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TYPE PRESERVATION IN LOCALLY 
FINITE VARIETIES WITH THE CEP 

KEITH A. KEARNES 

ABSTRACT. Assume that A is a finite algebra contained in a variety that has the 
congruence extension property and that B is a subalgebra of A. If a -< (3 in Con A and 
« \B i1 & \B, then we show that a \B < (3 \B and that there is a close connection between 
the type labellings of the quotients {a, (3) and ( a \B, (3 \B ) • 

1. Introduction. An algebra A has the congruence extension property, or CEP, if 
for every subalgebra B < A and every congruence a G Con B there is a congruence 
a* G Con A whose restriction to B is a . That is, 

a*\B = a*n(BxB)=a. 

A class of algebras, such as a variety, whose members all have this property, is said to 
possess the CEP. 

For an algebra A to have the CEP there must be a delicate interplay between the 
subalgebras and the congruences of A. The property that all algebras in a variety have 
the CEP is quite rare. For example, a variety of groups has the CEP if and only if it 
consists of abelian groups. A variety of rings has the CEP if and only if it is generated by 
finitely many finite fields and some zero rings. A variety of monoids has the CEP if and 
only if it is contained in a variety generated by a finite cyclic group and the two element 
semilattice. 

In [8], E. Kiss provided deep insight into the structure of congruence modular varieties 
with the CEP. He proved that modular varieties with the CEP must satisfy the following 
commutator conditions: 

C2: [or,/?] = a • 0 -[1,1], 

R: I f B < A and a,/3 G Con A, then [a9/3]\B = [<X\B,P\B]. 

Then, he showed that any modular variety satisfying C2 and R has the CEP iff all ultra-
products of subdirectly irreducible members do. His work includes the result that if A is 
finite and A x A has the CEP, then V = ^(A) satisfies C2 and R. If V satisfies C2 and 
R and H(\) has the CEP, then V has the CEP. 

For modular varieties, the property C2 is a very restrictive condition on commutator 
arithmetic. For example, when a modular variety satisfies C2, 

[ a , a ] = 0 —• a • [1,1] = 0 — • [a, 1] = 0, 
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which means that abelian congruences are central. The fact that abelian congruences are 
central for algebras in non-modular varieties with the CEP was established by E. Kiss and 
myself using the TC commutator. We then observed that for modular varieties C2 implies 
the stronger condition that solvable congruences are central, so we asked if solvable 
congruences are central for algebras in non-modular varieties with the CEP. R. McKenzie 
answered this question affirmatively in [9] for varieties that are locally finite. His proof 
uses tame congruence theory. 

In this paper we will prove that a version of the condition R holds for all locally finite 
varieties with the CEP. If A lies in a variety with the CEP and B < A and a -< 0 in 
Con A, then we will see that a \ B — f3 \B or a \ B < /? \B • In the latter case, we will show that 
f3 is abelian over a iff/3 \B is abelian over a\B. We refine this with information about 
the relationship between typCa,/?) and typ(a|#,/3\B). In Section 3, we show how this 
result simplifies the task of finding the type-set of a locally finite variety with the CEP. 
In Section 4, we consider locally finite varieties with enough injectives which satisfy a 
nontrivial, idempotent Mal'cev condition. We use our CEP results to prove that a variety 
of this kind is congruence modular if and only if the finite, injective members constitute 
the class Pfin(^C) where Ĉ is the class of subdirectly irreducible, injective algebras in 
the variety. Tame congruence theory is used throughout and we refer the reader to [5] for 
the definitions, notation and results of the theory. 

2. Restricting prime quotients. The fact stated in the second sentence of the last 
paragraph is contained in Lemma 2.3. In order to prove it we need a preliminary result. 
We use the notation that if 7 G Con A and 5ÇA, then & = \Ja<ES aj 7. 

LEMMA 2.1. //(A) has the CEP iff for every congruence a G Con A, every subal-
gebra B < A satisfying B = Ba and every 6 G Con B we have 

(1) a\B<8 -^(a + CgA(6))\B = 6. 

PROOF. Suppose that#(A) has the CEP, a G Con A, B < A and 6 G ConB. Then 
(1) must hold, for it is precisely the condition necessary for the congruence 8 / (a\B) 
to extend from B/ (a \B) to A/ a. This does not depend on the condition that B = Ba. 
On the other hand, every subalgebra of A/ a is of the form B/ (a \B) for some B < A 
satisfying B = Ba and every congruence on such a subalgebra is of the form fj / (a \B). 
Therefore, to verify that //(A) has the CEP it suffices to check that (1) holds only for 
those choices of a, B and 6 for which B — Ba. m 

In [4] it is proved that if A is a group or ring, then //(A) has the CEP iff A does. Later, 
in [7], it is proved that if A lies in a congruence permutable variety, then //(A) has the 
CEP iff A does. Using Lemma 2.1 we can extend these results a little further. 

COROLLARY 2.2. Assume that A has 3-permuting congruences. //(A) has the CEP 
iff A does. 
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PROOF. We need to show that if A has 3-permuting congruences and the CEP then 
it is impossible to find a congruence a G Con A, a subalgebra B < A satisfying B = Ba 

and a 8 G Con B such that 

a\B<8 <(a+CgA(8))\B. 

Assume instead that there is such an a, B and 8. Choose (je,y) G (a + CgA(8 )) \B - 8. 
Since A has 3-permuting congruences, 

a + CgA(8) = a o CgA(8)o a, 

and so there exist u,v G A such that (x, w), (v,y) G a and (w, v) G CgA(£). This, along 
with the facts that B = Ba and ;t,y G £, shows that (x,u),(v,y) G a\B and (w, v) G 
Q?A(£ )\B = ^ • This la s t equality follows from the fact that A has the CEP. We conclude 
that (x, y) G a \B + 8 — 8, which is a contradiction. • 

We mention that [4] contains an example of a 5-element groupoid A which has 4-
permuting congruences and the CEP although //(A) does not have the CEP. Therefore 
the number 3, as it appears in Corollary 2.2, cannot be improved to 4. 

Now we return to the project at hand. 

LEMMA 2.3. Assume that B < A and thatH(A) has the CEP. If a < fi in Con A 
then a \B = j3 \B or a \B < (3 \B. 

Now assume that B < A and that A has the CEP. If 7 -< 8 in ConB then there exist 
7* -<£* inConAsuchthat7*|j? = 7 and<5*|B = 8. 

PROOF. For the first statement suppose that a\B < 8 < /3\B. Then CgA(8) < f3 
but CgA(8) ^ a. Since a -< (3 we must have a + CgA(8) = (5. Now, the proof of 
Lemma 2.1 shows that 2.1 (1) holds even if B ^ Ba, so 8 = (a + CgA(8))\B = (3 \B. 
Thus, a\B < f5\B. 

For the second statement let 8* = CgA(8). This congruence is the least congruence 
on A whose restriction to B is 8. Further, every other congruence in 7[CgA(7), CgA(8 )] 
restricts to 7. Choose (JC, y) G 8 — 7. Now let 7* be any congruence in I[CgA(l ), CgA(8 )] 
which is maximal with respect to not containing (x, y). Clearly, 7 * <̂ 8 *. • 

Another preliminary result referred to in the introduction is the following theorem. 

THEOREM 2.4 (KEARNES, KISS). Suppose that Ax A has the CEP and (3 is an abelian 
congruence on A. Then /3 is in the center of A. 

PROOF. Let A(/3 ) be the subalgebra of A x A consisting of (3 -related pairs. Let Â  jQ 

be the congruence on A((3 ) generated by the (3 -diagonal, {( (x, JC), (y, y)) | (xyy) G (3 }. If 
Ai,0 denotes the congruence on A2 generated by the (3 -diagonal, the CEP in A2 insures 
that AI^IAO?) = A ^ . 

Now, saying that f3 is abelian is equivalent to saying that the diagonal subalgebra of 
A(f3 ) is a union of A ^ -classes. But since Ai^ |A(^> = Ap,p and A((3 ) is a union of A ^ -
classes, it follows that the diagonal subalgebra of A2 is a union of A\$ -classes. This is 
equivalent to saying that (3 is central. • 
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Lemma 2.3 shows some correspondence between the prime quotients of an algebra 
belonging to a CEP variety and the prime quotients of its subalgebras. For the rest of this 
section, A is a finite algebra contained in a variety with the CEP and 0A < (3 in Con A. 
B is a subalgebra of A for which 0B < f3 \B. TO further fix notation, let UA G MA(0, (3 ) be 
a ( 0, (3 ) -minimal set and let eA G E(A) be an idempotent, unary polynomial for which 

def 

eA(A) — UA. Let TA be a (0,/?)-trace of UA and let TA = AIrA be the normally-indexed 
algebra A induces on TA. Define UB, eB, TB and TB similarly. We will investigate the 
relationship between the algebras TA and TB. 

