
5

Condensates and zero modes on kinks

In this chapter we study the effect of a kink on other bosonic or fermionic fields that
may be present in the system. Under certain circumstances, it might be energetically
favorable for a bosonic field, denoted by χ , to become non-trivial within the kink.
Then we say that there is a “bosonic condensate” which is trapped on the kink.
On a domain wall, the condensate has dynamics that are restricted to lie on the
world-sheet of the wall.

The situation is similar for a fermionic field though there are subtleties. For a
fermionic field, denoted by ψ , the Dirac equation is solved in the presence of a
kink background made up of bosonic fields. This determines the various quantum
modes that the fermionic excitations can occupy. In several cases, there can be
“zero modes” of fermions in the background of a kink and this leads to several
new considerations. (Fermionic zero modes were first discovered in [27, 84] in the
context of strings.) In addition to the zero mode, there may be fermionic bound
states. The high energy states that are not bound to the wall are called “scattering
(or continuum) states.”

A difference between bosonic and fermionic condensates is that bosonic solu-
tions can be treated classically but fermionic solutions can only be interpreted in
quantum theory. For example, while there may be a bosonic solution with χ = 0,
the solution ψ = 0 of the Dirac equation has no meaning because this solution
is not normalizable. Solutions of the Dirac equation are only meant to supply us
with the modes that fermionic particles or antiparticles can occupy, and as such
are required to be normalizable. It is a separate issue to decide if the modes are
occupied or not. A mode contributes to the energy of the soliton only if it is occu-
pied. This is quite different from the bosonic case in which there can be a classical
condensate, on top of which there are modes that may or may not be occupied
by bosonic particles. Fermions can form a classical condensate only after they
have paired up to form bosons (“Cooper pairs”), and this leads to superfluidity or
superconductivity.

73
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74 Condensates and zero modes on kinks

Fermionic zero modes can lend solitons some novel properties such as fractional
quantum numbers (see Section 5.3).

5.1 Bosonic condensates

Consider the model

L = Lk[φ] + 1

2
(∂µχ )2 − U (φ, χ) (5.1)

where Lk[φ] is the Lagrangian that leads to a kink solution in φ. For example, Lk

can be the Lagrangian for the Z2 or sine-Gordon models discussed in Chapter 1. χ

is another scalar field that interacts with φ via some general interaction potential
U (φ, χ). Note that U (φ, χ) does not contain any terms that are independent of χ –
those are included in the potential, V (φ), that occurs in Lk. As an example, we
could have

U (φ, χ) = −m2
χ

2
χ2 + λχ

4
χ4 + σ

2
φ2χ2 (5.2)

We are assuming that the parameters in the model are chosen so that the minimum
of the full potential, V + U , is at φ �= 0 but χ = 0. This requirement also excludes
terms that are linear in χ (e.g. φ2χ ).

In the fixed background of the kink, χ satisfies the classical equation of motion

∂2
t χ − ∂2

x χ + Uχ (φk(x), χ ) = 0 (5.3)

where Uχ denotes the derivative of U with respect to χ and φk is the kink solution.
Far from the wall, the lowest energy solution is χ (±∞) = 0.

A solution to Eq. (5.3) is χ (x) = 0 and the energy of this solution is equal to the
kink energy in the model Lk. However, the trivial solution may not be the one of
lowest energy. To show that a lower energy solution exists, we need only show that
the trivial solution, χ = 0, is unstable. Then we consider linearized perturbations
of the form χ = cos(ωt) f (x) around the trivial solution. Inserting this form into
Eq. (5.3) leads to the Schrödinger equation

−∂2
x f + Uχχ (φk(x)) f = ω2 f (5.4)

where Uχχ denotes the second derivative of V with respect to χ . If this equa-
tion has solutions with ω2 < 0, it implies that there are solutions for χ on the
kink background that grow with time as cosh(+|ω|t), denoting an instability of
the state with χ = 0. This means that the solution with least energy must have a
non-trivial χ configuration. The lowest energy χ configuration is non-zero inside
the kink and vanishing outside and is called a “bosonic condensate” (or simply
“condensate”).
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5.1.1 Bosonic condensate: an example

A simple example in which there is a bosonic condensate on a Z2 kink can be found
in the model of Eq. (5.1), or explicitly,

L = 1

2
(∂µφ)2 + 1

2
(∂µχ )2 − λ

4
(φ2 − η2)2 + m2

χ

2
χ2 − λχ

4
χ4 − σ

2
φ2χ2 (5.5)

