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RADON POLYMEASURES

BRIAN JEFFERIES

The Radon-Nikodym theorem and a sequential convergence result are

given for integrals with respect to a Radon polymeasure on a finite

product space.

The notion of a polymeasure has been introduced in relation to the

study of perturbations to evolutions [2]. Vector measure techniques were

used by Kluvanek [3] to treat the particular case of integration with

respect to bimeasures, or polymeasures in two variables. Earlier work

seems only to be concerned with the integral of product functions, perhaps

because the principal motivation for considering bimeasures was to obtain

an analogue of the Riesz representation theorem for bilinear mappings [6].

While these techniques may be generalized to polymeasures with a

finite number of variables, a systematic treatment of integrals with

respect to sufficiently general polymeasures is still lacking. The aim

of this note is to at least partially fill this gap for the class of

Radon polymeasures on finite product spaces.

Such polymeasures typically arise from the finite dimensional

distributions of an evolution process [2], so roughly speaking, integration

with respect to this class of set functions is relevant to the determination

of a perturbation to an evolution which is specified at finitely many

instants of time. Integration with respect to polymeasures in infinitely

many variables (corresponding to continuous perturbations) is of greater

interest, but this important topic is not touched upon here.
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208 Br ian J e f f e r i e s

Let A be an algebra of subsets of a set Q . The variation

\n\ : A -*• [0,°°] of an additive set function n : A -> (f i s defined by

\n\ (A) = sup{ £ \n(B) | : IT i s a finite A-partition of A}, A £ A .
B6

Let E be a Hausdorff topo log ica l space. Denote the Borel a-algebra of

Z by 8(1) . An extended r e a l valued measure y : 8(E) ->• [0,°°] i s said

t o be a Radon measure on Z i f every point of Z i s contained in an open

s e t of f i n i t e measure, and for every A £ B(E)

\i(A) = sup{\i(K) : K C A , K compact} .

A complex valued measure m : B(Z) + (f is called a Radon measure on Z

if the variation |m| of m is a Radon measure.

Now suppose that £,...,£ are Hausdorff topological spaces. The

family of finite unions of product sets A. x . . . *A ,A. 6 8(E.) ,
X 7Z Is Is

i = 1,. . . ,n i s an algebra of subsets of Z x . . . x Z denoted by

B(£) x . . . xB(£ ) , or more concisely, by E .

DEFINITION 1. An a d d i t i v e s e t func t ion m : 8(£ ) x . . . xB(J ) -»• $

i s s a i d t o be a Radon potymeasure i f t h e fo l lowing two c o n d i t i o n s h o l d .

R : For each j = 1 , . . . , n the s e t func t ion

A . + m ( A , * . . . x A . * A . * A . * . . . * A ) , A . £ B ( Z . ) ,
0 1 3 - I 3 3 + I n' ' 3 3

i s a Radon measure for every A. 6 B(L) , i f j , i = 1,. . . ,n .

R • The va r i a t i on |m| of m i s the r e s t r i c t i o n of a Radon measure

|m| on E * . . . x£ to the algebra 8(Z ) x . . . xS(E ) .

PROPOSITION 1. Let m -. E •* $ be an additive set function for which

condition R holds. Then R holds if and only if for each

x e Z x . . . x z there exists an open subset U x . . . x u of Z x . . . x E

containing x such that \m\ (U x . . . xU ) < °° . In this case, the Radon

measure \m\ is unique.

Proof. If i?2 holds, then the given condition follows from the fact
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that products of open sets form a neighbourhood base for the product

topology of £ x... x£ .

