
2 
Electromagnetic interactions 

Before a particle can be detected, it must first undergo some sort of 
interaction in the material of a detector. Processes that result from the 
electromagnetic interaction are the most important for particle detection. 
In this chapter we will consider four major topics. The first is the loss of 
energy by charged particles heavier than the electron due to the excitation 
or ionization of atomic electrons. We will calculate the most probable 
value of the ionization energy loss and the distribution of the fluctuations 
in that quantity. Second, we will consider the interactions of electrons. 
These include ionization losses and the loss of energy due to photon 
emission (bremsstrahlung). The third topic is the interaction of photons 
with matter. The most important of these are the photoelectric effect, the 
Compton effect, and pair production. Lastly, we will examine Coulomb 
scattering of charged particles with the atomic nucleus, which is responsi­
ble for multiple scattering. 

There are additional processes that, although they are electromagnetic 
in nature, are more appropriately discussed in other sections of the book. 
These include scintillation light (Chapter 7), Cerenkov light (Chapter 8), 
ionization in gases (Chapter 9), electromagnetic showers (Chapter 11), 
and transition radiation (Chapter 12). Strong and weak nuclear interac­
tions of particles in matter are discussed in Chapter 3. 

A rigorous treatment of electromagnetic effects requires calculations 
using QED. This theory describes the interactions in terms of the ex­
change and emission of photons. Since these calculations require special 
techniques and tend to be rather lengthy, we shall be content to present 
simple arguments for the processes under consideration and only quote 
QED results [1]. 
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30 2 Electromagnetic interactions 

2.1 Energy loss in matter 
Let us begin by considering the loss of kinetic energy of an inci­

dent charged particle due to its Coulomb interaction with charged parti­
cles in matter. We first give a semiclassical argument that demonstrates 
the physical causes of the energy loss. Let the incident particle have mass 
M, charge ZI e, and velocity VI' We assume it is interacting with a particle 
in the material with mass m and charge Z2 e and that the material particle is 
essentially at rest. We restrict ourselves to cases where only small momen­
tum transfers are involved, so that the trajectory of the incident particle is 
not appreciably altered and the material particle only has a small recoil. 
The trajectory of the incident particle defines the axis of a cylinder as 
shown in Fig. 2.1. We consider the interaction with a particle in the 
cylindrical shell a distance b from the axis. The distance b is referred to as 
the impact parameter for the interaction. 

The moving charge creates an electric and magnetic field at the location 
of the material particle. Since the material particle is assumed to have only 
a small velocity, the magnetic interaction is not important. By symmetry 
the net force acting on the material particle is perpendicular to the cylin­
der. The transverse electric field is 

~1- = ZI eb/r 3 (2.1) 

in the rest frame of the incident particle. The electric field observed in the 
LAB changes with time. Suppose that the incident particle reaches its 
point of closest approach at t = O. At time t the transverse electric field in 
the LAB frame is given by [2] 

yzleb 
~ 1- = (b2 + y2vft2 )3/2 (2.2) 

Figure 2.1 A cylindrical sheet of matter surrounding a particle trajec­
tory. 
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2.1 Energy loss in matter 

The momentum acquired by the bound particle is 

Il.p = f F dt 

(00 (z2 e)yzlebdt 
= J-oo (b2 + y2vtt2)3/2 

Il. _ 2z1 Z2 e2 
p- v1b 

31 

(2.3) 

The incident particle will have collisions with both the nuclei and the 
electrons of the atoms. Since the bound particle is assumed to have only a 
small velocity, the energy transfer can be written 

(ll.p)2 2Z2 Z2 e4 
Il.E = -- = I 2 (2.4) 

2m b2vtm 

We see that the energy transfer is inversely proportional to the square of 
the incident particle velocity and to the square ofthe impact parameter. 
Thus, most of the energy transfer is due to close collisions. We have 
m = me and Z2 = 1 for electrons and m = Amp and Z2 = Z for nuclei. 
With Z electrons in an atom and A = 2Z, 

Il.E (electrons) = ~ (~)-I = 4000 
Il.E (nucleus) me 2Zmp 

so we see that the atomic electrons are responsible for most of the energy 
loss. We will let m = me for the rest of this chapter. 

Now let us calculate the total energy lost by the incident particle per 
unit length in the material. We have just seen that most of the energy loss 
is due to interactions with the atomic electrons. There are ne X 2nb db dx 
electrons in the cylindrical shell of Fig. 2.1, where 

n -Z n -Z NAP 
e- 2 a- 2A (2.5) 

is the number of electrons per unit volume (cf. Appendix D). Summing 
over the total energy transfer in each b interval, the total energy loss per 
unit length is 

dE/dx = 2nne (2Zt~4) (bmax db 
mVI Jb.m. b 

4nne Zt e4 1 bmax 
---=--;:'-- n--

mvt bmin 
(2.6) 

The limiting values of the impact parameter are determined by the 
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32 2 Electromagnetic interactions 

range of validity of the various assumptions that were made in deriving 
Eq. 2.6. We have assumed that the interaction takes place between the 
electric field of the incident particle and a free electron. However, the 
electron is actually bound to an atom. The interaction may be considered 
to be with a free electron only if the collision time is short compared to the 
characteristic orbital period of electrons in the atom. Examination ofEq. 
2.2 shows that the transverse electric field in the LAB is very small except 
near t = O. The full width at half maximum of the ~(t) distribution is b/vy 
times a constant of order 1, so we take [2] 

b 
tcoll "'" VII' (2.7)' 

An upper limit for the impact parameter then is 

b "'" yVI 
max (j) 

(2.8) 

where (j) is a characteristic orbital frequency. A lower limit of validity for b 
is obtained from the requirement that I1E cannot exceed the maximum 
allowed energy transfer for a head-on collision. Thus, equating Eq. 2.4 
evaluated at bmin with Eq. 1.24, we find that 

b . "'" Z I e2 

mID ymv! 

Ifwe substitute Eqs. 2.8 and 2.9 into Eq. 2.6, we obtain 

dE 4nn Z2e4 mv3y2 
_= e I In--I-
dx mv! ZI e2(j) 

(2.9) 

(2.10) 

A more rigorous classical calculation, originally due to Bohr, treats the 
atom as a harmonically bound charge for distant collisions. However, the 
results of this calculation differ numerically from Eq. 2.10 by a negligible 
amount [2]. 

Now let us determine the classical electromagnetic cross section for an 
incident particle to lose an amount of energy W. Consider a ring of width 
db at an impact parameter b from an atom. Every incident particle passing 
through the annular region undergoes a certain deflection. By definition, 
the differential cross section is the area of the ring and 

da(b) db = 2nb db 
db 

We use Eq. 2.4 to relate b to the energy transferred to an atomic electron, 
which we assume is equal to the energy Wlost by the incident particle. We 
find that 
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2.1 Energy loss in matter 

du db = 2nZ?Z~e4 dW 
db mv? W2 

= du(W) dW 
dW 

Thus, the classical cross section for obtaining an energy loss W is 

33 

du 2nZ2Z 2e4 
_= 1 2 (2.11) 
dW mv?W2 

When electromagnetic scattering represents the dominant source of 
energy loss, a pure beam of monoenergetic, charged, stable particles heav­
ier than the electron travels approximately the same range R in matter. 
For example, a beam of 1 GeV/cprotonshas a range of about 200 g/cm2 

in lead (17.6 em). Because of their light mass, the paths of electrons in 
matter have much larger deviations. A plot of the number of heavy 
charged particles in a beam is shown in Fig. 2.2 as a function ofthe depth 
into the material. Also shown is the local value of dE/dx. The small 
decrease in intensity that occurs at all depths is caused by nuclear or large 
angle scattering processes. An interaction that removes particles of a given 
type from a beam leads to an exponential decrease in the intensity of those 
particles. Most of the ionization loss occurs near the end of the path, 
where the velocity is smallest. This increase in the energy loss is referred to 
as the Bragg peak. The depth at which half the initial particles remain is 
called the mean range. This is related to the energy loss by 

R(E) = f: -d~/dx dE (2.12) 

The range represents the distance traversed along the trajectory of the 

Figure 2.2 Number of heavy charged particles in a beam and dE/dx as a 
function of depth in the absorber (R is the mean range). 

/ 
I 

x R 

https://doi.org/10.1017/9781009290098.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290098.003


34 2 Electromagnetic interactions 

particle itself and differs from the thickness of the absorber because of 
multiple scattering. 

We can derive an important scaling law for the range. The energy loss 
formula can be written 

~! = Z1I(v) = Zfg(!) 
where! and g are functions. Then, according to Eq. 2.12, the range is given 
by an equation of the form 

J 1 dE 
R = Zfg(E/M) M M 

R(!)= ~h(!) 
(2.13) 

where h is a universal function of E/ M. To illustrate the usefulness ofEq. 
2.13, suppose that the range of some particle, a proton, for example, has 
been measured as a function of v or of E/ M. Then the range of another 
particle, an alpha particle, for example, with energy EO/. can be related to 
the proton range by 

~R (EO/.) = Z~ R (EO/.) 
Mp p MO/. MO/. 0/. MO/. 

R (EO/.)=MO/.~R (EO/.) 
0/. MO/. Mp Z~ p MO/. 

The range-energy relation can often be expressed empirically in the 
form 

(2.14) 

For example, the range in meters for low energy protons in air can be 
approximated with n = 1.8 and Eo = 9.3 MeV [3]. 