Ignoring the condensate field χ , the kink solution is

φk = η tanh
( x

w

)
(5.6)

and the Schrödinger equation corresponding to Eq. (5.4) is

−∂2
x f + [ − m2

χ + ση2 tanh2 X
]

f = ω2 f (5.7)

where X = x/w.
With ση2 > m2

χ , we see that the Schrödinger potential is asymptotically positive,
and hence f (±∞) = 0. This is consistent with the requirement that χ not have a
vacuum expectation value. At the origin, Uχχ < 0, and hence the Schrödinger
potential is a well that is centered at the origin. Since a potential well in one
dimension always has a bound state [139], it follows that there is at least one bound
state for χ . For a deep enough well i.e. large enough m2

χ , the bound state has negative
energy eigenvalue (ω2 < 0), and the trivial solution χ = 0 is unstable. Hence there
is a range of parameters (m2

χ ) for which a χ condensate exists.
To determine the range of m2

χ for which there is an instability, consider the
critical case when there is a zero eigenvalue solution, f0, of Eq. (5.7). Then we can
write

−∂2
x f0 + ση2

3
[3 tanh2 X − 1] f0 =

[
m2

χ − ση2

3

]
f0 (5.8)

This is exactly the same form as Eq. (3.8), together with the potential in Eq. (3.10),
provided we identify 3λ with σ , and ω2 with the term within square brackets on
the right-hand side. Since the lowest energy eigenvalue is zero for Eq. (3.8), there
is a zero eigenvalue for Eq. (5.7) if

m2
χ = ση2

3
(5.9)

For a larger value of m2
χ , Eq. (5.7) has a negative eigenvalue, signaling an instability.

Therefore a condensate solution exists in the range

ση2

3
< m2

χ < ση2 (5.10)
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76 Condensates and zero modes on kinks

The exact profile for the condensate can be found by solving the full coupled
equations of motion for φ and χ . This includes the non-linear terms in χ and the
back-reaction of the condensate on the kink, and, in most cases, has to be done
numerically. Let us denote the solution obtained in this way by (φk(x), χ0(x)).
Then

χ (t, x, y, z) = χ0(x) cos(ωt − ky y − kzz + θ0), ω =
√

k2
y + k2

z (5.11)

where θ0 is a constant, is also a solution. The reason is simply that(
∂2

t − ∂2
y − ∂2

z

)
cos(ωt − ky y − kzz + θ0) = 0 (5.12)

The trigonometric form of the solution in Eq. (5.11) was chosen so as to obtain
a real solution. An identical analysis in the case when χ is a complex field leads to

χ (t, x, y, z) = χ0(x)e±i(ωt−ky y−kz z+θ0) (5.13)

The solution represents waves propagating in the (ky, kz) direction in the plane of
the domain wall.

5.2 Fermionic zero modes

Fermionic fields may be coupled to the kink via terms that respect the discrete
symmetries in the bosonic sector that are responsible for the existence of the kink.
In the case of the Z2 model, the coupling can be a Yukawa term and the Lagrangian
may be written as

L = Lφ + iψ̄ �∂ψ − gφψ̄ψ (5.14)

where Lφ denotes the scalar part of the Lagrangian, �∂ ≡ γ µ∂µ, g is the coupling
constant, ψ is a four-component fermionic field, and γ µ are the Dirac matrices
that satisfy {γ µ, γ ν} = 2gµν with gµν = diag(1, −1, −1, −1) being the space-time
metric. The explicit representation of the Dirac matrices that we adopt is

γ 0 =
(

0 1
1 0

)
, γ i =

(
0 σ i

−σ i 0

)
(5.15)

where i = 1, 2, 3 (also sometimes written as i = x, y, z) and the Pauli spin matrices
are defined as

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
(5.16)

The Yukawa interaction term in the model in Eq. (5.14) respects the φ → −φ

symmetry of the Z2 model provided we also transform the fermion field by
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ψ → ψ ′ = γ 5ψ where

γ 5 ≡ iγ 0γ 1γ 2γ 3 =
( −1 0

0 1

)
(5.17)

This can be seen by using the properties (γ 5)† = γ 5, {γ 5, γ µ} = 0 and (γ 5)2 = 1.1

If φk(x) denotes the kink solution, the Dirac equation in the kink background is

i�∂ψ − gφk(x)ψ = 0 (5.18)

Let us first try and solve Eq. (5.18) explicitly. Recognizing that φk does not
depend on t , y, and z, we write the ansatz

ψ = f (t, y, z)ξ (x) (5.19)

where f (t, y, z) is a function while ξ (x) is a four-component spinor. With this
ansatz, the Dirac equation separates

iγ a∂a f = −γ aka f (5.20)

iγ x∂xξ − gφkξ = +γ akaξ (5.21)

where γ aka is the constant matrix of separation and the index a runs over t, y, z.
Requiring that the fermion be localized on the wall, we get the boundary conditions

ξ (±∞) = 0 (5.22)

These boundary conditions are valid only for bound states. If we wish to consider the
scattering of fermions off a domain wall, we would choose incoming and reflected
plane waves at x = −∞.

