THEORY OF MEROMORPHIC FUNCTIONS ON AN OPEN RIEMANN SURFACE WITH NULL BOUNDARY

MASATSUGU TSUII

In the former paper,¹⁾ I have developped a theory of meromorphic functions in a neighbourhood of a bounded closed set E of logarithmic capacity zero, by means of Evans' potential function u(z), which tends to ∞ , when z tends to any point of E. It is not known, whether such a potential function exists on an open Riemann surface with null boundary, but by a substitute of Evans' function, we shall develop the similar theory of meromorphic functions on an open Riemann surface with null boundary.

§ 1

1. Let F be an open Riemann surface with null boundary, spread over the z-plane. We exhaust F by a sequence of compact Riemann surfaces: $F_0 \subset F_1 \subset \ldots \subset F_n \to F$, where the boundary Γ_n of F_n consists of a finite number of analytic Jordan curves.

Let $u_n(z)$ be the harmonic measure of Γ_n with respect to $F_n - \overline{F}_0$, such that $u_n(z)$ is harmonic in $F_n - \overline{F}_0$, $u_n(z) = 0$ on Γ_0 , $u_n(z) = 1$ on Γ_n . Then as well known, $\lim_{n \to \infty} u_n(z) = 0$ uniformly in any compact domain of F. Let $v_n(z)$ be the conjugate harmonic function of $u_n(z)$ and

$$d_n = \int_{\Gamma_n} dv_n(z),$$

then

$$(2) d_1 \ge d_2 \ge \ldots \ge d_n \to 0.$$

We put

(3)
$$\zeta = e^{\frac{2\pi}{a_n}(u_n(z) + iv_n(z))} = re^{i0},$$

where

(4)
$$r = r_n(z) = e^{\frac{2\pi}{d_n} u_{n(z)}}, \qquad \theta = \theta_n(z) = \frac{2\pi}{d_n} v_n(z),$$

then

$$(5) 1 \leq r \leq r_n, \quad r_n = e^{\frac{2\pi}{dn}}.$$

Received July 31, 1953.

1) M. Tsuji: On the behaviour of a mernmorphic function in the neighbourhood of a closed set of capacity zero. Proc. Imp. Acad. 18 (1942). M. Tsuji: Theory of meromorphic functions in an neighbourhood of a closed set of capacity zero. Jap. Journ. Math. 19 (1944-48).

$$(6) r_1 \leq r_2 \leq \ldots \leq r_n \to \infty.$$

In this paper, r, θ mean always $r_n(z)$, $\theta_n(z)$.

Since $\lim_{n\to\infty} u_n(z)=0$ uniformly in any compact domain of F, the part of F_n , such that $r_n^\delta \le r_n(z) \le r_n \ (0<\delta<1)$ tends to the ideal boundary of F, for $n\to\infty$. Hence for a given F_n , we can take m so large that the part $r_m^\delta \le r_m(z) \le r_m$ of F_m lies outside of F_n .

Let Δ_r be the part of $F_n - \overline{F}_0$, such that $1 \le r_n(z) \le r$ ($\le r_n$) and $C_r : r_n(z) = r$ ($1 \le r \le r_n$) be the niveau curve of $r_n(z)$, then by (1),

$$\int_{C_n} d\theta = 2\pi.$$

Let w(z) be one-valued and meromorphic on F. We put

(8)
$$m(r, a) = \frac{1}{2\pi} \int_{c_r} \log \frac{1}{[w(z), a]} d\theta,$$

where

$$[a, b] = \frac{|a-b|}{\sqrt{(1+|a|^2)(1+|b|^2)}}.$$

Let n(r, a) be the number of zero points of w(z) - a in $\overline{F}_0 + \Delta_r$ and put

(9)
$$N(r, a) = \int_{-\pi}^{r} \frac{n(r, a)}{r} dr - C(a), \qquad C(a) = m(1, a).$$

(10)
$$T_n(r, a) = m(r, a) + N(r, a),$$

(11)
$$A(r) = A_0 + \iint_{\Lambda_r} \left(\frac{|w'|}{1 + |w|^2} \right)^2 r dr d\theta, \quad S(r) = \frac{A(r)}{\pi},$$

(12)
$$T(r) = \int_{1}^{r} \frac{S(r)}{r} dr,$$

where $w' = \frac{dw}{d\zeta}$, $\zeta = re^{i\theta}$ and A_0 is the area of the image of F_0 by w = w(z) on the w-sphere K.

Then we shall prove an analogue of Nevanlinna's first fundamental theorem.

THEOREM 1.
$$T_n(r, a) = T_n(r)$$
 $(1 \le r \le r_n)$.

Though $T_n(r)$ is defined for $1 \le r \le r_n$, it is enough for our purpose.