Now suppose that R holds. Let A = A * ... * A be a set in E
X X it

such t h a t \m\ {A) < <*> . Given e > 0 , l e t B . , J = 1 , . . . ,p be an

E - p a r t i t i o n of A such t h a t \m\(A) - ^ , | m ( B . ) | < e/2 .
t7~l 3

The sets B. , j = l,...,p can be assumed to be product sets of the
3

form B . = A3 x... xA3 , j = 1,...,p . By R there exist compact
J X ft X

subsets K3. of A3. , i = !,...,« , such that

x ... xA°n) - m(A° x . . . x ^ ^ xJ^) | < e/(2«p)

4 J xif7) - m ( ^ x ... xA3 xK? *K?) \ < e/(2np)

A*7) - m ( # ? x . . . x A l 7 ) | < e/(2np)

f o r j = l , . . . , p . C o n s e q u e n t l y £ • , | m ( B . ) - m ( A ^ x . . . x % 3 ) \ < e / 2 . P u t
3~~i- 3 1 ^

X = u - = 1 ^ x . . . x A"7 . Then A i s a compact subset of 4 and we have

< \m\ (A) - I \m{B.) | + e/2 < e .
J=l J

Thus for every A G E with |m| (i4) < » ,

|w| (A) = sup{|m|(A) : K C A , K e E , K compact} .

The additive set function \m\ : E ->• [0,°°] is therefore a-additive,

and finite on compact subsets of £ x ... x£ . The Caratheodory-Hahn

extension procedure now shows that \m\ is the restriction of a unique

Radon measure |m| on £ x... x£ . The details may be gleaned from

Fremlin [7;71A].

Thus a bounded additive set function satisfying Ft may be extended

uniquely to a Radon measure on £ x... x£ . in particular, if the spaces
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Z , . . . , £ are compact, then Radon polymeasures are the r e s t r i c t i o n s of

f i n i t e Radon measures.

Suppose tha t m : E •*• J? i s a Radon polymeasure. Define m~ : E •*• [0,<»]

by m~ (A) = (|/n| (/I) ± m(A))/2 for each A £ E . Proposition 1 shows tha t

m and m are the r e s t r i c t i o n s to E of uniquely defined Radon

measures m and m respect ive ly . Integrat ion with respect to Radon

measures i s taken in the sense of Schwartz [5] , so tha t the in tegra l of a

function with respect t o Radon measure i s again a Radon measure.

DEFINITION 2. A function f : I •*•... *Z -*• $ i s said to be

m-integrable i f for each compact subset K of £ x . . . x£ the function

fXv *-s Im\ " in tegrab le , and there ex is t s a Radon polymeasure fm : E -»• (f
A

such that

ftn(K) = + ~

for each compact set K £ E .

The values of a Radon polymeasure are determined by i ts values on

compact sets, so if fin exists i t is unique within the class of Radon

polymeasures. I t i s termed the indefinite integral of / with respect to

m . The definite integral i s defined by m(f) = fm(Z x . . . KE ) .

An addi t ive se t function p : E -»-J? i s said to be locally absolutely

continuous with respect to the additive se t function q : E -*- J? (denoted

p «£ q ) i f for every compact s e t K G E and every e > 0 there ex i s t s

6 > 0 such tha t \p\ (A) < e whenever A e E n K and \q\ (A) < 6 .

Clearly i f f i s m-integrable , then fm « m . The converse i s given

by the Radon-Nikodym theorem.

THEOREM 1. Let m -. E -*• JR , n : E •* JR be Radon polymeasures such

that n « m. Then there exists an m-integrable function

f •. Z x . . . x i -»• JR such that n = fm .

If g is another m-integrable function such that n = gm , then

f = g \rh|-almost everywhere.
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Proof. A standard argument shows that in the terminology of [5],
every |m|-negligible set is also \n\-negligible. An application of the
Lebesgue-Nikodym theorem [5; p.47] yields a positive, real valued
\m\-measurable and locally |m|-integrable function h such that
\n\ = h\m\ .

