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REAL HYPERSURFACES OF A

COMPLEX PROJECTIVE SPACE II

SADAHIRO MAEDA

We consider a certain real hypersurface M of a complex

projective space. The purpose of this paper is to

characterize M in terms of Ricci curvatures.

0. Introduction

Let P (€) be an n-dimensional complex projective space with

Fubini-Study metric of constant holomorphic sectional curvature 4. We

consider the Hopf fibration IT :

<* + s2"*1^ Pn(C) ,

Ji 2n+l

where £> denotes the Euclidean sphere of curvature 1. In 5 we have

the family of generalized Clifford surfaces whose fibres lie in complex

subspaces (see [2]):

_ J2p+l(jn_\ Jq+ll 2n \
M2p+l,2q+l ~ b \2p+l) S \2q+l) '

where p + q = n-1. Then we have a fibration IT :
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S + M2p+l,2q+l > V * J

which is compatible with ir.

These manifolds AT thus obtained have various beautiful properties

(cf. [3], [4]). In the special case of p = 0 , Wn 7 is called the

geodesic minimal hypersphere of P ("ffj (see [5]).

Kon ([/]) characterized M - in terms of sectional curvatures.

The purpose of this paper is to prove a pinching theorem in terms

of Ricci curvatures. We have the following

THEOREM. Let M be a connected real minimal hypersurface of

P (C). If n t 3 and the Ricci curvature S of M satisfies

2n - 2 ;§ S S 2n} then M is locally congruent to W (2p = n - 1).

1. Preliminaries

Let M be a real hypersurface of P (£). In a neighbourhood of

each point, we choose a unit normal vector field N in P (E). The

Riemannian connections V in P (IE) and V in M are related by the

following formulas for arbitrary vector fields X and Y on M :

(1.1) V^J = V ^ + g(AX3Y)N ,

(1.2) V ^ = -AX ,

where g denotes the Riemannian metric on M induced from the Fubini-

Study metric G on P (E) and A is the (local) second fundamental form

of M in P (E). An eigenvector X of the second fundamental form A

is called a principal curvature vector. Also an eigenvalue r of A is

called a principal curvature. In what follows, we denote by V the

eigenspace of A with eigenvalue r. It is known that M has an almost

contact metric structure induced from the complex structure J of P (E)

(cf. [4]) i.e. we have a tensor field <j> of type (1,1) on M, given by
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g(<t>X,Y) := G(JX,Y) i.e. <(>(%> = JX - G(JX,N)N for all tangent vectors

XtY of My and depending on the local choice of N - one has the unit

tangent vector field E, and the 1 -form n of M defined by

£ := -JN respectively n(%) := g(^tX) = G(JX,N) .

Then we have

(1.3) <j)2<%> = -X + nl%>? , g(Z,,V = 1, <t>5 = 0, r\(V = 1 .

From the above remark and (1 .1 ) , we have e a s i l y

(1.4) (VX<$)Y = r\(Y)AX -

(1.5) Vy£ = $AY .

Let R and R be the curvature tensors of P ftfV and M, respectively.

Since the curvature tensor R has a nice form, we have the following

Gauss and Codazzi equations:

g(R(X,Y)Z,W) = g(Y,Z)g(X,W) - g(X,Z)g(Y,W)

+ g(AYJZ)g(AX1W) - g(AX,Z)g(AY,W)

and

(1.7)

Using (1.3) and (1.6), we get

(1.8) RQ(X,Y) = (2n+l)g(X,Y) - 3r\(X)-n(Y)+(traae A)g(AX,Y)-g(AX,AY)

where i?_ denotes the Ricci tensor of M.

Moreover, from (1.3) and (1.7) we obtain

(1.9)
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2. Proof of Theorem

It follows from the assumption that the immersion is minimal and

(1.3) that the equation (1.8) implies

(2.1) RQ(£,,V = 2n - 2 -

This, together with RJE,,?,) s 2n - 2} shows

(2.2) AE, = 0 .

Now, differentiating (2.2) covariantly along X and making use of (1.5),

for any I we get

(2.3) 0ffVyUy,S; + g(A$AX,Y) = 0 .

Exchanging X and Y in (2.3), we see

(2.4) gYfVyUX,SJ + g(A$AY,X) = 0 .

From (1.9), (2.3) and (2.4), we find g(A$AX - $X,Y) = 0 so that

(2.5) A$AX = $X .

Here and in the sequel, let X(±E,) be a principal curvature vector with

eigenvalue r i.e. X € V . From (2.5) we obtain r-A($X) = §X , that is.

(2.6) A($X) = l/r-$X ; that is, <j)X e ̂  . .

(In fact, if V = 0, then §X = 0, which is a contradiction.)

2
On the other hand the equation (1.8) shows R (X,X) = 2n + 1 - r < 2n

2
so that r § 1.

Similarly we have RJ$X,$X) = 2n + 1 - 1/r2 S 2n so that r S 1.

So we find that r = ±1.

This, together with the assumption that the immersion is minimal, implies

that our real hypersurface M has three constant principal curvatures

{0,±l} at each point.

Here we recall Takagi's work [5]. He determined all real hypersurfaces in

P (E) (n 2 3) with three constant principal curvatures.
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Due to his work, we conclude that our real hypersurface M is locally

congruent to M (2p = n - 1).

Of course the manifold W satisfies the assumption of our Theorem.
P>P

References

[/] M. Kon, "Real minimal hypersurfaces in a complex projective space".

Proa. Amer. Math. Soo. 79 (1980), 285-288.

[2] H. B. Lawson, "Rigidity theorems in rank-1 symmetric spaces",

J. Diff. Geom. 4 (1970), 349-357.

[3] Y. Maeda, "On real hypersurfaces of a complex projective space",

J. Math. Soo. Japan 28 (1976), 529-540.

[4] M. Okumura, "On some real hypersurfaces of a complex projective space",

Trans. Amer. Math. Soc. 212 (1975), 355-364.

[5] R. Takagi, "Real hypersurfaces in a complex projective space with

constant principal curvatures I and II", J. Math. Soc. Japan 27

(1975) 43-53 and 507-516.

Department of Mathematics,

Tokyo Metropolitan University,

Tokyo 158,

Japan.

https://doi.org/10.1017/S0004972700001775 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700001775