LEMMA 2.5. Assume thatf G Poli A is such thatf(TB) Ç TA and that S G ConT^ 
contains no pair of the form ( (x,x,... ,x), (y, y,... ,y)) where x ^ y. Then CgT*(f(6 )) 
contains no pair of the form ( (x, x,..., x), (y, v , . . . , v)) where x ^ y. 

PROOF. Our strategy will be to show that if è contains no non-trivial "diagonal 
pair," then there is a subalgebra C < A* containing Tk

B such that Cgc(8) contains no 
non-trivial diagonal pair. Using the CEP, we'll show that CgA (6) contains no non-
trivial diagonal pair. This is already stronger than the conclusion of the lemma since 
CgTk

A(f(6))cCgA\8). 
Let C be the subalgebra of A* generated by 

7^U {(JC,JC,...,JC) | x<EB}. 

The fact that C contains the diagonal elements of A* whose components lie in B implies 
that there is an idempotent unary polynomial e' G E(C) which is just eB acting coordi-
natewiseonC. Let U = ef(C). If 0=0 x /? x • • • x j3)\c = (J3\B x $\B x • • • x (3\B)\c, 
then N = T\ is a 6 \ £/-class. 

CLAIM. C|yv is polynomially equivalent to T^. 

PROOF OF CLAIM. This is a standard tame congruence theory argument (see 
Lemma 6.14 of [5], for example). These two algebras have the same universe: 7^. We 
only have to show that they have the same polynomials. To see this, it is enough to notice 
that/(Jc) is an m-ary polynomial of either algebra iff 

(i) /(AT) Ç N, and 
(ii) There is an (m + n)-ary term t and an n-tuple of elements U chosen from TV U 

{ (JC, . . . ,x) | x G B} such that/(Jc) = tA\x, Q)\N. 
Now we use Lemma 2.4 of [5] which proves that the restriction map 

/[Oc,0] —>ConC|,v = ConT^iai—> a\N 

is a homomorphism of l[0c, 0 ] onto Con T| . Since this map is onto, we have Cgc(6 ) |# — 

6. Using the CEP in A* we even get that \\N = 6, where À = CgA (8). 
Now suppose that ((JC, . . . ,JC),(V, . . . , v)) G À and x ^ v. Then (x,y) G f3 — 0A, 

since 6 Ç f3 x • • • x (3. Therefore, if A is the diagonal subalgebra of A*, then A |̂  = 
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{ ( (w,..., w), (v,. . . , v)) | (w, v) G (3 } . But, if a, b G Tfi are distinct, this leads to the 
contradiction that 

((fl,...,fl),(ft,...,*)) eA|tf-Otf = fi -Oyy. 

Therefore, À contains no non-trivial diagonal pair. As we pointed out in the first para­
graph, this establishes the lemma. • 

Notice that the proof of Lemma 2.5 includes the proof that the congruences of Tk
B 

"extend" to A*. That is, if 6 G ConT*, then QA'(<5)|T* = 6. 

LEMMA 2.6. The congruence (3 is abelian ifff3\B is. 

PROOF. The congruence (3 is abelian iff for every (n+ l)-ary term/? and (x, v), (w/, v,-) 
G f3 for / < n we have 

/?(*, U) = p(x, v) —• p(y, u) = p(y, v). 

If this holds, then surely the same implication holds when the elements x, y, w, and v, are 
restricted to lie in B. This is precisely what it means for (3 \B to be abelian. (A similar 
argument shows that if (3 is strongly abelian then (3 \B is strongly abelian.) 

Now assume that (3 is nonabelian. TA has exactly two elements, 0 and 1, and this 
algebra has a binary pseudo-meet operation p(x, y) which satisfies /?(0,0) = p( 1,0) = 
/?(0,1) = 0 and/?(l, 1) = 1. Choose two distinct elements a,b G TB. There is a unary 
polynomial/ G Poli A such that f(TB) Q TA and f(d) and/(&) are distinct, (3 -related 
elements of UA- Since 0 and 1 are the only distinct, (3-related elements of UA we may 
assume thai f (a) = 0 and f(b) = 1. 

Let 5 = { ( (a, a, b), (b, b, b)), ( (b, a, a), (b, b, b))} and let6 - CgT*(S). Observe that 
<(0,0,1),(1,1,1)) = ({f(a)J(a)J(b)\(f(b)J(b)J(b))) G \=CgT*(f(6)). Similarly, 
( (1,0,0), (1,1,1)) G À. Applying the pseudo-meet operation we find that 

(1,1,1) = p((l , 1,1),(1,1, 1))À/?((0,0,1),(1,0,0)) = (0,0,0). 

Lemma 2.5 applies now to show that 8 must contain a non-trivial diagonal pair. 

CASE 1. Assume that the minimal algebra TB is of type 1. That is, that TB is poly-
nomially equivalent to a simple G-set. In this case, each polynomial of TB is unary and 
it follows that the non-constant polynomials of T | are precisely the non-constant poly­
nomials of TB acting on T | coordinate wise. Suppose that xo,...,xn is a sequence of 
elements for which each (JC/,XI+I) = (p{u),/?(v)) or (/?(v),/?(«)) where (w, v) G S and 
p is some unary polynomial of TB acting coordinatewise. Further, assume that JCO = 
(y> y^ y) ¥" te z» z) = xn and that n is minimal for any sequence with the properties we 
have required. Since, for (w, v) G S, p(u) / p(v) implies that exactly one of {/?(«),/?(v)} 
is a diagonal element, it follows that n — 2. Arguing by symmetry, we may assume that 

x0 = /?((£, b, 6)), xx = p((a, a, £)) = <7(w), x2 = q((b, b, b)) ^ x0 
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where u = (a, a, b) or (b, a, a) and p, q are unary polynomials of TB acting diagonally. 
However, both choices for u lead to a contradiction. If u — (a, a, b) then 

pT3B((a,a,b)) =qT3*((a,a,b)), so 

pTB(b) = qTB(b), and 

*o = PT° ((*, *, bj) = qT* ((*, b, b)) = x2. 

Similarly, if u — (by a, a), 

PTB((a, a, &)) = qTB((fr,a, a)), so 

pT"(b) = qTB(a) = pTB(a) = qTB(b), and 

*o = pTB((b,b,b)) = qTs((b,b,b)) = x2. 

Hence, è collapses no distinct diagonal pairs in T^. This contradicts the result of the last 
paragraph, so TB is not of type 1. 

CASE 2. Assume that TB is of type 2. In this case, TB is polynomially equivalent to a 
1-dimensional vector space with b for the origin. Now the è -equivalence class containing 
(b, b, b) is a subspace of T3

B containing (a, a, b) and (b, a, a). Indeed, it is precisely the 2-
dimensional subspace of triples (x, y, z) for which x + z = y in TB. If ( (x, x, JC), (y, y, y)) G 
£, then (z, z, z) = (x—y, x—y,x—y) is in this 2-dimensional subspace. However, the only 
diagonal triple (z, z, z) in this subspace is (b, b,b),sox — y = borx = y. This contradicts 
our earlier result that 6 contains a non-trivial pair of diagonal elements, so TB is not of 
type 2. 

We have ruled out the possibility that typ(0B,/3\B) is 1 or 2. As these are the only 
abelian types, we conclude that /? \B is nonabelian. • 

LEMMA 2.7. typ(0A,/3) = 1 if and only if typ(0B, (3 \B) = 1; typ(0,4,/3) = 2 //"and 
0n/)uytyp(Otf,/?|a) = 2. 

PROOF. We have already shown that typ(0A, (5 ) G {1,2} if and only if typ(0#, /3|#) 
G {1,2}. Also, the first paragraph of the proof of Lemma 2.6 explains why the assump­
tion that typ(0,4,/3) = 1, i.e., (3 is strongly abelian, implies that typ(0Byf3\B) = 1. We 
need to rule out the possibility that typ(0,4, (3 ) = 2 and typ(Ofl, f3\B) — 1. 