The Dirac equations have an infinite number of solutions, corresponding to all
the fermion eigenmodes in the domain wall background. These include fermionic
bound states and scattering states. There is one state, however, which is novel
because it leads to some very interesting properties of the soliton, described in the
sections below. This state is the one with zero energy eigenvalue, also called the
“zero mode.”

Equation (5.20) can be solved

f = exp(ikaxa) ≡ exp(i(ωt − ky y − kzz)) (5.23)

Zero energy is obtained by setting ω = 0 = ky = kz and then f = 1. Let us first
look at this case (ka = 0).

Multiplying Eq. (5.21) by iγ x we see that iγ xξ satisfies the same equation of
motion as ξ . Therefore if ξ is a solution, then so is iγ xξ . Hence solutions to the

1 The Yukawa term does not respect the φ → φ + 2π/β symmetry of the sine-Gordon model and hence our
discussion of fermion zero modes cannot be used for that case. Nor do we consider the case of fermions with
Majorana mass terms [147].
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78 Condensates and zero modes on kinks

Dirac equation come in distinct pairs unless ξ is an eigenstate of iγ x , in which case
the two solutions ξ and iγ xξ are not distinct. The zero mode solution is found by
choosing ξ to be an eigenstate of iγ x

iγ xξ = cξ (5.24)

and, since (iγ x )2 = 1, we must have c = ±1. The ξ equation now becomes

∂xξ = cgφkξ (5.25)

and the solution is

ξ (x) = ξ (0) exp

[
cg

∫ x

0
φk(x ′)dx ′

]
(5.26)

Assuming φk(+∞) > 0 and g > 0, the boundary conditions in Eq. (5.22) are only
satisfied if c = −1. (The boundary condition at x = −∞ is also satisfied provided
φk(−∞) < 0.) Therefore the zero mode solution is

ξ (x) = ξ (0) exp

[
−g

∫ x

0
φk(x ′)dx ′

]
, (g > 0) (5.27)

If φk(+∞) < 0 and g > 0, the solution is obtained by choosing c = +1.
To determine ξ (0), we solve the eigenvalue equation iγ xξ (0) = −ξ (0) and find

ξ (0) =

⎛
⎜⎜⎝

α

β

iβ
iα

⎞
⎟⎟⎠ (5.28)

where α, β are any complex constants. Therefore there are two basis zero modes
(with coefficients α and β) and the general zero mode is a linear superposition
of these two modes. The constants, α and β, can be fixed by normalizing the
wavefunction.

Next consider the case with ka �= 0. Then Eq. (5.27) is still a solution to Eq. (5.21)
provided kaγ

aξ (0) = 0. By explicitly substituting the γ a matrices and ξ (0), this
leads to the two equations

kyα + i(ω + kz)β = 0 (5.29)

i(ω − kz)α − kyβ = 0 (5.30)

A solution for α and β exists only if

ω = ±
√

k2
y + k2

z (5.31)
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5.2 Fermionic zero modes 79

which is the dispersion relation for a massless particle (see Fig. 5.1). With this
relation, the solutions fix the ratio of α and β to obtain

ψ = Nei(ωt−ky y−kz z)

2
√

ω
e−g

∫ x
0 φk(x ′)dx ′

⎛
⎜⎜⎜⎝

√
ω + kz

sgn(ky)i
√

ω − kz

−sgn(ky)
√

ω − kz

i
√

ω + kz

⎞
⎟⎟⎟⎠ (5.32)

where N is a normalization constant where sgn(ky) ≡ ky/|ky|.
So far we have not specified the exact form of the kink profile φk and Eq. (5.32)

holds for any model in which the Yukawa interaction term respects the symmetries.
Next, as an example, we use the solution for the Z2 kink (see Eq. (1.9)). Then the
integral over φk can be done explicitly to yield

ψ = Nei(ωt−ky y−kz z)

2
√

ω

[
sech

( x

w

)]g
√

2/λ

⎛
⎜⎜⎜⎝

√
ω + kz

sgn(ky)i
√

ω − kz

−sgn(ky)
√

ω − kz

i
√

ω + kz

⎞
⎟⎟⎟⎠ , (g > 0)

(5.33)
where w is the width of the kink as defined in Eq. (1.21). This is our final expression
for the zero mode on the Z2 kink.