By v i r tue of the same theorem, for each compact set K £ E there

ex i s t s a function fv on E x . . . x j vanishing outside of K such tha t
A 1 Yl

for every A £ E . Moreover, if K ,K £ E are compact sets such that

K C R , then fv \ K = fv \m\-almost everywhere by the essential
JL ^ A- 1 A^

uniqueness of densities. Let fvlfv be the positive and negative parts
A A

respectively of /"„ for K £ E compact. The families {/„ : K £ E

compact} , {f\, : A" £ E compact} of (equivalence classes of) functions is
A

bounded above in the space L (|m|) of (equivalence classes of)

\m|-measurable functions by h . According to Schwartz [5;p.46] there

exists an |m|-concassage of \m\ ; in the terminology of Fremlin [7;64G],

this means that the associated measure space is decomposable. Therefore

the space L (\m\) is Dedekind complete by [J;64H,64B]. Denote by f+,f
a version of the least upper bound in L (|m|) of the families

{fv : K £ E compact} , {fv : K £ E compact } respectively.
A A

Let f = f - f . Then i t is easily seen that fxv
= fv I ml-almost
A A

everywhere for each compact K £ E . Because n is a polymeasure, f is

m-integrable by Definition 2. The essential uniqueness of / follows from

the fact that two densities must agree almost everywhere on each compact

set K £ E .

Radon polymeasures satisfy a weak property of interchangeability of

limits and integrals. Let m be a Radon polymeasure on £ x£ x ... x£

THEOREM 2. Let f, , k = 1,2,... be a sequence of real valued

m-integrable functions. Let f be a locally \m\-integrable function, and

suppose that for each compact subset K of £ x... x £ s
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lim |m|(fkXK) = |m|lfXK) •

If for each A e E , the sequence Am 04) , k = 1 , 2 , . . . converges,

then f is m-integrable and fm(A) = lim f-,m(A) for each A G E .
fc-x» K

Proof. Let S ,S be the supports of the Radon measures m ,rh

respectively. Then \m\ (S ^>S ) = 0 and xc+M = m • Xc-lml = m

The sets S~ are closed, so if X6 E is compact, then so are the sets

1C = K ns± and we have

lim m~(fkXK) = lim \m\ | |
k-*°

Let n(A) = l i m Am (A) f o r each A e E . Then n (X) = fh+(fxR) -m~{f\ ) .
k-**>

I t remains to show that n i s a Radon polymeasure. Let A x . . . *A S E .

Property i? i s verified with respect to the f i r s t variable A ; the

same argument holds for the others. There exists an increasing family

C , i = 1 ,2, . . . of compact subsets of A such that for each k = 1 ,2, . . .

we have

l i m f k m C1 *A x . . . xA) = f M * . . . *A ) ,
£-«°

because f-jn i s a Radon polymeasure. The Vitali-Hahn-Saks theorem ensures

that the convergence as £-»•<» i s uniform for k = 1,2, . . . and the set

function n(m xA x . . . *A ) i s a measure. I t follows that

ni.' x i 4 x . . . y-A ) i s a Radon measure on E ; by taking the Hahn

decomposition of the measure, i t i s easily seen that the variation i s a

f in i te Radon measure. Thus condition R i s satisfied by n . Because

/ i s assumed to be locally integrable. Proposition 1 shows that n i s

a Radon polymeasure.

COROLLARY 1. (i) Let f, , k = 1 , 2 , . . . be a sequence of non-negative

m-integrable functions such that f, + f \m\-almost everywhere. Suppose
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that f is locally \m\-integrable. If for each 4 6 E , the sequence

f-,m(A) , k = 1 ,2 , . . . converges, then f is m-integrable and

fm{A) = lim fvm{A) for each A G E .

(ii) Let f, , k = 1,2 , . . . be a sequence of

m-integrable functions such that f, -*• f \m\-almost everywhere.