Assume that the type of TB is 1. Choose distinct elements a,b e TB and/ G Poli A 
such that/(7*) Ç TA and f(a) and/(fc) are distinct. Let S = CgT*(S) where 5 = 
{ ( (a, a, b), (a, a, a)), ( (a, b, a), {a, a, a)), ( (b, a, a), (a, a, a)) } . Arguing as in Case 1 of 
the proof of Lemma 2.6 one can show that 8 contains no non-trivial diagonal pairs. 
Lemma 2.5 applies to show that À = CgT* (f(6 )) contains no non-trivial diagonal pairs. 
However, setting 0 = f(a) and 1 = f(b), we find that À does contain the pairs 
((0,0,1),(0,0,0)) = ((f(a),f(a),f(b)): (f(a)j{a)j(a))), ((0,1,0),(0,0,0)) and 
( ( 1,0,0), (0,0,0)). If T^ is of type 2, then it is polynomially equivalent to a vector space 
with origin at 0. TA has a polynomial operationp(xy y, z) = x + y + z. Applying/? coordi-
natewise in T\ yields 

(0,0,0) = p((0,0,0),(0,0,0),(0,0,0))A/?((0,0,1), (0,1,0), (1,0,0)) = (1,1,1) 
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contradicting the result that A contains no diagonal pairs. Hence, the type of T^ is not 2. 
• 

LEMMA 2.8. //typ(0A, /3 ) G { 3,4}, then typ(05, f3\B)e{ 3,4}. 

PROOF. If typ(0A, f3 ) G { 3,4}, then by Lemma 2.6 we must have typ(0#, (3 \B) G 
{3,4,5}. Assume that typ(0A,/?) G {3,4} and typ(0B,(3\B) = 5. TB contains exactly 
two elements, say TB — { a, b}. TB has a pseudo-meet operation,/?, and we may assume 
that/?(#,#) = p(a,b) = p(b,a) = a mdp(b,b) = b. There is a n / G Poli A such that 
f(TB) C TA and/(a) = 0,/(fc) - 1 where TA = {0,1}. 

Let S — Cgj2B(( (a, b), (a, a)), ( (b, a), (a, a)) ). T | is polynomially equivalent to the 
square of the 2-element semilattice on { a, b} which has a < b. 6 is the Rees congruence 
associated with the ideal / = {(a,a),(a,b), (b,a)}. The 6-class of any element outside 
of / contains exactly one element, so ( (a, a), (b, b)) $ 8. Thus, 6 contains no non-trivial 
diagonal pairs. Using Lemma 2.5 we get that À = CgT* (f(6 )) contains no non-trivial 
diagonal pairs. It does contain the pairs ( (0,1), (0,0)) = ( (f(a),f(b)), (/*(«),/(«))), and 
((1,0), (0,0)). Further, TA has a binary polynomial operation g which satisfies g(0,0) = 
0 and g(0, l) = g(l,0) = g ( l , l ) = 1. Using g coordinatewise in T^ we get 

(0,0) = g((0,0),(0,0))Ag((0,1),(1,0)) = (1,1) 

which is a contradiction. This proves the lemma. • 

EXAMPLE 1. In this example, we will show that even if typ(0A, (3 ) = 3 it is possible 
to have typ(0#,/? \B) = 4. We will take A to be a finite, hereditarily simple algebra that 
generates a congruence distributive variety. Since V — V{S) is congruence distributive, 
it satisfies C2 and R. H(A) has the CEP, so V does. 

Our algebra A is a 3-element lattice with an additional binary operation: A = 
( { 0, a, 1} ; V, A, r). The lattice ordering of A is 0 < a < 1. We define the operation r by 
r(a, x) = 1 for all x G A and r(jc, y) — y when x ^ a. It is routine to check that A is simple 
and, since it has only 3 elements, every subalgebra is simple. A has a lattice reduct so it 
generates a congruence distributive variety. Let /3 = 1A . The polynomial e(x) = i V a G 
Poli A is an idempotent polynomial for which e(A) = N = {a, 1} G MA(0A,(3). A|# is 
closed under the polynomial operations V, A and r(jc, a), which generate all the boolean 
operations on N. Hence, typ(0^, f3 ) = 3. Now, A has a subalgebra B = ( { 0,1} ; V, A, r) 
on which r is a trivial projection operation. B is just the 2-element lattice, so it is simple 
of type 4 and (3\B = \A\B = !/?• Thus, typ(05,/? \B) = 4. 

EXAMPLE 2. In this example we prove that it is possible to have typ(0^, (3 ) = 4 and 
typ(0j,,/?|u) = 3. 

This time our algebra A is a 3-element lattice with an additional unary operation: A = 
( { 0, a, 1} ; V, A , / ) . As in the last example, the lattice ordering of A is 0 < a < 1. We 
define/by/(0) = l,/(a) = a and/(l) = 0. It is easy to see that A is (hereditarily) simple 
and has a lattice reduct, so ^(A) has the CEP. B is the subalgebra with universe { 0,1}. 
We let j3 = lA and so {3 \B — lB. B is a 2-element boolean algebra which means that 
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typ(0#> /? \B) — 3. e(x) = x\/ a e Poli A is an idempotent polynomial for which e(A) = 
TV = { 0,1} G MA(0A, j3). N h closed under V and A, so A|# is of type 3 or 4. To prove 
that X\N is of type 4 we must show that there is no h G Poli A such that h(a) = 1 and 
h{\) = «.This is equivalent to proving that (1, a) £ SgA2({ (0,0), (a,a), (1, l),(a, 1)}). 
We leave this chore to the reader. 

Now we begin a sequence of results which culminate in the proof that if (3 is abelian, 
then TB and TA are polynomially isomorphic in A and TB and TA are weakly isomorphic. 
(Subsets X, Y Ç A are polynomially isomorphic in A if there are polynomials / , g G 
Poli A such that/(X) = F, g(F) = X, g/"|x = idx and/g|y = idy. The algebra C is said 
to be weakly isomorphic to D if C is isomorphic to an algebra D' whose universe is D 
and for which CloD' = CloD.) 

LEMMA 2.9. If h G Poli A, then 

h\TB:TB-+A 

is either 1-1 or constant. In particular, \TB\ < \TA\-

PROOF. If \TB\ — 2 the result is trivial so assume that \TB\ > 2; necessarily TB 

is abelian. Also, assume that h is neither 1-1 nor constant on TB. There must be distinct 
elements a, b, c G TB for which h(a) ^ h(b) = h(c). We will show that this leads to a 
contradiction. 

Choose g G Poli A such that g(h(aj) ^ g(h(b)) and g(h(TB)) C TA and set/(x) = 
g(/i(jt)). Let S = {((a,b,c),(a,a,a)),((a,b,b),{b,b,b))} and 5 = CgT*(S). If 0 = 
/ ( A ) and 1 = f(b) = /(c), then clearly A = C ^ (/"(«)) contains ((0,1,1), (0,0,0)) 
and ((0,1,1),(1,1,1)), so À contains the non-trivial diagonal pair ((0,0,0),(1,1,1)). 
Lemma 2.5 demands that S contain a non-trivial diagonal pair. 

CLAIM 1. If TB has type 1, then let JC0, . . . , xn be a sequence of elements from T\ 
where each (JC/,JC,+I) = (/?(«),/?( v)) or (/?(V),/?(M)) with (w, v) G S and/7 G Poli T# acts 
coordinatewise. We assume that xo = (y, y, y) ^ (z, z, z) = xn and that « is minimal for 
any sequence with these properties. As in the proof of Lemma 2.6, n = 2. Now, let 77, 
denote the kernel of the projection onto the ith factor of T^. Observe that 

((y,y,y),foz,z)) £CgT*(((a,fc,c),(a^a))) <m 

and 
((y,y,y),fez,z)) ëcg

Tl(((a,b,bl(b,b,b))) <m. 

Thus, the only way that JCO, Jti , JC2 could be a sequence satisfying all of our conditions is 
if 

xo = p((a, a, a)) ^ x\ = p((a, b, c)) = q((a, b, b)) ^ x2 = q((b, b, b)) ^ *o 

is such a sequence. Here p and q are unary polynomials of TB acting coordinatewise. 
Since/?((a,a,a)) ^ /?((«, b,c)) it follows that p is non-constant. However, p ((#,&, c)) = 
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qy(a,b,b)\ so p(b) = q(b) = p(c). Hence, p is not a permutation. This is impossible, 
since TB is a minimal algebra. Therefore, TB is not of type 1. 