Proof. Considering w(z) as a function of $\zeta = re^{i\theta}$, we have

$$\frac{dm(r, a)}{dr} - \frac{dm(r, b)}{dr} = \frac{1}{2\pi} \int_{c_r} \frac{\partial}{\partial r} \log \left| \frac{w - b}{w - a} \right| d\theta$$

$$= \frac{1}{2\pi r} \int_{c_r} d \arg \left(\frac{w - b}{w - a} \right) = \frac{n(r, b) - n(r, a)}{r},$$

$$\frac{dm(r, a)}{dr} + \frac{n(r, a)}{r} = \frac{dm(r, b)}{dr} + \frac{n(r, b)}{r},$$

hence integrating on [1, r], we have by (9),

$$T_n(r, a) = T_n(r, b).$$

Let $d\omega(b)$ be the surface element on K, then

$$T_n(r, a) = \frac{1}{\pi} \iint_{K} T_n(r, b) d\omega(b) = \frac{1}{\pi} \iint_{K} m(r, b) d\omega(b) + \frac{1}{\pi} \iint_{K} N(r, b) d\omega(b) = \int_{1}^{r} \frac{S(r)}{r} dr + \text{const.}.$$

If we put r = 1, then we see that const. = 0, so that

$$T_n(r, a) = T_n(r)$$
.

2. To prove that $0 \le C(a) = m(1, a) \le K$, where K is a constant independent of a and n, we shall prove a lemma.

LEMMA. Let f(z) = u(z) + iv(z) (f(0) = 0) be regular for $|z| \le 1$ (z = x + iy) and v(x) = 0 for $-1 \le x \le 1$, v(z) > 0 for y > 0, $|z| \le 1$ and $v(z) = -v(\overline{z})$ for y < 0, $|z| \le 1$.

Then f(z) is schlicht in $|z| \le 1/7$.

Proof. By the hypothesis,

(1)
$$v(z) = v(re^{i\theta}) = a_1 r \sin \theta + \sum_{n=0}^{\infty} a_n r^n \sin n\theta \qquad (a_1 > 0),$$

where

$$a_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} v(e^{i\theta}) \sin \theta d\theta = \frac{2}{\pi} \int_{0}^{\pi} v(e^{i\theta}) \sin \theta d\theta,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} v(e^{i\theta}) \sin n\theta d\theta = \frac{2}{\pi} \int_{0}^{\pi} v(e^{i\theta}) \sin n\theta d\theta.$$

Since $|\sin n\theta| \le n |\sin \theta|$.

(2)
$$|a_n| \leq \frac{2}{\pi} \int_0^{\pi} v(e^{i\theta}) |\sin n\theta| d\theta \leq \frac{2n}{\pi} \int_0^{\pi} v(e^{i\theta}) \sin \theta d\theta = na_1.$$

Since $f(z) = a_1 z + \sum_{n=2}^{\infty} a_n z^n$, we have for $|z_1| \le r$, $|z_2| \le r$ (r < 1),

$$\left| \frac{f(z_1) - f(z_2)}{z_1 - z_2} \right| = a_1 + \sum_{n=2}^{\infty} a_n (z_1^{n-1} + \dots + z_2^{n-1}) \ge a_1 - \sum_{n=2}^{\infty} n |a_n| r^{n-1}$$

$$\ge a_1 (1 - \sum_{n=2}^{\infty} n^2 r^{n-1}) = a_1 \frac{1 - 7r + 6r^2 - 2r^3}{(1 - r)^3} > a_1 \frac{1 - 7r}{(1 - r)^3} \ge 0, \text{ if } r \le 1/7.$$

Hence f(z) is schlicht in $|z| \le 1/7$. q.e.d.

We shall prove

Theorem 2.
$$0 \le C(a) = m(1, a) \le K$$
,

where K is a constant, which is independent of a and n.

Proof. Let z_0 be a point of Γ_0 and U_0 be its neighbourhood, which consists of regular points of F_1 . Then for a suitable U_0 , we can map U_0 on $|\tau| < 1$ conformally, such that z_0 becomes $\tau = 0$ and the part of U_0 , which lies in $F_1 - F_0$ is mapped on the upper half of $|\tau| < 1$ and the part of Γ_0 , which lies in U_0 becomes the diameter L of $|\tau| = 1$ through $\tau = -1$ and $\tau = 1$.

We put $u_n(z) = u(\tau)$, then $u(\tau) = 0$ on L, $u(\tau) > 0$ on the upper half of $|\tau| < 1$, so that $u(\tau)$ can be continued harmonically across L in the lower half of $|\tau| < 1$, by putting $u(\tau) = -u(\overline{\tau})$. Hence if we put $f_n(z) = -v_n(z) + iu_n(z) = f(\tau)$, then by the lemma, $f(\tau)$ is schlicht in $|\tau| \le 1/7$. Hence there exists a constant R, such that $f_n(z) = -v_n(z) + iu_n(z)$ is regular and schlicht in $|z - z_0| \le R$ for any z_0 of Γ_0 .

