
doi:10.1017/S1446788720000154
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Abstract

In this paper, we introduce quotients of étale groupoids. Using the notion of quotients, we describe
the abelianizations of groupoid C*-algebras. As another application, we obtain a simple proof that
effectiveness of an étale groupoid is implied by a Cuntz–Krieger uniqueness theorem for a universal
groupoid C*-algebra.
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1. Introduction

The study of C*-algebras associated to étale groupoids, groupoid C*-algebras, was
initiated by Renault in [10]. Since then, many researchers have studied the relationship
between étale groupoids and groupoid C*-algebras. In the previous studies, there are
many results for C*-algebras associated to Hausdorff étale groupoids. However, C*-
algebras associated to non-Hausdorff étale groupoids do not seem to have been studied
sufficiently. Non-Hausdorff groupoids naturally arise as mentioned in [5, 8] and so on.
Exel pointed out in [7] that some results known for Hausdorff étale groupoids do not
necessarily hold for non-Hausdorff groupoids. In [4], the authors treat simplicity of
groupoid C*-algebras associated to non-Hausdorff étale groupoids.

In this paper we calculate the abelianization of a groupoid C*-algebra. For a discrete
group Γ, the abelianization C∗(Γ)ab of its group C*-algebra C∗(Γ) is isomorphic to
C∗(Γab), where Γab is the abelianization of Γ. Furthermore, C∗(Γab) is isomorphic to
C(Γ̂ab), where Γ̂ab is the Pontryagin dual of Γab. It is natural to consider an étale
groupoid analogy. For an étale groupoid G, we construct an étale groupoid Gab and
a topological groupoid Ĝab so that C∗(G)ab ' C∗(Gab) ' C0(Ĝab) holds. In order to

This work was supported by the RIKEN Junior Research Associate Program.
c© 2020 Australian Mathematical Publishing Association Inc. This is an Open Access article, distributed
under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

56

J. Aust. Math. Soc. 111 (2021), 56–75

https://doi.org/10.1017/S1446788720000154 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446788720000154&domain=pdf
https://doi.org/10.1017/S1446788720000154


construct Gab, we introduce the notion of quotient étale groupoids. A quotient étale
groupoid often becomes non-Hausdorff even if the original étale groupoid is Hausdorff.
Therefore, we treat not necessarily Hausdorff étale groupoids and their C*-algebras,
which are defined by Connes [5]. As a byproduct, we obtain a simple proof that
effectiveness of an étale groupoid is implied by a Cuntz–Krieger uniqueness theorem
for a universal groupoid C*-algebra (see Corollary 3.16). We remark that this result
has been shown in [3] for Hausdorff étale groupoids in a different way and the proof
in [3] seems to work for non-Hausdorff étale groupoids.

This paper is organized as follows. Having recalled definitions and basic facts about
not necessarily Hausdorff étale groupoids and their C*-algebras, in Section 2 we
introduce the notion of quotient étale groupoids and show some applications. Using
quotients, we obtain a simple proof that a Cuntz–Krieger uniqueness theorem for a
universal groupoid C*-algebra implies effectiveness of an étale groupoid.

In Section 3, for an étale groupoid G, we construct an étale abelian group bundle
Gab through quotients. Finally, we show that the abelianization of a groupoid C*-
algebra is isomorphic to the C*-algebra associated to Gab. Since the abelianization
of a C*-algebra is commutative, it is isomorphic to C0(X) for some locally compact
Hausdorff space X by the Gelfand–Naimark theorem. We show that the abelianization
of a groupoid C*-algebra C∗(G) is isomorphic to C0(Ĝab), where Ĝab is introduced in
this paper.

We obtain some results by using quotients of étale groupoids, which are not
necessarily Hausdorff. We hope that this paper will stimulate the study of non-
Hausdorff étale groupoids.

2. Étale groupoids and groupoid C*-algebras

In this section we recall the notions of étale groupoids and groupoid C*-algebras.
We refer to [9, 10, 12] for details.

2.1. Étale groupoids. A groupoid is a set G together with a distinguished subset
G(0) ⊂ G, source and range maps s, r : G→ G(0) and a multiplication

G(2) := {(α, β) ∈ G ×G | s(α) = r(β)} 3 (α, β) 7→ αβ ∈ G

such that

(1) for all x ∈ G(0), s(x) = x and r(x) = x hold,
(2) for all α ∈ G, αs(α) = r(α)α = α holds,
(3) for all (α, β) ∈ G(2), s(αβ) = s(β) and r(αβ) = r(α) hold,
(4) if (α, β), (β, γ) ∈ G(2), we have (αβ)γ = α(βγ), and
(5) for every γ ∈ G, there exists γ′ ∈ G which satisfies (γ′, γ), (γ, γ′) ∈ G(2), s(γ) =

γ′γ and r(γ) = γγ′.

Since the element γ′ in (5) is uniquely determined by γ, γ′ is called the inverse of
γ and denoted by γ−1. We call G(0) the unit space of G. A subgroupoid of G is a
subset of G which is closed under inversion and multiplication. For U ⊂G(0), we define
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GU := s−1(U) and GU := r−1(U). We define also Gx := G{x} and Gx := G{x} for x ∈G(0).
The isotropy bundle of G is denoted by Iso(G) := {γ ∈ G | s(γ) = r(γ)}. If G satisfies
G = Iso(G), G is called a group bundle over G(0). A group bundle G is said to be abelian
if Gx is an abelian group for all x ∈ G(0).

A topological groupoid is a groupoid equipped with a topology where the
multiplication and the inverse are continuous. Note that the source map and range
map of a topological groupoid are continuous.

Definition 2.1. A topological groupoid G is said to be étale if

(1) the unit space G(0) ⊂ G is a locally compact Hausdorff space with respect to the
relative topology of G,

(2) the source map s : G → G(0) is a local homeomorphism (that is, for all α ∈ G,
there exists an open neighborhood U ⊂ G of α such that s(U) ⊂ G(0) is open and
s|U is a homeomorphism onto s(U)).

An étale topological groupoid is called an étale groupoid for short. In this paper, we
assume that the unit space of an étale groupoid is a locally compact Hausdorff space.
We do not assume that an étale groupoid is a Hausdorff space as a topological space.

Note that a local homeomorphism is an open map. If s is a local homeomorphism,
then r is also a local homeomorphism since r(γ) = s(γ−1) holds for all γ ∈ G. By
Definition 2.1, the family of all locally compact Hausdorff open subsets of G is an open
basis for the topology of G. An étale groupoid G is said to be effective if G(0) = Iso(G)◦,
where Iso(G)◦ denotes the interior of Iso(G).

In some papers, the condition that the source map s : G → G(0) is a local
homeomorphism in Definition 2.1 is replaced by the condition that the source map
s : G → G is a local homeomorphism. As in Proposition 2.2, these definitions are
equivalent.

Proposition 2.2 [6, Proposition 3.2]. Let G be an étale groupoid. The unit space
G(0) is an open subset of G. In particular, the source and range maps s, r are local
homeomorphisms as maps from G to G.

