REAL HYPERSURFACES OF A
 COMPLEX PROJECTIVE SPACE II

Sadahiro Maeda

Abstract

We consider a certain real hypersurface M of a complex projective space. The purpose of this paper is to characterize M in terms of Ricci curvatures.

0. Introduction

Let $P_{n}(\mathbb{C})$ be an n-dimensional complex projective space with Fubini-Study metric of constant holomorphic sectional curvature 4. We consider the Hopf fibration $\bar{\pi}$:

$$
S^{1} \rightarrow S^{2 n+1} \xrightarrow{\bar{\pi}} P_{n}(C),
$$

where S^{k} denotes the Euclidean sphere of curvature 1. In $S^{2 n+1}$ we have the family of generalized Clifford surfaces whose fibres lie in complex subspaces (see [2]):

$$
M_{2 p+1,2 q+1}=S^{2 p+1}\left(\frac{2 n}{2 p+1}\right) \times s^{2 q+1}\left(\frac{2 n}{2 q+1}\right)
$$

where $p+q=n-1$. Then we have a fibration π :

Received 20 February 1984. The author thanks Professor K. Ogiue for his valuable suggestions and encouragement during the preparation of this paper.

[^0]$$
s^{1} \rightarrow M_{2 p+1,2 q+1} \xrightarrow{\pi} M_{p, q}^{\mathbb{C}}
$$
which is compatible with $\bar{\pi}$. These manifolds $M_{p, q}^{C}$ thus obtained have various beautiful properties (cf. [3], [4]). In the special case of $p=0, M_{0, n-1}$ is called the geodesic minimal hypersphere of $P_{n}(\mathbb{C})$ (see [5]). Kon ([1]) characterized $M_{0, n-1}^{C}$ in terms of sectional curvatures.

The purpose of this paper is to prove a pinching theorem in terms of Ricci curvatures. We have the following

THEOREM. Let M be a connected real minimal hypersurface of $P_{n}(C)$. If $n \geqq 3$ and the Ricci curvature S of M satisfies $2 n-2 \leqq S \leqq 2 n$, then M is locally congmuent to $M_{p, p}^{\mathcal{L}}(2 p=n-1)$.

1. Preliminaries

Let M be a real hypersurface of $P_{n}(\boldsymbol{L})$. In a neighbourhood of each point, we choose a unit normal vector field N in $P_{n}(C)$. The Riemannian connections $\tilde{\nabla}$ in $P_{n}(\mathbb{C})$ and ∇ in M are related by the following formulas for arbitrary vector fields X and Y on M :

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) N \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{\nabla}_{X} N=-A X \tag{1.2}
\end{equation*}
$$

where g denotes the Riemannian metric on M induced from the FubiniStudy metric G on $P_{n}(\mathbb{C})$ and A is the (local) second fundamental form of M in $P_{n}(\mathbb{C})$. An eigenvector X of the second fundamental form A is called a principal curvature vector. Also an eigenvalue r of A is called a principal curvature. In what follows, we denote by V_{r} the eigenspace of A with eigenvalue r. It is known that M has an almost contact metric structure induced from the complex structure J of $P_{n}(\mathbb{C})$ (cf. [4]) i.e. we have a tensor field ϕ of type (1,1) on M, given by
$g(\phi X, Y):=G(J X, Y)$ i.e. $\phi(X)=J X-G(J X, N) N$ for all tangent vectors X, Y of M, and depending on the local choice of N - one has the unit tangent vector field ξ and the 1 -form η of M defined by

$$
\xi:=-J N \text { respectively } n(X):=g(\xi, X)=G(J X, N)
$$

Then we have

$$
\begin{equation*}
\phi^{2}(X)=-X+\eta(X) \xi, g(\xi, \xi)=1, \phi \xi=0, \eta(\xi)=1 . \tag{1.3}
\end{equation*}
$$

From the above remark and (1.1), we have easily

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi, \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{Y} \xi=\phi A Y . \tag{1.5}
\end{equation*}
$$