CLAIM 2. Assume that the type of TB is 2. TB is polynomially equivalent to a 1-
dimensional vector space with origin at a. The 6 -class of (a, a, a) is a subspace of T^ 
spanned by (a, b, c) and (b, b, b) — (a, b, b) = (/?, a, a). There is a unary polynomial, k(x), 
of TB such that k(a) = a and k(b) = c ^ b. No element of 7# other than a is fixed by 
k, since no unary polynomial of a 1 -dimensional vector space other than the polynomial 
p(x) = x fixes more than one element and k(b) / b. The set V of (JC, y, z) G T\ satisfying 
z = k(y) is a subspace of T | containing (a, b, c) and (b, a, a). If ( (y,y,y), (z, z, z)) G 6, 
then (w, w, w) = (y — z,y — z,y — z) is 6 -related to (a, a, a), so (w, w, w) E V. But then 
w = /:(w) and a = w = y — z, which forces y = z. This shows that 8 contains no 
non-trivial diagonal pair, so T# is not of type 2 

We've reached the contradiction that TB is abelian, but not of type 1 or 2. Therefore, 
h is 1-1 or constant, as we claimed. 

For the second statement of the lemma, assume that a\ b' G Tg are distinct. There is 
a unary polynomial/ G Poli A such tha t /C^) C TA and f(a') ^ f\b'). Since/'|7fi is 
not constant it must be 1 -1, so | TB\ < | TA\. • 

LEMMA 2.10. IfT^Ç. B, then TA and TB are polynomially isomorphic in A. In fact, 
x 

there is anf G Poli B such thatf : TA—TB. 

PROOF. We need to show that if TA Ç B, then there is an/ G Poli B and a g G Poli A 
such that/(rA) = TBi g(TB) = TA, gf\TA = id7A and/^|rB = id7fl. 

Choose distinct elements 0, 1 G TA. Since (0,1) G (3 \B — 0^ there is a n / G Poli B 
such that/(B) = UBJ{{ 0,1} ) Ç TB and/(0) ^ / ( l ) . This claim relies on Theorem 2.8 
of [5]. TA is a (0A,f3)-trace and/ is a polynomial of A that is non-constant on TA, so 
/ i s 1-1 on TA. NOW, TA Ç B, sof(TA) Ç £/#. Every element of/(7^) is ^-related to 
/(0) and the set of all elements f3 -related to/(0) in UB is just TB. Hence, f(TA) Ç TB and 
/ : TA -^ TB is 1-1. But Lemma 2.9 proves that \TB\ < \TA\, so / : 7A —> rfl is onto, also. 

The polynomial image of a (0A,(3 )-trace is either a singleton or another ( 0 A , / 3 ) -

trace, so the argument of the last paragraph proves that TB is a ( 0A , (3 ) -trace. All (0A,(3)-
traces are polynomially isomorphic in A, so there is an h G Poli A such that h: TB —-» TA 

is a bijection. There is a suitable choice of k such that g = h(fh)k G Poli A is an inverse 
to / . This/ and g witness the polynomial isomorphism between TA and TB. m 

The proof of our next result uses a slight modification of the arguments in Lemma 4.4 
and Lemma 4.6 of [9]. 

LEMMA 2.11. Assume that f3 is abelian. Then B contains a (0A,(3) -trace. 

PROOF. First, we reduce this lemma to a special case. If this lemma is false, then 
there is a finite algebra A which generates a CEP variety and has an abelian congruence 
f3 > 0A which restricts non-trivially to some subalgebra B that contains no ( 0A , f3 ) -trace. 
By extending B if necessary, we may assume that B is maximal among subalgebras of 
A which contain no (0A,/3)-trace. Further, expanding A by adding constant operations 
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to denote the elements of B will not injure our assumptions, so we do this. Now observe 
that if A' is a subalgebra of A which properly contains B, then B contains no (OA',/3 \A' ) -
trace, either. The argument for this is as follows. A' must contain a ( 0^, (3 ) -trace by the 
maximality of B; so, by Lemma 2.10, every ( 0^, (3 \A> ) -trace is a ( 0A, (3 ) -trace and none 
of these are contained in B. It is also true that 0 /̂ -< f3 \A>, as Lemma 2.3 shows, and that 
(3 \A> is abelian. This shows that, replacing A by A' if necessary, we may assume that the 
only subuniverses of A are A and B. For the rest of the proof we assume this (and also 
that every element of B is a constant term). 

Since (3 \B > 0#, there is a pair (b, c) G (3 \B — 0^. Theorem 2.8 (5) of [5] implies that 
there is a chain of elements b = xo,... yxn — c such that (JC,,;C/+I) G Ni where Ni is a 
( 0A, f3 ) -trace. If No Ç B we are done, so assume that there is an element a G NoH (A—B). 
Our assumptions from the last paragraph imply that a generates A. Since (b, c) G (3 — 0A, 
there is a n / G Poli A such that/(A) G MA(0A,(3) and/(fc) ^ f(c). The element a 
generates A so we can find a binary term t(xy v) such that/(x) = t^ix.a). Let g(x) be 
the unary term t(x, b). Theorem 2.4 proves that (3 is central; so, for w, v G A, t(u, a) = 
t(v, a) holds iff t(u, b) = t(v, b) holds. That is, / and g have the same kernel. Hence 
Ig(A)\ = \f(A)\ and g(b) ^ g(c), implying that g(A) = U G MA(0A, (3 ). Now choose an 
idempotent polynomial e G E(A) such that e(A) — U. We can write e(x) = ^(x, a) for 
some term s(x, y) chosen so that A satisfies the equation s(s(x, y), v) ^ s(x,y). In fact, 
the f3,1-term condition implies that A satisfies s(s(x, y), z) ^ s(x, z) whenever (y, z) G f3. 
This implies that e'(x) = s(x, b) is an idempotent, unary term and that ee* — e and 
Je = ef.lfW = ^(A), then e'(U) = W and e(W) = U. Thus, Jg(b) and e'g(c) are 
distinct elements of W n B and W G MA(0A,/3).LetN be the (0A,/?)-trace of W that 
contains efg(b) and e'g(c). We will proceed to show that N Ç B. The conclusions of 
this paragraph that we will need to remember is that e' is an idempotent unary term, 
e'(A) = W G MX(0A,(3), # is a trace of W and 0 = Jg(b\ 1 = efg(c) G ND 5 are 
distinct. 

CASE 1. Assume that typ(0A, /? ) = 1. This means that A|# is polynomially equiva­
lent to a simple G-set. 

Suppose that N £B. Choose d G N — B\ A is generated by a'. Of course, 0, 1 and a' 
are distinct elements of N. Since A|# is polynomially equivalent to a simple G-set with at 
least 3 elements, there is a h G Poli A such that h(N) = N and h(0) — a'. Choose a term 
q(x, y) such that h(x) = <7A(x, af).N is closed under e,qA(x, y) and this operation depends 
on its first variable. But the type of ( 0A, (3 ) is 1, so JqK restricted to N does not depend 
on its second variable. Hence, a' = e'q(0, a') — e'q(Q, 0) G B, which is a contradiction. 
We conclude that if the type of ( 0A, /? ) is 1, then # Ç fl. 

CASE 2. Assume that typ(0A,(3) — 2. This means that A|# is polynomially equiv­
alent to a 1-dimensional vector space. We will argue that the polynomial operations of 
A|w are the restrictions of terms. 

There is a term operation d(x, y, z, w) such that dA(x, y, z, a) is a pseudo-Mai'cev oper­
ation of A | w Therefore, if C is the body of W, JA(x, w, 0, a) and dA(u, JC, 0, a) are permuta­
tions of W whenever u EC. Hence, the term r(x, y) = e'd(x, y, 0, b) has the property that 

https://doi.org/10.4153/CJM-1991-043-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-043-1


758 KEITH A. KEARNES 

the polynomials ^(JC, u) and ^{u.x) are permutations of W whenever M G C A polyno­
mial which is a permutation cannot map a trace into the tail, so these permutations leave 
the body (and the tail) of W invariant. In particular, C is closed under r. 

The term r is a quasigroup operation on C so, by the technique of Lemma 4.6 of [5], 
we can construct from r a term/?(JC,y9 z) such that A|c is closed under/? and satisfies 

/?(x,y,y) =x = p(y,y,x). 