Definition 2.3. Let G be an étale groupoid. A subset U ⊂G is called a bisection if both
s|U and r|U are injective.

For an étale groupoid G, an open bisection of G is a locally compact Hausdorff
space because it is homeomorphic to an open subset of G(0) and we assume that G(0) is
locally compact Hausdorff. Note that the set of all open bisections forms a basis of G.

To a given discrete group action, we can associate an étale groupoid, which is called
a transformation groupoid. We will consider a certain quotient of a transformation
groupoid in Example 3.18.

Example 2.4. Let X be a locally compact Hausdorff space, Γ be a discrete group and
α : Γy X be an action. The transformation groupoid Γ nα X is defined as follows.
Define Γ nα X := Γ × X as a topological space. The unit space of Γ nα X is X, which
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is identified with the subset of Γ nα X via an inclusion X 3 x 7→ (e, x) ∈ Γ nα X. The
source map and range map are defined by s((t, x)) = x and r((t, x)) = αt(x) respectively,
for (t, x) ∈ Γ nα X. For a pair (t1, y), (t2, x) ∈ Γ nα X with y = αt2 (x), their multiplication
is defined by (t1, y) · (t2, x) := (t1t2, x). An inverse is given by (t, x)−1 = (t−1, αt(x)).
Then Γ nα X is a Hausdorff étale groupoid.

Proposition 2.5 [9, Proposition 2.2.4]. Let G be an étale groupoid and U,V ⊂ G be
open sets. Then a set UV := {αβ ∈ G | α ∈ U, β ∈ V, s(α) = r(β)} ⊂ G is an open set.
Furthermore, if U,V ⊂ G are open bisections, UV is also an open bisection.

Definition 2.6. Let G be a groupoid. A subset F ⊂G(0) is said to be invariant if s(γ) ∈ F
implies r(γ) ∈ F for all γ. A point x ∈ G(0) is called a fixed point if {x} ⊂ G(0) is
invariant.

Note that a set F ⊂ G(0) is invariant if and only if G(0) \ F is invariant. If F ⊂ G(0) is
invariant, then GF = GF ∩GF ⊂ G is a subgroupoid whose unit space is F.

Proposition 2.7. Let G be an étale groupoid. Then the set of all fixed points F ⊂ G(0)

is a closed subset.

Proof. We show that G(0) \ F ⊂G(0) is an open set. Take x ∈G(0) \ F. Then there exists
γ ∈ G such that x = s(γ) and x , r(γ). Take an open bisection U which contains γ.
Let S U : s(U)→ r(U) denote a homeomorphism defined by S U(s(α)) = r(α) for each
α ∈ U. Since G(0) is Hausdorff, there exist open sets U1,V1 ⊂ G(0) such that s(γ) ∈ U1
, r(γ) ∈ V1 and U1 ∩ V1 = ∅. By the continuity of S U , there exists an open set U2 ⊂ U
such that γ ∈ U2 and S U(U2) ⊂ V1. Now one can see that U2 ⊂ G(0) \ F. Therefore,
G(0) \ F ⊂ G(0) is an open set. �

We will use the next proposition for the set of all fixed points.

Proposition 2.8. Let G be an étale groupoid and U, F ⊂ G(0) be an invariant open and
closed subset, respectively. Then GU ⊂ G is an open subgroupoid of G and an étale
groupoid in the relative topology. Similarly, GF ⊂ G is a closed subgroupoid of G and
an étale groupoid in the relative topology.

Proof. Observe that U and F are locally compact Hausdorff spaces in the relative
topology of G(0). Now it is clear that GU and GF are étale groupoids. �

In particular, if x ∈ G(0) is a fixed point, then Gx ⊂ G is a discrete group.

2.2. Étale groupoid C*-algebras. Following Connes’ idea in [5], we associate a
C*-algebra to an étale groupoid which is not necessarily Hausdorff. See [6, Section 3]
for more details.

Let G be an étale groupoid. For an open Hausdorff subset U ⊂ G, we denote the
set of all continuous functions with compact support on U by Cc(U). We regard an
element in Cc(U) as an element in Funct(G), the vector space of all complex-valued
functions on G, by defining it to be 0 outside of U. We defineC(G) := span

⋃
U Cc(U) ⊂

Funct(G), where the union is taken over all open Hausdorff subsets U ⊂ G.
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If G is Hausdorff, then C(G) coincides with Cc(G). If G is not Hausdorff, an element
in C(G) need not be continuous.

Proposition 2.9 [6, Proposition 3.10]. Let G be an étale groupoid. Take an open basis
{Ui}i∈I of G consisting of open Hausdorff subsets. Then C(G) is the linear span of⋃

i∈I Cc(Ui). In particular, C(G) is the linear span of
⋃

U Cc(U), where the union is
taken over all open bisections of G.

Proof. This follows from a partition of unity argument. �

Definition 2.10. Let G be an étale groupoid. Recall that C(G) is equipped with
a structure of C-vector space by pointwise addition and scalar multiplication. The
multiplication f ∗ g ∈ C(G) and involution f ∗ ∈ C(G) of f , g ∈ C(G) are defined by

f ∗ g(γ) =
∑
β∈Gs(γ)

f (γβ−1)g(β), f ∗(γ) = f (γ−1).

Then C(G) is a *-algebra under these operations.

One can see that Cc(G(0)) ⊂ C(G) is a *-subalgebra.

Lemma 2.11 [6, Proposition 3.14]. Let G be an étale groupoid and f ∈ C(G).
Then there exists C f ≥ 0 such that ‖ρ( f )‖ ≤ C f for all Hilbert spaces H and all
*-homomorphisms ρ : C(G)→ B(H).

Proof. We may assume that f ∈ Cc(U) for some open bisection U ⊂ G. One can see
that f ∗ ∗ f ∈ Cc(G(0)). Since Cc(G(0)) is a union of commutative C*-algebras, we have
‖ρ(h)‖ ≤ supx∈G(0) |h(x)| for all h ∈ Cc(G(0)). Then we obtain ‖ρ( f )‖2 = ‖ρ( f ∗ ∗ f )‖ ≤
supx∈G(0) | f ∗ ∗ f (x)| <∞. �

Let G be an étale groupoid. We denote the left regular representation by λx : C(G)→
`2(Gx) at x ∈ G(0), which is defined by

λx( f )δβ =
∑

s(α)=r(β)

f (α)δαβ

for f ∈ C(G) and β ∈ Gx. One can see that
⊕

x∈G(0) λx is a faithful *-representation of
C(G). The reduced norm of f ∈ C(G) is defined by

‖ f ‖ := sup
x∈G(0)
‖λx( f )‖.

We denote the reduced groupoid C*-algebra of G by C∗λ(G), which is the completion
of C(G) by the reduced norm.

The universal norm of f ∈ C(G) is defined by

‖ f ‖ := sup{‖ρ( f )‖ | ρ : C(G)→ B(H) is a *-representation}.