In the asymptotic vacuum, where φ is constant, the Dirac equation derived from
Eq. (5.14) yields four solutions all with the same momentum. These four states are
referred to as spin up and down states for the particle and hole (or antiparticle). On
the domain wall, however, there are only two zero mode solutions for fixed value
of the momentum (ky, kz). One of these has positive energy (ω) and the other has
negative energy. Therefore the two states may be called particle and hole states but
the spin degree of freedom is not present. Consider the special case when ky = 0
and kz �= 0. Then we have ω = ±kz and the spinor is proportional to (1, 0, 0, i)T if
ω = +kz , and to (0, i, −1, 0)T if ω = −kz . If we also take kz = 0, both these two
states have ω = 0 and become degenerate in energy.

The two-fold degeneracy of the zero mode (ω = 0) occurs since we are work-
ing in three spatial dimensions where the Dirac spinors have four components.
If we find the zero modes in one spatial dimension, the fermions are described
by two-component spinors, and then there is only a single zero mode. If we use
four-component spinors in one spatial dimension, it amounts to having two two-
component spinors that do not interact with each other. Hence the degrees of free-
dom are doubled.

Note that the boundary conditions in Eq. (5.22) can only be satisfied if φk changes
sign in going from x = −∞ to +∞. So the topological nature of the kink is essential
to the existence of the zero mode.
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w w

k k

Figure 5.1 The dispersion curve for fermions in the vacuum is shown on the left
and for fermion zero modes on the domain wall on the right.

In constructing the zero mode, we have postulated that ξ be an eigenstate of
iγ x . Therefore there is a possibility that there might be other zero mode solutions.
However, it is possible to prove that this is not the case and the zero mode(s) that
we have found are the only such solutions. The proof proceeds by choosing a set
of orthogonal basis spinors

χ1 =

⎛
⎜⎜⎝

1
0
0
i

⎞
⎟⎟⎠ , χ2 =

⎛
⎜⎜⎝

0
1
i
0

⎞
⎟⎟⎠ , χ3 =

⎛
⎜⎜⎝

i
0
0
1

⎞
⎟⎟⎠ , χ4 =

⎛
⎜⎜⎝

0
i
1
0

⎞
⎟⎟⎠ (5.34)

The first two spinors are eigenstates of iγ x with eigenvalue −1. These are the spinors
that occur in the general solution we have already found subject to the condition
that iγ xξ = −ξ . Since the Dirac equation is linear, any new solution must be a
linear combination of χ3 and χ4. However, both these basis spinors are eigenstates
of iγ x with eigenvalue +1 and we have seen that such states cannot be part of the
solution since the boundary conditions cannot be met. Therefore there are no other
zero mode solutions beside the ones that we have already constructed.

As mentioned in the introduction to this chapter, the interpretation of fermionic
zero modes is quite distinct from that of bosonic condensates. Fermionic modes
should be viewed as states in which the fermions can reside. A mode by itself
does not carry energy density or charge or some other physical quantity. Only if
the mode is occupied, can it contribute to the energy. However, the zero mode is
special in some ways since, even if it is occupied, the fermion occupying the zero
mode contributes zero energy. Likewise, if the zero mode is unoccupied, it also
contributes zero energy and so the system has a degenerate ground state. Indeed
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5.3 Fractional quantum numbers 81

the occurrence of a zero mode leads to some novel and important quantum field
theoretic consequences that we shall outline in Section 5.3.

In the discussion of fermion zero modes above we have considered only a Yukawa
interaction between the fermion field and the field that makes up the domain wall.
More generally, there can also be Majorana interactions. Zero modes of Majorana
fermions on domain walls have been discussed in [147].

Just like scalar field condensates and fermionic zero modes on domain walls,
there can also be gauge field (or spin-1) condensates. These arise when the model
has broken gauge symmetries in addition to broken discrete symmetries. This is
precisely the situation in the SU (5) × Z2 model discussed in Chapter 2 and the
kinks in the model have condensates of spin-1 fields as we describe in Section 5.5.

Finally we close this section by remarking that there are several mathematical
“index theorems” that can be used to obtain information on the number of zero
modes on a soliton [176]. In the case of domain walls that we have been discussing,
however, the index theorems do not lead to a useful result.