N Ç C is closed under/?, too, since/? is idempotent and TV is a j3 |c-class. The only vector 
space polynomial satisfying the equations just listed is /?(JC, y, z) = x — y + z. Therefore, 
the abelian group operations of A\N are the restriction of terms: 0 E #, x + y = p(xy 0, v) 
and — x — /?(0,;t,0). 

Now we need to show that the unary polynomials which are the scalar multiplications 
of A\N are induced by unary terms. Suppose that ko(x), ...,kn(x) are polynomials of A 
whose restrictions to TV are the distinct scalar multiplications. Let tt(x, y) be terms such 
that ki(x) = ff (x,a). Let W;(JC) be the term elti(x,b) — e/ti(0,b). N is closed under the 
operations mf (x) and clearly mf (0) = 0. Further, the kernel of mf (x) restricted to N is 
the same as the kernel of e'tf(x, b) which is the same as the kernel of e't^(x, a)\ that is, 
it is 0V Therefore, by showing that the m, are distinct we will show that they induce all 
the scalar multiplications. 

Assume that 
e?tf(x, b) - e'rf(0, b) = e'tf{x, b) - eftf(0, b). 

Rewrite this as 
e'tf(x, b) - e'tf(x, b) = eftfiO, b) - etf(0, b). 

Now, using the (3,1-term condition we get 

e'tf{x,a) - e'tf(x,a) = e'tf(0,a) - e'tf{Q,a), 

from which it follows that e'tf(x, a) — e't^ix, a), or kt{x) — kj(x). This implies i = j . 
We have succeeded in showing that the algebra A|yv is polynomially equivalent to a 

1-dimensional vector space whose operations are the restriction of term operations of A. 
NH Bis closed under these operations, so it is a subspace. The distinct elements 0 and 
1 lie in TV H B, so N = TV H B. Hence, if typ(0A, f3 ) = 2, then N C B. This establishes 
the lemma. • 

LEMMA 2.12. Iff3 is abelian, then T& and TB are polynomially isomorphic in A and 
TA and T# are weakly isomorphic. 

PROOF. If (3 is abelian, then Lemma 2.11 proves that B contains a ( 0A, f3 ) -trace, N. 
N is polynomially isomorphic in A to TA since any two (0A, (3) -traces are polynomially 
isomorphic in A (this follows from Corollary 5.2 (2) of [5]). Further, TB is polynomially 
isomorphic in A to N by Lemma 2.10. Since the notion of polynomial isomorphism of 

subsets of A is an equivalence relation, TA~TB. 
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To show that TA and TB are weakly isomorphic, we must show that TA is isomorphic 
to an algebra C where the universe of C is TB and where Clo C = Clo TB. The polynomial 
isomorphism of the last paragraph provides a way of transferring the structure of TA onto 

the set TB. That is, if/ : TA~TB has polynomial inverse g, then we will let the operations 
of C be the operations of \\TB indexed as follows: for every £-ary operation symbol t in 
the type of TA we let tc(x) = ftTA (g(Jc)) G PoU A|^fi. For this indexing,/ is obviously an 
isomorphism from T^ to C. Now Clo C is just the clone of polynomial operations of A 
under which TB is closed. Clo TB is the clone of polynomial operations of B under which 
TB is closed. This means that CloT# Ç CloC. We will be finished if we can show that 
every polynomial of A under which TB is closed is equal to a polynomial of T#. 

CASE 1. Assume that typ(0^,/^) = 1. Each of the algebras C and TB possesses all 
of the polynomials of a simple G-set on TB. Let h(x) be a non-constant polynomial of 
C; necessarily, h is a permutation of TB — {ao,...,an-\}. We fix an r < n such that 
ar ^ h(ao). Let 6 be the congruence on Tn

B that is generated by the pairs 

( (ao, a0,..., ao), (ao, a\,...,an-\)),( (ar, a r , . . . , ar), (h(a0), h(a\),..., h(an-\j) ). 

We apply Lemma 2.5; for the polynomial/ in the lemma we take id^fi. In order to ap­
ply this lemma we are using the fact that TB is a ( 0,4, /?) -trace. This follows from the 
polynomial isomorphism between TA and TB. Let À = Cgc(è ). Since h G Poli C, 

(h(ao), h(ao),..., h(a0))\ (h(a0), h(a{),..., h(an-\j) 

= (h(a0), /i(fli),..., h(an-\i) X (an an..., ar). 

The pair ( (h(ao), h(ao),..., /*(flo))> (#r, «»•••> «r)) G À is a non-trivial diagonal pair, so 
è must contain a non-trivial diagonal pair. Arguing as we did in the proofs of Lemmas 2.6 
and 2.9, there must be non-constant, unary polynomials/?,^ G Polj TB such that 

x0 = (p(ao),p(ao),... ,p(ooj) ^ (p(ao\p(a{),... ,p(an-\j) = xx 

= (qh(ao), qh(ax),..., qh(an-\j) ^ (q(ar), q(ar),..., q(ar)) = x2 ^ x0. 

But this says thatp(x) = qh(x) for all x G TB. Since q is a permutation of TB, q~x(x) G 
Poli TB and h = q~lp G Poli T*. Thus, CloTfî = CloC. 

CASE 2. Now assume that typ(0^, f3 ) = 2. Each of Clo TB and Clo C is the polyno­
mial clone of a 1-dimensional vector space on TB\ further, CloT# Ç CloC. The polyno­
mial clone of a 1 -dimensional vector space is generated by the constant operations, the 
(unique) Mal'cev operation d(x, y, z) = x — y + z and the non-constant, unary operations 
given by scalar multiplication. Clearly, both Clo TB and Clo C contain the same constant 
operations. The Mal'cev operation of TB is an operation of C, so it must be the unique 
Mal'cev operation of C. Further, CloC contains all the scalar multiplications in CloT#. 
We only need to observe that Clo C contains no other scalar multiplication operations. 
This is so because the number of distinct, non-constant, scalar multiplication operations 
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of a 1-dimensional vector space depends only on the cardinality of the vector space. This 
number is 17*1 - 1 for both TB and C. Thus, Clo TB = Clo C. • 

The final result of this section is essentially a summary of the information that we 
have discovered about the way the type is preserved when we restrict prime quotients to 
subalgebras. 

THEOREM 2.13. Assume that V has the CEP and that A G V is a finite algebra. 
Assume also that B < A, that 0A -< f3 in Con A and that 0B / (3\B in ConB. The 
following are true: 

(i) oB<p\B. 
(2) typ(0A,/3) = 1 ifftyp(0B,p\B) = 1. 
(3) typ(0A,/?) = 2 ifftyp(0B,f3\B) = 2. 
(4) 7/typ(0A,/3) G {3 ,4} , then typ(0fî,/?|fî) G {3 ,4} . 
(5) If (3 is abelian, then B contains a ( 0A, f3 ) -trace. 

Further, ifB contains a ( 0A, f3 ) -trace, then the following are true: 
(6) Every ( 0#, (3 \B) -trace is a ( 0A, f3 ) -trace. 
(7) 7/typ(0A,/3) ^ 3, then typ(0A,(3) = typ(0B,(3\B). 
(8) If typ(0A, f3) ^ 3, M is a (0A, /3 ) -trace andN is a ( 0#, f3 \B) -trace, then AIM is 

weakly isomorphic to BI^. 

PROOF. Items ( 1 ) - (6) have already been proved. Both (7) and (8) have been proved 
under the assumption that typ(0A,/3) G {1,2} . Since (8) implies (7), it will suffice for 
us to explain why (8) holds in the case that typ(0A, (3 ) G { 4,5}. 

Using (6) and the fact that all ( 0A, (3} -traces are weakly isomorphic we may suppose 
that M = Af. Since we are only considering the nonabelian case, \N\ =2. Clearly, Blyy is 
a reduct of AI#. If typ(0A, (3 ) = 5, then Clo BI^ is the polynomial clone of a nonabelian 
algebra on a two-element set. Further, CloBIw Q CloAI^, which is the polynomial 
clone of a semilattice. The description of the polynomial clones on a two-element set 
given in Lemma 4.8 of [5] proves that CloBIyy = CloAI^. If typ(0A,/3) = 4, then 
typ(0fl, (3 \B) G { 3,4} so Clo BIw is the polynomial clone of a 2-element boolean algebra 
or a 2-element lattice. Since BI^ is a reduct of AI^, it must be that Clo BIyv = Clo Alyy. • 

The important ingredient missing from Theorem 2.13 is the information on how type 
5 quotients restrict. The theorem does show that if typ(0A, (3 ) = 5, then typ(0fi, (3 \B) G 
{ 3,4,5}. However, we know of no example for which typ(0#, (3 \B) ^ 5. Our technique 
based on Lemma 2.5 cannot eliminate the possibility that a type 5 quotient restricts to a 
type 3 or type 4 quotient. 