By Lemma 2.11, the universal norm takes values in [0,∞). Since the left regular
representation of C(G) induces a faithful *-representation of C(G), the universal
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norm becomes a C*-norm (see [4, Section 4]). The completion of C(G) by universal
norm is denoted by C∗(G). We remark that every *-representation of C(G) induces
the *-representation of C∗(G). Note that the inclusion Cc(G(0)) ⊂ C(G) extends to
C0(G(0)) ⊂ C∗(G).

Proposition 2.12. Let G be an étale groupoid and F ⊂ G(0) be a closed invariant
set. Then the restriction C(G) 3 f 7→ f |GF ∈ C(GF) extends to the surjective
*-homomorphism C∗(G)→ C∗(GF).

Proof. First, we check that f |GF ∈ C(GF) for all f ∈ C(G). We may assume that
f ∈Cc(U) for some open Hausdorff subset U ⊂G, sinceC(G) is spanned by

⋃
U Cc(U),

where the union is taken over all open Hausdorff subsets U ⊂ G. Defining V :=
GF ∩U, V is a Hausdorff open subset of GF . Then f |GF is contained in Cc(V) ⊂ C(GF).

Direct calculations imply that the restriction C(G) 3 f 7→ f |GF ∈ C(GF) is
a *-homomorphism.

Next, we show that the restriction C(G) 3 f 7→ f |GF ∈ C(GF) is surjective. Note
that {GF ∩ U | U ⊂ G is an open Hausdorff subset} is an open basis of GF . Take an
open Hausdorff subset U ⊂ GF and f ∈ Cc(GF ∩ U) arbitrarily. Put V := GF ∩ U.
Since V ⊂ U is a closed subset of U and f ∈ Cc(V), there exists f̃ ∈ Cc(U) such
that f̃ |V = f by the Tietze extension theorem. Now we obtain f̃ ∈ C(G) such that
f̃ |GF = f . By Proposition 2.9, C(GF) is the linear span of

⋃
U Cc(GF ∩ U), where

the union is taken over all open Hausdorff subsets U ⊂ G. Therefore, the restriction
C(G) 3 f 7→ f |GF ∈ C(GF) is surjective.

By the universality of C∗(G), the restriction C(G) 3 f 7→ f |GF ∈ C(GF) extends to
the *-homomorphism C∗(G)→ C∗(GF). Since the image of C∗(G) is dense in C∗(GF),
C∗(G)→ C∗(GF) is surjective. �

3. Quotients of étale groupoids

After introducing the notion of quotient étale groupoids, we will see that a quotient
of an étale groupoid induces a *-homomorphism of a groupoid C*-algebra.

3.1. Quotients of étale groupoids. In this subsection we introduce the notion of
quotient étale groupoids. First, we define normal subgroupoids and quotient groupoids.
Then we show that quotient groupoids of étale groupoids by open normal subgroupoids
again become étale.

Definition 3.1. Let G be a groupoid. A subgroupoid H ⊂ G is said to be normal if

(1) G(0) ⊂ H ⊂ Iso(G) holds and
(2) αHα−1 ⊂ H holds for all α ∈ G.

Definition 3.2. Let G be a groupoid and H ⊂ G be a normal subgroupoid. Then we
define an equivalence relation ∼ on G by declaring that α ∼ β if s(α) = s(β) and
αβ−1 ∈ H. We denote the quotient set G/∼ by G/H.
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We prove some lemmas needed to define the groupoid structure of a quotient
groupoid.

Lemma 3.3. Let G be a groupoid and H ⊂ G be a normal subgroupoid. Suppose that
α, α′ ∈ G satisfy α ∼ α′. Then we have s(α) = s(α′) and r(α) = r(α′).

Proof. It follows that s(α) = s(α′) from the definition of α ∼ α′. Since αα′−1 ∈ H ⊂
Iso(G), we have r(α) = r(αα′−1) = s(αα′−1) = r(α′). �

Lemma 3.4. Let G be a groupoid and H ⊂ G be a normal subgroupoid. Suppose that
α, α′, β, β′ ∈ G satisfy α ∼ α′, β ∼ β′, s(α) = r(β). Then we have s(α′) = r(β′) and
αβ ∼ α′β′.

Proof. By Lemma 3.3, we have s(α) = s(α′) and r(β) = r(β′). Using s(α) = r(β), we
obtain s(α′) = r(β′).

The last assertion follows from a simple calculation. Indeed, we have s(αβ) = s(β) =

s(β′) = s(α′β′) and

αβ(α′β′)−1 = αββ′−1α′−1 = (αββ′−1α−1)(αα′−1) ∈ H.

Note that αββ′−1α−1 ∈ H, since H is normal. �

Definition 3.5. Let G be a groupoid, H ⊂G be a normal subgroupoid and q : G→G/H
be the quotient map. A groupoid structure of G/H is defined as follows:

• a unit space (G/H)(0) is q(G(0)), which can be identified with G(0) via an injection
q|G(0) ;

• source and range maps s, r : G/H → G(0) are defined by s(q(γ)) := q(s(γ)),
r(q(γ)) := q(r(γ)) for γ ∈ G;

• multiplication of G/H is defined by q(α)q(β) := q(αβ) for α, β ∈ G with s(α) =

r(β).

One can see that the inverse map of G/H satisfies q(γ)−1 = q(γ−1) for γ ∈ G. Then
G/H is a groupoid under these operations.

Remark 3.6. The operations of G/H are well defined by Lemmas 3.3 and 3.4.

If G is a topological groupoid, then we consider the quotient topology as a topology
of G/H.

Lemma 3.7. Let G be an étale groupoid and H ⊂ G be an open normal subgroupoid.
Then the quotient map q : G → G/H is an open map. Furthermore, q is a local
homeomorphism.

Proof. Let U ⊂ G be an open subset. Then q−1(q(U)) = UH is an open subset of G by
Proposition 2.5. Hence, q(U) ⊂G/H is an open subset by the definition of the quotient
topology.

Next, we show that the quotient map q : G → G/H is a local homeomorphism.
Fix a γ ∈ G. Then take an open bisection U ⊂ G with γ ∈ U. One can see that q|U
is injective. Since q is an open map, q|U is a homeomorphism onto an open subset
q(U) ⊂ G. Hence, q is a local homeomorphism. �
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Observe that q|G(0) : G(0) → (G/H)(0) is homeomorphic.

Proposition 3.8. Let G be an étale groupoid and H ⊂ G be an open normal
subgroupoid. Then G/H is an étale groupoid.

