ON THE NATURE OF THE SPECTRUM OF SINGULAR SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

E. A. CODDINGTON and N. LEVINSON

Let $p(x)>0, q(x)$ be two real-valued continuous functions on $0 \leqslant x<\infty$. Suppose that the differential equation with the real parameter λ

$$
\begin{equation*}
\left(p y^{\prime}\right)^{\prime}+(\lambda-q) y=0 \tag{1}
\end{equation*}
$$

does not possess two linearly independent solutions of class $L^{2}(0, \infty)$ for some λ. According to the Weyl classification [6] equation (1) is then said to be of the limit-point type. In this case (1) together with a boundary condition

$$
\begin{equation*}
y(0) \cos a+y^{\prime}(0) \sin a=0 \tag{2}
\end{equation*}
$$

determine an eigenvalue problem.
For every a in (2) there corresponds a spectrum $S(a)$ which includes a (possibly empty) point spectrum $P(a)$, the latter set consisting of those λ for which there exists a real solution of (1) satisfying (2) and is of class $L^{2}(0, \infty)$. The derivative $S^{\prime}(a)$ of $S(a)$ consists of the continuous spectrum and the cluster points of the point spectrum. Using the theory of bounded quadratic forms whose differences are completely continuous, and the idea of a Hellinger integral, Weyl proved [5, p. 378; 6, p. 251] that the set $S^{\prime}(a)$ does not depend on a, and hence can be denoted simply by S^{\prime}.

Recently one of the authors [3] gave a simplified proof of the Parseval relation corresponding to the problem (1) and (2). This relation was obtained by a natural limiting process on the Parseval equality which holds for the corresponding Sturm-Liouville problem on a bounded interval $0 \leqslant x \leqslant b<\infty$. It turns out that the formulae (but not the end result) developed in this proof (which were obtained by Titchmarsh [4] using other methods ${ }^{1}$) can be used to obtain a direct proof of the invariance of the set S^{\prime}. Also the oscillation and separation theorems due to Hartman and Wintner [1], [2] can be obtained in a similar way (see (II), (III) below).

Denote by $S^{*}(a)$ the complement of the set $S^{\prime}(a)$ with respect to the set $-\infty<\lambda<\infty$. Since $S^{\prime}(a)$ is closed, $S^{*}(a)$ is open. In this notation we prove:
(I) The set of cluster points $S^{\prime}(a)$ of the spectrum $S(a)$ for the problem (1) and (2) is independent of a, and hence can be denoted by S^{\prime}.

[^0](II) If $\lambda \in S^{*}$, (S^{*} being the complement of $\left.S^{\prime}\right)$ then $\lambda \in P(a)$ for some $a=a(\lambda)$. (III) The function $a(\lambda)$ for which $\lambda \in P(a)$ is regular, monotone increasing on S^{*}.

Proof of I. We need some known facts. Let $\theta(x, \lambda)$ and $\phi(x, \lambda)$ be solutions of (1) which satisfy

$$
\begin{array}{ll}
p(0) \theta(0, \lambda)=\cos a, & p(0) \theta^{\prime}(0, \lambda)=\sin a \\
\phi(0, \lambda)=\sin a, & \phi^{\prime}(0, \lambda)=-\cos a . \tag{3}
\end{array}
$$

For $\lambda=u+i v, v \neq 0$, consider the solution of (1):

$$
\psi_{b}(x, \lambda)=\theta(x, \lambda)+l_{b}(\lambda) \phi(x, \lambda)
$$

which satisfies a real boundary condition at $x=b$,

$$
\psi_{b}(b, \lambda) \cos \beta+\psi^{\prime}{ }_{b}(b, \lambda) \sin \beta=0 .
$$

For each b, as β varies, $l_{b}(\lambda)$ describes a circle C_{b} in the complex plane, and it can be shown that as $b \rightarrow \infty$, the circles C_{b} converge either to a limit-circle or to a limit-point. Since we are assuming the limit-point case, let us denote this point by $m(\lambda)=m(\lambda, a)$. For any $v \neq 0$ it is true that, if

$$
\begin{equation*}
\psi(x, \lambda)=\theta(x, \lambda)+m(\lambda) \phi(x, \lambda), \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{0}^{\infty}|\psi(x, \lambda)|^{2} d x \leqslant-\frac{\Im(m)}{v} \tag{5}
\end{equation*}
$$

Also the function $m(\lambda)$ is analytic in either half-plane $v>0, v<0$. It was shown in [3] that there exists a monotone non-decreasing function $\rho(\sigma)=$ $\rho(\sigma, a)$ on $-\infty<\sigma<\infty$ and a real constant c such that

$$
\begin{equation*}
\frac{-\Im(m)}{v}=\int_{-\infty}^{\infty} \frac{d \rho(\sigma)}{(u-\sigma)^{2}+v^{2}}+c \tag{6}
\end{equation*}
$$

It follows from the proof of (6) that c is a non-negative constant, and as a matter of fact this can be easily seen from (6) and (5) by letting $v \rightarrow \infty$.