The energy losses and ranges of a number of incident particles in a 
variety of absorber materials are shown in Fig. 2.3. The range and dE/dx 
are expressed in terms of the amount of mass traversed (g/cm2) instead of 
the linear distance. All the dE/dx curves show the 1/v2 drop for small 
momentum and a region of minimum ionization for higher momentum. 
Similar curves are given for particles in liquid hydrogen in Fig. 2.4. 

2.2 Quantum treatment of the energy loss 
The semiclassical treatment of the energy loss given in the pre­

ceding section treats the quantum nature of the particles in an ad hoc 
fashion. A proper treatment must take into account (1) the fact that 
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2.2 Quantum treatment a/the energy loss 35 

Figure 2.3 Mean range and energy loss of charged particles in solids. 
Calculations use the Bethe-Bloch equation with density effect correc­
tions. Refer to the cited reference for a discussion of assumptions and 
qualifications. (Particle Data Group, Rev. Mod. Phys. 56: S1, 1984.) 
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Figure 2.4 Mean range and energy loss of charged particle in liquid 
hydrogen. Calculations use the Bethe-Bloch equation with density ef­
fect corrections. Refer to the cited reference for a discussion of assump­
tions and qualifications. (Particle Data Group, Rev. Mod. Phys. 56: S 1, 
1984.) 

PARTICLE DETECTORS, ABSORBERS, AND RANGES 

Mean Range and Energy Loss in Liquid Hydrogen 
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2.2 Quantum treatment of the energy loss 37 

energy transfers to the atomic electrons only occur in discrete amounts 
and (2) the wave nature of the particles. For very close collisions the 
classical specification of a particle as an object with a well-defined posi­
tion and momentum conflicts with the uncertainty principle. In the early 
1930s Bethe and Bloch treated the problem of energy loss in the frame­
work of quantum mechanics. We will summarize some important aspects 
of their treatment in this section [4, 5]. 

Bethe's theory classifies atomic collisions according to the amount of 
momentum or energy transfer to the bound electron. This is an observ­
able quantity in contrast to the impact parameter used in the semiclassical 
derivation. However, one can associate the small momentum transfer 
processes with a large impact parameter (distant collisions) and the large 
momentum transfers with small impact parameters (close collisions). 

In distant collisions the incident particle interacts with the atom as a 
whole. There will be a certain probability that the energy lost by the 
incident particle will cause excitation of an electron to a higher energy 
level or will cause ionization. Bethe calculated the probabilities for these 
transitions using first-order perturbation theory. The incident particle is 
treated as a plane wave. The spin and magnetic moment of the atomic 
electrons are properly treated if Dirac wave functions are used. The per­
turbation is the Coulomb potential plus a coupling to the photon field. 
The total contribution to the energy loss comes from summing all excita­
tion energies, each weighted by the cross section for that excitation. Thus, 

ddEI =naLJEnd(Jn (2.15) 
X w<'7 n 

where 1'/ is a limiting energy transfer (- 50 KeY) for which the assump­
tions used in deriving Eq. 2.15 are valid [1]. The expression obtained after 
evaluating Eq. 2.15 depends on the atomic properties through the mean 
ionization potential [. 

For close collisions the interaction can be considered to be with free 
electrons, and atomic properties are not involved. The energy loss due to 
close collisions can be written 

~!lw>'7 = ne i wmax 
W :~(E, W) dW (2.16) 

Note that (d(J/dW)(E, W) is the cross section for an incident particle with 
energy E to lose an amount of energy W in the collision with a free 
electron. The cross section depends on the type of incident particle. For 
spin 0 particles heavier than the electron, the differential cross section is 
given by [1] 
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38 2 Electromagnetic interactions 

da _ e4 1 ( 2 W) 
dW(E, W) - 2n mc2 P2W2 1 - P Wmax 

(2.17) 

while for heavy spin t incident particles 

:~ (E, W) = 2n ;;2 p2 ~2 [ 1 - p2 ::ax + ~ (E +:c2 YJ (2.18) 

When W ~ WmaJ" both of these cross sections reduce to that for Cou­
lomb scattering, Eq. 2.11. Thus, for small energy transfers the cross sec­
tions only depend on the energy of the recoiling electron and the velocity 
of the incident particle. Spin only plays an important role when W - E. 

The total energy loss is the sum of the contributions from close and 
distant collisions. The result for the energy loss ofa heavy, spin 0 incident 
particle is [5] 

(2.19) 

It is important to note that the final expression for the energy loss does not 
depend on the intermediate energy transfer t7 used to separate the classes 
of collisions. 

It is useful to break up the constant in front of Eq. 2.19 into separate 
factors relating to the incident particle, the material medium, and the 
intrinsic properties of the electron. First recall that the electron's charge is 
related to the so-called classical radius of the electron by 

(2.20) 

Using Eqs. 2.5 and 2.20, the fixed constants and electron properties can be 
combined into the constant 

De = 4nr~ mc2 

= 5.0989 X 10-25 MeV-cm2 (2.21) 

Equation 2.19 can then be written in the convenient form 

dE _ (ZI)2 [ 2mc2p2y2 - 2J 
dx - De fit ne In I p (2.22) 

Now let us consider the important features ofEq. 2.22. The energy loss 
depends quadratically on the charge and velocity of the incident particle, 
but not on its mass. Thus, for a beam of particles with a given charge, the 
energy loss is a function of the velocity only. The energy loss depends on 
the material linearly through the electron density factor ne and logarith­
mically through the mean ionization potential I. 

As the velocity of the particle increases from near zero, dE/dx falls due 
to the 1 /V2 factor. All incident particles have a region of minimum ioniza­
tion with dE/dx - 2 MeV /g cm2 for py = 3. As p continues to increase, 
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2.2 Quantum treatment of the energy loss 39 

the In y2 factor in Eq. 2.22 begins to dominate and dE/dx starts to in-
crease. This is referred to as the region of relativistic rise. In the semiclassi-
cal picture the relativistic deformation of the Coulomb field of the inci-
dent particle increases the upper limit for impact parameters involved in 
the collision (see Eq. 2.8). 

The mean ionization potential per electron depends on the atomic 
number ofthe atom. Bloch used the Thomas - Fermi model of the atom to 
show that I should vary linearly with Z. An approximate expression is 

I/Z=lOeV (2.23) 

which is generally valid for Z ;c: 20. Numerical values for the mean ioniza-
tion potential of some materials are given in Table 2.1. 

Table 2.1. Electromagnetic properties of elements a 

n. ne I 
Material Z (X 1023/em3) (X 1023/em3) (eV) 

H2 1 0.423 0.423 21.8 
He 2 0.188 0.376 41.8 
Li 3 0.463 1.39 40.0 
Be 4 1.23 4.94 63.7 
B 5 1.32 6.60 76 
C 6 1.146 6.82 78 
N2 7 0.347 2.43 85.1 
O2 8 0.429 3.43 98.3 
Ne 10 0.358 3.58 137b 

Al 13 0.603 7.84 166 
Si 14 0.500 6.99 173 
Ar 18 0.211 3.80 188b 

Fe 26 0.849 22.1 286 
Cu 29 0.845 24.6 322 
Zn 30 0.658 19.6 330 
Kr 36 0.155 5.59 352b 

Ag 47 0.586 27.6 470 
Sn 50 0.371 18.5 488 
W 74 0.632 46.8 727 
Pt 78 0.662 51.5 790 
Au 79 0.577 45.6 790 
Pb 82 0.330 27.0 823 
U 92 0.479 44.1 890 

a Values are for solid and liquid states unless noted. 
b Gaseous state. 

LR 
(em) 

891 
755 
155 
35.3 
22.2 
18.8 
47.0 
30.0 
24.0 

8.89 
9.36 

14.0 
1.76 
1.43 
1.75 
5.26 
0.85 
1.21 
0.35 
0.31 
0.34 
0.56 
0.32 

XR Density 
(g/em2) (g/em3) 

63.05 0.0708 
94.32 0.125 
82.76 0.534 
65.19 1.85 
52.69 2.37 
42.70 2.27 
37.99 0.808 
34.24 1.14 
28.94 1.20 
24.01 2.70 
21.82 2.33 
19.55 1.40 
13.84 7.87 
12.86 8.92 
12.43 7.14 
11.37 2.16 
8.97 10.5 
8.82 7.31 
6.76 19.3 
6.54 21.45 
6.46 18.88 
6.37 11.34 
6.00 18.95 

Source: Particle Data Group, Rev. Mod. Phys. 56: S 1, 1984, S53; S. Ahlen, Rev. 
Mod. Phys. 52: 121,1980, Table 6; Y. Tsai, Rev. Mod. Phys. 46: 815,1974, Table 
3.6; Handbook of Chemistry and Physics, 64thed., Boca Raton: CRCPress, 1983, 
p. B65; R.M. Stemheimer, M.J. Berger, and S.M. Seltzer, Atomic Data and 
Nuclear Data Tables 30: 261, 1984, Table 1. 
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40 2 Electromagnetic interactions 

The relativistic rise does not continue indefinitely. The theory we have 
described so far treats the interaction of the incident particle with an 
isolated atom. However, for dense materials where the interatomic spac­
ing is small, the upper limit on allowed impact parameters may encom­
pass many atoms. In this case interactions among the atomic electrons 
can cause a screening of the projectile's electric field. Fermi developed a 
theory of dielectric screening that explains the reduction of energy loss for 
distant collisions [4]. This phenomenon is known as the density effect 
since it is affected by the density ofthe medium. It causes the energy loss in 
the region of relativistic rise to only increase like In y instead ofln y2 and 
causes the loss to become constant at very large y. The constant ionization 
loss at large y is referred to as the Fermi plateau. 