Proof. First, we show the continuity of the inverse G/H 3 δ 7→ δ−1 ∈ G/H. One can
see that a map G 3 γ 7→ q(γ)−1 ∈ G/H is continuous, since the following diagram is
commutative:

G G

G/H G/H

inverse

q q

inverse

By the definition of the quotient topology, the inverse of G/H is continuous.
Next, we show that the multiplication of G/H is continuous. Take (q(α), q(β)) ∈

(G/H)(2) and an open set U ⊂ G/H such that q(α)q(β) ∈ U. Since αβ ∈ q−1(U) and
q−1(U) ⊂ G is open, there exist open sets V1, V2 ⊂ G such that α ∈ V1, β ∈ V2 and
V1V2 ⊂ q−1(U). Subsets V1, V2 ⊂ G are open, so q(V1), q(V2) ⊂ G/H are open. One
can see that q(α) ∈ q(V1), q(β) ∈ q(V2) and q(V1)q(V2) = q(V1V2) ⊂ U. Therefore, the
multiplication of G/H is continuous.

Finally, we show that G/H is étale. Since the restriction q|G(0) gives a
homeomorphism from G(0) to (G/H)(0), (G/H)(0) is a locally compact Hausdorff space.
One can see that the source map s : G/H → (G/H)(0) is a local homeomorphism,
since we have Lemma 3.7 and the following diagram is commutative for every open
bisection U ⊂ G:

U q(U)

s(U) s(q(U))

q

s s

q

Therefore, G/H is an étale groupoid. �

Definition 3.9. Let G1 and G2 be groupoids. A map Φ : G1 → G2 is called a groupoid
homomorphism if (Φ(α),Φ(β)) ∈G(2)

2 and Φ(αβ) = Φ(α)Φ(β) hold for all (α, β) ∈G(2)
1 .

We obtain the next theorem by Lemma 3.7 and Proposition 3.8.

Theorem 3.10. Let G be an étale groupoid and H ⊂G be an open normal subgroupoid.
Then the sequence of the étale groupoids

H G G/H
inclusion q

is exact, that is, q−1((G/H)(0)) = H.

As in the case of topological groups, Hausdorffness of a quotient groupoid can be
characterized as follows.
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Proposition 3.11. Let G be an étale groupoid and H ⊂ G be an open normal
subgroupoid. Then G/H is Hausdorff if and only if H ⊂ G is closed.

Proof. Recall that an étale groupoid G is Hausdorff if and only if its unit space G(0)

is a closed subset of G (see, for example, [12, Lemma 2.3.2]). If G/H is Hausdorff,
(G/H)(0) ⊂ G/H is closed. Hence, H = q−1((G/H)(0)) is a closed subset of G.

Suppose that H ⊂ G is closed. Since q is an open map, (G/H) \ (G/H)(0) = q(G \
H) ⊂ G/H is open. Hence, (G/H)(0) ⊂ G/H is closed, which implies that G/H is
Hausdorff. �

Proposition 3.12. Let G be an étale groupoid. Then the interior of isotropy Iso(G)◦ ⊂
Iso(G) is a normal subgroupoid.

Proof. We show that Iso(G)◦ is normal. By Proposition 2.2, G(0) is contained in
Iso(G)◦. Take α ∈ G and γ ∈ Iso(G)◦ with s(α) = r(γ). There exist open bisections
U, V ⊂ G with α ∈ U and γ ∈ V ⊂ Iso(G). Then, by Proposition 2.5, UVU−1 ⊂ G
is an open subset which contains αγα−1. Since U is bisection and V ⊂ Iso(G), we
have UVU−1 ⊂ Iso(G). Therefore, αγα−1 ∈ Iso(G)◦ and Iso(G)◦ is an open normal
subgroupoid. �

An étale groupoid G/ Iso(G)◦, which is a special case of quotient groupoids,
coincides with a groupoid of germs of the canonical action (see [11, Section 3]). One
can see that G/ Iso(G)◦ is effective.

3.2. *-homomorphisms induced by quotients of étale groupoids. For an étale
groupoid G and an open normal subgroupoid H ⊂ G, we have obtained the quotient
étale groupoid G/H. Next, we see that the quotient map q : G → G/H induces
a *-homomorphism C∗(G)→ C∗(G/H).

For f ∈ C(G), we define f̃ : G/H → C by

f̃ (γ) :=
∑

q(α)=γ

f (α)

for γ ∈ G/H. Then the following proposition holds.

Proposition 3.13. Let G be an étale groupoid and H ⊂ G be an open normal
subgroupoid. Then C(G) 3 f 7→ f̃ ∈ C(G/H) is a surjective *-homomorphism.

Proof. First, we show f̃ ∈ C(G/H). We may assume that there exists an open bisection
U ⊂ G such that f |U ∈ Cc(U) and f |G\U = 0. Then q(U) ⊂ G/H is an open bisection
and f̃ |q(U) = f ◦ (q|U)−1 ∈ Cc(q(U)), since q|U is a homeomorphism onto the image.
Moreover, one can see that f̃(G/H)\q(U) = 0. Hence, f̃ ∈ Cc(q(U)) ⊂ C(G/H).

We show that C(G) 3 f 7→ f̃ ∈ C(G/H) is a *-homomorphism. We only check that
C(G) 3 f 7→ f̃ ∈ C(G/H) preserves multiplication, since it is easy to check that this
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map is linear and preserves the involution. For all f , g ∈ C(G) and γ′ ∈ G/H, we have

f̃ ∗ g(γ′) =
∑

q(γ)=γ′
f ∗ g(γ) =

∑
q(γ)=γ′

∑
αβ=γ

f (α)g(β) =
∑

q(αβ)=γ′
f (α)g(β),

f̃ ∗ g̃(γ′) =
∑

α′β′=γ′

f̃ (α′)g̃(β′) =
∑

α′β′=γ′

∑
q(α)=α′

∑
q(β)=β′

f (α)g(β)

=
∑

q(αβ)=γ′
f (α)g(β).

Finally, we show that C(G) 3 f 7→ f̃ ∈ C(G/H) is surjective. Note that

{q(U) ⊂ G/H | U ⊂ G is an open bisection}

is an open basis of G. Let U ⊂ G be an open bisection and f ∈ Cc(q(U)). One can see
that q|U is a homeomorphism onto its image. Define g := f ◦ q|U ∈ Cc(U). Then we
have g̃ = f . By Proposition 2.12, C(G/H) is the linear span of

⋃
U Cc(q(U)), where the

union is taken over all open bisections U ⊂ G. Hence, C(G) 3 f 7→ f̃ ∈ C(G/H) is a
surjective *-homomorphism. �

By Proposition 3.13, a map C(G) 3 f 7→ f̃ ∈ C(G/H) ⊂ C∗(G/H) is a *-
homomorphism. By the definition of the universal norm of C(G), we have ‖ f̃ ‖ ≤ ‖ f ‖
for all f ∈ C(G). Therefore the *-homomorphism in Proposition 3.13 extends to the
*-homomorphism Q : C∗(G)→ C∗(G/H). Since the image of Q is dense in C∗(G/H),
Q is surjective (see, for example, [2, Corollary II.5.1.2]).

We make some observations on a Cuntz–Krieger uniqueness theorem in the
remainder of this section.

Lemma 3.14. Let Q : C∗(G) → C∗(G/H) be the *-homomorphism as above. Then
ker Q ∩C0(G(0)) = {0} holds.