3. The type-set of a CEP variety. One of the most significant and beautiful aspects 
of tame congruence theory is that the structural properties of a locally finite variety are 
strongly influenced by the type labels that occur in the congruence lattices of the algebras 
in the variety. Unfortunately, it is sometimes difficult to discover exactly which type 
labels occur for a given variety. Of course, every type label that occurs will appear in the 
labelled congruence lattice of a finite algebra. Indeed, it will occur as typ(0s, /i) for some 
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finite, subdirectly irreducible algebra S with monolith \x. It is easy to show that 1 appears 
in typ{ 1/} iff it appears in typ{ F^(2)}. It is known that V satisfies certain Mal'cev 
conditions in 3 or 4 variables iff it omits certain types (see Chapter 9 of [5]). Therefore, 
for certain subsets X C {1,2,3,4,5} it is possible to ascertain whether typ{ 1/} C X 
by examining F^(3) and F^(4). However, except for X = 0, {1}, { 2} , {1,2}, { 3} 
or { 2,3}, there is no known procedure for determining when typ{ ^(A)} = X for a 
given finite A. The problem is more complicated when no finite, generic algebra for 
V is known or when none exists. Say, for example, that one only knows a recursive 
procedure for computing F<p>(n). In this case, there is no known algorithm for determining 
that typ{ 1/} — X unless X — 0 or { 3} . Probably no algorithm exists for any other 
subsets. That there is an algorithm when X = { 3} follows from Theorem 9.15 of [5]; an 
algorithm when X = 0 involves only checking that | Fq/(2)\ > 1. Now, if Y is any non­
empty subset of types not containing 3 then one can find a locally finite variety whose 
type-set is Y. With care, one can often construct a sequence of locally finite varieties Vn 

such that typ{ ^ } = YU { 3} and Fy(n) = Fy (n). When one can do so it is impossible 
to determine whether typ{ (U} = Y or 7U {3} with any algorithm that only examines 
the free algebras because no algorithm can prove that V £ { 1/n}. 

The problem of determining the type-set of a finitely generated variety is investigated 
in [3] where several pathological examples are given. In this section we prove that it is 
usually not very difficult to determine the type-set of a locally finite variety that has the 
CEP. 

THEOREM 3.1. Assume that V is a locally finite variety with the CEP. Then, 

t y p { ^ } C t y p { F ^ ( 2 ) } U { 3 } . 

If4 # typ{ F^(2)}, then typ{ V} = typ{ F^(2)}. 

PROOF. If i G typ{ V}, then there is a finite algebra A G V and a congruence 
/? e Con A for which 0A < (3 and typ(0A,/3) = i. Choose {0,1} C N for some 
( 0A,/3 ) -trace, N. Let B be the image of the homomorphism 

/:F^(x,y)—>A:xi—>0,yi-» 1. 

If (0A,@) is nonabelian, then N = {0,1} C B. If (QA,/?) is abelian, then B contains 
some ( 0A , (3 ) -trace by Lemma 2.11. In either case, we conclude from Theorem 2.13 that 
if i ^ 3 then i G typ{B} C typ{F^(2)}. Hence, typ{ V} - typ{F^(2)} is a subset 
of { 3} . This establishes the first claim of the theorem. Now suppose that i = 3 and 
j = typCOfi,/?!*). Thenj G {3,4} by Lemma 2.8 and j G typ{B} Ç typ{F^(2)}. 
Hence, if 4 ^ typ{ F ̂ (2)} then we must have 

i = 3 = jGtyp{F^(2)} . 

That is, under the assumption that 4 ^ typ{ F^(2)} we can prove that i G typ{ F^(2)} 
for all i G typ{ V}. This establishes the second claim. • 
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EXAMPLE 3. In this example we show that for any n < UJ there is a locally finite 
variety V with the CEP such that 3 G typ{ V}, but that 3 £ typ{#SP(F^(n))}. This 
shows that the result of Theorem 3.1 cannot be much improved. 

Consider the poset (A; <) where A = { 0 , 1 , . . . , n} and 0 < 1 < • • < n. We define 
an algebra on A as follows. Let F be the collection of all finitary operations on A which 
preserve the order and all the subsets of A. Define one more operation 

10, if je/ = / for / < n and xn+\ = n 
n, if xt — i for i < n and xn+\ ^ n 
xn+\, otherwise. 

Now, let A = (A;FU {/}). 
The ordering < is a lattice ordering, so the lattice operations preserve this order. Since 

( A; <) is a chain, the lattice operations preserve the subsets, too. (That is, x V y G { JC, y} 
and x A v G { x,y}.) This shows that A has a lattice reduct, so it generates a congruence 
distributive variety. The operation/ also preserves all the subsets of A, so every non­
empty subset of A is a subuni verse. Any subalgebra B is ordered by the restriction of the 
ordering of (A; <) and every order preserving operation on B is a polynomial operation 
of B. This is enough to imply that A is hereditarily simple. By our remarks in Example 1, 
V = n/(A) has the CEP. 

By Jonsson's Lemma, the subdirectly irreducible members of V are contained in 
HS(A) = S(A). Since any type label that appears in V appears in the congruence lattice 
of a subdirectly irreducible, we need to discover which types appear in S(A). 

The fact that V is congruence distributive implies that typ{ V} Ç { 3,4} . If B is 
a proper subalgebra of A, then/ is trivial on B, so all operations of B respect a certain 
connected partial order: the restriction of < to B. By Theorem 5.26 (1) of [5], this fact im­
plies that typ(0#, \B) G { 4,5}, so typ(0#, \B) = 4. Now let h G Poli A be the operation 
/ ( 0 , 1 , . . . , n,x). U = { 0, n} = h{A) G MA(0,4, U) is closed under the lattice operations 
of A and also under h. Since h(0) — n and h(n) — 0, A\y is polynomially equivalent to a 
boolean algebra. Therefore, A is of type 3. This proves that typ{ V} — { 3,4}. To prove 
that 3 ^ typj /yS/^F^n))} it suffices to observe that the subdirectly irreducible alge­
bras of H S F ( F 1 / ( / I ) ) are precisely the n-generated subdirectly irreducibles of V. Thus, 

they are precisely the proper subalgebras of A. Hence, typ{//&P(F,jXrc))} — { 4} . 
Example 3 also shows that Theorem 2.13 (7) cannot be improved to say that if B 

contains a (0^,^)-trace then typ(0^,^) = t y p ^ , / ? ^ ) . The algebra A of Example 3 
is simple of type 3 and { 0, n} C A is a (0^, 1A) -trace which is also the universe of a 
simple, type 4 subalgebra. Thus, if we let B = SgA({ 0, n} ) we find that B contains a 
(0A,f3)-trace, {0 ,n} , but typ(0A, lA) = 3 ^ 4 = typ(0fi, 1A\B)> This also shows that 
2.13 (8) cannot be improved. 

It would be worthwhile to try to prove that 3 G 1^(A) for some finite algebra A which 
generates a CEP variety if and only if 3 G typ{ An} for some finite n. À result in [3] 
proves that, if this is true, then we may choose n — |A|2. Together with Theorem 3.1 
such a result would lead to an algorithm for determining the type-set of any finitely 
generated variety with the CEP. 
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4. The class of finite injectives. An object I in a category Ĉ is injective over %^ if 
whenever there is a diagram in %;. 

B 

/Î 
A J U I 

where / is a monomorphism and g is arbitrary then there is a morphism g: B —• I for 
which g of — g. When we consider a variety as a category we choose the morphisms to 
be the homomorphisms. 

A subalgebra A of B is a retract of B if it is the image of an idempotent endomorphism 
of B. A G V is an absolute retract in V if it is a retract of any of its extensions in V. 