Taking the density effect into account, the energy loss formula can be 
written 

10 

8 

6 
6 

4 

2 

1 

dE = D (ZI)2 [1 2mc2p2y2 _ p2 - J(Y)] 
dx e PI n. n I 2 (2.24) 

Figure 2.5 Density effect correction parameter b for several materials. 
(The parameter was calculated using the formulas and coefficients given 
in R.M. Stemheimer, MJ. Berger, and S.M. Seltzer, Atomic Data and 
Nuclear Data Tables 30: 261, 1984.) 
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2.2 Quantum treatment a/the energy loss 41 

where o(y) is a correction due to the density effect. A successful model for 
calculating 0 in terms of atomic properties has been developed by Stern­
heimer. Formulas giving the correction in terms of the ionization poten­
tial and the plasma frequency of the material can be found in Stern­
heimer's papers [ 6]. Values of Mor several materials are shown in Fig. 2.5. 
The density effect correction changes the calculated ionization loss by 
- 15% for particles with py = 100 in metals. Note that nonconductors 
have a sharp threshold in py. 

Measurements of dEl dx in propane are shown in Fig. 2.6 as a function 
of py and the gas pressure [7]. The measurements were made by collecting 
the charge liberated by ionization in a proportional chamber. Note that 
the plateau value of dEldx at large py decreases with increasing pressure 
due to the density effect. Measurements [8] of the ionization losses of high 
energy protons and pions in high pressure hydrogen gas have also shown 
that the energy loss in the Fermi plateau remains constant for y values as 
high as 1800. 

One should keep in mind that the derivation of the energy loss expres­
sion given in Eq. 2.19 makes use of a number of simplifying assumptions. 

2,0 

1,5 

Figure 2.6 Measured mean energy losses in propane as a function of 
pressure and py. The energy losses are normalized to those for 3-Ge V / c 
protons. (After A. Walenta, J. Fischer, H. Okuno, and C. Wang, Nuc. 
Instr. Meth. 161: 45, 1979.) 
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42 2 Electromagnetic interactions 

At the low p extreme atomic shell corrections are necessary when the 
velocity of the incident particle becomes comparable to the velocity of the 
bound electrons. On the other hand, at large}, radiation, kinematic, and 
incident particle structure corrections may be necessary [5]. One should 
also remember that excitation and ionization are not the only causes of 
energy loss. At large }' other contributing processes include Cerenkov 
radiation, transition radiation, bremsstrahlung, and pair production. 

2.3 Fluctuations in energy loss 
The amount of energy lost by a charged particle that has traversed 

a fixed thickness of absorber will vary due to the statistical nature of its 
interactions with individual atoms in the material. The value of dE/dx 
calculated in the preceding section is an averaged value. We have seen in 
Eq. 2.11 that collisions with small energy transfers are more likely than 
those with large transfers. Thus, the most probable energy loss will be 
shifted to the lower half of the range of possible energy transfers. The large 
energy transfer events are associated with the production of high energy 
recoil electrons (and from nuclear interactions). The result is that the 
energy loss distribution will be asymmetric with a tail on the high energy 
side. 

For historical reasons the high energy recoil electrons are called delta 
rays. The number of delta rays produced with energy greater than E, in a 
thickness x is 

where 

IE .... dE 
N(E~E,)= C; E2 

E, 

c; = 21lneZ te4 x 
mv2 

and Emax is the maximum possible energy transfer. Thus, 

N(E ~ E,) = C; (~ __ 1_) 
E, Emax 

(2.25) 

(2.26) 

(2.27) 

So long as E, ~ Emax , we see that the number of energetic delta rays falls 
off inversely with the energy and that the parameter C; is the energy above 
which there will be, on the average, one delta ray produced. As such, it 
represents a "typical" value of the energy loss in the material. 

The probability that an incident particle with energy E will lose energy 
between Wand W + dW while traversing an infinitesimal thickness dx of 
absorber is (see Appendix D) 
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da(W) 
¢(W) dW dx = na dW dW dx (2.28) 

where da / dW is the differential cross section for the incident particle to 
lose energy W in a single collision with an absorber atom. The total 
probability of a collision in the thickness dx, regardless of the energy 
transfer, is q dx where 

q = na i'" da/dW dW (2.29) 

The quantity q is called the primary ionization rate. 
Although the probability for an energy loss W in an infinitesimal ab­

sorber layer is given trivially by Eq. 2.28, the calculation of the corre­
sponding probability for a finite thickness can be very complicated. Con­
sider a beam of N particles all having energy E. Let X( W, x) dW be the 
probability that a particle loses an energy between Wand W + dWafter 
crossing a thickness x of absorber. The form of X may be determined by 
considering how it changes if the particles traverse an additional infinitesi­
mal thickness dx in the absorber. The number of particles with energy 
losses between Wand W + dW increases because some particles with 
energy loss less than Wat x will undergo a collision in dx that increases its 
loss to between Wand W + dW. On the other hand, the number of 
particles with energy losses between Wand W + dW decreases because 
some particles in the correct interval will undergo a collision in dx and 
increase the total energy loss above W + dW. We assume that successive 
collisions are statistically independent, that the absorber medium is ho­
mogeneous, and that the total energy loss is small compared to the parti­
cles' incident energy. Then we can express the change in the number of 
particles as 

NX(W, x + dx) dW - NX(W, x) dW= N i'" X(W - e, x)¢(e) dW dx de 

- NX( W, x) dW q dx (2.30) 

Thus X satisfies the equation 

ax(::;; x) = i'" ¢(e)x(W - e, x) de - qX(W, x) (2.31 ) 

A number of investigators have determined solutions to Eq. 2.31. The 
differences in the treatments arise chiefly from different assumptions 
made about the single collision energy transfer probability ¢( W). Landau 
used the classical free electron cross section given in Eq. 2.11. He assumed 
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44 2 Electromagnetic interactions 

that a typical energy loss was (1) large compared to the binding energy of 
the electrons in the material, yet (2) small compared to the maximum 
possible energy loss. With these assumptions the function X can be factor­
ized into the form [9, 10] 

where 

1 
X(W, x) = "¢fr.(A) 

A = ~ [ W - e (In ;, + 1 - CE) ] 

In e' = In (1 - P2)J2 + p2 
2mv2 

CE = 0.577 (Euler's constant) 

(2.32) 

and e is given by Eq. 2.26. The quantity e' is the low energy cutoff of 
possible energy losses. It was chosen by Landau so that the mean energy 
loss agreed with the Bethe-Bloch theory. 

The universal function fr.(A) can be expressed in terms of the integral 

1 !coo fr.(A) = - exp[ - u(ln u + A)]sin 7rU du 
7r 0 

The most probable value of the energy loss is given by [5] 

Wmp = e(ln;, + 0.198 - J) 

(2.33) 

(2.34) 

where J is the density effect correction used in Eq. 2.24. The full width at 
half maximum of the distribution is 

FWHM=4.02e (2.35) 

It is convenient to use the quantity e/ Emax to classify various theories of 
energy losses. Landau's second assumption mentioned above requires 
e/ Emax :5 0.01. In this case the number of delta rays with energies near 
Emax is very small, and single large energy loss events give an asymmetric 
high energy tail to the energy loss distribution. Landau's first assumption 
breaks down in very thin absorbers such as gases, where the typical loss 
may be comparable to the electron binding energy in the gas atoms. 
Experimental energy loss distributions for gases are broader than pre­
dicted by the Landau theory. Accurate treatment of the energy loss re­
quires that the theory take into account the presence of discrete atomic 
energy levels [9]. 

The distributions approach a Gaussian for e/ Emax -== 1. In this case the 
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2.3 Fluctuations in energy loss 45 

number of delta rays observed with energy near Emax is large. The most 
probable energy loss is also large, and the high energy loss events tend to 
average out. The width of the Gaussian is given simply by [5] 

Gtv= 4nZi Z2nae4x (2.36) 

Vavilov has developed a theory for the intermediate case 0.01 ::5 

f./ Emax ::5 1 using the physical upper limit for the maximum energy 
transfer [11]. 

The pulse height spectra of high energy protons and electrons in a 
gaseous proportional chamber are shown in Fig. 2.7. It is clear that the 
most probable value of the energy loss is skewed to the low energy side of 
the asymmetric energy loss distribution. 

Because of fluctuations in energy loss, a beam of particles of fixed 
energy will have a distribution of ranges in a thick absorber. This phenom­
enon is known as straggling. The two fluctuations are related by 

- (dE)2 -«(E - E)2) = dx «(R - R)2) (2.37) 

Figure 2.7 Measured pulse height distributions for 3-Ge V / c protons 
and 2-GeV/c electrons in a 90% Ar + 10% CH4 gas mixture. (After A. 
Walenta, J. Fischer, H. Okuno, and C. Wang, Nuc. Instr. Meth. 
161: 45,1979.) 

oD... 
( \ 

Po o. • 

1 \r... e 

I .~ ~ 
r j \ •• \ 

o I \ 

I • ~o • • / '0 •• 
o C'lo~. 

~ .~.~~ 
~~ ....... 

/00 200 300 

CHANNEL 

https://doi.org/10.1017/9781009290098.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290098.003


46 2 Electromagnetic interactions 

Calculations of straggling have shown that the range distributions for 
protons in various metals are nearly Gaussian [5]. For a pure, monoener­
getic beam of particles the fractional straggling (JR/ R increases with in­
creasing Z of the absorber. The fractional straggling in a given absorber 
decreases with increasing kinetic energy and approaches a value (JR/ R ~ 
!(m/M)1/2 at high energy, where Mis the mass of the incident particle. 