An immediate consequence of (6) is that at points of continuity $\sigma=\sigma_{1}$, $\sigma=\sigma_{2}$ of $\rho(\sigma)$

$$
\begin{equation*}
\rho\left(\sigma_{2}\right)-\rho\left(\sigma_{1}\right)=\lim _{v \rightarrow 0} \frac{1}{\pi} \int_{\sigma_{1}}^{\sigma_{2}}-\Im(m(u+i v)) d u \tag{7}
\end{equation*}
$$

In proving (6) it was of course shown that the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d \rho(\sigma)}{1+\sigma^{2}} \tag{8}
\end{equation*}
$$

was convergent. If one considers the function of λ given by

$$
\int_{-\infty}^{\infty}\left[\frac{1}{\lambda-\sigma}+\frac{1}{\sigma+i}\right] d \rho(\sigma)-c \lambda+d
$$

where $c>0$ is the constant in (6) and d is a (complex) constant, then the integral obviously exists by virtue of the convergence of (8). Also the imaginary part of this function is identical with $\mathfrak{J}(m)$ (see (6)), if

$$
\Im(d)=\int_{-\infty}^{\infty} \frac{d \rho(\sigma)}{1+\sigma^{2}}
$$

Therefore, since $m(\lambda)$ and this function are regular on $v>0$, the latter coincides with $m(\lambda)$ except for a real constant, which may be incorporated into d. Hence

$$
\begin{equation*}
m(\lambda)=\int_{-\infty}^{\infty}\left[\frac{1}{\lambda-\sigma}+\frac{1}{\sigma+i}\right] d \rho(\sigma)-c \lambda+d \tag{9}
\end{equation*}
$$

For a given a, the spectrum $S(a)$ is the σ set which is the complement of the set of points in the neighbourhood of which $\rho(\sigma, a)$ is constant. The jumps of $\rho(\sigma, a)$ correspond to the point spectrum $P(a)$. Clearly $\rho(\sigma, a)$, considered as a function on $S^{*}(a)$, is constant except for isolated jumps. Thus $m(\lambda, a)$ by (9) is analytic on $S^{*}(a)$ except at the isolated discontinuities of $\rho(\sigma, a)$ where $m(\lambda, a)$ has simple poles. Also $m(u, a)$ is real on $S^{*}(a)$.

Consider the boundary condition (2) corresponding to a_{1}, a_{2} where $a_{1} \neq a_{2}$ $(\bmod \pi)$, and define the solutions $\theta\left(x, \lambda, a_{i}\right), \phi\left(x, \lambda, a_{i}\right), \psi\left(x, \lambda, a_{i}\right),(i=1,2)$ by (3) and (4). From these relations it is clear that if $\gamma=a_{2}-a_{1}$, then

$$
\begin{aligned}
\phi\left(x, \lambda, a_{1}\right) & =\cos \gamma \phi\left(x, \lambda, a_{2}\right)-p(0) \sin \gamma \theta\left(x, \lambda, a_{2}\right) \\
p(0) \theta\left(x, \lambda, a_{1}\right) & =\sin \gamma \phi\left(x, \lambda, a_{2}\right)+p(0) \cos \gamma \theta\left(x, \lambda, a_{2}\right) .
\end{aligned}
$$

Consequently

$$
p(0) \psi\left(x, \lambda, a_{1}\right)=
$$

$\left[\cos \gamma-p(0) m\left(\lambda, a_{1}\right) \sin \gamma\right] p(0) \theta\left(x, \lambda, a_{2}\right)+\left[\sin \gamma+p(0) m\left(\lambda, a_{1}\right) \cos \gamma\right] \phi\left(x, \lambda, a_{2}\right)$, and since $\psi\left(x, \lambda, a_{1}\right), \psi\left(x, \lambda, a_{2}\right)$ are both of class $L^{2}(0, \infty)$ one is a constant multiple of the other by virtue of the limit-point assumption. This implies that ${ }^{2}$

$$
\begin{equation*}
p(0) m\left(\lambda, a_{2}\right)=\frac{\sin \gamma+p(0) m\left(\lambda, a_{1}\right) \cos \gamma}{\cos \gamma-p(0) m\left(\lambda, a_{1}\right) \sin \gamma}, \gamma=a_{2}-a_{1} \tag{10}
\end{equation*}
$$

Since $m\left(\lambda, a_{1}\right)$ is meromorphic on $S^{*}\left(a_{1}\right)$, so is $m\left(\lambda, a_{2}\right)$ and because $m\left(u, a_{1}\right)$ is real on $S^{*}\left(a_{1}\right)$, it follows that for values of u on this set $\Im\left(m\left(\lambda, a_{2}\right)\right) \rightarrow \mathbf{0}$, $v \rightarrow+0$, except at isolated poles of $m\left(\lambda, a_{2}\right)$. From this fact we see from (7) that $\rho\left(\sigma, a_{2}\right)$ is constant on $S^{*}\left(a_{1}\right)$ except for jumps at isolated poles of $m\left(\lambda, a_{2}\right)$. This proves that $S^{*}\left(a_{2}\right) \supset S^{*}\left(a_{1}\right)$. Since the roles of a_{1} and a_{2} can be interchanged we get $S^{*}\left(a_{2}\right)=S^{*}\left(a_{1}\right)=S^{*}$, and hence $S^{\prime}\left(a_{2}\right)=S^{\prime}\left(a_{1}\right)$, thus proving (I).