A variety of algebras V is said to have the amalgamation property if whenever we 
have embeddings/i : A —• B and g\ : A —-> C we can find an algebra D and embeddings 
fiigi which complete a commutative diagram: 

B A> D 

/l J S2 J 
A —• C 

^ is residually small just in case it has a bound on the size of its subdirectly irreducible 
members. 

A variety has enough injectives if every member can be embedded into an injective 
member. It is known that a variety has enough injectives if and only if it is residually 
small, has the congruence extension property and has the amalgamation property. This 
follows from a combination of results due to B. Banaschewski [2] and W. Taylor [10]. 
In a variety with enough injectives the injective algebras are just the absolute retracts. 

The class of all injective algebras in a variety is known for only a few special varieties. 
For example, varieties of R-modules are fairly well-behaved, as far as varieties go; and 
we will see in Theorem 4.1 that the structure of the injective R-modules with DCC on 
submodules is quite nice. However, unless R is noetherian, not much is known about the 
"large" injective R-modules. (For the case when R is noetherian it is known that every 
injective R-module is isomorphic to a direct sum of indecomposable R-modules. In fact, 
this property characterizes noetherian rings.) Another well-behaved variety is the variety 
of boolean algebras. The injective boolean algebras are precisely the complete boolean 
algebras. Thus, any theorem describing the structure of arbitrary injective algebras in, 
say, an arbitrary modular variety must generalize the notion of a complete boolean al­
gebra and also of the construction of direct sums for modules. Such a theorem ought to 
apply to varieties of modules over non-noetherian rings. We expect that such a general 
result would be very difficult to discover and to prove. Nevertheless, the structure of 
injectives satisfying DCC on congruences is easy to describe. 
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THEOREM 4.1 [6]. Assume that 1/ is a congruence modular variety and that A G 1? 
has DCC on congruences. A is injective if and only if A is isomorphic to a finite direct 
product of subdirectly irreducible, injective algebras. m 

This result makes it fairly easy to locate all the finite injectives in a congruence mod­
ular variety. For example, it follows immediately from this theorem that the finite, injec­
tive, distributive lattices are precisely the boolean lattices. On the other hand, a variety of 
non-distributive lattices has no finite injectives other than the trivial lattice. (In fact, no 
lattice in a non-distributive variety can be injective, for assume that L is a lattice which 
is injective in a variety of lattices containing K where K G {M3, N5}. Let 3 denote the 
3-element chain. Embed 3 into L with a map / . If K = N5 then choose / so that the 
image of K does not contain the top element of N5. Now, we can map 3 into L with a 
map g which identifies only the two smaller elements of K. There is no way to extend g 
to a mapping of K into L contradicting the injectivity of L.) 

Theorem 4.1 seemed to us to be so strong that we were led to make, in [6], the fol­
lowing conjecture: 

CONJECTURE 1. Assume that V is a locally finite variety with enough injectives. 
V is congruence modular iff every finite injective in V factors as a direct product of 
subdirectly irreducible injectives. 

The forward direction of the conjecture is true without the assumptions of local finite-
ness or of enough injectives. This follows from Theorem 4.1. However, for the reverse 
direction to be true we certainly need assumptions to guarantee that V has a lot of fi­
nite injectives around; this explains our formulation of the conjecture. A closely related 
conjecture is the following: 

CONJECTURE 2. Assume that V is a locally finite variety with enough injectives. 
V is congruence distributive iff every finite injective in V factors uniquely as a direct 
product of subdirectly irreducible injectives. 

If Conjecture 1 is true, then Conjecture 2 is true, as well. To show this, first notice 
that any finite algebra in a congruence distributive variety factors uniquely into a direct 
product of directly indecomposable algebras. Thus, the forward direction of Conjecture 2 
follows from Conjecture 1. For the other direction, observe that a locally finite, non-
distributive, modular variety which satisfies C2 has a non-trivial, finite, abelian algebra, 
A. If the variety satisfies R then any maximal essential extension of this algebra, A', is a 
finite, injective, abelian algebra. Now, it is not hard to see that A' x A' is a finite injective 
algebra that has more than one direct decomposition into subdirectly irreducible factors, 
each of which must be injective. 

In this section we will prove that these conjectures hold for any variety satisfying a 
nontrivial, idempotent Mal'ce v condition. 

LEMMA 4.2. Assume that V is a locally finite variety with enough injectives. Ifi G 
typ{ 1̂ } H { 1,2,5}, then there is a finite, injective, subdirectly irreducible algebra A G 
<V, with monolith [i, such that typ(0, /i) = i. 
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PROOF. If i G typ{ V} then there is a finite algebra A' with i G typ{ A'}. If | A'\ 
is minimal for this property, then A7 is subdirectly irreducible with monolith \i' where 
typ(0, fif) = i. Let A be a maximal essential extension of A'; A exists since V is residu-
ally small (see [10]). Essential extensions of subdirectly irreducible algebras are subdi­
rectly irreducible, so A is subdirectly irreducible with monolith fi. Since V has the CEP, 
/x \A> = /x'. By Theorem 2.13 (2), (3) and (4), and the fact that i G { 1,2,5}, it follows 
that typ(0,4, fi) = typ(0^/, /z') = i. Now, in a variety with enough injectives an algebra is 
injective iff it is an absolute retract iff it has no proper essential extensions. Hence, A is 
injective. We will be done if we show that A is finite. This fact follows from Theorems 3 
and 4 of [1] which prove that a locally finite, residually small variety with the CEP has 
only finitely many subdirectly irreducible algebras and all are of finite cardinality. • 

Lemma 4.2 fails without the hypothesis that i G {1,2,5}. It can be shown by the 
criteria of Corollary 3.16 of [6] that the finite algebras described in Examples 1 and 2 
generate varieties with enough injectives. In each example the algebra A is the only non-
trivial, injective, subdirectly irreducible member of V — 1^(A). Hence, in Example 1, 
4 £ typ{ 1/} but 4 is not the type of the monolith of any injective, subdirectly irreducible 
algebra in V. Similarly, in Example 2,3 € typ{ 1/} but 3 is not the type of the monolith 
of any injective, subdirectly irreducible algebra in V. 

THEOREM 4.3. Assume that V is a locally finite variety with enough injectives. If 
every finite injective algebra factors into a direct product of subdirectly irreducible al­
gebras, then 5 ^ typ{ V}. 

PROOF. Assume that 5 G typ{ 1^}. Let A G V be a finite, injective, subdirectly 
irreducible algebra with monolith /i where typ(0, \i) — S. Choose U G MA(0, //) and let 
e G E(X) be an idempotent polynomial for which e(A) — U and let Af = { 0,1} be the 
unique ( 0, \i ) -trace of U. If AAi denotes the diagonal of A2, let B = SgA' ({(0,1 )} U À42 ) 
and let C = S^(N2 U AAI) = SgA2({(l,0)} U B). 

CLAIM 1. B ^ C . 

PROOF OF CLAIM 1. We need to prove that (1,0) ^ B. If, instead, (1,0) G #, 
then for some n there is an (n + l)-ary term, t, and n elements {a^ai) G AAi such that 
^2((0, \),Ta~a~i)) = (1,0). U is closed under/(JC) = e^ix.al) and/(0) = l , / ( l ) = 0. 
This contradicts the fact that typ(0, /x) = 5. Hence, (1,0) G C — B. 

The algebra C is examined in Chapter 5 of [5] and it is proved in Theorem 5.27 of 
that book that Con C has an interval sublattice as pictured in Figure 1. 

o 

o Cg c «(U) , (0 , l )> ) 

o C*C(((0,0),(1,0)>) 

o 

Cgc«(l,l),(l,0)>) o 

QC(((0,0),(0,1))) o 

FIGURE 1 
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CLAIM2. CgC(((0,0),(l,0)))|B = Ofi. 

PROOF OF CLAIM 2. Assume instead that ((a, b),(c, d)) G Cg c ( ( (0 ,0 ) , ( l ,0 ) ) ) | B -
0fl. Since ( (a, b), (c, d)) £ Cgc(( (0,0), (1,0)) ), we must have (a, c) G \L - 0 A and b = d. 
Also, since (x, y) G /i for all (x, y) G B, we must have a\ib\ic. Choose g G Pol i A such 
that *(A) = I/, g(fl/jx) Ç {0,1} and g(a) ^ g(c). Say, g(a) = 1 and g(c) - 0. Then 
g(b) is either 0 or 1 ; we will show that both choices lead to a contradiction. 