Proof. Since the universal norm of a function in Cc(G(0)) coincides with the supremum
norm, Q|Cc(G(0)) is isometric. Therefore, Q|C0(G(0)) is isometric and ker Q ∩ C0(G(0)) =

{0}. �

Lemma 3.15. Let G be an étale groupoid and H ⊂ G be an open normal subgroupoid.
Then the *-homomorphism Q : C∗(G)→ C∗(G/H) induced by Proposition 3.13 is
injective if and only if H = G(0).

Proof. It is clear that the *-homomorphism Q : C∗(G) → C∗(G/H) is injective if
H = G(0). Suppose that G(0) ( H and take γ0 ∈ H \G(0). There exists an open bisection
U ⊂G with γ0 ∈ U ⊂ H. By the Urysohn lemma, there exists f1 ∈ Cc(U) with f1(γ0) =

1. Define f2 ∈ Cc(G(0)) by

f2(γ) =

 f1 ◦ (s|U)−1(γ) (γ ∈ s(U)),
0 (γ ∈ G(0) \ s(U)).

We have f := f1 − f2 , 0, since f (γ0) = 1. One can see that Q( f ) = 0, which means
that Q is not injective. �
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Figure 1. Picture of X in Example 3.18.

Recall that an étale groupoid G is said to be effective if G(0) = Iso(G)◦.

Corollary 3.16 (cf. [3, Proposition 5.5]). Let G be an étale groupoid. Assume that
every nonzero ideal I ⊂ C∗(G) satisfies I ∩C0(G(0)) , {0}. Then G is effective.

Proof. By Proposition 3.12, Iso(G)◦ is a normal subgroupoid of G. Letting
Q : C∗(G)→ C∗(G/ Iso(G)◦) be the *-homomorphism induced by Proposition 3.13, we
have ker Q ∩C0(G(0)) = {0} by Lemma 3.14. The assumption implies that Q : C∗(G)→
C∗(G/ Iso(G)◦) is injective. Therefore, we obtain Iso(G)◦ = G(0) by Lemma 3.15. �

Remark 3.17. It was proved in [3, Proposition 5.5] that Corollary 3.16 holds for
Hausdorff étale groupoids. In the proposition, the authors use the augmentation
representation, which seems to work for non-Hausdorff étale groupoids.

As shown in Proposition 3.13, the quotient map G→ G/ Iso(G)◦ of étale groupoids
induces the *-homomorphism C∗(G)→ C∗(G/ Iso(G)◦). Using this *-homomorphism,
we obtain the proof of Corollary 3.16, which seems to be more direct than that in [3,
Proposition 5.5].

The converse of Corollary 3.16 does not hold for non-Hausdorff étale groupoids.
Indeed, Exel showed that there exists an effective étale groupoid G such that there
exists a nonzero ideal I ⊂ C∗(G) with I ∩C0(G(0)) , {0} in [7] (cf. Example 3.18).

Example 3.18 [7, Section 2]. Let X := ([−1, 1] × {0}) ∪ ({0} × [−1, 1]) ⊂ R2 (see
Figure 1) and K := {e, s, t, st} be the Klein group, which is isomorphic to Z/2Z ⊕ Z/2Z.
We define an action σ of K on X by

σs((x, y)) = (−x, y), σt((x, y)) = (x,−y), σst((x, y)) = (−x,−y)

for (x, y) ∈ X.
Consider the transformation groupoid G := K nσ X (see Example 2.4). One can see

that

Iso(G) = G(0) ∪ {(s, (0, y)) ∈ G | y ∈ [−1, 1]}
∪ {(t, (x, 0)) ∈ G | x ∈ [−1, 1]} ∪ {(st, (0, 0))}.

Moreover, we have Iso(G)◦ = Iso(G) \ {(s, (0, 0)), (t, (0, 0)), (st, (0, 0))}. Since Iso(G)◦

is not closed in G (for example, (s, (0, 0)) ∈ Iso(G)◦ \ Iso(G)◦), the quotient étale
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groupoid G/ Iso(G)◦ is not Hausdorff by Proposition 3.11. In [7], Exel shows that there
exists a nonzero ideal I ⊂ C∗(G/ Iso(G)◦) with I ∩C0((G/ Iso(G)◦)(0)) , {0}, although
it is effective.

Let G be an étale groupoid. In [4], the authors defined the notion of singularity for
an element of C∗λ(G). An element a ∈ C∗λ(G) is said to be singular if the interior of
{γ ∈ G | 〈δγ|λs(γ)(a)δs(γ)〉 , 0} is empty, where δγ ∈ `2(Gx) denotes the delta function at
γ ∈ Gx. In [4], the authors proved the following theorem.

Theorem 3.19 [4, Theorem 4.4]. Let G be a second countable étale groupoid. Assume
that G is effective and C∗λ(G) has no nonzero singular element. Then every nonzero
ideal I ⊂ C∗λ(G) satisfies I ∩C0(G(0)) , {0}.

By the universality of C∗(G), the left representation extends to the *-representation
λx : C∗(G)→ B(`2(Gx)). Following [4], we say that an element a ∈ C∗(G) is singular
if the interior of {γ ∈ G | 〈δγ|λs(γ)(a)δs(γ)〉 , 0} is empty, where δγ ∈ `2(Gx) denotes the
delta function at γ ∈ Gx. A uniqueness theorem for C∗(G) implies that C∗(G) has no
nonzero singular elements.

Proposition 3.20. Let G be a second countable étale groupoid. Assume that every
nonzero ideal I ⊂ C∗(G) satisfies I ∩ C0(G(0)) , {0}. Then C∗(G) has no nonzero
singular elements.

Proof. Observe that the canonical surjective *-homomorphism C∗(G) → C∗λ(G) is
isomorphic by the assumption. Note that G is effective by Proposition 3.16. We define
S := {x ∈ G(0) | Gx ∩Gx = {x}}. One can see that S is an invariant set. Moreover, S is
a dense subset of G(0) by [11, Proposition 3.6]. Therefore, letting π :=

⊕
x∈S λx, π is

injective on C0(G(0)). Then π is injective by the assumption.
Let a ∈ C∗(G) be a singular element. By [4, Lemma 4.2], we have

s({γ ∈ G | 〈δγ|λs(γ)(a)δs(γ)〉 , 0}) ⊂ G(0) \ S .

Using this fact, we show that π(a) = 0. Take x ∈ S . Assume that there exist α, β ∈ Gx

such that
〈δα|λx(a)δβ〉 , 0.

Then we have

〈δαβ−1 |λs(β−1)δs(β−1)〉 = 〈δα|λx(a)δβ〉 , 0.

