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Abstract
We prove a Banach version of Żuk’s criterion for groups acting on partite (i.e., colorable) simplicial complexes.
Using this new criterion, we derive a new fixed point theorem for random groups in the Gromov density model with
respect to several classes of Banach spaces (𝐿𝑝 spaces, Hilbertian spaces, uniformly curved spaces). In particular,
we show that for every p, a group in the Gromov density model has asymptotically almost surely property (𝐹𝐿𝑝)
and give a sharp lower bound for the growth of the conformal dimension of the boundary of such group as a function
of the parameters of the density model.
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1. Introduction

Fixed point properties of groups is a general theme in the study of groups. For instance, for a discrete
group, both amenability and Kazhdan’s property (T) are equivalent to fixed point properties. This paper
will focus on the study of fixed point properties of a group when acting on (a class of) Banach spaces.
Explicitly, the following definition was given in Bader at el. [4] as a generalization of property (𝐹𝐻):
Given a Banach space E and a group G, we say that G has property (𝐹 E) if every continuous affine
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2 I. Oppenheim

isometric action of G on E has a fixed point. More generally, given a class of Banach spaces E , we say
that G has property (𝐹E) if it has (𝐹 E) for every E ∈ E . In this notation, property (𝐹𝐻) is property
(𝐹EHilbert), where EHilbert is the class of all Hilbert spaces. Bader at el. [4] also studied property (𝐹𝐿 𝑝)
which will be considered in this article: Using the notation above, property (𝐹𝐿𝑝) is property (𝐹E𝐿𝑝 )
where E𝐿𝑝 is the class of all 𝐿 𝑝 spaces.

This paper was motivated by the questions regarding Banach fixed point properties for random groups.
Banach fixed properties for random groups were studied in [12, 11, 29]. In all these works, the results
regarding random groups in the triangular model were rather strong (e.g., all these works show that for
every 2 ≤ 𝑝 < ∞, a random group in the triangular model has property (𝐹𝐿𝑝) asymptotically almost
surely). In contrast, the results for random groups in the density model were much less satisfactory;
[11, 29] did not address this model at all, and in [12], the results in this model were rather weak (see exact
results below). It was conjectured by Druţu and Mackay [12] that property (𝐹𝐿 𝑝) for every 2 ≤ 𝑝 < ∞
should hold also in the density model. The problem with generalizing the approach of the author in [29]
to the density model was the lack of a Żuk style criterion in the Banach setting for groups acting on
partite complexes (see more on this below).

The main results of this paper are first, establishing a Banach version of Żuk’s criterion for groups
acting on partite complexes (Theorem 1.3), and second, applying this criterion for random groups in
the density model (Theorem 1.5). As a consequence, we also derive a sharp bound on the growth of the
conformal dimension of the boundary of a random group in the density model (Theorem 1.8).

1.1. Banach version of Żuk’s criterion for groups acting on partite simplicial complexes

In [15], Garland showed how to prove vanishing of real cohomology for a group acting on an affine
building via studying the local geometry of the building. This approach was later generalized by various
authors to vanishing of cohomology with Hilbert coefficients for groups acting on simplicial complexes;
see [35, 5, 13, 14, 25]. We recall that vanishing of the first cohomology with Hilbert coefficients is
equivalent to property (FH). Later, this approach was also applied in the Banach setting in various levels
of effectiveness/success; see [8, 24, 23, 26, 27, 12, 11, 29].

The idea behind this approach is the following local to global argument: Given a group G acting
geometrically on a simplicial complex X, one can deduce fixed point properties of G by geometric
conditions on the links on X. In dimension 2, this approach is also known as Żuk’s criterion. Recently,
there were also computer assisted proofs for property (T) and property (FH) that refined this idea and
gave geometric proofs studying the geometry of 2-balls around vertices (while Żuk’s criterion studies
the geometry of 1 balls); see [18, 17, 22].

In order to explicitly state Żuk’s criterion and our generalization of it, we will need some terminology
of spectral graph theory. Given a finite graph (𝑉, 𝐸) without loops or double edges, denote 𝑚(𝑣) to be the
valency of 𝑣 ∈ 𝑉 . We also define ℓ2(𝑉, 𝑚) to be the space of functions 𝜙 : 𝑉 → Cwith an inner-product

〈𝜙, 𝜓〉 =
∑
𝑣 ∈𝑉

= 𝑚(𝑣)𝜙(𝑣)𝜓(𝑣).

The simple random walk operator on (𝑉, 𝐸) as above is the operator 𝐴 : ℓ2(𝑉, 𝑚) → ℓ2(𝑉, 𝑚)
defined as

(𝐴𝜙) (𝑣) =
∑

𝑢∈𝑉 , {𝑢,𝑣 }∈𝐸

1
𝑚(𝑣) 𝜙(𝑢).

With the inner-product above, this is a self-adjoint operator and its spectrum is contained in [−1, 1].
We recall that the space of constant functions is an eigenspace of A with eigenvalue 1 and, if (𝑉, 𝐸) is
connected, then all the other eigenvalues of A are strictly less than 1.
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The Hilbert (classical) version of Żuk’s criterion goes as follows:

Theorem 1.1 ([5, 35] for 𝑛 = 2, [25] for all 𝑛 ≥ 2). Let G be a locally compact, unimodular group and X
be a pure n-dimensional simplicial complex such that X is gallery connected and all the 1-dimensional
links of X are connected. Assume that G is acting on X by simplicial automorphisms and the the action is
proper and cocompact. If for every 1-dimensional link of X, the second largest eigenvalue of the simple
random walk operator on the link is < 1

𝑛+1 , then G has property (𝐹𝐻) (and property (T)).

We note that in the Hilbert case, the criteria stated above need only a bound on the second largest
eigenvalue of the links. However, when generalizing this criterion to the Banach setting, one usually
needs to bound the norm of the random walk operator in order to get a workable version; see [11, 29].
Explicitly, for a finite graph (𝑉, 𝐸) and a Banach space E, we define ℓ2(𝑉, 𝑚;E) to be the space of
functions 𝜙 : 𝑉 → E with the norm

‖𝜙‖2 =
∑
𝑣 ∈𝑉

𝑚(𝑣) |𝜙(𝑣) |2
E
.