Hence by Koebe's distortion theorem, there exists a constant K_0 , such that for any two z_1 , z_2 on Γ_0 ,

$$|f'_n(z_1)| \leq K_0 |f'_n(z_2)|.$$

Since $u_n = 0$ on Γ_0 , we have

(1)
$$0 \leq \frac{dv_n(z_1)}{ds} \leq K_0 \frac{dv_n(z_2)}{ds},$$

where ds is the arc element of Γ_0 and we choose the sense of Γ_0 positive with respect to F_0 . Hence if we put

(2)
$$M_n = \operatorname{Max}_{\Gamma_0} \frac{dv_n(z)}{ds}, \qquad m_n = \operatorname{Min}_{\Gamma_0} \frac{dv_n(z)}{ds},$$

then

$$(3) M_n \leq K_0 m_n.$$

Now

$$(4) \quad m(1, a) = \frac{1}{d_n} \int_{\Gamma_0} \log \frac{1}{\lfloor w, a \rfloor} \frac{dv_n(z)}{ds} ds \leq \frac{M_n}{d_n} \int_{\Gamma_0} \log \frac{1}{\lfloor w, a \rfloor} ds \leq \frac{K_1 M_n}{d_n},$$

where K_1 is a constant independent of a and n. Since

(5)
$$d_n = \int_{\Gamma_0} \frac{dv_n}{ds} ds \ge Lm_n,$$

where L is the length of Γ_0 , we have

(6)
$$m(1, a) \leq \frac{K_1 M_n}{L m_n} \leq \frac{K_1 K_0}{L} = K,$$

where K is a constant independent of a and n.

3. By means of Theorems 1 and 2, we shall prove

Theorem 3.2. Let n(a) be the number of zero points of w(z) - a in F and $n_0 = \sup_{z} n(a)$.

Let E be the set of a, such that $n(a) < n_0$, then E is of logarithmic capacity zero.

Proof. First suppose that $n_0 < \infty$. Then there exists a_0 , such that $n(a_0) = n_0$. We take n so large that $w(z) - a_0$ has n_0 zeros in F_n . Then for any δ $(0 < \delta < 1)$, we take m so large that the part of F_m , such that $r_m^{\delta} \le r_m(z) \le r_m$ lies outside of F_n , then

(1)
$$T_m(r_m) \ge N(r_m, a_0) \ge n_0 \int_{r_m^{\delta}}^{r_m} \frac{dr}{r} - C(a) \ge n_0 (1 - \delta) \log r_m - O(1).$$

Let E be the set of a, such that $n(a) \le n_0 - 1$ and suppose that cap. E > 0, then we may assume that E is a bounded closed set. Let u(w) be the equilibrium potential of E:

$$u(w) = \int_{E} \log \frac{1}{[w, a]} d\mu(a), \qquad \int_{E} d\mu(a) = 1,$$

such that u(w) is bounded on the w-sphere K. Then from $m(r, a) + N(r, a) = T_m(r)$, we have

$$O(1) + \int_{E} N(r_m, a) d\mu(a) = T_m(r_m),$$

so that

(2)
$$T_m(r_m) \leq (n_0 - 1) \log r_m + O(1)$$
.

Since $r_m \to \infty$, we have from (1), (2),

$$n_0(1-\delta) \leq n_0-1$$
.

which is impossible, if $\delta < 1/n_0$. Hence cap. E = 0.

If $n_0 = \infty$, then for any N > 0, there exists a_0 , such that $n(a_0) \ge N$, then the set of a, such that $n(a) \le N - 1$ is of logarithmic capacity zero. Since N is arbitrary, the set of a, such that $n(a) < \infty$ is of logarithmic capacity zero.

Remark. Let \emptyset be the Riemann surface of the inverse function z = z(w) of w(z) spread over the w-sphere K. If $n_0 < \infty$, then the set of a, such that $n(a) = n_0$ is an open set, so that \emptyset consists of n_0 sheets and the projection of singular points of z(w) on K is a closed set of logarithmic capacity zero.

From the above proof, we have easily

²⁾ Y. Nagai: On the behaviour of the boundary of Riemann surfaces, II. Proc. Japan Acad. 26 (1950). Z. Yûjôbô: On the Riemann surfaces, no Green's function of which exists. Mathematica Japonicae, II, No. 2 (1951). M. Tsuji: Some metrical theorems on Fuchsian groups. Kodai Math. Seminar Reports. Nos. 4-5 (1950). A. Mori: On Riemann surfaces on which no bounded harmonic function exists. Journ. Math. Soc. Japan. 3 (1951).