It follows that r(β) = s(β−1) < S . This contradicts the fact that x = s(β) ∈ S and S is
invariant. Now we have 〈δα|λx(a)δβ〉 = 0 for all α, β ∈Gx and therefore λx(a) = 0 holds
for all x ∈ S . Now we have π(a) = 0, which implies a = 0. Hence, C∗(G) has no nonzero
singular element. �
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4. The abelianizations of étale groupoid C*-algebras
In this section we calculate the abelianizations of étale groupoid C*-algebras. First,

we recall the abelianizations of C*-algebras, following [1, Definition 2.8]. For a
C*-algebra A, its abelianization is defined by Aab = A/I, where I ⊂ A is the closed
two-sided ideal generated by {xy − yx ∈ A | x, y ∈ A}. The abelianization Aab is a
commutative C*-algebra with the following universality: for all commutative C*-
algebras B and *-homomorphisms π : A→ B, there exists the unique *-homomorphism
π̃ : Aab → B such that π̃ ◦ q = π, where q : A→ Aab denotes the quotient map.

4.1. One-dimensional representations of a groupoid C*-algebra. For a C*-
algebra A, we denote the set of all one-dimensional nondegenerate representations
of A by ∆(A). Namely, ∆(A) is the set of all nonzero *-homomorphisms from A to
C. We suppose that ∆(A) is equipped with the pointwise convergence topology. If
A is commutative, ∆(A) is known as the Gelfand spectrum of A. First, we calculate
∆(C∗(G)).

Let G be an étale groupoid and x ∈ G(0) be a fixed point of G. Note that Gx
is a discrete group. We temporarily denote the surjection in Proposition 2.12 by
Qx : C∗(G) → C∗(Gx). Also, we denote the circle group by T := {z ∈ C | |z| = 1}.
For a group homomorphism χ : Gx → T, a map Cc(Gx) 3 f 7→

∑
γ∈Gx

χ(γ) f (γ) ∈ C
is a *-homomorphism. This *-homomorphism extends to the *-homomorphism
C∗(Gx)→ C, which we also denote by χ : C∗(Gx)→ C.

Definition 4.1. Let G be an étale groupoid, x ∈ G(0) be a fixed point and χ : Gx → T
be a group homomorphism. Then we define a *-homomorphism ϕx,χ : C∗(G)→ C by
ϕx,χ := χ ◦ Qx.

We will show that all elements of ∆(C∗(G)) have this form (Theorem 4.8).

Proposition 4.2. Let G be an étale groupoid and ϕ ∈ ∆(C∗(G)). Then there exists a
unique xϕ ∈ G(0) that satisfies ϕ( f ) = f (xϕ) for all f ∈ C0(G(0)).

Proof. We have ϕ|C0(G0) , 0 since C0(G(0)) has an approximate identity of C∗(G).
Therefore, ϕ|C0(G(0)) belongs to ∆(C0(G(0))). Now the existence and uniqueness of
xϕ ∈ G(0) follow from the Gelfand–Naimark theorem. �

Proposition 4.3. Let G be an étale groupoid and ϕ ∈ ∆(C∗(G)). Then xϕ ∈ G(0) as
defined in Proposition 4.2 is a fixed point.

Proof. Assume that γ ∈ G satisfies s(γ) = xϕ. We show that r(γ) = xϕ. There exists an
open bisection U ⊂G with γ ∈ U. Take nγ ∈ Cc(U) which satisfies nγ(γ) = 1. Note that
we have n∗γ ∗ nγ ∈ Cc(G(0)) and n∗γ ∗ nγ(xϕ) = |nγ(γ)|2 = 1. Fix f ∈ Cc(G(0)) arbitrarily.

Direct calculations show that n∗γ ∗ f ∗ nγ(xϕ) = nγ(γ) f (r(γ))nγ(γ) = f (r(γ)). On the
other hand, one can see that n∗γ ∗ f ∗ nγ ∈ Cc(G(0)). Then we have

n∗γ ∗ f ∗ nγ(xϕ) = ϕ(n∗γ ∗ f ∗ nγ) = ϕ(n∗γ)ϕ( f )ϕ(nγ) = ϕ(n∗γ ∗ nγ)ϕ( f ) = f (xϕ).

Therefore, f (r(γ)) = f (xϕ) holds for all f ∈ Cc(G(0)), which implies r(γ) = xϕ. Hence,
xϕ ∈ G(0) is a fixed point of G. �
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Proposition 4.4. Let G be an étale groupoid, ϕ ∈ ∆(C∗(G)) and γ ∈ Gxϕ . Take an
open bisection Uγ ⊂ G with γ ∈ Uγ and fγ ∈ Cc(Uγ) with fγ(γ) = 1. Then ϕ( fγ) is
independent of the choice of Uγ and fγ. Moreover, we have ϕ( fγ) ∈ T.

Proof. First, we show that ϕ( fγ) ∈ T. Since f ∗γ ∗ fγ ∈ C0(G(0)), we have

|ϕ( fγ)|2 = ϕ( f ∗γ ∗ fγ) = f ∗γ ∗ fγ(xϕ) = | fγ(γ)|2 = 1.

Therefore, ϕ( fγ) ∈ T.
Second, we show that ϕ( fγ) is independent of the choice of Uγ and fγ. Assume that

fγ ∈ Cc(Uγ) and gγ ∈ Cc(Vγ) satisfy fγ(γ) = gγ(γ) = 1, where Uγ and Vγ ⊂ G are open
bisections. Find a function h ∈ Cc(s(Uγ ∩ Vγ)) ⊂ Cc(G(0)) such that h(s(γ)) = 1. Recall
that s(γ) = r(γ) = xϕ since xϕ is a fixed point. Also, note that ϕ(h) = h(xϕ) = 1. Putting
f̃γ := fγ ∗ h and g̃γ = gγ ∗ h, we have that f̃γ and g̃γ are contained in Cc(Uγ ∩ Vγ). Then
it follows that f̃γ

∗
∗ g̃γ ∈ C0(G(0)) and

ϕ( fγ)ϕ(gγ) = ϕ(h)ϕ( fγ)ϕ(gγ)ϕ(h) = ϕ( f̃γ
∗
∗ g̃γ)

= f̃γ
∗
∗ g̃γ(xϕ) = h(r(γ)) fγ(γ)gγ(γ)h(s(γ)) = 1.

Now we have ϕ( fγ) = ϕ(gγ) since ϕ( fγ) ∈ T. �

Proposition 4.5. Let G be an étale groupoid and ϕ ∈ ∆(C∗(G)). We define χϕ : Gxϕ → T
by χϕ(γ) := ϕ( fγ), where γ ∈ Gxϕ and fγ ∈ C(G) is a function as in Proposition 4.4.
Then χϕ : Gxϕ → T is a group homomorphism.

Proof. Take α, β ∈ Gxϕ . We show that χϕ(α)χϕ(β) = χϕ(αβ). Take fα, fβ ∈ C(G) as in
Proposition 4.4. It follows that fα ∗ fβ ∈ Cc(U) for some open bisection U ⊂ G and
fα ∗ fβ(αβ) = 1. Hence, we have

χϕ(αβ) = ϕ( fα ∗ fβ) = ϕ( fα)ϕ( fβ) = χϕ(α)χϕ(β)

by the definition of χϕ. �

Proposition 4.6. Let G be an étale groupoid. Then we have ϕ = ϕxϕ,χϕ for all ϕ ∈
∆(C∗(G)).