Define 𝐴 ⊗ idE : ℓ2(𝑉, 𝑚;E) → ℓ2(𝑉, 𝑚;E) as above and 𝑀 ⊗ idE : ℓ2(𝑉, 𝑚;E) → ℓ2(𝑉, 𝑚;E) as

𝑀𝜙 ≡ 1∑
𝑣 ∈𝑉 𝑚(𝑣)

∑
𝑣 ∈𝑉

𝑚(𝑣)𝜙(𝑣).

Denote 𝜆E(𝑉 ,𝐸) = ‖(𝐴(𝐼 − 𝑀)) ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) . Note that in the Hilbert setting (where E = H),
bounding 𝜆H

(𝑉 ,𝐸) is equivalent to bounding the non-trivial spectrum of the operator from above and
below. In [29], the author showed the following:

Theorem 1.2 [29, Theorem 4.4]. Let G be a unimodular, locally compact group that acts properly
and cocompactly on a locally finite, pure 2-dimensional simply connected simplicial complex X with
connected 1-dimensional links. For any reflexive Banach space E, if

max
𝑣 ∈𝑋 (0)

𝜆E𝑋𝑣
<

1
2

,

then G has property (𝐹 E).

The main issue with using the operator norm of the random walk operator instead of the second largest
eigenvalue is that in some interesting examples, the simplicial complex X is partite. An n-dimensional
simplicial complex is called partite (or colorable) if its vertices can be colored in 𝑛 + 1 different colors
such that each n-simplex has a vertex of every color. In particular, a graph (𝑉, 𝐸) is called bipartite
if V can be partitioned into two disjoint sets 𝑉 = 𝑆1 ∪ 𝑆2 called sides such that for each {𝑢, 𝑣} ∈ 𝐸 ,
|{𝑢, 𝑣} ∩ 𝑆1 | = |{𝑢, 𝑣} ∩ 𝑆2 | = 1 (i.e., each edge has exactly one vertex in each side). We note that for
a partite n-dimensional complex, each one dimensional link is a bipartite graph. We also note that the
random walk operator on bipartite graphs always has the eigenvalue −1 corresponding to the function
1𝑆1 − 1𝑆2 (where 1𝑆𝑖 is the indicator function on 𝑆𝑖), and thus for every (nonzero dimensional) Banach
space E, we always have 𝜆E(𝑉 ,𝐸) ≥ 1.

Consider the classical case ofE = C. For a connected bipartite graph (𝑉, 𝐸), when A acts on ℓ2(𝑉, 𝑚),
it is standard to think of the the trivial spectrum of A as ±1 and the space of trivial eigenfunctions is the
space spanned by the constant function and 1𝑆1 −1𝑆2 , or equivalently, the space of trivial eigenfunctions
is span{1𝑆1 ,1𝑆2 }. The projection on the space of trivial eigenfunctions can be described explicitly as
follows: We define the following averaging operators 𝑀1, 𝑀2 : ℓ2(𝑉, 𝑚) → C:

𝑀𝑖𝜙 =
1

𝑚(𝑆𝑖)
∑
𝑢∈𝑆𝑖

𝑚(𝑢)𝜙(𝑢),
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4 I. Oppenheim

where 𝑚(𝑆𝑖) =
∑
𝑣 ∈𝑆𝑖 𝑚(𝑣). We also define 𝑀sides : ℓ2(𝑉, 𝑚) → ℓ2(𝑉, 𝑚) by

𝑀sides𝜙(𝑢) =
{

𝑀1𝜙 𝑢 ∈ 𝑆1

𝑀2𝜙 𝑢 ∈ 𝑆2
.

With this notation, the non-trivial spectrum of A is bounded in the interval [−‖𝐴(𝐼 − 𝑀sides)‖, ‖𝐴(𝐼 −
𝑀sides)‖]. This discussion gives rise to the following definition: Let E be a Banach space and (𝑉, 𝐸) be
a bipartite graph. Define

𝜆E(𝑉 ,𝐸) ,bipartite = ‖(𝐴(𝐼 − 𝑀sides)) ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) .

For a partite n-dimensional X and an (𝑛 − 2)-simplex 𝜏, we denote 𝜆E
𝜏,bipartite = 𝜆E

𝑋𝜏 ,bipartite, where 𝑋𝜏 is
the link of 𝜏 (which is a bipartite graph). With these definitions, we prove the following Theorem:

Theorem 1.3 (Żuk type criterion for Banach fixed point property; see Theorem 3.10 for a more detailed
version). Let G be a locally compact, unimodular group and X be a pure n-dimensional, partite simplicial
complex such that X is gallery connected and all the 1-dimensional links of X are connected. Assume
that G is acting on X by simplicial automorphisms and the the action is proper and cocompact. Let E𝑋
be the class of Banach spaces such that for every E ∈ E𝑋 , it holds that

max
𝜏∈𝑋 (𝑛−2)

𝜆E𝜏,bipartite <
1

8𝑛 − 3
.

Assume that C ∈ E𝑋 , then G property (𝐹E𝑋 ).

The idea behind the proof of this Theorem is the following: In [26], the author proved a version of this
Theorem under the assumption that the fundamental domain of the action is a single simplex. The main
argument there was bounding the angle between the projections defined by the subgroups stabilizing the
(𝑛− 1)-faces of the fundamental domain. In this paper, the idea is to use this angle criterion but apply it
on the projections defined by the coloring of the simplicial complex. As in [26], this leads to a proof of
a strengthened version of Banach property (T) (i.e., robust property (T)) and this property in turn leads
to Banach fixed point properties.