5.3 Fractional quantum numbers

To quantize a fermionic field we find all the modes (solutions of the Dirac equation)
and then associate creation and annhilation operators with each of the modes.2 The
same procedure may be followed in the presence of zero modes [83]. As discussed
in the previous section, there is a single zero mode on the Z2 kink (in one spatial
dimension), which is denoted by ψ0. Then the expansion of the field operator in
modes is

ψ = a0ψ0 +
∑

p

[
bpψp+ + d†

pψ
c
p−

]
(5.35)

The second term is the usual sum over the positive energy modes, ψp+, and fermion-
number conjugates of the negative energy modes, ψc

p−.3 There is no sum over spin
because there is no spin degree of freedom in one spatial dimension. The first term
in Eq. (5.35) contains the zero mode, ψ0, and a0 is the operator associated with
this mode. The term may seem strange because the zero mode does not have a
corresponding conjugated term. This is because ψc

0 = ψ0 and so the mode func-
tions associated with a0 and its conjugate operator are identical. However, one still
has the usual equal time anticommutation relations for the field and its canonical
momentum

{ψa(x), ψ†
b(y)} = δ(x − y)δab (5.36)

2 We work in one spatial dimension in this section and hence spinors have two components.
3 That is, ψc

p− is the wavefunction of a hole in the Dirac sea that has momentum p.
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82 Condensates and zero modes on kinks

while other anticommutators vanish. Using the expansion in terms of creation and
annihilation operators this gives

{a0, a0} = {a†
0, a†

0} = 0, {a0, a†
0} = 1 (5.37)

Since the Dirac Lagrangian in Eq. (5.14) is invariant if the fermion fields are
rotated by a phase, the model has a conserved fermion number current. The Noether
current is given by ψ̄γ µψ (µ = 0, 1). In the quantum theory the physical current
operator needs to be normal ordered. This is equivalent to defining the fermion
number operator as

Qf =
∫

dx : j0 := 1

2

∫
dx(ψ†

αψα − ψαψ
†
α) (5.38)

We can act by this operator on any state to determine the fermion number of that
state. Let us denote the state with no positive energy particles and empty zero mode
by |0; −〉 and the state with no positive energy particles and filled zero mode by
|0; +〉. Then the fermion numbers of these two states are

Qf|0; ±〉 = 1

2
[a†

0a0 − a0a†
0]|0; ±〉

= 1

2
[2a†

0a0 − 1]|0; ±〉

= ±1

2
|0; ±〉 (5.39)

Therefore the kink carries a half-integer fermion number of either sign. If the
fermion carries electric charge, the electric charge on the kink is also half-integral.

It is critical to not think of the kink as being “kink plus fermion.” Instead the kink
is made of both the bosonic and fermionic fields. Then there are only two states for
the kink: one with filled zero mode and the second with the zero mode empty.

Surprising as the half-integer fermion number is, further work in [150, 68] ob-
tained different fractional charges in other systems (see Section 9.1). Indeed, [68]
shows that the charges can even be irrational.

5.4 Other consequences

If the bosonic condensate is electrically charged, the domain wall becomes super-
conducting. To see this in some more detail, consider the case of a complex, elec-
trically charged, scalar field, χ , interacting with the field φ that forms a domain
wall

L = L[φ] + L[Aµ] + 1

2
|Dµχ |2 − m2

χ

2
|χ |2 − λχ

4
|χ |4 − σ

2
φ2|χ |2 (5.40)
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The first term is the Lagrangian for the Z2 model and the second is the usual
Maxwell Lagrangian for the gauge field Aµ. The covariant derivative is defined by

Dµ = ∂µ − iq Aµ (5.41)

The propagating modes of the condensate are

χ = χ0(x)ei(ωt−k·x) (5.42)

where χ0(x) is the condensate profile and k is the wave-vector restricted to lie in
the plane of the wall, the yz-plane. Since χ carries electric charge, q, the electric
current is

jχ = iq

2
(χ †∇χ − χ∇χ †) (5.43)

Inserting Eq. (5.42) into (5.43), we find that the current is along the k direction

jχ = q|χ0|2k (5.44)

The simplest way to see that the wall with the condensate is superconducting is
to write

χ = χ0(x)eiθ (5.45)

where χ0 is the condensate solution and θ is the phase variable. Then the low
energy Lagrangian for the θ degree of freedom can be derived by integrating the
full Lagrangian density, Eq. (5.40), over x to get

L(θ ) = 1

2
(∂µθ − eAµ)2 (5.46)

where we have omitted an overall constant factor. This effective Lagrangian is
the relativistic generalization of the Lagrangian in the Ginzburg-Landau theory of
superconductivity. Assuming that the relativistic generalization does not make any
qualitative difference, results from the Ginzburg-Landau theory can then be applied
directly to the present case. In particular, the domain wall with charged condensate
can be expected to carry persistent electric currents, have magnetic vortices, and
exhibit the Meissner effect (expulsion of magnetic fields) [61].