If g(b) = 0, let g G Poli B be the polynomial defined by g((*,y)) = (g(x),g(y)). 
Since (a, b) G B, this yields g'((a, ft)) = (1,0) G #, contradicting Claim 1. Thus, g(b) = 
g(d) = 1. Hence, using the fact that g is also a polynomial of C, 

((1,1),(0,1)) = (g((a,b))j((c,d))) GC#C«(0,0),(1,0))). 

Thus we conclude that Cgc(((l, 1),(0,1))) < Cgc(((0,0),(l,0))). Looking again at 
Figure 1, we see that this conclusion is false. This contradiction proves Claim 2. 

Of course, a = Cgc(((l, 1),(0, l)))\B > 0B. By Claim 2, Lemma 2.3 and the fact 
that Cgc(((0,0), (1,0))) < Cgc(((1,1), (0,1))) we must have 0B < a. Similarly, since 
0B < Cgc(( (0,0), (0,1)) ) \ B = p we must have 0B < 0. 

Now, let D G <]/ be a maximal essential extension of B. D has no proper essential 
extensions, so D is injective in V. We have a diagram: 

D 

4 
B - Ï - A2 

where i is the inclusion map and h is some essential embedding of B into D. Since A is 
injective, and the class of injectives is closed under direct products, there is an î: D —y A2 

such that î o h = i. If kerî > 0D then, since h is essential, kerî o h = ker / > 0fi, a 
contradiction. Therefore î is one-to-one. We will identify D with i(D) and consider h and 
î to be inclusion maps. 

CLAIM 3. D ^ A2. 

PROOF OF CLAIM 3. It is enough to show that A2 is not an essential extension of B, 
since D is. 

V has the CEP, so 

CgA\{ (0,0),(1,0)))|* = (CgA 2(((0,0),(l,0))) |c)U = Cgc(((0,0),(l,0)))U = 0B. 

Thus, BCD C Ax A. 
Since D is injective, D = Do x • • -D^_i where each D; is a subdirectly irreducible 

algebra. Let Si denote the kernel of the projection of D onto D,-. Let rjo and rj\ denote the 
restriction of the coordinate projection congruences on A2 to D. D contains the diagonal, 
so D/ rjj = A, which proves that 770 and 771 have unique upper covers in ConD; we 
denote these upper covers by /io and /ii, respectively. We focus our attention on the two 
congruences â — Cg°(a) and 0 = CgD((3 ). Since V has the CEP, â \B — a and f3\B = 
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/3. D is an essential extension of B, so â and J3 are minimal, nonzero congruences of D. 
Now (0/),â) and (r/o»Mo) are perspective prime quotients in ConD, so typ(Oo,â) = 
typ(rço,Mo) = typ(ÛA,/x) = 5. Similarly, typ(0z>,/3) = 5. Because the type is 5, we can 
talk about the pseudo-complement of â over 0/> or of j3 over 0/). The pseudo-complement 
of â over 0D is the largest 7 G ConD such that 7 A â = 0D. Since rjo A â = 0D and 
jio A â = â, rjo is the pseudo-complement of â over 0D. Similarly, 771 is the pseudo-
complement of ft over 0/> It is impossible that StA â > Op for all values of i, so there 
is an I'O such that Sio A â = 0z>. Equivalently, there is an /0 such that 5l0 < r/0 (since 770 
is the pseudo-complement of â over 0jr>). There must also be an i\ such that Six < r]\. 
Of course, I'O ^ i\, for otherwise <S;0 < 770 A 771 = 0D. This would lead to D = D,0 

which contradicts the fact that D has at least two distinct minimal congruences while D,0 

is subdirectly irreducible. 
We can finish the proof by observing that 

\A\2 > \D\ > |Aol x I A, I > |A|2. 

The last inequality is a consequence of the fact that A(= D/ 770 — D/ 771 ) is a homomor-
phic image of Dl0 = D/ S^ and of D/,. 

Thus, the assumption that 5 G typ{ 1/} leads to a contradiction. • 
The following result is an extension of Theorem 10.4 of [5]. 

THEOREM 4.4. Assume that *V is locally finite, omits type 5 and is residually small. 
IfAe 1/, then Con A/ ~ is a modular lattice. 

PROOF. Suppose instead that there is an A G V such that Con A/ ~ is not modular. 
Then there exist a , /?,7 G Con A such that a / ~ < / 3 / - , ( a V 7 ) / - = ((3 V 7 ) / ~ 
and ( a A 7 ) / ~ = ((3 A 7 ) / ~ . Choose a finitely generated subalgebra, F, for which 
{a\F)l ~ < ((a \f\/ 7 |F) A (/? |/r))/ ^ . F is finite. Now, let 0 denote the least congruence 
on F in the ~ - equivalence class, ((a \F V 7 |F) A ((3 | F ) ) / ~ . Let S denote the largest 
congruence in (a \F)/ ~ which lies below 0 . Let 0 = 7 |F- Then, 

« V V - a | F V 7 | F > 0 , 

so 6 V 0 > 0. Further, 

0 A V < ( O : | F V 7 | F ) A / 3 | F A 7 | F = 03 A 7 ) |F~(<* A 7 ) | F < a\F~S, 

so (0 A 0 ) V 6~£ which implies that 0 A V < £. Hence, « < 0, 6 V i/> = 0 V i/> 
and S A ip = 6 A ip.By our choice of F we also get that S $ 6. This means that there 
are congruences <$',0' G Con F such that<S < S' < 0' < 0 and typ(<S',0') ^ 1. By 
relabelling we may assume that S <8 and typ(<5,0)^1. 

By further juggling our choices for S, 6 and ^ we may assume that the interval I[S A 
\^,6 V i/>] is minimal under inclusion in Con F for which S < 0 and typ(6,0) ^ 1, 
S V -0 = 0 V -0 and S A ip =6 A I/J .We may also assume that 0 is a minimal element 
of /[£ A 0 ,0 V ^ ] for these properties. 
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If 8 A tp 7̂  ij), then there is a congruence £ E Con F such that 8 A -0 < £ ~< V7 

and the minimality assumptions of the last paragraph insure that Con F has the sublattice 
pictured in Figure 2. 

o 

e o 

8 o 

o 

FIGURE 2 

The argument that proves this is not difficult; it is essentially the proof of Lemma 10.1 
of [5]. Now, for any p G Con F for which £ V 6 < p -< <5 V i/; we have, by Lemma 6.3 of 
[5],thattyp(p,6 V 0 ) G typ{ ^ } H { 1,5} Ç { 1}. But now (6,9) and(p,<5 V 0 ) are 
perspective prime quotients of different types; this contradicts Lemma 6.2 of [5]. This 
contradiction proves that we have 8 A 0 < 0 . 

Now we can use Lemmas 10.2 and 10.3 of [5] which prove that, since V is residually 
small and 5 £ typ{ V}, typ(<5,0) £ {2,3,4}. Of course, typ(<5,0) ^ 1 by assump­
tion, and V omits type 5. Thus any choice for typ(£,0) leads to a contradiction. This 
establishes the theorem. • 

COROLLARY 4.5. Assume that V is a locally finite variety satisfying a nontrivial, 
idempotent Mai 'cev condition and that 1/ has enough infectives. V is congruence mod­
ular iff every finite injective factors as a direct product of sub directly irreducible alge­
bras. *V is congruence distributive iff every finite injective factors uniquely as a direct 
product of subdirectly irreducible algebras. 

PROOF. AS we mentioned after the statement of Conjecture 2, the second statement 
of this Corollary follows from the first, so we will prove only the first statement. Since 
*V satisfies a nontrivial, idempotent Mal'cev condition, 1 ^ typ{ 1/}, by Lemma 9.3 of 
[5]. By Theorem 5.6 and Corollary 7.5 of [5], this means precisely that for any A G V 
the congruence ~ on Con A is the trivial congruence. Now Theorems 4.3 and 4.4 prove 
that V is congruence modular. • 

In Corollary 4.5 we do not assume that the subdirectly irreducible factors in a direct 
decomposition of a finite injective algebra are injective in order to prove that the variety 
is congruence modular. It is enough that there exists a direct decomposition into subdi­
rectly irreducibles. In this way Corollary 4.5 is a stronger result than Conjecture 1 for 
varieties omitting type 1. Still, whether we assume that the factors are injective or not, 
Proposition 3.10 of [6] proves that, in a congruence modular variety, a direct product is 
injective iff each factor is. 

O \j; 

° £ 
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