1.2. Fixed point properties of a random group in the Gromov model

A random group is a group chosen randomly according to some model, and one is interested in the
asymptotic properties of such randomly chosen group. The most famous model is the Gromov density
model:

Definition 1.4 (Gromov density model). Let 𝑘 ∈ N, 𝑘 ≥ 2 and 0 ≤ 𝑑 ≤ 1 be constants and 𝑙 ∈ N be
a parameter. A random group in the Gromov density model D(𝑘, 𝑙, 𝑑) is a group Γ = 〈A|R〉, where
|A| = 𝑘 and R is a set of relators of length l (in A ∪A−1) randomly chosen from the set

{R is a set of cyclically reduced relators of length 𝑙 : |R| = �(2𝑘 − 1)𝑑𝑙�}

with uniform probability. We denote a random group in this model by Γ ∈ D(𝑘, 𝑙, 𝑑).
For a group property P, we say that P holds asymptotically almost surely (a.a.s.) in D(𝑘, 𝑙, 𝑑) if

lim
𝑙→∞
P(Γ ∈ D(𝑘, 𝑙, 𝑑) has property 𝑃) = 1.

It was proven [34, 19, 12, 3] that for every 𝑑 > 1
3 , property (T) (and equivalently, property (FH))

holds a.a.s. in D(𝑘, 𝑙, 𝑑) (in most cases, it is assumed that l is divisible by 3, but recently Ashcroft [3]
showed how to remove this assumption). Prior to our work, generalizing this result to 𝐿𝑝 spaces was met
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with some difficulty. Indeed, prior to this work, the state-of-the-art result was by Druţu and Mackay [12]
who proved the following: Given 2 ≤ 𝑝 < ∞, if 𝑘 ≥ 10 · 2𝑝 , then for every 𝑑 > 1

3 , it holds a.a.s. that
D(𝑘, 𝑙, 𝑑) has property (𝐹𝐿𝑝

′ ) for any 2 ≤ 𝑝′ ≤ 𝑝. As noted by Druţu and Mackay [12], it is natural
to expect that for any 𝑘 ≥ 2 and any 𝑑 > 1

3 , it holds a.a.s. that D(𝑘, 𝑙, 𝑑) has property (𝐹𝐿 𝑝) for any
2 ≤ 𝑝 < ∞, but they could not achieve this result.

Below, we use our Theorem 1.3 to vastly improve on the known results for Banach fixed point
properties for random group in the Gromov density model. Explicitly, we consider the class of uniformly
curved Banach spaces (see Definition 2.9 below) and prove that for every 𝑘 ≥ 2 and every 𝑑 > 1

3 , it
holds a.a.s. that D(𝑘, 𝑙, 𝑑) has property (𝐹 E) for every uniformly curved Banach space. The class of
uniformly curved Banach spaces contains all 𝐿𝑝 spaces, and thus we prove the fixed point 𝐿𝑝 property
that was conjectured by Druţu and Mackay. More explicitly, we prove the following:

Theorem 1.5 (Banach fixed point properties for the density model; see Theorem 4.17 for a more detailed
version). Let 1

3 < 𝑑 < 1
2 , 𝑘 ≥ 2 be constants. For l divisible by 3 and for every uniformly curved space E,

it holds a.a.s. that D(𝑘, 𝑙, 𝑑) has property (𝐹 E). In particular, for every 2 ≤ 𝑝 < ∞, it holds a.a.s. that
D(𝑘, 𝑙, 𝑑) has property (𝐹𝐿𝑝). Explicitly, there are universal constants 𝐶 ′, 𝐶 ′′ independent of 𝑘, 𝑙, 𝑑
such that for any

2 ≤ 𝑝 ≤ 𝐶 ′(𝑑 − 1
3
) (log(2𝑘 − 1))𝑙 − 𝐶 ′′,

D(𝑘, 𝑙, 𝑑) has property (𝐹𝐿𝑝) a.a.s. (given that l is divisible by 3).

As a corollary, we give a lower bound on the conformal dimension of the boundary of a random groups
in the density model. Namely, by a Theorem of Bourdon [9], if for a given 2 ≤ 𝑝, a hyperbolic group Γ
has property (𝐹𝐿 𝑝), then the conformal dimension of 𝜕∞Γ is ≥ 𝑝. This readily gives the following:

Corollary 1.6. Let 1
3 < 𝑑 < 1

2 , 𝑘 ≥ 2 be constants. For l divisible by 3, let Γ be a random group in
the model D(𝑘, 𝑙, 𝑑). Then there are universal constants 𝐶 ′, 𝐶 ′′ independent of 𝑘, 𝑙, 𝑑 such that it holds
a.a.s. that

𝐶 ′(𝑑 − 1
3
) (log(2𝑘 − 1))𝑙 − 𝐶 ′′ ≤ Confdim(𝜕∞Γ).

An upper bound for the conformal dimension was given by Mackay:

Proposition 1.7 [21, Proposition 1.7]. Let 1
3 < 𝑑 < 1

2 , 𝑘 ≥ 2 be constants and let Γ be a random group
in the model D(𝑘, 𝑙, 𝑑). Then it holds a.a.s. that

Confdim(𝜕∞Γ) ≤
16

log(2)
1

1 − 2𝑑
(log(2𝑘 − 1))𝑙.

Combining Corollary 1.6 with Mackay’s upper bound, one can see that our lower bound for the
conformal dimension is in fact sharp:

Theorem 1.8. Let 1
3 < 𝑑 < 1

2 , 𝑘 ≥ 2 be constants. For l divisible by 3, let Γ be a random group in
the model D(𝑘, 𝑙, 𝑑). Then there are universal constants 𝐶 ′, 𝐶 ′′ independent of 𝑘, 𝑙, 𝑑 such that it holds
a.a.s. that

𝐶 ′(𝑑 − 1
3
) − 𝐶 ′′

(log(2𝑘 − 1))𝑙 ≤ Confdim(𝜕∞Γ)
(log(2𝑘 − 1))𝑙 ≤ 16

log(2)
1

1 − 2𝑑
.

Remark 1.9. After the completion of this manuscript, we were informed about a forthcoming work by
Jordan Frost attaining a similar lower bound on the growth of the conformal dimension for all 𝑑 < 1

2
(and not just 1

3 < 𝑑 < 1
2 as in our work). We note that Frost methods are completely different from ours,

and he does not attain results regarding Banach fixed point properties.
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6 I. Oppenheim

Our proof of Theorem 1.5 follows the scheme of proof [19, Theorem B]: first, we reduce the problem
to another model of random groups in which the Cayley complex of a random group is a partite simplicial
complex, and then we apply our version of Żuk’s criterion (this is not completely straightforward and
we heavily use the ideas of [1] in the analysis).