We now discuss fermionic superconductivity on domain walls. The relevant
modes are given in Eq. (5.33) and the (normal ordered) current is

jψ = q : ψ†γψ : (5.47)

Using the expansion of ψ in terms of creation and annihilation operators
(Eq. (5.35)), the current in any Fock state of fermions can be evaluated. Similarly,
the electric charge on a domain wall can also be evaluated.

Fermions on domain walls can only make the wall superconducting if they form
Cooper pairs and condense. It is believed that the slightest attractive interaction
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between the fermions on the wall will lead to condensation below some critical
temperature. On a domain wall, there are possible channels for attractive inter-
actions. For example, the fermions interact with each other via exchange of φ

quanta and this can lead to an attractive force. The problem of rigorously showing
fermionic superconductivity of domain walls has not been investigated. In partic-
ular, the Meissner effect, which is the hallmark of superconductivity, has not been
shown. Indeed, the response of non-interacting fermion zero modes to an external
magnetic field has been discussed with the conclusion that the walls are diamagnetic
[173] (also see [82, 172]).

In the particle-physics/cosmology literature, the existence of electrically charged
zero modes is simply assumed to imply superconductivity (though see [15]). A
reason for this assumption is that a current on a wall persists even without the
application of an external electric field. Once the current carrying fermionic zero
mode states have been populated there are very few processes by which these states
can be emptied [184]. Two such dissipative processes are the scattering of counter-
propagating fermion zero modes, and the scattering of fermion zero modes with
fluctuations of the domain wall field itself. Generally these processes occur at a very
slow rate, at least in astrophysical situations of interest. Hence, strictly speaking,
domain walls in particle physics/cosmology have only been shown to be excellent
conductors and not superconductors.

The equilibrium current on a domain wall in any setting depends on the balance
of the rates of current increase owing to an external electric field and decrease
owing to dissipation. Note that an external magnetic field in which a domain wall is
moving is, effectively, an electric field in the rest frame of the wall. Since magnetic
fields are ubiquitous in astrophysics, any cosmological domain walls with fermion
zero modes can be expected to be current carrying. Superconducting domain walls
in realistic grand unification models have been discussed in [98].

The fermion zero mode states that we have discussed above are single particle
eigenstates. The true states of the domain wall are also affected by fermion-fermion
interactions. The many-body problem falls in the class of two-dimensional systems
of interacting fermions. In the presence of a strong external magnetic field, so that
the Landau level spacing is large compared to other energy scales, the fermions on
the wall are similar to electrons in a quantum Hall system.

5.5 Condensates on SU (5) × Z2 kinks

In Chapter 2 we have discussed kinks in an SU (5) × Z2 model, which is the simplest
example of a Grand Unified Theory. Even though SU (5) grand unification is known
not to be phenomenologically viable, the model is still pedagogically useful.
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The Lagrangian for the model is

L = Lb[�, χ, Xµ] + L f[χ, ψ, Xµ] (5.48)

where the SU (5) adjoint field, �, does not couple directly to the fermionic fields
(denoted generically by ψ). Only an additional SU (5) fundamental field, χ , couples
to the fermions. The vacuum expectation value of χ is responsible for electroweak
symmetry breaking and the masses of all the observed quarks and leptons arise
from this symmetry breaking. The SU (5) symmetry breaking has no consequences
for the fermionic sector, except via the χ field. This indirect effect can be important
in the presence of kinks, since χ can form a condensate on the kink, which can then
interact with some of the fermions. We will discuss this further below.

The bosonic part of the Lagrangian is

Lb = Tr(Dµ�)2 + |Dµχ |2 − V (�, χ) − 1

2
Tr(Xµν Xµν) (5.49)

The covariant derivative is defined by Dµ ≡ ∂µ − igXµ and its action on the scalar
fields is

Dµ� ≡ ∂µ� − ig[Xµ, �], Dµχ ≡ (∂µ − igXµ)χ (5.50)

The potential is given by

V (�, χ) = V (�) + V (χ ) + λ4(Tr�2)χ †χ + λ5(χ †�2χ ) (5.51)

with

V (�) = −m2
1(Tr�2) + λ1(Tr�2)2 + λ2(Tr�4) (5.52)

V (χ) = −m2
2χ

†χ + λ3(χ †χ )2 (5.53)

Successful grand unification requires that the global minimum of the potential
leaves an SU (3) × U (1) symmetry unbroken.4 As already described in Section 2.2,
the minimum of the potential with χ set equal to zero, occurs at