Theorem 4. If $n_0 = \sup_a n(a) = \infty$, then w(z) takes any value infinitely often, except a set of logarithmic capacity zero and

$$\lim_{n\to\infty}\frac{T_n(\gamma_n)}{\log\gamma_n}=\infty.$$

Conversely, if this condition is satisfied, then w(z) takes any value infinitely often, except a set of logarithmic capacity zero.

\$ 2

1. Let \emptyset be the Riemann surface of the inverse function z = z(w) of w(z) spread over the w-plane and w_0 be its regular point. We continue z(w) along a half-line $L(\varphi)$: arg $(w - w_0) = \varphi$ till we meet a singular point of z(w). Then we obtain the Mittag-Leffler's principal star region $H(w_0)$. Let E be the set of φ , such that $L(\varphi)$ meets a singular point of z(w) at a finite distance. Then

THEOREM 5.31 E is of measure zero.

This is an extension of Gross' theorem.49

Proof. Let $H_R(w_0)$ be the part of $H(w_0)$, which lies in $|w-w_0| < R$ and E_R be the set of φ , such that $L(\varphi)$ meets a singular point of z(w) in $|w-w_0| < R$. Let F_R be the image of $H_R(w_0)$ on F and $C_r(R)$ be the part of C_r contained in F_R and s(r) be the length of its image in $H_R(w_0)$, then writing $w' = \frac{dw}{d\zeta}$, $\zeta = re^{i\theta}$, we have

$$s(r)^{2} = \left(\int_{C_{r}(R)} |w'| r d\theta\right)^{2} \leq 2 \pi r \int_{C_{r}(R)} |w'|^{2} r d\theta = 2 \pi r \frac{dA(r)}{dr},$$

where A(r) is the area of the image of $\Delta_r \cdot F_R$ in $H_R(w_0)$. Hence

$$\int_{\sqrt{r_n}}^{r_n} \frac{s(r)^2}{r} dr \leq 2 \pi A(r_n) \leq 2 \pi^2 R^2.$$

Hence if we put $\min_{\substack{\gamma \in r \leq r_n \\ r_n \leq r \leq r_n}} s(r) = s_n$, then

$$s_n^2 \log r_n \leq 4 \pi^2 R^2.$$

Since $r_n \to \infty$, we have $s_n \to 0$, so that $mE_R = 0$. Since R is arbitrary, we have mE = 0.

2. Let a Riemann surface F be spread over the z-shpere K. If there exists a sequence of compact Riemann surfaces $F_n \to F$, such that $L_n/|F_n| \to 0$ $(n \to \infty)$,

³⁾ K. Noshiro: Open Riemann surface with null boundary. Nagoya Math. Journ. 3 (1951).
Z. Yûjôbô. l. c. 2).

⁴⁾ W. Gross: Über die Singularitäten analytischer Funktionen. Monatshefte f. Math. u. Phys. 29 (1918).

then F is called regularly exhaustible in Ahlfors' sense, where L_n is the length of the boundary of F_n and $|F_n|$ is its area measured on K.

THEOREM 6.51 The Riemann surface \emptyset of the inverse function z(w) of w(z) is regularly exhaustible in Ahlfors' sense.

Proof. Writing
$$w' = \frac{dw}{d\zeta}$$
, $\zeta = re^{i\theta}$, we put as in §1,

(1)
$$A(r) = A_0 + \iint_{\Lambda r} \left(\frac{|w'|}{1+|w|^2}\right)^2 r dr d\theta,$$

(2)
$$L(r) = \int_{c_r} \frac{|w'|}{1+|w|^2} r d\theta.$$

Then

(3)
$$L(r)^2 \leq 2 \pi r \frac{dA(r)}{dr}.$$

(i) First suppose that $A(r_n) \to \infty$ $(n \to \infty)$ and suppose that

$$(4) L(r) > (A(r))^{3/4}$$

for any r, such that $\sqrt{r_n} \leq r \leq r_n$, then

$$\int_{\sqrt{r_n}}^{r_n} \frac{dr}{r} \leq 2 \pi \int_{1}^{r_n} \frac{dA(r)}{(A(r))^{3/2}} \leq \frac{4 \pi}{A_0}.$$

Since $\int_{\sqrt{r_n}}^{r_n} \frac{dr}{r} = \frac{1}{2} \log r_n \to \infty$, this is absurd, hence there exists $\tau_n (\sqrt{r_n} \le \tau_n \le r_n)$, such that

$$(5) L(\tau_n) \leq (A(\tau_n))^{3/4}.$$

Since $A(r_n) \to \infty$ with $A(r_n) \to \infty$, we have

(6)
$$\frac{L(\tau_n)}{A(\tau_n)} \leqq \frac{1}{(A(\tau_n))^{1/4}} \to 0 \qquad (n \to \infty).$$

(ii) If $A(r_n) \leq K \ (n \to \infty)$, then

$$\int_{\sqrt{r_n}}^{r_n} \frac{L(r)^2}{r} dr \leq 2 \pi A(r_n) \leq 2 \pi K,$$

so that there exists τ_n ($\sqrt{r_n} \le \tau_n \le r_n$), such that $L(\tau_n) \to 0$, hence

(7)
$$\frac{L(\tau_n)}{A(\tau_n)} \to 0 \qquad (n \to \infty).$$

Hence our theorem is proved.