1.3. Organization

The paper is organized as follows. In Section 2, we cover preliminary material. In Section 3, we prove
Banach version of Żuk’s criterion for groups acting on partite complexes (i.e., we prove an extended
version of Theorem 1.3). In Section 4, we use our criterion to prove Banach fixed point properties for
random groups in the density model (i.e., we prove an extended version of Theorem 1.5).

2. Preliminaries

2.1. Robust Banach property (T) and the fixed point property

In [26], the author introduced the notion of robust Banach property (T) as a strengthened version of
Banach property (T) (as defined is [4]) that is weaker than the notion of strong Banach property (T)
defined by V. Lafforgue [20]

Let G be a locally compact group. Let F be a family of linear representations on Banach spaces,
𝜋 : 𝐺 → 𝐵(E), that are continuous with respect to the strong operator topology. Denote 𝐶𝑐 (𝐺) to be
the compactly supported continuous functions 𝑓 : 𝐺 → C. For every 𝜋 ∈ F , define 𝜋( 𝑓 ) ∈ 𝐵(E) via
the Bochner integral

𝜋( 𝑓 ).𝑥 =
∫
𝐺

𝑓 (𝑔)𝜋(𝑔).𝑥𝑑𝑔,∀𝑥 ∈ E,

where 𝜋( 𝑓 ).𝑥 denotes the action of 𝜋( 𝑓 ) on x (recall that f is compactly supported, and thus this integral
converges). Define the norm ‖.‖F on 𝐶𝑐 (𝐺) as ‖ 𝑓 ‖F = sup𝜋∈F ‖𝜋( 𝑓 )‖.

If F is closed under complex conjugation (i.e., 𝜋 ∈ F ⇒ 𝜋 ∈ F) and under duality (i.e., 𝜋 ∈ F ⇒
𝜋∗ ∈ F), then 𝐶F (𝐺) is a Banach algebra with an involution

𝑓 ∗(𝑔) = 𝑓 (𝑔−1),∀𝑔 ∈ 𝐺.

Definition 2.1 (Robust Banach property (T)). Let G be a compactly generated group and let K be
some symmetric compact set that generates G. For a class of Banach spaces E and a constant 𝛽 ≥ 1,
denote F (E , 𝐾, 𝛽) to be the class of all the continuous representations 𝜋 of G on some E ∈ E such that
sup𝑔∈𝐾 ‖𝜋(𝑔)‖ ≤ 𝛽.

We say that G has robust Banach property (T) with respect to a class of Banach spaces E , if there
exists 𝛽 > 1 and a sequence of real functions 𝑓𝑘 ∈ 𝐶𝑐 (𝐺) such that for every k,

∫
𝑓𝑘 = 1 and such that

the sequence ( 𝑓𝑘 ) converges in 𝐶F (E ,𝐾 ,𝛽) to p and ∀(𝜋,E) ∈ F (E , 𝐾, 𝛽), 𝜋(𝑝) is a projection on E𝜋 (𝐺) .
We will call the sequence 𝑓𝑘 above a Kazhdan projection with respect to F (E , 𝐾, 𝛽).

Remark 2.2. The above Definition assumes compact generation. A more general definition can be found
in [26]. Also, the definition in [26] assumes that the functions 𝑓𝑘 are symmetric, and thus (as noted
in [10]) p is central. Since the main focus of this paper is fixed point properties (see below), centrality
of p is not needed and thus omitted from the definition.

Robust Banach property (T) is connected to the fixed point property defined as follows:

Definition 2.3. For a Banach space E, we say that G has property (𝐹 E) if every affine isometric action
of G on E has a fixed point. For a class of Banach spaces E , we say that G has property (𝐹E) if for every
E ∈ E , G has property (𝐹 E). In particular for 1 ≤ 𝑝 ≤ ∞, a group G is said property (𝐹𝐿𝑝) if it has
property (𝐹 E) for every E that is an 𝐿𝑝-space.
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Proposition 2.4 [26, Proposition 5.9]. Let E be a class of Banach spaces such that for every E ∈ E , it
holds that E ⊕ℓ2C ∈ E . If G has robust Banach property (T) with respect E , then G has property (𝐹E).

It is worth noting that under some extra assumptions, the opposite direction of this Proposition is
also true (see [10, Corollary 5.6]), but we will make no use of this fact.

Last, we state some hereditary properties of property (𝐹E).

Proposition 2.5. If G has property (𝐹E) and 𝐺 ′ is a quotient of G, then 𝐺 ′ has property (𝐹E).

Proof. Every isometric action of 𝐺 ′ on a Banach space E induces an isometric action of G on E. �

Also, under suitable assumptions, a group G has property (𝐹E) if and only if a finite index subgroup
𝐻 < 𝐺 has property (𝐹E):

Proposition 2.6. Let G be as above and 𝐻 < 𝐺 be a closed finite index subgroup of G. For every
Banach space E, if H has property (𝐹 E), then G has property (𝐹 E). Conversely, for a class of Banach
spaces E that is closed under ℓ2 sums, if G has property (𝐹E), it follows that H has property (𝐹E).

Proof. Assume first that H has property (𝐹 E). Let 𝜌 be a continuous affine isometric action of G on E.
Then by assumption, the restriction of 𝜌 to H has a fixed point (i.e., there is 𝑥0 ∈ E such that for every
ℎ ∈ 𝐻, 𝜌(ℎ).𝑥0 = 𝑥0). Thus, for every 𝑔𝐻 ∈ 𝐺/𝐻, 𝜌(𝑔𝐻), 𝑥0 is well-defined. Define

𝑥 =
1

[𝐺 : 𝐻]
∑

𝑔𝐻 ∈𝐺/𝐻
𝜌(𝑔𝐻).𝑥0.