2.4 Energy loss of electrons and positrons 
Electrons and positrons lose energy by ionization just as the 

heavier charged particles do. However, because of their small mass, they 
also have significant losses due to the production of radiation. For lead the 
fractional energy loss due to bremsstrahlung exceeds that due to ioniza­
tion for electron energies above 10 MeV. Other significant sources of 
energy loss for low energy electrons are elastic scattering and positron 
annihilation. For high energy electrons the bremsstrahlung and pair pro­
duction processes lead to the production of electromagnetic showers. 

Electrons and positrons have similar electromagnetic interactions in 
matter. Most of the statements we will make about electrons apply to 
positrons as well. When this is not the case, we will explicitly say so. 

2.4.1 Ionization energy loss 
The portion of the ionization loss resulting from distant collisions 

is the same for all incident particles. On the other hand, the portion 
resulting from close collisions depends on the form of the free electron 
cross section of the incident particle (Eq. 2.16). The differential cross 
section for the relativistic scattering of an electron from a free electron was 
first calculated by Moller. The cross section for finding a scattered elec­
tron with kinetic energy between Wand W + dW is [12] 

d(J 2ne4 [ 1 1 mc2(2E + mc2) 
dW = mv2 W2 - W(E - W) (E + mc2)2 

11] + (E - W)2 + (E + mc2)2 (2.38) 

where E is the kinetic energy of the incident electron. The energy loss for 
relativistic electrons using this cross section is 

~! = 2:;;:4 (2 In 2~C2 + 3 In y - 1.95) (2.39) 

The energy loss for positrons differs slightly since the Bhabha differential 
cross section must be used in place of the Moller cross section. The 
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corresponding expression for the energy loss of singly charged, heavy 
particles traveling at relativistic velocities can be found by evaluating Eq. 
2.19 for p- 1 

(2.40) 

Comparison of Eqs. 2.39 and 2.40 shows that to first order all singly 
charged particles with P - 1 lose energy by collisions at approximately the 
same rate. The second terms indicate that the rate of relativistic rise for 
electrons will be slightly smaller than for heavier particles. 

Because of their small mass, electrons follow a very irregular path 
through matter. For this reason, the range for electrons has a wider distri­
bution than the range for heavier particles. The mean range for I-MeV 
electrons varies from about 0.22 g/cm2 in hydrogen to 0.78 g/cm2 in lead 
[13]. 

2.4.2 Bremsstrahlung 
The dominant energy loss mechanism for high energy electrons is 

the production of electromagnetic radiation. This is usually referred to as 
synchrotron radiation for circular acceleration and bremsstrahlung for 
motion through matter. Conservation of energy requires that Ei = Ef + k, 
where Ei (Ef ) is the initial (final) energy of the electron and kis the energy 
of the produced photon. The time rate of energy loss depends quadratic­
ally on the acceleration experienced by the particle through the well­
known relation 

dE/dt = (2e 2/3c 3)a 2 

where a is the acceleration. 

(2.41) 

A semiclassical calculation of the bremsstrahlung cross section for a 
relativistic particle gives [2] 

~ = 5 !!.- Z4 Z2 mc rei ~ A 2 ()2 2 M 2 2 
dk 'hc 1 2 MVI k n k (2.42) 

We note that the cross section depends inversely on the square of the 
incident particle mass M. It is for this reason that up to the present date 
radiation energy loss has only been important for electrons and very high 
energy muons. The cross section depends on the medium through the 
factor Z~, implying that heavy elements are most efficient at causing 
energy loss by radiation. Recall that ionization energy loss was propor­
tional to Z2' Finally note that the cross section falls off with increasing 
photon energy roughly as 1/ k. 
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Interactions of the incident particle with the Coulomb field of the 
nucleus go like Z~. There is also a contribution from the atomic electrons 
that goes like Z2' Thus, for all but the lightest elements the bremsstrah­
lung cross section is dominated by interactions with the nucleus. How­
ever, the atomic electrons cause another important effect by screening the 
nuclear charge. Classically, when the impact parameter is larger than the 
atomic radius, we expect the cross section to fall sharply since the effective 
charge seen by the incident particle is greatly reduced. This case is referred 
to as complete screening. The effect is also true quantum mechanically 
since one may define an "effective distance" of the electron from the 
nucleus Mq, where q is the momentum transfer from the electron to the 
nucleus. 

The results of QED calculations for the bremsstrahlung process can be 
found in a review by Tsai [14]. At least one virtual photon must be 
exchanged to the target system in order to conserve 4-momentum. The 
lowest-order QED diagrams shown in Fig. 2.8 do not depend on the sign 
of the charge of the lepton. Thus, we expect the same cross section from 
incident electrons and positrons. The interaction of the virtual photon 
with the target system depends on properties of the target, such as its mass, 
internal structure, spin, and screening of the nuclear charge by atomic 
electrons. 

Bethe and Heitler made a quantum mechanical calculation of the 
bremsstrahlung cross section for an electron in the field of an infinitely 
heavy, pointlike, spinless nucleus [15]. The calculation makes use of the 
Born approximation, which is valid if 

2nZ2 e2 1 nv ~ (2.43) 

where v can be the velocity of the electron before or after the photon 
emission. This relation is generally satisfied for energetic particles, except 
possibly for the heavy elements. 

Figure 2.8 Lowest-order Feynman diagrams for bremsstrahlung. 
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2.4 Energy loss of electrons and positrons 

The effects of screening are determined by the parameter [12] 

r= 100mc2 ~ 
Zy3 E;Ef 

100mc2 k/E; 

Z~/3 E;(1 - k/E;) 

49 

(2.44 ) 

This parameter results from dividing the Thomas-Fermi radius of the 
atom (15] 

ao r =--=--~ 
a Z~/3 amcZ~/3 

(2.45) 

by the maximum allowed value ofh/q [12]. The quantity ao is the ground 
state radius of the hydrogen atom in the Bohr theory and 

a = e2/nc = 1/137 (2.46) 

is the fine structure constant. The Bohr radius ao is related to the classical 
radius of the electron by re = a 2ao. The case of complete screening corre­
sponds to r = O. Figure 2.9a shows the region of allowed photon energies 
as a function of the incident electron energy. The contour with r = 0.1 for 
lead is shown together with the region of complete screening. 

Measurements of the angular distribution of bremsstrahlung photons 
agree with the predictions of the Bethe-Heitler calculations [16]. If the 
angles are measured with respect to the incident electron direction, the 
differential cross section is given approximately by 

da 8Z~a3 Pf(P7 + Pf) r2 
--:--~:--:-=- - -- (2.4 7) 
(dpr/Pf) dnfdny 1[2 kpt{)f{)~({)f+ {)y)2 (l + r 2)2 

where i (f) refers to the incoming (outgoing) electron and r = Q.l / QII is the 
ratio of the 3-momentum transfer to the nucleus perpendicular and paral­
lel to the incident electron direction. 

At high energy the mean angle of photon emission is 

- mc 2 
() =-

y E (2.48) 

independent of the photon energy. Thus, most of the radiation lies inside 
a narrow cone around the electron's momentum vector. The cone be­
comes more and more narrow as the energy is increased. Bremsstrahlung 
photons are in general polarized with the polarization vector normal to 
the plane formed by the photon and incident electron [3]. The photon 
polarization is influenced by the polarization of the incident electrons. 

The cross section integrated over angles in the case of complete screen-
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Figure 2.9 (a) The kinematic region of complete screening for brems­
strahlung and the contour for lead with r = 0.1. (b) The complete 
screening bremsstrahlung cross sections for aluminum and lead versus 
the variable f = k/(Ei - me2). 
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ing (r ~ 1) is [12] 

da _ 4ao [( 2 2) 183 w] 
dk - T 1 + w - 3w In Zy3 + 9" (2.49) 

where w = Er/Ej and E j > me2, and 

ao = aZ~r~ (2.50) 

The contribution of the atomic electrons can be included by substituting 
Z~ ---+ Z2(Z2 + I). Note that Eq. 2.49 only depends on the fractional 
energy wand not on Ej itself. It also depends on the material principally 
through the factor Z~ in ao. 

Expressions for the cross section for the case r > 0 have been defined 
using auxiliary functions and can be found in the literature [1, 12]. For 
r = 0.1 the complete screening approximation in lead differs from the 
more accurate partial screening calculations by - 3%. It can be seen that to 
this level of approximation and so long as Ej > me2, one may assume 
complete screening, except for the production of very energetic photons 
that carry off almost all of the electron's energy. 

The factor k in the denominator of Eq. 2.49 implies that the cross 
section for low energy photon production increases without limit. Of 
course, this infrared divergence does not actually occur. These equations 
are not valid in the limit k ---+ o. 

For the purpose of illustrating the energy dependence of the brems­
strahlung cross sections, it is convenient to use as the independent var­
iable 

f= k 
E j - me2 

which is the fraction of the incident kinetic energy of the electron given to 
the photon. Multiplying the cross section by k gives the photon intensity 
distribution. The complete screening cross sections for aluminum and 
lead are shown in Fig. 2.9b. For very energetic photon production (large!) 
screening corrections are negligible. The most important feature of Fig. 
2.9b is that the energy distribution does not fall off much faster than 11k. 
Hence there is a significant probability of obtaining a photon of any 
energy up to the maximum allowed. The deposited energy spectrum dal df 
is fairly uniform. The function plotted in Fig. 2.9b only changes a small 
amount for different elements. Hence the major material dependent fac­
tor is the Z2, which comes from ao. 