Proof. Take f ∈ Cc(U), where U ⊂ G is an open bisection. It suffices to show that
ϕ( f ) = ϕxϕ,χϕ( f ), since C∗(G) is generated by such functions. Note that f ∗ ∗ f ∈
Cc(G(0)). If Gxϕ ∩ f −1(C \ {0}) = ∅, then we have 0 = f ∗ ∗ f (xϕ) = |ϕ( f )|2. Since the
restriction of f |Gxϕ

is zero, it follows that ϕxϕ,χϕ( f ) = 0 = ϕ( f ). If Gxϕ ∩ f −1(C \ {0}) ,
∅, Gxϕ ∩ f −1(C \ {0}) is a singleton because f is supported on an open bisection.
Let γ ∈ Gxϕ ∩ f −1(C \ {0}) be the unique element of Gxϕ ∩ f −1(C \ {0}). Observe that
F := f / f (γ) ∈ Cc(U) satisfies F(γ) = 1. Now we have

ϕxϕ,χϕ( f ) = f (γ)χϕ(γ) = f (γ)ϕ(F) = ϕ( f ).

Hence, ϕxϕ,χϕ = ϕ. �
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Proposition 4.7. Let G be an étale groupoid, x ∈ G(0) be a fixed point and χ : Gx → T
be a group homomorphism. Then x = xϕx,χ and χ = χϕx,χ .

Proof. First, we show that x = xϕx,χ . Take f ∈ Cc(G(0)) arbitrarily. Then we have

f (xϕx,χ) = ϕx,χ( f ) = f (x)χ(x) = f (x).

Hence, it follows that x = xϕx .
Next, we show that χ = χϕx,χ . Take γ ∈ Gx arbitrarily. There exist an open bisection

U ⊂ G with γ ∈ U and f ∈ Cc(U) with f (γ) = 1. Then we have

χϕx,χ(γ) = ϕx,χ( f ) = f (γ)χ(γ) = χ(γ).

Hence, we have shown that x = xϕx,χ and χ = χϕx,χ . �

Combining Propositions 4.6 and 4.7, we obtain the next theorem.

Theorem 4.8. Let G be an étale groupoid. Define a set

D := {(x, χ) | x ∈ G(0) is a fixed point
and χ : Gx → T is a group homomorphism}.

Then the map
D 3 (x, χ) −→ ϕx,χ ∈ ∆(C∗(G))

is bijective.

4.2. Construction of an étale abelian group bundle Gab. For an étale groupoid G,
we construct an étale abelian group bundle Gab so that C∗(G)ab ' C∗(Gab) holds.

Proposition 4.9. Let G be an étale group bundle. We define the commutator
subgroupoid of G by [G,G] :=

⋃
x∈G(0) [Gx,Gx], where [Gx,Gx] is the commutator

subgroup of Gx. Then [G,G] is an open normal subgroupoid of G.

Proof. It is obvious that [G,G] ⊂G is a normal subgroupoid. We show that [G,G] ⊂G
is open. Take γ ∈ [G,G]. By the definition of the commutator subgroup, there exists
{α j}

k
j=1, {β j}

k
j=1 ⊂ Gs(γ) such that

γ = α1β1α
−1
1 β−1

1 α2β2α
−1
2 β−1

2 · · ·αkβkα
−1
k β−1

k .

Take open bisections U j,V j ⊂ G such that α j ∈ U j and β j ∈ V j for all j = 1, 2, . . . , k.
We show that U1V1U−1

1 V−1
1 ⊂ [G,G], where we define U−1 := {γ−1 | γ ∈ U} for U ⊂G.

Fix γ′ ∈ U1V1U−1
1 V−1

1 . Then there exist α, α′ ∈ U1 and β, β′ ∈ V1 which satisfy γ =

αβα′−1β′−1. Since G is a group bundle, we have s(α) = s(α′) = s(β) = s(β′). We obtain
α = α′ and β = β′ because U1 and V1 are bijections. Therefore, γ′ = αβα−1β−1 ∈ [G,G].
Similarly, one can show that U1V1U−1

1 V−1
1 U2V2U−1

2 V−1
2 · · ·UkVkU−1

k V−1
k ⊂ [G,G].

By Proposition 2.5, U1V1U−1
1 V−1

1 U2V2U−1
2 V−1

2 · · ·UkVkU−1
k V−1

k is an open set and
contains γ. Hence, [G,G] ⊂ G is an open normal subgroupoid. �
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Let G be an étale groupoid. Recall that the set of all fixed points F ⊂G(0) is a closed
subset of G(0) (Proposition 2.7). We define Gfix := GF , which is an étale groupoid from
Proposition 2.8. Since we have Gfix = Iso(Gfix), Gfix is an étale group bundle.

Definition 4.10. Let G be an étale groupoid. We define the abelianization of G by
Gab := Gfix/[Gfix,Gfix].

Let G be an étale groupoid. Then we have a *-homomorphism C∗(G)→ C∗(Gfix)
induced by the restriction (Proposition 2.12). Composing with the *-homomorphism
C∗(Gfix)→ C∗(Gab) in Proposition 3.13, we obtain a *-homomorphism π : C∗(G)→
C∗(Gab).

Note that C∗(G) is commutative if and only if G is an étale abelian group bundle. In
particular, C∗(Gab) is commutative.

Lemma 4.11. Let G be an étale groupoid. Then the map Φ : ∆(C∗(Gab)) 3 χ 7→ χ ◦ π ∈

∆(C∗(G)) is bijective.

Proof. Surjectivity of π implies that Φ is injective. We show that Φ is surjective. Take
ϕ ∈ ∆(C∗(G)). Then we have the fixed point xϕ ∈ G(0) and the group homomorphism
χϕ which makes the following diagram commutative:

C∗(G) C

C∗(Gxϕ),

ϕ

q χϕ

where q : C∗(G)→ C∗(Gxϕ) is the *-homomorphism obtained in Proposition 2.12.
By the universality of Gab

xϕ := (Gxϕ)
ab = (Gab)xϕ , we obtain the group homomorphism

χ̄ϕ : Gab
xϕ → T that makes the following diagram commutative:

C∗(Gxϕ) C

C∗(Gab
xϕ),

χϕ

q′ χ̄ϕ

where q′ : C∗(Gxϕ)→ C∗(Gab
xϕ) denotes the *-homomorphism induced by the quotient

map Gxϕ → Gab
xϕ .

Let res : C∗(Gab) → C∗(Gab
xϕ) denote the *-homomorphism obtained by the

restriction C(Gab) → C(Gab
xϕ) (see Proposition 2.12). Now we have the following

commutative diagram:
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C∗(G) C∗(Gxϕ)

C∗(Gab) C∗(Gab
xϕ)

C
q

ϕ

χϕ

π

res

χ̄ϕ
q′

In particular, we have ϕ = (χ̄ϕ ◦ res) ◦ π and χ̄ϕ ◦ res ∈ ∆(C∗(Gab)). Hence, Φ is
surjective. �

We are now ready to calculate the abelianization of C∗(G).

