
Project 1

Rectangular Finite Quantum
Well – Stationary Schrödinger Equation
in 1D

In this project, participants utilise the procedure of finding roots of
functions to solve the eigenvalue problem of a rectangular quantum
well (QWELL code). When considering the rectangular quantum well
as the simplest model of a hydrogen atom, the code can be applied to
determine its first two to three energy levels, which is the primary exer-
cise in the project. The eigenvalue problem itself, appearing in various
areas of physics (such as vibration mechanics, wave optics, and quan-
tum mechanics), will be the subject of a separate project (Project 6) and
one of the advanced projects (Project 12), where a rectangular quantum
well partially filled with electrons is examined. It is somewhat para-
doxical that despite employing the simplest mathematical operations in
the current project, it is based on advanced physical concepts, such as
quantum mechanics, often unfamiliar to first-year students. Learning
the basics of quantum mechanics typically requires a 30-hour course
and knowledge of advanced mathematics. Therefore, we will only intro-
duce its fundamental and most straightforward ideas here, just enough
to enable the conscious execution of the project.

1.1 Physics Background: Chosen Ideas of

Quantum Mechanics

In quantum mechanics, while the physical quantities of interest, such
as position or momentum of a particle, remain the same as in classical
physics, their representation is entirely different. Focusing on the prob-
lem of a single particle, the central object is the quantum state rather
than the coordinates in the chosen system (as it would be in classi-
cal physics). In the so-called position representation, the quantum state
is a particular function of the position variable ψ(r), which, from a
mathematical perspective, must meet special conditions of differenti-
ability and integrability. The function itself does not have a physical
interpretation, but its squared modulus |ψ |2 does – it represents the
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2 Project 1: Rectangular Finite Quantum Well

probability density of finding the particle at a given point in space,
that is becomes a probability when multiplied by the volume element
(the Born probabilistic interpretation). Here lies the main difference
between classical and quantum physics – the probabilistic nature of
the latter, with the concept of probability being inherent to the theory.
When measuring a physical quantity, the outcome can only be predicted
with a certain probability. The deterministic nature of phenomena, jus-
tified in classical physics, no longer holds, and this fact was challenging
for many physicists to accept during the early stages of quantum the-
ory development. For instance, Albert Einstein proposed the hidden
variables hypothesis, suggesting that there are unknown variables that
determine the measurement results. Modern interpretations, such as the
Copenhagen Interpretation, go even further, positing that a particle can
simultaneously exist in multiple positions with different probabilities
(which is entirely impossible in the classical world), and only the act of
measurement localises it to a specific position (e.g. the role of the meas-
urement instrument is played by the screen in the ‘electron diffraction
on a double slit’ experiment). The same concept applies to other physi-
cal quantities, meaning that quantum systems can simultaneously exist
in various states of a particular quantity (with different probabilities),
and during the measurement, the system selects one of these states.
Currently, quantum mechanics is a coherent and complete theory, with
the Copenhagen Interpretation being widely accepted, and no scientific
evidence has emerged to challenge its validity.

The central and historically first equation for evaluating the state
function is the Schrödinger equation[

−
~2

2m
∇

2
+ V (r)

]
ψ(r, t) = i~

∂ψ(r, t)

∂t
, (1.1.1)

where ~ = h/2π , h is Planck’s constant, m mass of the particle, ∇2
=

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is Laplace’s operator, and V (r) the particle potential
energy.

The equation resembles a wave equation, which is why the function
ψ(r) is also called the wave function. As we can see, this is a function
of both space and time variables. However, when the left-hand side of
the equation (potential energy) does not explicitly depend on time, the
function can be represented as a product of a space variable and time-
dependent parts, with the latter having a known form ψ(r)ei(ωt) (using
the Euler representation of complex numbers, see Appendix A.1). A
similar situation has been described (with respective derivation) in Proj-
ect 6 for the case of a standing wave. If we substitute the factorised
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function into Eq. 1.1.1, we can easily eliminate the time-dependent part,
which leads to the stationary Schrödinger equation

[
−

~2

2m
∇

2
+ V (r)

]
ψ(r) = εψ(r), (1.1.2)

where ε = ~ω.
This equation is a starting point of the project. From a mathemat-

ical point of view it is an eigenvalue problem, the solution to which
is a set of pairs: eigenvalues and corresponding eigenfunctions obey-
ing the imposed boundary conditions, {(εn,ψn(r))}. The solutions are
indexed with the integer n called the quantum number. The operator
appearing on the left-hand side represents the total energy of the par-
ticle (Hamiltonian), and the eigenvalue problem leads to eigenenergies
and eigenfunctions of the particle. From this an interpretation follows –
the quantum system (a particle in a potential well, for example, an
electron in the Coulomb potential of a proton) can have only strictly
established energies and can occupy corresponding states described by
the eigenfunctions. The modulus squared of these functions describes
the spatial distribution of probability of finding the particle. It should
be added that in quantum mechanics all physical quantities are rep-
resented by operators having certain mathematical properties, and the
associated eigenvalue problems lead to eigenvalues (possible results
of the measurement) and corresponding states. The measurement
leads to a collapse of a quantum state into an eigenstate of a given
quantity.