The energy loss due to radiation of an electron traversing some material 
is as follows: 
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dEl fk.nax d(J 
dx rad = Jo kna dk dk 

where kmax = E j - mc2 is the maximum allowed photon energy. It is 
convenient to separate out the incident energy and write the energy loss as 

~!Irad = naEj(Jrad (2.51) 

where 

1 fie",.. d(J 
(Jrad = Ej Jo k dk dk 

For the case of complete screening and E j > mc/,/aZ l / 3 

(Jrad = 4(Jo [In(183Z2"1/3) + -rs-] (2.52) 

Note that (Jrad in this case is independent of the electron's energy. Thus, 
according to Eq. 2.51 the energy loss due to radiation is proportional to Ej • 

The collision energy loss, on the other hand, increased like In Ej • In 
addition, the radiative energy loss is proportional to Z~, whereas the 
collision loss was proportional to Z2' Ifwe rewrite Eq. 2.51 in the form 
dEl E = dx na(Jrad, we see that na(Jrad must be the inverse of some constant 
length L R , where 

(2.53) 

and we have neglected the small term n- in Eq. 2.52. Ifwe also neglect the 
collisional energy loss, we find that radiation losses cause the mean energy 
of the electron to decrease exponentially so long as the restrictions on Eq. 
2.52 are satisfied. 

Values of LR for various materials are listed in Table 2.1. Radiation 
lengths for molecules can be determined from the atomic values by 
weighting the terms by the appropriate atomic weight [14]. It is often 
convenient to express lengths as a multiple of the radiation length in the 
material. 

The ratio of the radiation energy loss to the collision energy loss is given 
approximately by [12] 

dEl IdEI Z2 Ej 
dx rad dx coli = 1600mc2 

We see that at high incident electron energies, the energy loss is almost 
totally due to the production of radiation. The energy at which the loss 
due to radiation just equals the loss due to ionization is sometimes called 
the critical energy 
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(2.54) 

Another process by which fast moving charged particles can lose energy 
is through direct pair production [15]. The electromagnetic field of the 
charged particle may be considered as a flux of virtual photons. In the 
Coulomb field of the nucleus or an electron the virtual photons can decay 
into an electron and positron, just as real photons do in the process of pair 
production. 

We have seen that the dominant source of energy loss for high energy 
electrons is through bremsstrahlung. Figure 2.9b showed the energy dis­
tribution of the photons as a function of the fraction of the initial kinetic 
energy given to the photon. We saw that there was a substantial probabil­
ity that the emitted photon will carry off a large fraction of the electron's 
energy. Thus, we expect that the distribution of electron energy losses will 
be quite wide compared to that of a heavy charged particle. The Landau 
theory discussed in Section 2.3 is only applicable to low energy electrons, 
whose energy losses are dominated by collision processes. At high energies 
the probability due to bremsstrahlung that the energy of an electron will 
decrease by the factor e-c while traversing a thickness x of material is [15] 

e-CCbX-l 

w(x, 0 = r(bx) (2.55) 

where 

b - 2lna O"o 

and r is the gamma function. This relation is only valid for small thick­
nesses oflow Z material. Otherwise, the electron has a large probability of 
initiating an electromagnetic shower (see Section 11.1). 

2.4.3 Positron annihilation 
The ultimate fate of most positrons in matter is annihilation with 

an electron into photons. The most likely process is 

e++ e---+y+ y 

Annihilation into a single photon is possible if the electron is bound to a 
nucleus, but the cross section for this process is at most 20% of that for two 
photons [15]. The two-photon annihilation cross section for a positron 
with LAB energy E+ is given by 

= 2_1_[y2+ 4Y + 11 ( +~1)- y+3 ] (2.56) 
O"ann nr e + 1 n y y ,.,----;-Y y2 - 1 vy2 - 1 
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where 

y= E+/mc2 

This cross section peaks near y = 1. Thus, it is most likely that a high 
energy positron will lose energy by collision and radiation until the veloc­
ity becomes small, at which point it will annihilate into photons. 

The electron and the positron can also form a temporary bound state 
called positronium. This system is analogous to the hydrogen atom, al­
though the energy level spacing is reduced by a factor of 2 due to the 
reduced mass of the electron-positron system. Annihilation occurs when 
there is an overlap between the electron and positron wavefunctions and 
is most likely in the S state. The two particles can form both singlet (spins 
anti parallel) and triplet (spins parallel) states. The most common decay is 
the singlet state decay at rest into two collinear 0.51 I-MeV photons, 
which occurs with a mean lifetime of - 10-10 sec. The triplet state decays 
into three photons with a mean lifetime of - 10-7 sec. 

2.5 Interactions of photons 
We have seen that the collisional interactions of heavy charged 

particles tend to be small perturbations that, apart from removing a small 
amount of energy and causing a small change in the particle's trajectory, 
leave the particle basically undisturbed. Thus, the number of particles in a 
beam remains roughly constant until the velocity has been reduced to a 
small value. Photon interactions are different since in general there is a 
large probability that an interacting photon will be removed from the 
beam. 

Consider a collimated, monoenergetic beam of N photons. The num­
ber removed from the beam while crossing a thickness dx of material is 

dN = - flN dx (2.57) 

The constant of proportionality fl is known as the linear attenuation 
coefficient and is related to the probability that a photon will be scattered 
or absorbed in the material [17]. As a consequence, the intensity of the 
original photons will decrease exponentially with depth in matter. 

There are three major electromagnetic processes by which photons 
interact with matter: 

1. photoelectric effect, 
2. Compton effect, and 
3. pair production. 

Figure 2.10 shows the contributions of these three processes to the total 
photon interaction cross section for lead. For photon energies below 500 
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ke V the interactions are almost totally due to the photoelectric effect, 
while for photon energies above 50 MeV they are primarily due to pair 
production off the nucleus. The Compton effect plays an important role 
in the intermediate energy range. Two other effects indicated in Fig. 2.10 
are coherent (Rayleigh) scattering and photonuclear absorption. Rayleigh 
scattering is a process in which photons scatter from the atomic electrons 
without exciting or ionizing the atom. Photo nuclear absorption is actu­
ally a nuclear interaction where the photon is absorbed by the nucleus. It 
is most important in the region of the "giant resonance" (10-25 MeV) 
and is frequently accompanied by the emission of a neutron. 

2.5.1 Photoelectric effect 
The photoelectric effect can be considered to be an interaction 

between the photon and the atom as a whole. Incident photons whose 
energy k exceeds the binding energy Eb of an electron in the atom may be 
absorbed, and an atomic electron ejected with kinetic energy T = k - Eb • 

The photoelectron is emitted near 90 0 from the incident photon direction 

:::; 
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Figure 2.10 Contributions to the photon interaction cross section in 
lead. r, photoelectric effect; O'COH, Rayleigh scattering; O'INCOH, Compton 
scattering; O'pH.N' photonuclear absorption; Kn , pair production off the 
nucleus; K., pair production off atomic electrons. (J. Hubbell, H. 
Gimm, and I. Overbo, J. Phys. Chern. Ref. Data 9: 1023, 1980.) 
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for very low energy, unpolarized photons [15]. The emission angle be­
comes more and more forward as the photon energy increases. However, 
the directionality can be quickly randomized due to multiple scattering. 

There are sharp discontinuities in the photoelectric spectrum corre­
sponding to the binding energies of the atomic shells, the most prominent 
of which is due to the innermost, or K, shell. The cross section increases by 
a large factor when the photon energy exceeds the binding energy of 
electrons in the shell. The ejected photoelectron may be accompanied by 
fluorescence or additional (Auger) electrons. The photoelectric cross sec­
tion at high energies falls roughly as ZVk and only plays a negligible role 
in high energy interactions. 

2.5.2 Compton effect 
The Compton effect involves the scattering of an incident photon 

with an atomic electron. Consider a photon with energy ko scattering from 
an electron considered to be at rest and producing a scattered photon with 
energy k together with the recoiling electron, as shown in Fig. 2.11. The 
laws of conservation of energy and momentum require that 

ko + mc2 = k + T + mc2 

ko=k+pc 
These equations can be solved in terms of the scattering angle 0 to obtain 
the frequency of the scattered photon [15], 

w = 1 + E( 1w~ cos 0) (2.58) 

the kinetic energy of the recoil electron, 

T= mc2 E2(1 - cos 0) 
1 + E(1 - cos 0) 

Figure 2.11 The Compton scattering process. 

k 

j 
*o~-

p,T 

(2.59) 
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and the electron recoil angle 

[ 1 - cos 0 ] 1/2 
cos ¢ = (1 + e) 2 + e(e + 2)(1 - cos 0) (2.60) 

where 

e = 'hwo/mc2 

We can express the difference in the wavelength of the incident and 
scattered photons as 

A - Ao = h/mc(1 - cos 0) (2.61) 

The scattered photon has a longer wavelength than the incident one. The 
quantity h/mc is referred to as the Compton wavelength of the electron. 

The quantum mechanical derivation of the cross section for Compton 
scattering was performed by Klein and Nishima. The differential cross 
section averaged over the polarization of the incident photon is [12] 

da =.!. r2 ( hw )2 (hWo + hw _ sin2 0) (2.62) 
dO. 2 e hwo hw hwo 

Ifwe use Eq. 2.58 to eliminate w from this equation, we obtain the angular 
distribution 

da _ 1 2 (1 + cos2 0) {I + e2( 1 - cos 0)2 } 
dO. - '2 re [1 + e(1 - cos OW (1 + cos2 0)[1 + e(1 - cos 0)] 

(2.63) 

This distribution is shown as a function of energy and scattering angle in 
Fig. 2.12. The angular distribution of scattered radiation from classical 
electrodynamics is [2] 

1= /0(1 + cos2 0) 

independent of frequency. The quantum results should approach the 
classical one as h - 0 and thus as e - O. At high energies the scattered 
photons are produced mainly in the forward direction. The scattered 
photons may also be polarized. 