[^1]Proof of (II) and (III). From (9) it is clear that, except for poles of $m\left(\lambda, a_{1}\right)$, on S^{*}

$$
\frac{\partial m\left(u, a_{1}\right)}{\partial u}=-\int_{-\infty}^{\infty} \frac{d \rho(\sigma)}{(u-\sigma)^{2}}-c
$$

and hence $\frac{\partial m\left(u, a_{1}\right)}{\partial u}<0$. We see therefore that on $S^{*}, m\left(u, a_{1}\right)$ is a regular monotone decreasing function of u, except for poles of $m\left(\lambda, a_{1}\right)$.

Let $\lambda_{1} \in P\left(a_{1}\right)$ and suppose $\lambda \in S^{*}\left(=S^{*}\left(a_{1}\right)\right)$ is in a sufficiently small open interval about λ_{1} which contains no other points of $P\left(a_{1}\right)$. Then it follows from (10) that $m\left(\lambda, a_{2}\right)$ will have a pole for some $a_{2} \not \equiv a_{1}(\bmod \pi)$ determined by the relation $p(0) m\left(\lambda, a_{1}\right)=\cot \gamma$, that is, there exists an $a_{2}=a_{2}(\lambda)$ for which $\lambda \in P\left(a_{2}\right)$. Every $\lambda \in S^{*}$ can be brought within an open interval containing at most one point of $P\left(a_{1}\right)$, so that $a_{2}=a_{2}(\lambda)$ exists for all $\lambda \in S^{*}$, even at the points λ_{1} where $a_{2} \equiv a_{1}(\bmod \pi)$ and $\lambda_{1} \in P\left(a_{1}\right)$. This proves (II).

From the relation $p(0) m\left(\lambda, a_{1}\right)=\cot \gamma=\cot \left(a_{2}-a_{1}\right)$ it follows that

$$
\begin{equation*}
a_{2}(\lambda)=a_{1}+\cot ^{-1}\left[p(0) m\left(\lambda, a_{1}\right)\right] . \tag{11}
\end{equation*}
$$

Moreover, from the discussion above, since $m\left(\lambda, a_{1}\right)$ is regular on an interval about $\lambda_{1}, a_{2}(\lambda)$ is a regular function of λ on such an interval and

$$
\begin{equation*}
\frac{d a_{2}(\lambda)}{d \lambda}=\frac{-p(0)}{\left[1+\left(p(0) m\left(\lambda, a_{1}\right)\right)^{2}\right]} \frac{\partial m\left(\lambda, a_{1}\right)}{\partial \lambda} . \tag{12}
\end{equation*}
$$

But $p(0)>0, \frac{\partial m\left(\lambda, a_{1}\right)}{\partial \lambda}<0$ on S^{*} (except for poles of $m\left(\lambda, a_{1}\right)$, and therefore $\frac{d a_{2}(\lambda)}{d \lambda}>0$ on an open interval about λ_{1}, that is, $a_{2}(\lambda)$ is increasing on S^{*}. This completes the proof of (III).

References

[1] P. Hartman and A. Wintner, An oscillation theorem for continuous spectra, Proc. Nat. Acad. Sci., vol. 33 (1947), 376-379.
[2] \quad, A separation theorem for continuous spectra, Amer. J. Math., vol. 71 (1949), 650-662.
[3] N. Levinson, A simplified proof of the expansion theorem for singular second order linear differential equations, Duke Math. J. vol. 18 (1951), 57-71.
[4] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, (Oxford, 1946).
[5] H. Weyl, Ueber beschränkte quadratische Formen, deren Differenz vollstetig ist, Rend. Circ. Palermo, vol. 27 (1909), 373-392.
[6] H. Weyl, Ueber gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann., vol. 68 (1910), 222-269.

Massachusetts Institute of Technology

[^0]: Received March 24, 1950.
 ${ }^{1} \mathrm{~K}$. Kodaira, American Journal of Mathematics, vol. 71 (1949), pp. 921-945, obtains Titchmarsh's results and also a formula for $m(\lambda)$ using the spectral representation of a self-adjoint operator in Hilbert space.

[^1]: ${ }^{2}$ The boundary condition (2) is often replaced by $y(0) \cos a+p(0) y^{\prime}(0) \sin a=0$, which has the effect of eliminating $p(0)$ in (10).