Two facts should be pointed out. First, the time-dependent part of
the wave function, although it has been separated out, is still present
in the full solution, but it does not affect the probability distribution
of and eigenstate since its modulus squared equals 1. However, the sit-
uation changes if we consider a state being a superposition of a few
eigenstates. Then we must not forget about time-dependent parts, and
their presence results in time evolution of the probability distribution.
The second issue is the normalisation of the wave function, which is
necessary since its modulus squared multiplied by the volume element
is the probability, and the probability of finding a particle overall must
be equal to 1. From mathematical point of view this means that the inte-
gral of the modulus squared over the whole considered space must be
equal to 1. Such normalisation is always possible since the Schrödinger
equation is linear, that is any function being its solution when multiplied
by a number still remains the solution.
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1.2 Problem: Eigenenergies and Eigenfunctions
in Rectangular Finite Quantum Well

In this project we will use the stationary Schrödinger equation (1.1.2)
to find eigenvalues and eigenstates of an electron in a rectangular finite
quantum well. This is not purely an academic problem since such sys-
tems are used to model, for example, semiconductor heterostructures.
We describe the system as quasi one-dimensional because the changes
of important physical characteristics appear in one direction only. Here,
however, we will treat the quantum well as the simplest possible 1D
model of the hydrogen atom. Thus Eq. 1.1.2 takes the form[

−
~2

2me

d2

dx2 + V (x)
]
ψ(x) = εψ(x), (1.2.1)

where potential is equal (Figure 1.1)

V (x) =
{
−Vo if −a/2 ≤ x ≤ a/2,
0 if x < −a/2 or x > a/2.

In Hartree atomic units, ~ = me = e = 1[
d2

dx2 + k2(x)
]
ψ(x) = 0, (1.2.2)

where k2(x) = 2(ε − V (x)).
The analytical solutions fall into three categories, two inside the

well (Figure 1.1), which differ in symmetry (even and odd), and the
third category are the corresponding solutions outside the well

ψ(x) =


A cos(kx) for −a/2 ≤ x ≤ a/2 (even),
A sin(kx) for −a/2 ≤ x ≤ a/2 (odd),
B exp(∓κx) for x < −a/2 or x > a/2.

(1.2.3)

As one can see, the solutions are parametrised by two param-
eters: k – the wave number (inside the well) and κ – the rate of
exponential decrease (outside). It will be shown in the next section

Figure 1.1 A potential well
and its solution: the even
(lower) and the odd (upper)
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1.3 Numerical Methods: Finding Roots of Characteristic Functions 5

that the numerical method will consist of finding the values of these
parameters for consecutive eigenstates (thus they will become indexed).

It is worth noting that the eigenfunction (thus also its modulus
squared) has finite values outside the well, that is in the region where
the kinetic energy of electron is negative. In classical physics a par-
ticle must not have negative kinetic energy and that is why we call
such a region ‘classically forbidden’ and the phenomenon ‘quantum
tunnelling’.

1.3 Numerical Methods: Finding Roots

of Characteristic Functions
The condition for the eigenvalue is that the two solutions (inside and
outside the region of the well) must join smoothly (Figure 1.2), that is
they must have equal values and equal values of their first derivatives at
a/2 (because of the symmetry of the system it is sufficient to consider
only one border). Thus, we have, for even solutions{

±A cos(ka/2) = ±B exp(−κa/2),
∓Ak sin(ka/2) = ∓Bκ exp(−κa/2),

(1.3.1)

and for odd solutions{
±A sin(ka/2) = ±B exp(−κa/2),
±Ak cos(ka/2) = ∓Bκ exp(−κa/2),

(1.3.2)

where k =
√

2(ε + Vo) and κ =
√
−2ε.

Dividing the first equation by the second one in the above systems,
we obtain two conditions, for even (symmetric) and odd (antisymmet-
ric) solutions:{

Feven(ε) = sin(ka/2)− κ/k · cos(ka/2) = 0 (even),
Fodd(ε) = sin(ka/2)+ k/κ · cos(ka/2) = 0 (odd).

(1.3.3)

The eigenvalues ε are found by solving these equations.

Figure 1.2 The solutions
inside and outside the well
(f (x) and g(x), respectively)
must have same values and
equal derivatives at the well
border
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1.4 Exercises
Obligatory

1. Using the QWELL code, tabulate functions Feven(ε) and Fodd(ε)
These functions correspond to even and odd solutions, respectively,
whose zeros are energies of quantum levels. Visualise the functions
Feven(ε) and Fodd(ε) in one figure. Repeat the calculation and visual-
isation of Feven(ε) and Fodd(ε) for three significantly different values
of the well parameters, a and V0 (e.g. wide and shallow well, deep
and narrow, intermediate).

2. (Square finite quantum well as a model of the hydrogen atom). Try
to fit the first two energy levels to the ones of the hydrogen atom
through variation of the parameters a and V0, by a trial and error
method. (Hint: In the beginning set the values a = 3Bohr and V0 =

1Hartree.) What is the value of the third energy level? One might
try also to fit the first and the third levels. What would be the value
of the second level then? Would it be very different from the true
value? (Note that in atomic units the energy levels should be εn =

−1/(2n2); since the well is a two-parameter system, it should be
possible, in principle, to fit any two levels.)

Challenge

1. Try to construct an algorithm and write a code which automatically
finds the parameters of a quantum well with energy levels close to
those of the hydrogen atom with arbitrarily low uncertainty.

2. For the found eigenenergies plot the corresponding eigenfunctions
and their moduli squared, with the picture of the well in back-
ground (do not normalise the functions). Note the effect of quantum
tunnelling.
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