is a minimum for g it follows that 

Jtg(u'u • • • »«*) = ° for/ = 0. 

Using the multilinearity of the Grassmann product we compute that for 
t = 0 

& tntA\ U\ — tpV Ui — t p V A A \ 

M {CM) v a + *2|p|2) A UH A • • •A Ui" vïïTTR) A Ui2A • • •A *° 
= — p(Cr(A) v A wf2 A . . . A wir, Ui A wi2 A . . . A w*r) 

— p(Cr(A) Mi A «i2 A . . . A «i r, » A ui2 A . . . A «<r) 

= - 2 | p | 2 n (^««y,«*i)-

Here we have used the fact that if 5, t > 2 and s ^ / then 

04«i., «„) = (P4 ui9, uit) = 0, 

since ui, . . . , uk is an o.n. set of eigenvectors of PA on L to L. Furthermore 
it is clear that 

T 

i-2 

https://doi.org/10.4153/CJM-1956-059-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-059-0


EXTREMAL PROPERTIES OF MATRICES 527 

and hence at t = 0 

— g(u'u . . . , « £ ) 7* 0 

and the proof of Lemma 1 is complete. 

The proof of Theorem 1 is now easily completed. Since L is invariant under 
Ay let B be the restriction of A to L. Then B is a positive definite Hermitian 
transformation o n a i dimensional subspace onto itself and the eigenvalues 
of B+are some k of the eigenvalues of A, say ahl . . . , aik. Thus 

gOyi, . . . , ? * ) = 2 (CVCB) 3>«, ?«) 
oo«Qfcr 

= tr C r(5) = £r(a<i, . - . ,a**) 

> £,(«!, . . . , a*). 

Thus 
g(xu • . . , xk) > £ r(aii . . • •«* ) 

for any o.n. vectors Xi, . . . , xk and equality is attained by choosing a set of 
o.n. eigenvectors of A corresponding to au . . . , ak. 

Remark. Theorem 1 is true for A simply n.n.h. and can be established 
by continuity from the case A positive definite. Actually Fan's Theorem for 
the sum can be proved in exactly the same way using only the condition that 
A is Hermitian. It is worth noting that Theorem 1 cannot be obtained directly 
by applying Fan's result to CT{A). The difficulty arises from the fact that 
the lexicographic ordering of the eigenvalues of Cr(A) does not necessarily 
coincide with the ordering by magnitude. Throughout this section we will 
assume A is n.n.h. unless otherwise stated. A result of A. Ostrowski (5) now 
follows easily. 

COROLLARY 1. For 1 < r < k < n 

min Er((Axu Xi), . . . , (Axfc1 xk)) = Er(au . . . , ak). 

where the min is taken over all sets of k o.n. vectors X\, . . . , xk in V. 

Proof. I t follows from the Hadamard determinant Theorem and Theorem 
1 that 

Er(alt . . . ,ak) < g(xu . . . , * * ) 

= S (Cr(A) x», xw) 
weQkr 

T 

< z n (Axu, xu) 
= Er((Axi, xi),..., (Axk, xk)). 

As before, the minimum is taken on. 
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COROLLARY 2. Under the same hypotheses as Corollary 1, 

\r)\k 
max£ r ( ( ^x i , xi), . . . , (Axk} xk)) = [ J\^J2 <*n-j+ij . 

fcVEi((,4xi, xi), . . . , (Axk, xk))\
T 

Proof. By Fan's result 
k 

max^Z (Axu xt) = Ei(ant . . . , a„_*+i). 

Then by (3; Theorem 52) 

Er((Axi, xi), . . . , (Axk, xk)) < ^ 

We must show that this value is actually taken on. This is accomplished by 
use of the following elementary lemma. 

LEMMA 2. If T is a linear transformation on V to V then there exists an o.n. 
set of vectors Vj Ç V, j = 1, . . . , m, m < n such that 

(Tvj, Vj) = n~l t r ( r ) , j = 1, . . . , m. 

Proof. We use an induction argument to exhibit a unitary matrix R such 
that 

(R* TR)U = n~l t r ( r ) , i = 1, . . . , m. 

For m = 1 it is clear since n - 1 tr(T) Ç F(T). Suppose there exists a unitary 
[/ such that 

U*TU 
VT^l ^22/ 

with 7"n, 7̂ 22, r and (w — r) square matrices respectively and (Tii)u = n~1 

tr(T). Then tr(7,
22) = (w — r)r_1 tr(J ') and applying the case m = 1 to r 2 2 

we select a unitary (n — r) -square matrix 5 such that 

(5* r 2 2 5)n = r-'tr(T). 