Theorem 4.12. Let G be an étale groupoid. Then C∗(G)ab is isomorphic to C∗(Gab) via
the unique isomorphism π̄ that makes the following diagram commutative:

C∗(G) C∗(Gab)

C∗(G)ab

π

Q
π̄

where Q : C∗(G)→ C∗(G)ab denotes the quotient map.

Proof. By the universality of C∗(G)ab, we obtain a *-homomorphism that makes the
following diagram commutative;

C∗(G) C∗(Gab)

C∗(G)ab

π

Q
π̄

It is clear that π̄ is surjective. We show that π̄ is injective. Suppose that a ∈ C∗(G)
satisfies π(a) = 0. It suffices to show Q(a) = 0, which is equivalent to ϕ̄(Q(a)) = 0
for all ϕ̄ ∈ ∆(C∗(G)ab) since C∗(G)ab is commutative. Take ϕ̄ ∈ ∆(C∗(G)ab) and define
ϕ := ϕ̄ ◦ Q. Then, by Lemma 4.11, there exists ϕ̃ ∈ ∆(C∗(Gab)) that makes the following
diagram commutative;

C∗(G) C∗(Gab)

C.

π

ϕ
ϕ̃

Now we have the following commutative diagram:

C∗(G) C∗(Gab)

C∗(G)ab C

π

Q ϕ
ϕ̃

ϕ̄
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Hence, we have ϕ̄(Q(a)) = ϕ̃(π(a)) = 0. �

4.3. Duals of étale abelian group bundles. Let G be an étale groupoid. Since
the abelianization of C∗(G) is a commutative C*-algebra, C∗(G)ab is isomorphic
to C0(∆(C∗(G)ab)) via the Gelfand transformation (see, for example, [2, Theorem
II.2.2.4]). In this subsection we calculate the Gelfand spectrum ∆(C∗(G)ab).

For a discrete abelian group Γ, its Pontryagin dual group is defined as the set of
all group homomorphisms from Γ to T, which is denoted by Γ̂. Then Γ̂ is an abelian
group with respect to pointwise multiplication. It is known that Γ̂ is a compact abelian
topological group with respect to the topology of pointwise convergence.

Proposition 4.13. Let Γ be a discrete group and let Q : C∗(Γ) → C∗(Γab) be the
*-homomorphism induced by the quotient map Γ→ Γab. Then the map

Φ : Γ̂ab 3 χ 7→ χ ◦ Q ∈ ∆(C∗(Γ))

is a homeomorphism. Hence, C∗(Γ)ab is isomorphic to C(Γ̂ab).

Proof. This follows from the universality of Γab and C∗(Γ). �

As seen in the previous proposition, the key to calculating ∆(C∗(G)) is the
Pontryagin dual.

Definition 4.14. Let G be an étale abelian group bundle. We define a group bundle
Ĝ := {(χ, x) | x ∈ G(0), χ ∈ Ĝx} over G(0).

Note that Ĝ is a group bundle such that Ĝx = Ĝx × {x}(' Ĝx) for every x ∈ G(0).
Let G be an étale abelian group bundle and (χ, x) ∈ Ĝ. Recall that we obtain the

*-homomorphism ϕx,χ ∈ ∆(C∗(G)) as in Definition 4.1.

Definition 4.15. Let G be an étale abelian group bundle. For each f ∈ C(G), we define
ev f : Ĝ→ C by ev f ((χ, x)) = ϕx,χ( f ), where (χ, x) ∈ Ĝ. We define a topology of Ĝ as
the weakest topology in which ev f is continuous for all f ∈ C(G).

Proposition 4.16. Let G be an étale abelian group bundle. Then the map

Ψ : ∆(C∗(G)) 3 ϕ 7→ (χϕ, xϕ) ∈ Ĝ

is a homeomorphism (see Propositions 4.2 and 4.5 for the definition of xϕ and χϕ).
Hence, C∗(G) is isomorphic to C0(Ĝ).

Proof. Proposition 4.8 states that Ψ is a bijection and Ψ−1 is given by Ψ−1((χ, x)) = ϕx,χ

for each (χ, x) ∈ Ĝ. For each f ∈ C(G), a map ∆(C∗(G)) 3 ϕ 7→ ev f ((χϕ, xϕ)) = ϕ( f ) ∈ C
is continuous. This means that Ψ is continuous. The continuity of Ψ−1 follows from
approximation arguments. Therefore, Ψ is a homeomorphism. �

Let G be an étale groupoid. Recall that Gab is an étale abelian group bundle.

Corollary 4.17. Let G be an étale groupoid. Then C∗(G)ab is isomorphic to C0(Ĝab).
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Proof. Recall that C∗(G)ab is isomorphic to C∗(Gab) by Theorem 4.12. Since Gab is
an étale abelian group bundle, Proposition 4.16 implies that C∗(Gab) is isomorphic to
C0(Ĝab). �

Proposition 4.18. Let G be an étale abelian group bundle. Then Ĝ is a locally compact
Hausdorff topological group bundle. Furthermore, Ĝ is compact if and only if G(0) is
compact.

Proof. It is clear that Ĝ is locally compact Hausdorff, since Ĝ is homeomorphic to
∆(C∗(G)). In order to show the continuity of the operations, take f ∈ C(G) arbitrarily.
Then the map Ĝ(2) 3 (χ1, χ2) 7→ ev f (χ1χ2) = ev f (χ1) ev f (χ2) ∈ C is continuous.
Therefore, the multiplication of Ĝ(2) is continuous. Similarly, one can show that the
inverse is continuous. Hence, Ĝ is a locally compact Hausdorff topological group
bundle. The last assertion follows from the fact that G(0) is compact if and only if
C∗(G) ' C0(Ĝ) is unital. �

Example 4.19. We give an example of an étale groupoid G such that Gab is
not Hausdorff although G is Hausdorff. Let S3 = 〈s, t | s3 = t2 = e, st = ts2〉 =

{e, s, s2, t, ts, ts2} be the symmetric group of degree 3 and A3 := {e, s, s2} ⊂ S3 be the
subgroup of even permutations. Let G := S3 × [0, 1] \ {(t, 1) | t < A3} be an étale group
bundle over [0, 1]. Then G can be drawn as follows:

(s,1)

(s2,1)

(e,1)(e,0)

(ts,0)

(s,0)

(s2,0)

(t,0)

(ts2,0)

One can see that [G,G] ⊂ G is not closed. By Proposition 3.11, Gab = G/[G,G] is not
Hausdorff. Indeed, letting q : G→ Gab denote the quotient map, Gab looks as follows:

q((e,1)), q((s,1)), q((s2,1))q((e,0))

q((t,0))

The dual Ĝab of Gab can be drawn as follows:

Note that Ĝab is not étale.
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