Then for every 𝑔′ ∈ 𝐺,

𝜌(𝑔′).𝑥 =
1

[𝐺 : 𝐻]
∑

𝑔𝐻 ∈𝐺/𝐻
𝜌(𝑔′)𝜌(𝑔𝐻).𝑥0 =

1
[𝐺 : 𝐻]

∑
𝑔𝐻 ∈𝐺/𝐻

𝜌(𝑔𝐻).𝑥0 = 𝑥,

as needed.
Conversely, let E be a class of Banach spaces that is closed under ℓ2 sums and assume that G has

property (𝐹E). Fix E ∈ E and let 𝜌 be a continuous affine isometric action of H on E.
Denote 𝜌′ to be the induced affine isometric action of G on ℓ2(𝐺/𝐻;E) (see [4, Section 8] for the

definition of the induced action and note that since H is of finite index, there are no integrability issues
here). By our assumption, ℓ2(𝐺/𝐻;E) ∈ E and thus the 𝜌′ action of G on ℓ2(𝐺/𝐻;E) has a fixed point
that has to be a constant function 𝜙 ≡ 𝑥0 ∈ E. It follows that 𝑥0 is fixed by the 𝜌 action of H on E. �

2.2. Vector valued ℓ2 spaces

Given a finite set V, a function 𝑚 : 𝑉 → R+ and a Banach space E, we define the vector valued space
ℓ2(𝑉, 𝑚;E) to be the space of functions 𝜙 : 𝑉 → E, with the norm

‖𝜙‖ℓ2 (𝑉 ,𝑚;E) =

(∑
𝑣 ∈𝑉

𝑚(𝑣) |𝜙(𝑣) |2
) 1

2

,

where |.| is the norm of E. We denote ℓ2(𝑉, 𝑚) = ℓ2(𝑉, 𝑚;C) and recall that ℓ2(𝑉, 𝑚) is also a Hilbert
space with the inner-product

〈𝜙, 𝜓〉 =
∑
𝑣 ∈𝑉

𝑚(𝑣)𝜙(𝑣)𝜓(𝑣).

Let 𝑇 : ℓ2(𝑉, 𝑚) → ℓ2(𝑉, 𝑚) be a linear operator and (𝑇𝑣,𝑢)𝑢,𝑣 ∈𝑉 ∈ 𝑀 |𝑉 | (C) be the matrix such
that for every 𝜙 ∈ ℓ2(𝑉, 𝑚) it holds that
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(𝑇𝜙) (𝑣) =
∑
𝑢∈𝑉

𝑇𝑣,𝑢𝜙(𝑢).

Define 𝑇 ⊗ idE : ℓ2(𝑉, 𝑚;E) → ℓ2(𝑉, 𝑚;E) by the formula:

((𝑇 ⊗ idE)𝜙) (𝑣) =
∑
𝑢∈𝑉

𝑇𝑣,𝑢𝜙(𝑢),

for every 𝜙 ∈ ℓ2(𝑉, 𝑚;E). We denote ‖𝑇 ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) to be the operator norm of 𝑇 ⊗ idE.
The norm ‖𝑇 ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) is preserved under some operations on E; this is summed up in the

following Lemma:

Lemma 2.7. Let V be a finite set, T a bounded operator on ℓ2(𝑉, 𝑚) and 𝐶 > 0 constant. Let E = E (𝐶)
be the class of Banach spaces defined as:

E = {E : ‖𝑇 ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) ≤ 𝐶}.

Then this class is closed under quotients, subspaces, ℓ2-sums and ultraproducts of Banach spaces (i.e.,
performing any of these operations on Banach spaces in E yields a Banach space in E).

Proof. The fact that E is closed under quotients, subspaces and ultraproducts of Banach spaces was
shown in [33, Lemma 3.1]. The fact that E is closed under ℓ2-sums is straightforward and left for the
reader. �

2.3. Uniformly curved Banach spaces

Uniformly curved Banach spaces were introduced by Pisier in [31]:

Definition 2.8 (Fully contractive operator). An operator 𝑇 : ℓ2(𝑉, 𝑚) → ℓ2(𝑉, 𝑚) is called fully
contractive if for every Banach space E, it holds that ‖𝑇 ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) ≤ 1.

Definition 2.9 (Uniformly curved space). Let E be a Banach space. The space E is called uniformly
curved if for every 0 < 𝜀 ≤ 1, there is 𝛿 > 0 such that for every space ℓ2(𝑉, 𝑚) and every fully contractive
linear operator 𝑇 : ℓ2(𝑉, 𝑚) → ℓ2(𝑉, 𝑚), if ‖𝑇 ‖𝐵 (ℓ2 (𝑉 ,𝑚)) ≤ 𝛿, then ‖𝑇 ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) ≤ 𝜀.

Given a monotone increasing function 𝜔 : (0, 1] → (0, 1] such that

lim
𝑡→0+

𝜔(𝑡) = 0,

we denote Eu-curved
𝜔 to be the class of all uniformly curved Banach spaces E such that for every space

ℓ2(𝑉, 𝑚) and every fully contractive linear operator 𝑇 : ℓ2(𝑉, 𝑚) → ℓ2(𝑉, 𝑚), if ‖𝑇 ‖𝐵 (ℓ2 (𝑉 ,𝑚)) ≤ 𝛿,
then ‖𝑇 ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) ≤ 𝜔(𝛿).

Applying Lemma 2.7 on Eu-curved
𝜔 defined above yields the following Corollary:

Corollary 2.10. For any monotone increasing function 𝜔 : (0, 1] → (0, 1] such that lim𝑡→0+ 𝜔(𝑡) = 0,
the class Eu-curved

𝜔 defined above is closed under quotients, subspaces, ℓ2-sums and ultraproducts of
Banach spaces.

Proposition 2.11. Let 𝑇 : ℓ2(𝑉, 𝑚) → ℓ2(𝑉, 𝑚) be a linear operator and 𝐿 ≥ 1, 0 < 𝛿 ≤ 1 be constants
such that:

1. It holds that ‖𝑇 ‖𝐵 (ℓ2 (𝑉 ,𝑚)) ≤ 𝛿.
2. For every Banach space E, ‖𝑇 ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) ≤ 𝐿.