Define the n-square unitary matrix V by V = diag (7, 5) and set R = U V. 
This completes the induction. 

Actually, for the purposes of this proof, we need only know Lemma 2 for 
T Hermitian. In this case we can readily exhibit an o.n. set Vj satisfying 
Lemma 2; let ui, . . . , un be an o.n. set of eigenvectors of T and let H e a 
primitive nth root of unity. Then set 

n ni J 

Returning to the proof of Corollary 2, we select ynj . . . , yn-k+i corresponding 
to the eigenvalues an, . . . , an-k+i respectively. These span a subspace invariant 
under A and by restricting A to this ^-dimensional subspace and applying 
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Lemma 2 to the restricted transformation we select k o.n. vectors xh . . . , xk 

such that 
1 k 

(Axj, Xj) = 7 ^ an-j+i. 

Clearly, for this choice of the xt 

Er(KAxu xi), . . . , (Axk} xk)) = ( ) U ; 2 <*n-j+iJ , 

and the proof is complete. 

COROLLARY 3. For 1 < ii < i2 < . . . < ik < n, 

k k /-i k \k 

n <** < n AUU < (iZ) «n-^fij. 

Proof. Let e;- be the unit vector with 1 in the jth position and 0 elsewhere. 
Then 

(Aeijf €ij) = Aijtj 

and the result follows from Corollaries 1 and 2. We remark that for k = n 
we have the Hadamard determinant inequality. We also note that the lower 
inequality is contained in (5). 

COROLLARY 4. If A is an arbitrary matrix with row vectors A\, . . . , An 

then for 1 < i\ < . . . < ik < n 
hk k k /-t k \hk 

n«,<niMdi<( iE^-m) 
j=l j=l \K j=l / 

where «i < . . . < an are the non-negative square roots of the eigenvalues of 
A*A. 

Proof. Apply Corollary 3 to A* A. 

COROLLARY 5. Assume A satisfies the conditions of Theorem 1. Let 0 < wi 
< . . . < o)k be k non-negative numbers k < n. Then 

k k 

minYl (Axj, * , )" ' = I I a"*"i+1. 

Proof. 

n (Axj, x,r = n 04*„ * , r n (AXJ, * , r ^ . . . (Axk, Xlcr-^ 
3=1 j=l 3=2 

k k-1 

> 11 <*j 11 a j ...ai 
3=1 3=1 

k 
(Xj 

3=1 

and the latter value is clearly assumed. 
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COROLLARY 6. If A and B are arbitrary n-square complex matrices then 

( ( n \ I U I H / » \ I I B I H ) 

\\AB\\2 >max[\\A\\\n^-J+l) , \\B\\\n^+1) } 

where 0 < at < ai+i and 0 < fit < pi+\ (i = 1, . . . , n — 1) are the eigenvalues 
of A* A and B* B respectively. 

Proof. \\AB\\2 = tr{ABB*A*} = tr{ (A*A)* (BB*) (A*A)*}.Letyu . .. ,yn 

be an o.n. set of eigenvectors of (A* A)^ corresponding respectively to ai*,...,aj. 
Then by Corollary 5 

\\AB\\2= Z»AB*By„yj) 

>\\A\f(ni(B*Byj,yjy^ 

/'• \IUII-» 

>iNii\n/?-y+ij 
The argument is symmetric in A and B and the result follows. 

THEOREM 2. Let A and B be n.n.h. with eigenvalues ai < . . . < an and 
# ! < . . . < # „ respectively. Let 0 < 0i < . . . < 6n denote the eigenvalues of 
A + B. Then for r < k < n, 

, ( « i , . . . , a r ) , 
\r/ s = = 0 j=i 

Er(dn, . . . , 0»-*+i) < min^ I 

(Î)éff«i£.(ft,--.^r)}, 

Proof. Let xi, . . . , x* be an o.n. set of eigenvectors of C = A + J3 corres
ponding respectively to 0i, . . . , Bk. Let a* = (Axu xt) and &* = (Bxu Xi). 
Then 

£r(#i, • • • , h) = -Erfai + ii, . . . , o* + W 

= z z s rUru 
Zl<...<ir==û>«OA:r S=0 /*=( i l < - . • < !* ) C u ; = 1 tew—M 

> E E IT &£.(«<» . . . ,a, r) 

ueQkr s=0 j= l 

atQkr s=0 '̂=1 

î)i:ffi9^.(«i «o. 
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EXTREMAL PROPERTIES OF MATRICES 531 

The result is symmetric in A and B and the first inequality follows. The 
second inequality is proved analogously. 
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