The energy distribution may be obtained by substituting for 0 in Eq. 
2.62. The result is [12] 

~ = 1tr~ [1 + ( hW)2 _ 2( e + 1) + 1 + 2e hw + ~ hWo] 
d(hw) ehw hwo e2 e2 hwo e2 hw 

(2.64) 

where the scattered photon energy must satisfy the inequality 

1 hw 
--=:;;;-=:;;;1 
1 + 2e hwo 
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For small € there is only a small spread of scattered photon energies, close 
to the incident photon energy. For higher energies the number of low 
energy scattered photons increases and the distribution becomes very 
broad. 

The total cross section for photon scattering from classical electrody­
namics is the Thomson cross section [3] 

aTh = i7rr~ = 0.67 X 10-24 cm2 

The quantum mechanical result is obtained by integrating Eq. 2.63 over 
all angles giving [12] 

3 { [ 2( € + 1) ] 1 4 I} 
a Comp = aTh 8€ 1 - €2 In(2€ + 1) + '2 + E - 2(2€ + 1)2 

(2.65) 

At high energy the cross section is given approximately by 

aComp = a Th :€ (In 2€ + i) 
Thus, at high energy the Compton scattering per atom will falloff roughly 
like Z2 / hwo . 
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Figure 2.12 The angular distribution for Compton scattering. The pa­
rameter E = hwo/me2. 
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2.5.3 Pair production 
The third interaction of photons in matter and the most impor­

tant at high energies is pair production. The intense electric field near the 
nucleus can cause the photon to decay into an electron and a positron. 
The threshold energy for this process is 2mc2 . The nucleus must be there 
to satisfy conservation of momentum, but it acquires very little recoil 
energy. Pair production may also take place near an atomic electron. The 
threshold in this case is 4mc2, and the recoil electron acquires significant 
kinetic energy. In a track sensitive detector this would appear as a triplet of 
tracks. 

The bremsstrahlung and pair creation processes are intimately related 
in QED. Examination of the Feynman diagrams in Figs. 2.8 and 2.13 
shows that the effects differ only in the directions of the incident and 
outgoing particles. Both processes proceed to lowest order through the 
exchange of a single virtual photon. As a consequence, both effects are 
most important when the momentum transfer is small. 

Bethe and Heitler made a quantum mechanical calculation of the cross 
section for pair creation in the Born approximation. The matrix elements 
can be determined from those used in the bremsstrahlung calculation 
with some simple substitutions. This comes about in the Dirac theory 
since one can regard the inverse of pair production as a bremsstrahlung 
process in which a positive energy electron emits a photon and falls into a 
negative energy state [12]. 

Screening of the nucleus by the atomic electrons is again an important 
effect. Let the incident photon have energy k and the created electron 
(positron) have energy E_ (E+) so that k = E+ + E_. The screening is 
measured using the parameter 

r' = lOOmc 2 _k_ 
Zi,3 E+E_ 

lOOmc 2 1 
Zy3 kw+(1 - w+) 

(2.66) 

Figure 2.13 Lowest-order Feynman diagrams for pair production. 
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60 2 Electromagnetic interactions 

where we have used the energy ratios W± = E±/k. Note that the screening 
parameter is symmetric in W+ and w_ = 1 - W+ and decreases in general 
with increasing k. For a given value of k the screening parameter is 
smallest for symmetric pairs, the limit where r' - 0 corresponding to 
complete screening. Figure 2.14a shows the contour with r' = 0.1 for lead 
and the region of complete screening on a graph of E+ versus k. 

The differential cross section for the production of a positron with 
energy between E+ and E+ + dE+ and an electron of energy E_ = k - E+ 
from a photon with energy k in the limit of complete screening is [12] 

da _ 4ao [( 2 2 2 ) ( 183) 1 ] 
dE+ -7: w++w-+"3 w+w- In Zy3 -"9 w+w- (2.67) 

where ao was given by Eq. 2.50. Note that Eq. 2.67 is symmetric between 
electron and positron energies. Actually at very low energies where the 
Born approximation is no longer valid, nuclear repulsion tends to make 
the positrons more energetic than the electrons. The cross section for the 
case r' > 0 can be expressed in terms of the same auxiliary functions used 
for bremsstrahlung [12]. The corrections to the complete screening ap­
proximation for lead when r' = 0.1 is - 3%. 

The pair production cross section is conveniently expressed as a func­
tion of the variable 

_ E+- mc2 

g- k- 2mc 2 

which is the fraction of the total available kinetic energy taken by the 
positron. Figure 2.14b shows the complete screening cross sections for 
lead and aluminum normalized to ao and plotted as a function of the 
variable g. The cross sections are fairly uniform, indicating that positrons 
are likely to be produced with any allowed energy. Thus, in general, the 
electron and the positron in the pair do not have the same energy. Since 
the plotted functions vary little for different elements, the major material 
dependence is again the Z~ factor that comes from ao. When g = 0 or 
g = 1, the complete screening approximation is no longer valid. The 
correct theory causes the cross section to fall off rapidly for these cases. 

At high energy the electron and positron tend to be produced at small 
angles with respect to the incident photon direction. The mean produc­
tion angle of an electron or positron with energy E is approximately [ 12] 

mc2 

e=T (2.68) 

The total pair production cross section is obtained by integrating Eq. 
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Figure 2.14 (a) The kinematic region of complete screening for pair 
production and the contour for lead with r' = 0.1. (b) Complete screen­
ing pair production cross sections for aluminum and lead versus the 
variable g = (E+ - mc2)/(k - 2mc 2). 
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2.67 over all possible positron energies. The total cross section increases 
rapidly as the photon energy increases, approaching the asymptotic value 

apair = 4ao[t In(l83Z2"1/3) - -f.r] (2.69) 

for k ~ 137mc2Z- 1/ 3• Note that the cross section is approximately pro­
portional to Z2 and is independent of the incident photon energy. Ifwe 
compare Eq. 2.69 with Eq. 2.52, we see that the cross section for pair 
production is roughly seven-ninths that for bremsstrahlung. 

Total cross sections for pair production off of the nucleus and atomic 
electrons in lead were shown in Fig. 2.10. Pair production off the nucleus 
contributes over 95% of the photon total cross section at 60 MeV. The 
majority of the remaining 5% is due to Compton scattering. The assump­
tions used in the Born approximation break down for high Z elements. 
The actual cross section for lead is about 10% smaller than the calculated 
one [12]. 

Figure 2.15 Measurements of the pal! production cross section as a 
function of the average photon energy k and the atomic number Z of the 
absorber. Solid lines are QED calculations. (J. Eickmeyer et al., Phys. 
Rev. D 21: 3001, 1980.) 
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A summary of the results of QED calculations of pair production is 
contained in the review ofTsai [14]. Figure 2.15 presents a comparison of 
these calculations for the total cross section with experimental measure­
ments of high energy pair production by Eickmeyer et al. [18]. The calcu­
lations are in excellent agreement with the measurements for all elements 
and photon energies over the range 2.4-8.7 GeV. 

In a homogeneous medium the intensity of a beam of collimated, 
monoenergetic photons decreases exponentially 

I(x) = Ioexp(-p,x) 

where /l is the linear attenuation coefficient. The coefficient /l is fre­
quently divided by the density to obtain the mass attenuation coefficient 
/lIp, which has the dimensions cm2/g. The mass attenuation coefficient is 
related to the total photon interaction cross section O'tot by 

/l NA P = A O'tot 

NA 
= A (O'pE + ZO'Comp + O'pair) 

(2.70) 

where A is the atomic weight of the material. Figure 2.16 shows the mass 

Co 
"­
:::1 

0./ 

Figure 2.16 Photon mass attenuation coefficients for H, C, Fe, and Pb 
as a function of photon energy. (Data from J. Hubbell, H. Girnrn, and I. 
Overbo, J. Phys. Chern. Ref. Data 9: 1023, 1980; J. Hubbell, National 
Bureau of Standards report NSRDS-NBS 29, 1969.) 
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attenuation coefficients for a number of materials as a function of the 
incident photon energy. 

2.6 Elastic scattering 
We have seen that the dominant source of energy loss for heavy 

charged particles is the inelastic excitation and ionization of atomic elec­
trons. The energy loss resulted from the Coulomb interaction between the 
incident particles and the atomic electrons. So far we have considered the 
particle's trajectory to be a straight line through the absorber. However, 
the force on the incident particle due to the charged particles in the 
absorber can also introduce small deflections in the trajectory. 

Consider a charged particle traversing a thickness of material. We saw 
in Section 2.1 that the Coulomb field of the incident particle gives the 
charged particles in the medium a momentum perpendicular to the origi­
nal direction of 

2Z1Z 2 e 2 

Pl. = bv 

The incident particle receives an oppositely directed momentum of the 
same magnitude. It will therefore be deflected through a small angle 

0= Pl. = 2Z1Z 2 e2 

P bvp 
(2.71 ) 

The differential cross section for scattering with an impact parameter 
between band b + db is 2nb db. Using Eq. 2.71, we can relate this to the 
cross section for scattering between 0 and 0 + dO, 

da= 2n(2Z1Z2e2)2 dO 
pv 03 

In the small angle approximation the solid angle dO. = 2nO dO. It follows 
that the small angle form of the elastic differential cross section can be 
written in the form 

da _ 2 2 2 (mc)2 1 
dO. - 4Z 1Z 2 r e pp 04 (2.72) 

The 0-4 dependence of the cross section shows that a particle is much 
more likely to undergo a small angle scatter than a large one. 