�0 = η

2
√

15
diag(2, 2, 2, −3, −3) (5.54)

(up to SU (5) × Z2 transformations) in the parameter range

λ ≥ 0, λ′ ≡ h + 7

30
λ ≥ 0 (5.55)

The vacuum expectation value of � breaks SU (5) × Z2 to [SU (3) × SU (2) ×
U (1)]/Z6. If we assume that the back-reaction of a vacuum expectation value of χ

4 Symmetry breaking patterns have been discussed quite generally in [99].
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on that of � is small, we can write down a reduced potential for χ alone

Vred(χ ; �0) =
(

−m2
2 + λ4Tr�2

0 + λ5

15
η2

)
χ †

aχa

+
(

−m2
2 + λ4Tr�2

0 + 3λ5

20
η2

)
χ
†
bχb + λ3(χ †χ )2 (5.56)

where a = 1, 2, 3 and b = 4, 5. The symmetry is broken to [SU (3) × U (1)]/Z3

only if the vacuum expectation value of χ is along the χ4 or χ5 directions. This
further restricts the range of parameters to

λ5

15
η2 > m2

2 − λ4Tr�2
0 >

3λ5

20
η2, λ3 > 0 (5.57)

which also implies λ5 < 0 and m2 < λ4Tr�2
0. We assume that these conditions on

the parameters are satisfied. Then a minimum of the reduced potential occurs at

χT = ηew(0, 0, 0, 1, 0) (5.58)

where

η2
ew = 1

2λ3

(
m2

2 − λ4Tr�2
0 − 3λ5

20
η2

)
(5.59)

is the electroweak symmetry breaking scale. The final [SU (3) × U (1)]/Z3 sym-
metry corresponds to the color and electromagnetic symmetries present today.

Next we describe the fermionic sector.5 There are two fermion fields: ψ , which
is in the fundamental (5-dimensional) representation of SU (5) and ζ , which is in
the antisymmetric 10-dimensional representation. The known quarks and leptons
fit within the components of these fields. With the choice of vacuum expectation
values in Eq. (5.58)

(ψ i )L = (dc1, dc2, dc3, e−, −νe)L (5.60)

(ψ i )R = (
d1, d2, d3, e+, −νc

e

)
R (5.61)

(ζi j )L = 1√
2

⎛
⎜⎜⎜⎜⎝

0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 −u3 0 e+

−d1 −d2 −d3 −e+ 0

⎞
⎟⎟⎟⎟⎠

L

(5.62)

(see Eq. (14.9) in [30]). The numerical index on the u and d fields refers to color
charge, and the placement (subscript or superscript) depends on the representation

5 Actually we describe only one of the three families of the standard model fermionic sector, and then too the
neutrino is taken to be massless.
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(fundamental or fundamental conjugate) in which the field transforms under the
unbroken SU (3). The c superscript denotes charge conjugation:

ψc ≡ iγ 2ψ∗ (5.63)

The L and R subscripts refer to left- and right-handed spinors

ψL ≡ 1 − γ 5

2
ψ, ψR ≡ 1 + γ 5

2
ψ (5.64)

The Dirac γ matrices are defined in Eqs. (5.15) and (5.17).
Now we are ready to describe the interactions of the various fields with the

SU (5) × Z2 kink, described as the q = 2 kink in Chapter 2.

� In the presence of a (q = 2) kink, the vacuum expectation values are

�(−∞) = + η

2
√

15
diag(2, 2, 2, −3, −3)

χT (−∞) = ηew(0, 0, 0, 1, 0)

�(+∞) = − η

2
√

15
diag(2, −3, −3, 2, 2)

χT (+∞) = ηew(0, 0, 1, 0, 0)

Note that the non-trivial entry of χ has to coincide with one of the −3 entries of
� since this is what minimizes the potential V (�, χ). Therefore χ must rotate
through the kink. Inside the kink, the fields are not pure rotations of the asymptotic
values.

� The component �11 goes from +2 to −2 as the wall is crossed. Hence it must
vanish in the wall. This is very similar to the Z2 case, where the field vanishes
at the center of the wall. The field χ interacts with � as given by the potential
in Eq. (5.51). Note the interaction term λ5Tr(χ †�2χ ), which directly couples χ1

to �11. (The other term couples all components of χ to Tr�2 only.) By explicit
construction it can be seen that χ1 can condense on the wall for a certain range
of parameters [146]. Hence the SU (5) × Z2 model allows for scalar condensates
on the wall (see Section 5.1). In addition, since χ1 is a complex scalar field, the
condensate has an associated phase. The choice of phase on different parts of the
wall may be different, leading to vortices in χ1 that can only exist on the wall.
Since χ1 transforms non-trivially under the unbroken SU (3), the vortices carry
color magnetic field. This is similar to our discussion below Eq. (5.46).