Then for every monotone increasing function 𝜔 : (0, 1] → (0, 1] such that lim𝑡→0+ 𝜔(𝑡) = 0 and every
E ∈ Eu-curved

𝜔 , ‖𝑇 ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) ≤ 𝐿𝜔(𝛿).

https://doi.org/10.1017/fms.2023.80 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.80


Forum of Mathematics, Sigma 9

Proof. We note that 1
𝐿𝑇 is a fully contractive operator such that

‖ 1
𝐿

𝑇 ‖𝐵 (ℓ2 (𝑉 ,𝑚)) ≤
𝛿

𝐿
.

Thus, by the definition of Eu-curved
𝜔 , it follows for every E ∈ Eu-curved

𝜔 that

‖( 1
𝐿
)𝑇 ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) ≤ 𝜔( 𝛿

𝐿
),

and thus

‖𝑇 ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) ≤ 𝐿𝜔( 𝛿

𝐿
) ≤ 𝐿𝜔(𝛿),

where the last inequality is due to the fact that 𝐿 ≥ 1 and 𝜔 is monotone increasing. �

2.4. Strictly 𝜃-Hilbertian spaces

Here we will describe a special class of uniformly curved Banach spaces that contains all (commutative
and noncommutative) 𝐿 𝑝 spaces.

Two Banach spaces E0,E1 form a compatible pair (E0,E1) if they are continuously linear embedded
in the same topological vector space. The idea of complex interpolation is that given a compatible pair
(E0,E1) and a constant 0 ≤ 𝜃 ≤ 1, there is a method to produce a new Banach space [E0,E1]𝜃 as a
‘convex combination’ of E0 and E1. We will not review this method here, and the interested reader can
find more information on interpolation in [7].

This brings us to consider the following definition due to Pisier [30]: a Banach space E is called
strictly 𝜃-Hilbertian for 0 < 𝜃 ≤ 1, if there is a compatible pair (E0,E1) with E1 a Hilbert space such
that E = [E0,E1]𝜃 . Examples of strictly 𝜃-Hilbertian spaces are 𝐿𝑝 space and noncommutative 𝐿 𝑝

spaces (see [32] for definitions and properties of noncommutative 𝐿 𝑝 spaces), where in these cases,
𝜃 = 2

𝑝 if 2 ≤ 𝑝 < ∞ and 𝜃 = 2 − 2
𝑝 if 1 < 𝑝 ≤ 2.

For our use, it will be important to bound the norm of an operator of the form 𝑇 ⊗ idE given that E
is an interpolation space.
Lemma 2.12 [33, Lemma 3.1]. Let (E0,E1) be a compatible pair, V be a finite set, 𝑚 : 𝑉 → R+ be a
function and 𝑇 ∈ 𝐵(ℓ2(𝑉, 𝑚)) be an operator. Then for every 0 ≤ 𝜃 ≤ 1,

‖𝑇 ⊗ id[E0 ,E1 ]𝜃 ‖𝐵 (ℓ2 (𝑉 ,𝑚;[E0 ,E1 ]𝜃 )) ≤ ‖𝑇 ⊗ idE0 ‖1−𝜃
𝐵 (ℓ2 (𝑉 ,𝑚;E0))

‖𝑇 ⊗ idE1 ‖ 𝜃𝐵 (ℓ2 (𝑉 ,𝑚;E1))
,

where [E0,E1]𝜃 is the interpolation of E0 and E1.
This Lemma has the following Corollary that shows that strictly 𝜃-Hilbertian spaces are uniformly

curved (see also [33, Lemma 3.1]):
Corollary 2.13. Let E be a strictly 𝜃-Hilbertian space with 0 < 𝜃 ≤ 1, V be a finite set, 𝑚 : 𝑉 → R+ be
a function and 0 < 𝛿 < 1 be a constant. Assume that 𝑇 ∈ 𝐵(ℓ2(𝑉, 𝑚)) is a fully contractive operator
such that ‖𝑇 ‖𝐵 (ℓ2 (𝑉 ,𝑚)) ≤ 𝛿. Then ‖𝑇 ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) ≤ 𝛿𝜃 .

In other words, if E is strictly 𝜃-Hilbertian space with 0 < 𝜃 ≤ 1, then for 𝜔(𝑡) = 𝑡 𝜃 , we have that
E ∈ Eu-curved

𝜔 .
Proof. For every Hilbert space E1 we have that ‖𝑇 ⊗ idE1 ‖𝐵 (ℓ2 (𝑉 ,𝑚;E1)) ≤ 𝛿, and thus the assertion
stated above follows from Lemma 2.12. �

Combining Lemma 2.7 with the above Corollary yields the following:
Corollary 2.14. For a constant 0 < 𝜃0 ≤ 1, denote E𝜃0 to be the smallest class of Banach spaces that
contains all strictly 𝜃-Hilbertian Banach spaces for all 𝜃0 ≤ 𝜃 ≤ 1 and is closed under subspaces,
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quotients, ℓ2-sums and ultraproducts of Banach spaces. Then for every 0 < 𝜃0 ≤ 1, we have that
E𝜃0 ⊆ Eu-curved

𝜔 (𝑡)=𝑡 𝜃0
.

Remark 2.15. A deep result of Pisier shows that the converse of the above Corollary is ‘almost true’
if one considers arcwise 𝜃0-Hilbertian spaces (see definition in [31, Section 6]). Namely, by [31,
Corollary 6.7], for every 𝜃0 < 𝜃 ≤ 1, it holds that every Banach space in Eu-curved

𝜔 (𝑡)=𝑡 𝜃 is a subquotient of an
arcwise 𝜃0-Hilbertian space. We will not define arcwise 𝜃0-Hilbertian spaces here, and we will make
no use of this fact.