The exact form of the scattering differential cross section for a Coulomb 
potential in both classical and quantum mechanics is the Rutherford 
scattering formula 

da _ 1 2 2 2 (mc)2 
do.R -"4 Z 1 Z 2 r e pp -si-n4"-(-0-j2-) (2.73) 
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This cross section is valid for a spin 0 incident particle. The cross section 
for the interaction of a spin t incident particle in the Coulomb field of a 
nucleus is the Mott cross section, given by [1] 

d~M = d~R (1 -p2sin2~) (2.74) 

We see that the additional term, which arises from the use of spinor 
wavefunctions, is only important for large p and large O. For small angle 
scattering the Mott cross section reduces to the Rutherford case. 

The elastic differential cross section for the scattering of two relativistic 
electrons is known as the Moller cross section and is given in the CM 
frame by [19] 

dO' _ a 2 [10 + 4x + 2X2 + 10 - 4x + 2X2 + 16 ] (2.75) 
dO. 4s (1 - X)2 (1 + X)2 (1 - x)(1 + x) 

where x = cos 0* and s is the total CM energy squared. The correspond­
ing cross section for positrons and electrons was derived by Bhabha. A 
QED calculation of the relativistic cross section gives 

dO' = a2 [10 + 4x + 2X2 _ 2(1 + X)2 + (1 + X2)] (2.76) 
dO. 4s (1 - X)2 1 - x 

The excellent agreement of the calculation with measurements [20] of the 
cross section between 14 and 34 Ge V is shown in Fig. 2.17. 

The Rutherford scattering cross section is not valid at very small or very 
large angles. For very small angles, which correspond to very large impact 
parameters, the Coulomb potential of the nucleus is screened by the 
presence of the atomic electrons. The effective potential drops sharply for 
separation distances that exceed the Thomas-Fermi radius of the atom 
given in Eq. 2.45. This has the effect of modifying the small angle Ruther­
ford cross section to [2] 

dO' _ 2 2 2(mc)2 
dO. - 4Z,Z2 r e pp -(0-::2-+-0-::-~i-n)-::-2 (2.77) 

The cross section for scattering at angles less than some angle 0min will be 
very small. The form ofEq. 2.77 shows that instead of diverging at 0 = 0 
the cross section levels off to a constant value. 

We can estimate 0min classically using Eq. 2.71 with b evaluated at the 
atomic radius ra 

0'. = 2Z Z4/3 mc 2 (~) (2.78) 
mm '2pvao 

A quantum mechanical limit on 0 arises since the incident trajectory must 
be localized to within L\x - ra to obtain a reasonable probability of scat-

https://doi.org/10.1017/9781009290098.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290098.003


66 2 Electromagnetic interactions 

tering. Then, by the uncertainty principle, the incident momentum is 
uncertain by an amount /).p - fl/ra and the scattering angle by /).(j - fl/pra. 
Scattering for angles smaller than /).(j is smeared, causing the cross section 
to flatten out. Using Eq. 2.45 for the atomic radius, we find 

(j = ZI/3 mc 
min a 2 p 

In general, the more restrictive of the two limits should be used. 

(2.79) 

The Rutherford scattering law also breaks down when the particle's 
wavelength A becomes comparable with the size rn of the nucleus. In 

Figure 2.17 Angular distributions for Bhabha scattering. Solid lines are 
results of QED calculations. (R. Brandelik et aI., Phys. Lett. 117B: 365, 
1982.) 
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analogy with the first minimum of a diffraction pattern from an object of 
size rn , the scattering is predominantly confined to angles smaller than 

o =3:..=~ 
max rn prn 

Using the simple relation [1, 2] 

rn = !-re A1/3 

we find that 

2A- 1/3 mc o =--­
max a p 

(2.80) 

(2.81 ) 

Other corrections that are sometimes important include the mass of the 
target and particle identity. 

The total elastic scattering cross section can be estimated by integrating 
Eq. 2.72 from 0min to 0max, 

a = f :~ sin 0 dO d¢ 

= nr2 4 _1_2_ (z Z2/3)2 
e ap (2.82) 

Note that the total elastic cross section falls off like p-2. 

2.7 Multiple scattering 
We have seen in the previous section that there is a significant 

probability that a charged particle will undergo a Coulomb scattering 
collision while traversing a block of matter. Suppose that downstream of 
the block we observe how many particles are traveling at an angle 0 with 
respect to the incident beam direction. Figure 2.18 shows the trajectories 
of two particles. The first particle only makes a single scatter at the angle O. 
On the other hand, since the cross section for Rutherford scattering grows 
rapidly for decreasing scattering angles, it is also possible for a particle to 
leave the block at the angle 0 after making a large number of small angle 
collisions. This latter case is referred to as multiple scattering. In a single 
event one cannot tell whether a particle observed at some angle has had a 
single scatter or has undergone multiple scattering. What one can do 
instead is to determine distribution functions for various processes, so 
that the probability of a given process resulting in a particle at the angle 0 
can be calculated. 

We have seen in Eq. 2.72 that the Coulomb scattering cross section is 
proportional to the squares of the incident particle and target charges. To 
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first order the probability for scattering due to the nucleus goes like 2~, 
while the contribution of the 22 atomic electrons goes like 2 2, Thus, 
except for the lightest elements, multiple scattering is dominated by Cou­
lomb scattering off the nuclei. 

Since each individual small angle scatter is a random process, we expect 
the mean scattering angle of a beam of particles with respect to the inci­
dent direction to be zero. On the other hand, the rms scattering angle will 
in general be nonzero. The expectation value of 82 due to multiple scatter­
ing of a particle while crossing a length L of the material is 

8; = Lna f 82 :~ dO 

where we assume the particle's velocity is not appreciably reduced while 
crossing the material. Using the small angle Rutherford cross section (Eq. 
2.72), we obtain the variance of the cumulative angle distribution 

82 - 8 2 2 2 (mc)2l 2 2 83 
5 - nLnare 2122 pp n a2AI/32!f3 (. ) 

where we have used Eqs. 2.79 and 2.81 for 8min and 8max • Ifwe take A = 
22, the logarithm factor can be written in the form 2ln(1732zl / 3). This 
logarithmic dependence is similar to that encountered in the definition of 
the radiation length LR in Eq. 2.53. Thus, rewriting Eq. 2.83 in terms of 
LR , we get 

82 = 4n 22 m2c2 ~ 
5 a 1 p2p2 LR 

Note that the expression of the multiple scattering angle in terms of a 
radiation length is just a convenience based on the fact that both quanti-

Figure 2.18 Scattering in a thick material. 
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ties have a similar dependence on the properties of the material. Multiple 
scattering is not a radiation process. Now combining some of the factors 
into the energy 

Es = ,j4n/amc2 = 21.2 MeV (2.84) 

we obtain the Rossi-Greisen equation for the rms scattering angle 

es = Es ZI ,jL/LR (2.85) 
pv 

This equation is only accurate if the particle traverses many radiation 
lengths of the material. Otherwise it tends to overestimate the amount of 
scattering. 

Highland [21] has given a more accurate form ofEq. 2.85. He used the 
Moliere theory described below to investigate the dependence of Es on Z 
and L. This leads to an empirical formula for ee' the space angle for which 
the distribution drops to 1/ e of its peak value, of 

ee= 17.5p~ev ZI.Jt[1 +0.12510glOC~~)] (2.86) 

It is sometimes convenient to consider the projection of the scattering 
angle on a plane. Define the z axis of a right-handed coordinate system to 
be along the direction of motion of the incident particle as shown in Fig. 
2.19. If e is the space angle of the scattered particle and ex and ey are the 
projections of the space angle onto the xz and yz planes, respectively, then 

cos e = (1 + tan2ex + tan2ey )-1 /2 

Expanding for small e, we find e2 = ei + e~, so that on the average the 
angle projected onto a fixed plane is 

(e~r> = t<e2> (2.87) 

Up to this point we have only been concerned with the rms or 1/ e values 
of the scattering angle. Another important question is the distribution of 
scattering angles. Let I/Imie, x)fJ de be the probability that a particle will 
emerge at an angle between fJ and e + dfJ with respect to the incident 
direction after traversing a finite thickness x of material. The distribution 
function is governed by a transport equation analogous to Eq. 2.30 

a:;s (e, x) = J I/Ims(e - " x)na :~ ('K d, -I/Ims(e, x) f na :~ (0' d, 
(2.88) 

where we assume that the distribution is independent of the azimuthal 
scattering angle ¢. 

Moliere has obtained a solution of this equation that, if we take da/dn 
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to be the small angle Rutherford cross section, becomes [22, 23] 

I f'" (OY) [y2( y2)] 'IIms( 0, x) = O~ Jo y dy Jo Oc exp 4" - b + In 4" (2.89) 

where Jo is a Bessel function and Oc is a characteristic angle given by 

02 = 4nnae4ZrZiZ2 + I)x (2.90) 
c (pV)2 

The angle Oc contains the dependence of'llms on the macroscopic proper­
ties of the scattering medium. Note that O~ grows linearly with x. The 
quantity b is defined as 

b= In(Oc/Oa)2+ 1-2CE (2.91) 

where CE is Euler's constant. The dependence of the scattering on the 
screening angle Oa is given by 

0; = 05 [ 1.13 + 3.76 (Zl~:e2r] (2.92) 

where 00 is approximately the minimum scattering angle given by Eq. 
2.79, 

Figure 2.19 The projected scattering angles. 
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The Moliere theory should be valid when Oe > 00 , The scattering angle 
distribution approaches the Rutherford single scattering distribution for 
large angles. 