§ 3

1. As an application of Theorem 6, we shall prove an extension of Myrberg's

⁵⁾ K. Noshiro: l. c. 3).

theorem. Let F be a closed Riemann surface of genus $p \ge 2$, spread over the z-sphere K. We make F become a surface of planar character by cutting along p disjoint ring cuts C_i ($i = 1, 2, \ldots, p$), and let F_0 be the resulting surface. We take infinitely many same samples as F_0 and connect them along the opposite shores of C_i as in the well known way, then we obtain a covering surface $F^{(\infty)}$ of F, which is of planar character. Hence by Koebe's theorem, we can map $F^{(\infty)}$ on a schlicht domain D on the ζ -plane. The boundary E of D is a bounded perfect set, which is the singular set of a certain linear group of Schottky type. Myrberg⁶) proved that E is of positive logarithmic capacity, hence $F^{(\infty)}$ is of positive boundary.

We shall generalize this Myrberg's theorem as follows.

Instead of cutting F along p ring cuts, we cut F along q $(1 \le q \le p)$ ring cuts C_i (i = 1, 2, ..., q) and let F_0 be the resulting surface. We take infinitely many same samples as F_0 and connect them along the opposite shores of C_i (i = 1, 2, ..., q), then we obtain a covering surface $F_{(q)}^{(\infty)}$ of F, which is of infinite genus, if q < p.

2. We shall prove

THEOREM 7. $F_{(1)}^{(\infty)}$ is of null boundary, while if $q \ge 2$, $F_{(q)}^{(\infty)}$ is of positive boundary and there exists a non-constant bounded harmonic function u(z) on $F_{(q)}^{(\infty)}$, whose Dirichlet integral D[u] on $F_{(q)}^{(\infty)}$ is finite.

Proof. (i). First we shall prove that $F_{(1)}^{(\infty)}$ is of null boundary. We cut F along $C_1 = C$ and let F_0 be the resulting surface. We take infinitely many same samples as F_0 :

(1)
$$F'_1, F'_2, \ldots, F'_n, \ldots \\ F''_1, F''_2, \ldots, F''_n, \ldots$$

Let C^+ , C^- be the both shores of C. When we consider them belong to the boundary of F'_n , we denote them by $(C^+)'_n$, $(C^-)'_n$.

Similarly we define $(C^+)''_n$, $(C^-)''_n$ for F''_n .

We connect $\{F'_n\}$, $\{F''_n\}$ as follows.

We identify C^+ of F_0 with $(C^-)'_1$ of F'_1 , $(C^+)'_1$ of F'_1 with $(C^-)'_2$ of F'_2 and so on. We identify C^- of F_0 with $(C^+)''_1$ of F''_1 , $(C^-)''_1$ of F''_1 with $(C^+)''_2$ of F''_2 and so on and put

(2)
$$F_n = F_0 + \sum_{\nu=1}^n F'_{\nu} + \sum_{\nu=1}^n F''_{\nu}, \qquad F_n - F_{n-1} = F'_n + F''_n.$$

We take a circular disc Δ_0 in F_0 and let Γ_0 be its boundary.

⁶⁾ P. J. Myrberg: Die Kapazität der singulären Menge der linearen Gruppen. Ann. Acad. Fenn. Ser. A. Math.-Phys. 10 (1941). M. Tsuji: On the uniformization of an algebraic function of genus p≥2. Tohoku Math. Journ. 3 (1951).

Then

$$\Delta_0 \subset F_0 \subset F_1 \subset \dots \subset F_n \to F_{(1)}^{(\infty)}.$$

The boundary Γ_n of F_n is

(4)
$$\Gamma_n = (C^+)'_n + (C^-)''_n.$$

Let $u_n^{(0)}(z)$ be the harmonic measure of Γ_n with respect to $F_n - \overline{A_0}$ and let $v_n^{(0)}(z)$ be its conjugate harmonic function and put

(5)
$$d_n^{(0)} = \int_{\Gamma_0} dv_n^{(0)}(z), \qquad \mu_n^{(0)} = 2\pi/d_n^{(0)}.$$

Let $u'_n(z)$ be the harmonic measure of $(C^+)'_n$ with respect to F'_n , such that $u'_n(z) = 0$ on $(C^-)'_n$, $u'_n(z) = 1$ on $(C^+)'_n$ and let $v'_n(z)$ be its conjugate harmonic function