2.5. Angle between projections

The notion of an angle between projection was defined by the author in [26] and further developed in
[27] and [28]. Below, we give the definitions and results on this subject that are needed for this paper.
Definition 2.16. Let E be a Banach space and let 𝑃1, 𝑃2 be projections in 𝐵(E). Assume that there is a
projection 𝑃1,2 on Im(𝑃1) ∩ Im(𝑃2), such that 𝑃1,2𝑃1 = 𝑃1,2, 𝑃1,2𝑃2 = 𝑃1,2. Define the cosine of the
angle between 𝑃1, 𝑃2 (with respect to 𝑃1,2) as

cos𝑃1,2 (∠(𝑃1, 𝑃2)) = max{‖𝑃1𝑃2 − 𝑃1,2‖, ‖𝑃2𝑃1 − 𝑃1,2‖}.

We note that the angle between 𝑃1, 𝑃2 depends on the choice of 𝑃1,2 and different choices yield
different angles (see [6, Example 2]). However, to avoid cumbersome notation, when 𝑃1,2 is obvious
from the context, we will denote cos(∠(𝑃1, 𝑃2)) instead of cos𝑃1,2 (∠(𝑃1, 𝑃2)).
Theorem 2.17 [26, Theorem 3.12]. Let E be a Banach space and let 𝑃0, ..., 𝑃𝑛 be projections in 𝐵(E)
(𝑛 ≥ 1). Assume that for every 0 ≤ 𝑗1 < 𝑗2 ≤ 𝑛, there is a projection 𝑃 𝑗1 , 𝑗2 on Im(𝑃 𝑗1 ) ∩ Im(𝑃 𝑗2 ),
such that 𝑃 𝑗1 , 𝑗2 𝑃 𝑗1 = 𝑃 𝑗1 , 𝑗2 , 𝑃 𝑗1 , 𝑗2 𝑃 𝑗2 = 𝑃 𝑗1 , 𝑗2 . Denote 𝑇 =

∑
𝑘

1
𝑛+1 𝑃𝑘 . Assume further that there are

constants

𝛾 <
1

8𝑛 − 3
and 𝛽 < 1 + 1 − (8𝑛 − 3)𝛾

𝑛 − 1 + (3𝑛 − 1)𝛾 ,

such that

max
0≤ 𝑗≤𝑛

‖𝑃 𝑗 ‖ ≤ 𝛽

and

max
0≤ 𝑗1< 𝑗2<≤𝑛

cos(∠(𝑃 𝑗1 , 𝑃 𝑗2 )) ≤ 𝛾.

Then there is a projection 𝑇∞ on
⋂𝑛
𝑗=0 Im(𝑃 𝑗 ) and constants 0 ≤ 𝑟 (𝛾, 𝛽) < 1, 𝐶 (𝛾, 𝛽) > 0, such that

for every i,

‖𝑇 𝑖 − 𝑇∞‖ ≤ 𝐶𝑟 𝑖

and in particular, 𝑇 𝑖 converges to 𝑇∞ in the operator norm.
Remark 2.18. The conditions for the convergence of 𝑇 𝑖 stated above are not optimal and can be
somewhat improved using [28][Theorem 2.2].

2.6. Random walks on bipartite finite graphs

Here we collect some facts regrading 𝜆E(𝑉 ,𝐸) ,bipartite defined in the introduction. To ease the reading, we
will repeat the definition and also repeat several definitions and facts that were already mentioned in the
introduction.
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Throughout, let (𝑉, 𝐸) be a finite connected graph without loops. For every 𝑣 ∈ 𝑉 , we denote 𝑚(𝑣)
to be the degree of v. Also, for a non-empty subset 𝑈 ⊆ 𝑉 , we denote 𝑚(𝑈) =

∑
𝑣 ∈𝑈 𝑚(𝑣).

The graph (𝑉, 𝐸) is called bipartite if V can be partitioned into two disjoint sets 𝑉 = 𝑆1 ∪ 𝑆2 called
sides such that for each {𝑢, 𝑣} ∈ 𝐸 , |{𝑢, 𝑣} ∩ 𝑆1 | = |{𝑢, 𝑣} ∩ 𝑆2 | = 1 (i.e., each edge has exactly one
vertex in each side). We note that it follows that 𝑚(𝑆1) = 𝑚(𝑆2) = 1

2 𝑚(𝑉).
We also define ℓ2(𝑉, 𝑚) as in section 2.2 above; that is, ℓ2(𝑉, 𝑚) is the space of functions 𝜙 : 𝑉 → C

with an inner-product

〈𝜙, 𝜓〉 =
∑
𝑣 ∈𝑉

= 𝑚(𝑣)𝜙(𝑣)𝜓(𝑣).

The random walk operator on (𝑉, 𝐸) as above is the operator 𝐴 : ℓ2(𝑉, 𝑚) → ℓ2(𝑉, 𝑚) defined as

(𝐴𝜙) (𝑣) =
∑

𝑢∈𝑉 , {𝑢,𝑣 }∈𝐸

1
𝑚(𝑣) 𝜙(𝑢).

We state without proof a few basic facts regarding the random walk operator:

1. With the inner-product defined above, A is a self-adjoint operator, and the eigenvalues of A lie in the
interval [−1, 1].

2. The space of constant functions is an eigenspace of A with eigenvalue 1, and if (𝑉, 𝐸) is connected,
then all the other eigenfunctions of A have eigenvalues strictly less than 1.

3. The graph (𝑉, 𝐸) is bipartite if and only if −1 is an eigenvalue of A.

Assuming that (𝑉, 𝐸) is bipartite with sides 𝑆1, 𝑆2, we note that the spectrum of A is symmetric.
Explicitly, if 𝜆 is an eigenvalue of A with an eigenfunction 𝜙, then

𝜙′(𝑢) =
{

𝜙(𝑢) 𝑢 ∈ 𝑆1

−𝜙(𝑢) 𝑢 ∈ 𝑆2

is an eigenfunction of A with an eigenvalue −𝜆. In particular, 𝜙 = 1𝑆1 − 1𝑆2 is an eigenfunction with
the eigenvalue −1.

We define the following averaging operators: 𝑀1, 𝑀2 : ℓ2(𝑉, 𝑚) → C:

𝑀𝑖𝜙 =
1

𝑚(𝑆𝑖)
∑
𝑢∈𝑆𝑖

𝑚(𝑢)𝜙(𝑢).