The mean number of collisions between an incident particle and the 
target atoms in the thickness x can be found by dividing the target length 
by the interaction mean free path 

Ncoll = X/A.I = xna(1 (2.94) 

Ifwe use Eq. 2.82 for the total Coulomb scattering cross section, we find 
that 

N - 4 2 (ZIZ~/3)2 (2.95) 
coll- xna1tre aft 

When Ncoll C: 1000, the distribution is approximately Gaussian for small 
scattering angles. 

Scattering angle distributions of 15.7 Me V electrons from gold foils are 
in excellent agreement with the predictions of the Moliere theory [24]. 
The small angle region is approximately Gaussian, and the tails fit nicely 
to the large angle, single scattering distributions. At high energies Shen et 
al. [25] have measured the small angle scattering distributions for 1t±, K ±, 
and p± incident on H, Be, C, AI, Cu, Sn, and Pb targets. In each case the 
incident particle traversed about 0.1 radiation length of material. Figure 
2.20 shows typical 02 distributions for hydrogen and lead. The experimen­
tal results for Oe' the angle at which the distribution drops to l/e of the 
peak value, agreed with the predictions ofthe Moliere theory. There was 
no statistically significant dependence on the type of projectile. The result 
for Oe from Eq. 2.86 was found to give results - 3% larger than experiment 
for Z;i!: 6. For Z < 6 the error increased, reaching - 10% for hydrogen. 

The angular spread arising from multiple scattering also introduces a 
lateral spread in a beam of particles. The mean SQuare lateral displace­
ment, irrespective of angle, is given approximately by [I] 

(y2) = tO~V (2.96) 

where L is the distance traversed into the scattering medium. 

2.8 Other electromagnetic effects 
A large number of additional electromagnetic effects have been 

investigated. In this section we will discuss two interesting phenomena 
that may have useful applications in certain circumstances: channeling 
and acoustic radiation. 
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UIitil this point we have implicitly assumed that particles were passing 
through an amorphous material. In such a case each interaction is a 
random event, so that the results of multiple interactions are not corre­
lated. The situation can be different, however, for crystals of materials 
such as silicon or germanium [26]. If the incident angle 'l'ine of the particle 
with respect to a low index, crystal axis is on the order of or smaller than 
the critical angle 

_ Jr-:4-=Z=-1 Z=2-e"2 
'l'crit - V Plvld (2.97) 

channeling effects may occur. The quantity d is the interatomic spacing 
along the channel, while PI (VI) is the momentum (velocity) of the incident 
particle. For 'l'ine :$ 'l'crit the atoms of the crystal appear as an axial string. 
The correlated collisions with the string cause the particles to be gently 
attracted or repelled, depending on their charge. The atomic planes can 
have a similar steering effect. 

Channeled positive particles tend to avoid the axial string. As a result, 
processes that are most important at small impact parameters tend to be 
suppressed. For example, channeled protons or 7l+ show smaller than 
random energy loss, reduced nuclear absorption, and reduced wide angle 

Figure 2.20 The distribution of ()2 for 50-GeV/c negative hadrons in 
hydrogen and 70-GeV/c negative hadrons in lead. The lower curves 
show the distributions taken with the target removed. The solid curves 
are fits using the Moliere theory. (After G. Shen et al., Phys. Rev. D 20: 
1584, 1979.) 
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scattering and have a large transmission near lfIinc = 0 0
• Channeled n-, on 

the other hand, are attracted to the string and show increased nuclear 
absorption, increased wide angle scattering, and a reduced transmission 
for lfIinc - 0 0 

• 

Channeling can also influence multiple scattering [27]. Figure 2.21 
shows mUltiple scattering distributions for 15-Ge V / c protons and n-. The 
random scattering data agree well with the predictions of the Moliere 
theory. When lfIinc < IfIcrit (~) the multiple scattering for protons is re­
duced, while that for n- is increased. Interestingly, for lfIinc - 31f1crit the 
multiple scattering for both charges is larger than for random scattering. 

The oscillatory motion of channeled electrons and positrons leads to 
the emission of channeling radiation [26, 28]. This type of radiation has 
the same origin as ordinary bremsstrahlung, discussed in Section 2.4, and 
as coherent bremsstrahlung, which results when the incoming particle has 
periodic contacts with atoms in the target material. Ordinary bremsstrah­
lung differs from the other types of radiation because it has a continuous 
photon emission spectrum. In coherent bremsstrahlung the transverse 

Figure 2.21 Scattering angle distributions of 15-GeV/c p and n- trans­
mitted through a 4.2-mm-thick germanium crystal. /{II is the critical 
angle. (S. Andersen et aI., Nuc. Phys. B 167: 1, 1980.) 
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motion of the incident particle is free, while in channeling radiation the 
transverse motion is bound by the potential of the atomic string. 

In the channeling regime the intensity of the emitted radiation is en­
hanced over the ordinary bremsstrahlung by a factor proportional to 
yl/2 Z22/3. Channeled radiation is emitted in the forward direction within a 
cone with characteristic half-angle ()c ~ y-I. The emitted photon fre­
quency wand emission angle () in the LAB are related by 

2y2w 
w~ 0 

- 1 + y2()2 (2.98) 

where yWo is the classical oscillation frequency for the electron or positron 
in its rest frame. Since the channeling radiation is linearly polarized, 
channeled beams of electrons or positrons may provide a useful source for 
a polarized photon beam. The emitted photon spectrum from incident 
electrons tends to be broader and show less structure than that from 
incident positron beams. 

When a beam of particles is passed through a liquid, the deposited 
energy can cause the affected volume to undergo an adiabatic expansion. 
This in turn produces a detectable bipolar acoustic pressure wave [29]. 
The thermoacoustic model predicts that the time dependent pressure 
wave p(t) satisfies the equation 

fa> K E 
tP(t) dt = ---­

_a> 4nCp R 
(2.99) 

where K is the volume coefficient of expansion and Cp is the heat capacity 
of the medium, E is the total deposited energy, and R is the distance to the 
observation point. The dependence of the acoustic signal on the quanti­
ties on the right-hand side of Eq. 2.99 was confirmed by experiments. 
The signal amplitude was linearly dependent on the deposited energy to 
within a factor of2 for deposited energies between 2 X 1015 and 4 X 1020 

eV. The signal amplitude in CCl4 was 24 times as large as the signal in 
H20, in rough agreement with the ratios of the values of K/Cp • 

Some of the applications envisioned for acoustic radiation include a 
beam monitor, heavy ion detector, hadron calorimeter, or a cosmic ray 
detector. The primary advantage of the technique is that the hydro­
phones, which detect the acoustic pulses, are much less expensive than 
photomultiplier tubes or other common detectors. In addition, one can 
sample large volumes since the attenuation length of sound in liquids is 
long. The major disadvantage is the very i.. -o:e threshold required to 
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produce a signal. It is estimated that the ultimate detector threshold would 
be around 1013 eV [29]. 
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Exercises 

1. Consider a lO-GeV/c proton incident on an aluminum target. 
Estimate the range of valid impact parameters for calculating 
dE/dx. Assume that flO) is approximately equal to the ionization 
potential for the atom. 

2. What is the expected mean energy loss of 50-GeV/c protons in 
beryllium? How much is this result affected by the density effect 
correction? 

3. Consider a lO-GeV/c K- beam in liquid hydrogen. What is the 
maximum kinetic energy of delta rays produced by the beam? 
How many delta rays with kinetic energy greater than 100 MeV 
are produced in 2 cm? 

4. Calculate the Landau distribution function numerically and plot 
fr..(A) versus A. 

5. Find the most probable energy loss of 100 GeV/c n- in copper. 
What is the probability of observing an energy loss of half of this 
amount and twice this amount? 

6. Find the ionization energy loss of a 20-GeV positron in lead. 

7. Find the cross section for a 30-Ge V electron to undergo brems­
strahlung in a lead target and emerge with an energy of25 Ge V. Is 
the complete screening hypothesis justified? 

8. Consider the Compton scattering of a 1-MeV photon. What is the 
energy of a photon scattered at 30°? What is the kinetic energy 
and angle of the recoil electron? 

9. Find the total pair production cross section for a 50-Ge V photon 
in gold. What is the differential cross section for producing a 
20-Ge V electron? Is the complete screening hypothesis justified? 

10. Plot the difference between the Moller and Bhabha differential 
cross sections as a function of cos e*. 

11. Make a table showing the minimum and maximum angles of 
validity for Rutherford scattering and the total Coulomb cross 
section for I-Ge V protons in carbon, iron, and lead. 

12. Find the Rossi-Greisen mean scattering angle es for 6-GeV K-
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after traversing 2 cm of copper. How large is the Highland cor­
rection to es? 

13. Calculate numerically the Moliere scattering distribution for lO­
Ge V electrons after passing through 1 radiation length of lead. 
Plot If/ms as a fuction of e. 

14. Estimate the critical angle for channeling of a 20-Ge V / c n- in tin. 

15. Use the data of Table 2.1 to check the validity of Bloch's expres­
sion for the ionization potential. 
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