Let $u_n''(z)$ be the harmonic measure of $(C^-)_n''$ with respect to F_n'' , such that $u_n''(z) = 0$ on $(C^+)_n''$, $u_n''(z) = 1$ on $(C^-)_n''$. We put

(6)
$$d_n = \int_{(c-)'_n} dv'_n(z) + \int_{(c+)''_n} dv''_n(z), \qquad \mu_n = 2\pi/d_n.$$

Then as Noshiro⁷⁾ proved,

(7)
$$\mu_n^{(0)} \ge \mu_0^{(0)} + \mu_1 + \dots + \mu_n.$$

Since $\mu_n \ge \text{const.} = a > 0$, we have $\lim_{n \to \infty} \mu_n^{(0)} = \infty$, so that $\lim_{n \to \infty} d_n^{(0)} = 0$, hence $F_{(1)}^{(\infty)}$ is of null boundary.

(ii) Next we shall prove that $F_{(q)}^{(\infty)}$ $(q \ge 2)$ is of positive boundary. Suppose that $F_{(q)}^{(\infty)}$ is of null boundary, then by Theorem 6, $F_{(q)}^{(\infty)}$ is regularly exhaustible in Ahlfor's sense, so that there exists a sequence of compact Riemann surfaces: $F_1 \subset F_2 \subset \ldots \subset F_n \to F_{(q)}^{(\infty)}$, such that

$$\frac{L_n}{S_n} \to 0, \qquad (n \to \infty),$$

where L_n is the length of the boundary Γ_n of F_n , measured on the z-sphere K and

$$S_n = \frac{|F_n|}{|F|},$$

where $|F_n|$, |F| are the spherical areas of F_n and F respectively.

As seen from the proof of Theorem 6, Γ_n is the niveau curve of a harmonic measure, so that Γ_n consists of a finite number ν_n of disjoint closed curves, which are not homotop null, hence the length of each curve is $\ge a > 0$, where a is a constant, which depends on F only. Hence

$$(3) L_n \ge a\nu_n.$$

⁷⁾ K. Noshiro: 1, c. 3).

We denote the Euler's characteristic of F_n by ρ_n .

Let C_i (i = q + 1, ..., p) be covered $\mu_i^{(n)}$ -times by F_n , then we see easily that

(4)
$$\rho_n \leq 2(\mu_{q+1}^{(n)} + \ldots + \mu_p^{(n)}) + \nu_n \leq 2(\mu_{q+1}^{(n)} + \ldots + \mu_p^{(n)}) + L_n/a.$$

Now by Ahlfors' second covering theorem, 8)

$$\mu_i^{(n)} \leq S_n + hL_n,$$

where h is a constant, which depends on F only, so that

(6)
$$\rho_n \leq 2(\not p - q)S_n + hL_n$$

with a suitable h.

Since $\rho_0 = 2(p-1)$ is the Euler's characteristic of F, we have by Ahlfors' fundamental theorem on covering surfaces, 9

(7)
$$\rho_n \ge 2(p-1)S_n - hL_n,$$

so that by (6),

$$(8) 2(q-1)S_n \leq hL_n,$$

which contradicts (1), if $q \ge 2$. Hence $F_{(q)}^{(z)}(q \ge 2)$ is of positive boundary.

Next we shall prove that there exists a non-constant bounded harmonic function u(z) on $F_{(q)}^{(\infty)}$, whose Dirichlet integral D[u] is finite.

We take off F_0 from $F_{(q)}^{(\infty)}$, then there remains 2q connected surfaces θ_i^+ , $\theta_i^ (i=1, 2, \ldots, q)$, where θ_i^+ abutts on F_0 along C_i^+ and θ_i^- abutts on F_0 along C_i^+ .

(9)
$$d_n = \int_{c_i^+} dv_n(z).$$

Since $u_n(z)$ decreases with n, d_n decreases with n.

From the above proof, we see that

$$\lim_{n\to\infty}d_n>0.$$

Let

$$\lim_{n\to\infty}u_n(z)=u(z)$$

and v(z) be its conjugate harmonic function and put

⁸¹ L. Ahlfors: Zur Theorie der Überlagerungsflächen. Acta Math. 65 (1935).

⁹⁾ L. Ahlfors: l. c. 8).

$$(12) d = \int_{c_1^+} dv(z),$$

then $\lim_{n\to\infty} d_n = d > 0$, so that $u(z) \equiv \text{const.}$, hence u(z) = 0 on C_1^+ , 0 < u(z) < 1 in \emptyset .

Let D[u] be the Dirichlet integral of u(z) on \emptyset , then

$$(13) 0 < D[u] \leq d < \infty.$$

Hence there exists a non-constant bounded harmonic function on \emptyset , which vanishes on C_1^+ and whose Dirichlet integral is finite. Similarly there exists a similar harmonic function on \emptyset_i^+ , \emptyset_i^- .