Let \widetilde{R} and R be the curvature tensors of $P_{n}(\mathbb{C})$ and M, respectively. Since the curvature tensor \widetilde{R} has a nice form, we have the following Gauss and Codazzi equations:

$$
\left\{\begin{align*}
g(R(X, Y) Z, W) & =g(Y, Z) g(X, W)-g(X, Z) g(Y, W)+g(\phi Y, Z) g(\phi X, W) \tag{1.6}\\
& -g(\phi X, Z) g(\phi Y, W)-2 g(\phi X, Y) g(\phi Z, W) \\
& +g(A Y, Z) g(A X, W)-g(A X, Z) g(A Y, W)
\end{align*}\right.
$$

and

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=n(X)_{\phi Y}-\eta(Y)_{\phi X}-2 g(\phi X, Y)_{\xi} . \tag{1.7}
\end{equation*}
$$

Using (1.3) and (1.6), we get
(1.8) $\quad R_{0}(X, Y)=(2 n+1) g(X, Y)-3 n(X) \cdot \eta(Y)+($ trace $A) g(A X, Y)-g(A X, A Y)$, where R_{0} denotes the Ricci tensor of M. Moreover, from (1.3) and (1.7) we obtain

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) Y, \xi\right)-g\left(\left(\nabla_{Y} A\right) X, \xi\right)=-2 g(\phi X, Y) \tag{1.9}
\end{equation*}
$$

2. Proof of Theorem

It follows from the assumption that the immersion is minimal and (1.3) that the equation (1.8) implies

$$
\begin{equation*}
R_{0}(\xi, \xi)=2 n-2-g(A \xi, A \xi) \tag{2.1}
\end{equation*}
$$

This, together with $R_{0}(\xi, \xi) \geqq 2 n-2$, shows

$$
\begin{equation*}
A \xi=0 \tag{2.2}
\end{equation*}
$$

Now, differentiating (2.2) covariantly along X and making use of (1.5), for any Y we get

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) Y, \xi\right)+g(A \phi A X, Y)=0 \tag{2.3}
\end{equation*}
$$

Exchanging X and Y in (2.3), we see

$$
\begin{equation*}
g\left(\left(\nabla_{Y} A\right) X, \xi\right)+g(A \phi A Y, X)=0 \tag{2.4}
\end{equation*}
$$

From (1.9), (2.3) and (2.4), we find $g(A \phi A X-\phi X, Y)=0$ so that

$$
\begin{equation*}
A \phi A X=\phi X . \tag{2.5}
\end{equation*}
$$

Here and in the sequel, let $X(\perp \xi)$ be a principal curvature vector with eigenvalue r i.e. $X \in V_{r^{*}}$ From (2.5) we obtain $r \cdot A(\phi X)=\phi X$, that is,

$$
\begin{equation*}
A(\phi X)=1 / r \cdot \phi X ; \text { that is, } \phi X \in V_{1 / r} \tag{2.6}
\end{equation*}
$$

(In fact, if $r=0$, then $\phi X=0$, which is a contradiction.) On the other hand the equation (1.8) shows $R_{0}(X, X)=2 n+1-r^{2} \leqq 2 n$ so that $r^{2} \geqq 1$.
Similarly we have $R_{0}(\phi X, \phi X)=2 n+1-1 / r^{2} \leqq 2 n$ so that $r^{2} \leqq 1$.
So we find that $r= \pm 1$.
This, together with the assumption that the immersion is minimal, implies that our real hypersurface M has three constant principal curvatures $\{0, \pm 1\}$ at each point.
Here we recall Takagi's work [5]. He determined all real hypersurfaces in $P_{n}(\boldsymbol{C})(n \geq 3)$ with three constant principal curvatures.

Due to his work, we conclude that our real hypersurface M is locally congruent to $M_{p, p}(2 p=n-1)$.

Of course the manifold $M_{p, p}^{T}$ satisfies the assumption of our Theorem.

References

[1] M. Kon, "Real minimal hypersurfaces in a complex projective space", Proc. Amer. Math. Soc. 79 (1980), 285-288.
[2] H. B. Lawson, "Rigidity theorems in rank-1 symmetric spaces", J. Diff. Geom. 4 (1970), 349-357.
[3] Y. Maeda, "On real hypersurfaces of a complex projective space", J. Math. Soc. Japan 28 (1976), 529-540.
[4] M. Okumura, "On some real hypersurfaces of a complex projective space", Trans. Amer. Math. Soc. 212 (1975), 355-364.
[5] R. Takagi, "Real hypersurfaces in a complex projective space with constant principal curvatures I and II", J. Math. Soc. Japan 27 (1975) 43-53 and 507-516.

Department of Mathematics, Tokyo Metropolitan University, Tokyo 158,

Japan.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 $\$ \mathrm{~A} 2.00+0.00$