� Next we consider fermion interactions with the wall [146]. The fermions do not
couple directly to �. Hence the only coupling to the wall is due to the rotation of χ

in passage through the wall and to the condensate in the χ1 component. Consider
the scattering of the fifth component, ψ5, which corresponds to a neutrino on the
left side of the wall but a d-quark on the right. This fifth component has non-zero
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reflection and transmission probability. If it reflects, the particle is still a neutrino.
If it transmits, it must change into a d-quark. If a neutrino becomes a d-quark in
passing through the wall, it must pick up electric and color charge from the wall.
Hence we are forced to conclude that there must be electric and color excitations
that live entirely on the wall. If a χ1 condensate is not present, the only available
excitations are the charged gauge field components. Hence charged gauge fields
must condense on the wall.

To see the presence of a charged gauge field condensate, it is most convenient
to go to a gauge where the scalar field vacuum expectation values are oriented in
the same directions on both sides of the wall, as we now discuss.

� Consider a very thin wall, so that

�(x < 0) = + η

2
√

15
diag(2, 2, 2, −3, −3) ≡ �0

�(x > 0) = − η

2
√

15
diag(2, −3, −3, 2, 2) (5.65)

Now we perform a local gauge transformation that rotates � into the direction of
�0 (up to a sign) everywhere. Such a gauge rotation is local since it is equal to the
identity transformation for x < 0 but is non-trivial for x > 0 since it exchanges
the 23- and 45-blocks of �. In both regions, x < 0 and x > 0, the gauge rotation
is constant. The rotation is non-constant only at x = 0 i.e. on the wall. Hence the
gauge fields after the rotation vanish everywhere except on the wall itself and there
are gauge degrees of freedom residing on the wall. A more explicit calculation
shows that the gauge fields living on the wall carry electric and color charge.

5.6 Possibility of fermion bound states

In addition to fermionic zero modes on a kink, there may also be fermionic bound
states. Such bound states would have a non-vanishing energy eigenvalue ω with
0 < ω < m. Since the energy eigenvalue is less than the asymptotic mass, the
fermion would be bound to the wall. We examine whether the model in Eq. (5.14)
leads to fermionic bound states on a Z2 kink.

For convenience we work in one spatial dimension. Then spinors have two
components and there are only two gamma matrices, which can be taken to be

γ 0 = σ 3 =
(

1 0
0 −1

)
, γ 1 = iσ 1 =

(
0 1
1 0

)
(5.66)

Then the Dirac equation i�∂ψ − gφkψ = 0 together with ψ = exp(−iωt)ξ gives

∂xξ1 = −(ω + gφk)ξ2

∂xξ2 = +(ω − gφk)ξ1 (5.67)
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where

ξ =
(

ξ1(x)
ξ2(x)

)
(5.68)

and we are interested in solutions with

0 < ω < mf ≡ gη (5.69)

The boundary conditions at the origin for ξ1 and ξ2 may be determined by
noting that we are free to rescale both ξ1 and ξ2 by a constant factor. So we can
set ξ1(0) = +1. Further, using the symmetry φk(x) = −φk(−x), we find that the
equations are invariant if we replace ξ1(x) by cξ2(−x) and ξ2(x) by cξ1(−x), where
c is a constant. Hence

ξ1(x) = cξ2(−x), ξ2(x) = cξ1(−x) (5.70)

This gives

ξ1(x) = cξ2(−x) = c2ξ1(x) (5.71)

Since ξ1(x) cannot vanish for all x , we get

c = ±1 (5.72)

Therefore there are two possible boundary conditions at the origin

ξ2(0) = ±ξ1(0) = ±1 (5.73)

At infinity we require ξ1 → 0 and ξ2 → 0.
A numerical search for a solution with non-zero ω did not reveal any bound

states for the range of parameters 0.1 < mfw < 20, where w is the width of the
kink. However this does not exclude the existence of fermion bound states (beside
the zero mode) on kinks in other systems, and it remains an open problem to find
systems where such bound states exist.

5.7 Open questions

1. Explore the classical and quantum physics of a domain wall with electrically charged
bosonic and fermionic zero modes placed in an external magnetic field. What happens
if the domain wall is moving?

2. Calculate the reflection of photons off a superconducting domain wall. Is the wall a good
mirror? (See [184].)

3. Construct a system in which the kink has both a zero mode and a fermionic bound state.
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