Hence as proved by R. Nevanlinna¹⁰⁾ and Bader and Pareau,¹¹⁾ there exists a non-constant bounded harmonic function on $F_{(q)}^{(\infty)}$, whose Dirichlet integral is finite.

Remark. By Sario's theorem, ¹²⁾ there exists no non-constant one-valued regular function on $F_{(q)}^{(\infty)}$, whose Dirichlet integral is finite.

§ 4

Let w(z) be one valued and meromorphic on F and \emptyset be the Riemann surface of the inverse function z(w) of w(z) spread over the w-plane and $\emptyset^{(\rho)}$ be a connected piece of \emptyset , which lies above $|w-w_0|<\rho$ and $F^{(\rho)}$ be its image on F. We assume that $F^{(\rho)}$ is non-compact.

With the same notations as §1 we put

(1)
$$\Delta_r^{(\rho)} = \Delta_r \cdot F^{(\rho)}, \quad F_n^{(\rho)} = F_n \cdot F^{(\rho)}, \quad C_r^{(\rho)} = C_r \cdot F^{(\rho)}.$$

For the sake of brevity we assume that $w_0 = 0$.

To define m(r, a), we introduce a metric (a, b) in $|w| < \rho$ as follows.¹³⁾ For $|a| < \rho$, we put

(2)
$$(a, 0) = \frac{2\rho |a|}{\rho^2 + |a|^2}.$$

Let $U_a(w) = \frac{\rho^2(w-a)}{\rho^2 - \bar{a}w}$, then for $|a| < \rho$, $|b| < \rho$, we define (a, b) by

(3)
$$(a, b) = (U_a(b), 0) = \frac{2 \rho |b - a| / |\rho^2 - \overline{a}b|}{1 + \rho^2 |b - a|^2 / |\rho^2 - \overline{a}b|^2}.$$

By this metric, we put

¹⁰⁾ R. Nevanlinna: Über der Existenz von beschränkten Potentialfunktionen auf Flächen von unendlichem Geschlecht. Math. Zeits. 52 (1950).

¹¹⁾ R. Bader and M. Pareau: Domaines non-compacts et classification des surfaces de Riemann. C.R. 232 (1951). A. Mori: On the existence of harmonic functions on a Riemann surface. Journ. Fac. Sci. Tokyo Univ. Section I, Vol. VI, Part 4 (1951).

¹²⁾ L. Sario: Über Riemannsche Fläche mit hebbarem Rand. Ann. Acad. Fenn. A. I. 50 (1948).

¹³⁾ M. Tsuji: On a regular function which is of constant absolute value on the boundary of an infinite domain. Tohoku Math. Journ. 3 (1951).

(4)
$$m(r, a) = \frac{1}{2\pi} \int_{c_r^{(\rho)}} \log \frac{1}{(w(z), a)} d\theta.$$

We use the same notations as § 1, since no confusion occurs.

Let n(r, a) be the number of zero points of w(z) - a in $\overline{F}_0^{(\rho)} + \Delta_r^{(\rho)}$ and put

(5)
$$N(r, a) = \int_{1}^{r} \frac{n(r, a)}{r} dr - C(a), \qquad C(a) = m(1, a).$$

Then as Theorem 2,

$$(6) 0 \le C(a) \le K,$$

where K is a constant independent of a and n. We put

(7)
$$T_n(r, a) = m(r, a) + N(r, a),$$

(8)
$$A(r) = A_0 + \int_{\Delta_{\rho}^{(r)}} \left(\frac{|w'|}{1+|w|^2}\right)^2 r dr d\theta, \quad S(r) = \frac{A(r)}{\sigma(\rho)},$$

where A_0 is the area of the image of $F_0^{(\rho)}$ on the w-sphere K by w = w(z), $w' = \frac{dw}{d\zeta}$, $\zeta = re^{i\theta}$ and $\sigma(\rho) = \frac{\pi \rho^2}{1 + \rho^2}$ is the area of the projection of $|w| \le \rho$ on K.

(9)
$$T_n(r) = \int_1^r \frac{S(r)}{r} dr,$$

(10)
$$L(r) = \int_{c_r^{(p)}} \frac{|w'|}{1 + |w|^2} r d\theta.$$

Then similarly as my former paper, 14) we have

THEOREM 8. $T_n(r, a) = T_n(r) + O(\mathfrak{O}(r)), \quad (1 \le r \le r_n),$

where

$$\Phi(r) = \int_1^r \frac{L(r)}{r} dr.$$

For $|a| \leq \rho_1 < \rho$,

$$|O(\mathfrak{Q}(r))| \leq K\mathfrak{Q}(r).$$

where K is a constant, which depends ρ_1 on only.