Furthermore, suppose that there exists a locally \rh\-integrable function

g such that \fA < \g\ \m\-almost everywhere, k= 1 ,2 , . . . . If for

each A £ E , the sequence fjin{A) , k = 1 ,2 , . . . converges, then f is

m-integrable and fm(A) = lim fvm(A) for each A e E .
fc-x» k

Theorem 2 has the following topological interpretation when I ,...,!

are locally compact. Let L, (\m\) be the space of locally

loc

\m\-integrable functions with the topology of convergence in the mean on

compact subsets of E x... x E , and let RL (m) be the subspace of

L (\m\) consisting of m-integrable functions. Then the integration

n^P f "• fm , f e RL (m) is sequentially closed from the space L (|mj )

into the space of additive set functions on E with the topology of

setwise convergence. It cannot be expected that the integration map is

continuous in this sense, because it would imply that m is o-additive

on E which is not true in general.

The point to be made is that it is possible to integrate with respect

to unbounded set functions and still retain useful convergence properties.

EXAMPLE 1. Let I > 1 be an integer. Put E. =Ml for j = 1,2 .
3

Let 4> G L2ff?S \ L 1 ^ ) , if, e L2WZ) \ L1^1) and

p(x) = (iri) *exp(i|x| ) , x € JT

For every set 5 6 8(JT) with finite Lebesgue measure, le t

M(S)(y) = p(y-x)<j>(x) dx , y e J^ .
'S

Then M can be uniquely extended to a measure M -. BUFT) -»• L (JR ) . Now

define
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l(A*B) = I M(A) (y)Tp{y) dy , A,B G 8

Then 6 : B(JT) x B(JT) •+ $ i s a b imeasure . The v a r i a t i o n | B | of B i s

| B | (A*B) = I |<j>| (x) dx I |* | (x) dx , 4 , B G B C f l S ,
M J B

so i t i s a-f ini te . Signed Borel measures on JT are automatically Radon

measures, so B is a Radon bimeasure.

The bimeasure i s i t se l f f i r s t defined on compact product sets and then

extended to the whole algebra BlJUT) x B(R ) . Consequently, Definition 2

i s the natural way to view integrals with respect to $ . Polymeasures

of th i s type arise in connection with Schrddinger's equation [2].

As pointed out in [3] , many examples of bimeasures which do not

extend to measures on the generated a-algebras can be constructed by

exploiting the difference between the Bochner and Pettis integrals. A

similar idea gives an example of a polymeasure which is not a Radon

polymeasure.

EXAMPLE 2. Let x, , k = 1,2, . . . be an unconditionally summable

sequence in I (N) which i s not absolutely summable. The Dvoretsky-

Rogers theorem guarantees the existence of such a sequence in any inf ini te-

diminsional Banach space; an explicit example is given in [4].

Let A, = [l/(/c+l) ,1/k] , k = 1,2, . . . . The Lebesgue measure on JR

i s denoted by X . Then for every A G 8(2?) ,

CO CO

I I I s . ( j ) X « n / i ) / x w ) | < . .
j= i k=i K

 K K

Define an add i t ive map m : 8 (2?) x 8 (JR) -*• H by

CO CO

miAxB) = I { I xvtf)\wr>Av)/\{A1,)}6,/.{B) , A . B S Bff?) .
,7=1 fc=l * * * 1/0

Here 6 denotes the unit point mass at a G J? .

It is easily verified that m is a bimeasure and that condition R

holds. However the variation of m on the compact subset [0,1] x [0,1]

CO CO

of J? x J? i s I I |x, (j) I = y Ox, II = » . Consequently, m i s not
k=l k=l K fc=i K X
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Radon polymeasure on J? x JR .

There are several directions in which the approach presented here may

be extended. Similar arguments would work for infinite product spaces,

but unfortunately the most interesting examples would not satisfy the

assumptions [2]; the variation of a polymeasure arising from an evolution

process typically takes only the values 0 or °° . In the abstract

setting, the family of compact sets could be replaced by a compact family

of sets, and it could then be assumed that the variation of the polymeasure

extends uniquely to some form of localizable measure; apparently some

compactness conditions are needed [3].
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