Theorem 9. For any δ (0 < δ < 1), there exists τ_n ($r_n^{1-\delta} \le \tau_n \le r_n$) ($n \ge n_0$), such that

$$\Phi(\tau_n) \leq \sqrt{T_n(\tau_n)} \log T_n(\tau_n).$$

Hence for any $\varepsilon > 0$.

$$(1-\varepsilon)T_n(\tau_n) \leq T_n(\tau_n, a) \leq (1+\varepsilon)T_n(\tau_n) \qquad (n \geq n_1)$$

¹⁴⁾ M. Tsuji: l. c. 13).

Proof. We follow Dinghas. 15) By (10), (8),

$$\begin{split} L(r)^2 & \leq 2 \, \pi r \! \int_{\mathcal{C}_r^{(\rho)}} \! \left(\frac{\mid w' \mid}{1 + \mid w \mid^2} \right)^2 \! r d\theta = 2 \, \pi r \, \frac{dA(r)}{dr} \, , \\ \frac{L(r)}{r} & \leq \sqrt{2 \, \pi} \, \sqrt{\frac{A'(r)}{r}} \, , \end{split}$$

so that

$$\phi(r) \leq \sqrt{2\pi} \int_{1}^{r} \sqrt{\frac{A'(r)}{r}} dr.$$

Hence

(1)
$$(\phi(r))^2 \leq 2\pi \int_1^r \frac{dr}{r} \int_1^r A'(r) dr = 2\pi\sigma(\rho) r \log r \cdot T'_n(r).$$

Suppose that

for any r, such that $r_n^{1-\delta} \le r \le r_n$, then

$$\int_{r_n^{1-\delta}}^{r_n} \frac{dr}{r \log r} \le 2 \pi \sigma(\rho) \int_{r_n^{1-\delta}}^{r_n} \frac{dT_n(r)}{T_n(r) \log^2 T_n(r)} \le 2 \pi \sigma(\rho) \frac{1}{\log T_n(r_n^{1-\delta})} \to 0$$

$$(n \to \infty).$$

Since $\int_{r_n^{1-\delta}}^{r_n} \frac{dr}{r \log r} = \log \frac{1}{1-\delta}$, this is absurd, hence there exists $\tau_n (r_n^{1-\delta} \le \tau_n \le r_n)$ $(n \ge r_0)$, such that

$$\Phi(\tau_n) \leq \sqrt{T_n(\tau_n)} \log T_n(\tau_n).$$

THEOREM 10.16) Under the same condition as Theorem 8, let n(a) be the number of zero points of w(z) - a ($|a| < \rho$) in $F^{(\rho)}$ and

$$n_0 = \sup_{a} n(a)$$
.

Let E be the set of a, such that $n(a) < n_0$. Then E is of logarithmic capacity zero.

Proof. (i) First suppose that $n_0 < \infty$. Then there exists a_0 , such that $n(a_0) = n_0$ and let $w(z) - a_0$ has n_0 zeros in $F_n^{(p)}$.

We take m so large that the part: $r_m^{\delta} \leq r_m(z) \leq r_m$ of $F_m^{(\rho)}$ lies outside of $F_n^{(\rho)}$. By Theorem 9, there exists τ_m $(r_m^{1-\delta} \leq \tau_m \leq r_m)$, such that

(1)
$$(1+\delta)T_m(\tau_m) \ge T_m(\tau_m, \ a_0) \ge N(\tau_m, \ a_0) \ge n_0 \int_{\tau_m^{\delta}}^{\tau_m^{1-\delta}} \frac{dr}{r} - C(a)$$

$$= n_0(1-2\delta) \log r_m - O(1).$$

Let E be the set of a, such that $n(a) \le n_0 - 1$ and suppose that cap. E > 0.

¹⁵⁾ A. Dinghas: Eine Bemerkung zur Ahlforsschen Theorie der Überlagerungsflächen. Math. Zeits. 44 (1936).

¹⁶⁾ Y. Nagai: I. c. 2). Z. Yûjôbô: I. c. 2). M. Tsuji: I. c. 2). A. Mori: I. c. 2).

Then we may assume that E is a closed set contained in $|w| \le \rho_1 < \rho$. Then similarly as Theorem 3, we have

(2)
$$(1-\delta)T_m(\tau_m) \leq (n_0-1)\log r_m + O(1).$$

Hence from (1), (2),

$$\frac{n_0(1-2\delta)}{1+\delta} \leq \frac{n_0-1}{1-\delta},$$

which is impossible, if δ is sufficiently small. Hence cap. E=0. If $n_0=\infty$, then we can prove similarly as Theorem 3, that the set E of a, such that n(a) < ∞ is of logarithmic capacity zero.

Mathematical Institute, Tokyo University