We also define 𝑀sides : ℓ2(𝑉, 𝑚) → ℓ2(𝑉, 𝑚) by

𝑀sides𝜙(𝑢) =
{

𝑀1𝜙 𝑢 ∈ 𝑆1

𝑀2𝜙 𝑢 ∈ 𝑆2
.

We note that 𝑀sides is the orthogonal projection on the space of functions span{1𝑉 ,1𝑆𝑖 − 1𝑆 𝑗 }.
We recall the following definition of spectral expansion:

Definition 2.19. Let (𝑉, 𝐸) be a finite connected graph and 0 ≤ 𝜆 < 1 a constant. The graph (𝑉, 𝐸) is
called a one-sided 𝜆-spectral expander if the spectrum of A is contained in [−1, 𝜆] ∪ {1}.

As noted above, for a bipartite graph, the spectrum of A is symmetric with an eigenvalue −1 with
an eigenfunction 1𝑆1 − 1𝑆2 . Thus, for a connected bipartite graph (𝑉, 𝐸), it holds that the graph is a
one-sided 𝜆-spectral expander if and only if ‖𝐴(𝐼 − 𝑀sides)‖ ≤ 𝜆.

Given a Banach space E, we consider the operator (𝐴(𝐼 −𝑀sides)) ⊗ idE : ℓ2(𝑉, 𝑚;E) → ℓ2(𝑉, 𝑚;E)
and denote 𝜆E(𝑉 ,𝐸) ,bipartite = ‖(𝐴(𝐼 − 𝑀sides)) ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) .
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Claim 2.20. For every finite connected graph (𝑉, 𝐸) and every Banach space E, 𝜆E(𝑉 ,𝐸) ,bipartite ≤ 2.

Proof. By triangle inequality and linearity,

‖(𝐴(𝐼 − 𝑀sides)) ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) ≤
‖𝐴 ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) + ‖𝐴 ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) ‖𝑀sides ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) ,

and therefore, in order to prove the claim, it is enough to show that

‖𝐴 ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) ≤ 1 and ‖𝑀sides ⊗ idE ‖𝐵 (ℓ2 (𝑉 ,𝑚;E)) ≤ 1.

Indeed, by the convexity of the function |.|2, for every 𝜙 ∈ ℓ2(𝑉, 𝑚;E),

‖(𝐴 ⊗ idE)𝜙‖2 =
∑
𝑣 ∈𝑉

𝑚(𝑣)







 ∑
𝑢∈𝑉 , {𝑢,𝑣 }∈𝐸

𝑚({𝑢, 𝑣})
𝑚(𝑣) 𝜙(𝑢)








2

≤

∑
𝑣 ∈𝑉

𝑚(𝑣)
∑

𝑢∈𝑉 , {𝑢,𝑣 }∈𝐸

𝑚({𝑢, 𝑣})
𝑚(𝑣) |𝜙(𝑢) |2 =

∑
𝑢∈𝑉

|𝜙(𝑢) |2
∑

𝑣 ∈𝑉 , {𝑢,𝑣 }∈𝐸
𝑚({𝑢, 𝑣}) =∑

𝑢∈𝑉
𝑚(𝑢) |𝜙(𝑢) |2 = ‖𝜙‖2,

and

‖(𝑀sides ⊗ idE)𝜙‖2 =
∑
𝑣 ∈𝑆1

𝑚(𝑣)






 1
𝑚(𝑆1)

∑
𝑢∈𝑆𝑖

𝑚(𝑢)𝜙(𝑢)






2 + ∑
𝑣 ∈𝑆2

𝑚(𝑣)







 1
𝑚(𝑆2)

∑
𝑢∈𝑆 𝑗

𝑚(𝑢)𝜙(𝑢)








2

≤

∑
𝑣 ∈𝑆1

𝑚(𝑣) 1
𝑚(𝑆1)

∑
𝑢∈𝑆𝑖

𝑚(𝑢) |𝜙(𝑢) |2 +
∑
𝑣 ∈𝑆2

𝑚(𝑣) 1
𝑚(𝑆2)

∑
𝑢∈𝑆2

𝑚(𝑢) |𝜙(𝑢) |2 =∑
𝑢∈𝑆1

𝑚(𝑢) |𝜙(𝑢) |2 +
∑
𝑢∈𝑆2

𝑚(𝑢) |𝜙(𝑢) |2 = ‖𝜙‖2. �

Combining this Claim with Lemma 2.11 and Corollary 2.13 yields the following:

Corollary 2.21. Let (𝑉, 𝐸) be a connected finite graph and 0 < 𝜆 < 1 be a constant such that (𝑉, 𝐸) is
a one-sided 𝜆-spectral expander. For every monotone increasing function 𝜔 : (0, 1] → (0, 1] such that
lim𝑡→0+ 𝜔(𝑡) = 0 and every E ∈ Eu-curved

𝜔 , we have that

𝜆E(𝑉 ,𝐸) ,bipartite ≤ 2𝜔(𝜆).

In particular, for every 0 < 𝜃 ≤ 1 and every strictly 𝜃-Hilbertian space E, we have that

𝜆E(𝑉 ,𝐸) ,bipartite ≤ 2𝜆𝜃 .

The expansion constant 𝜆E(𝑉 ,𝐸) ,bipartite can also be described as a cosine between projections as in
Definition 2.16. For a finite connected graph (𝑉, 𝐸), we define ℓ2(𝐸 ;E) to be the space of functions
Φ : 𝐸 → E with the norm

‖Φ‖2 =
∑

{𝑢,𝑣 }∈𝐸
|Φ({𝑢, 𝑣}) |2.

For a finite connected bipartite graph (𝑉, 𝐸) with sides 𝑆1, 𝑆2, we define the following projections on
ℓ2(𝐸 ;E): For 𝑖 = 1, 2, and {𝑣1, 𝑣2} ∈ 𝐸 with 𝑣𝑖 ∈ 𝑆𝑖 ,
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𝑃𝑖Φ({𝑣1, 𝑣2}) =
1

𝑚(𝑣𝑖)
∑

{𝑣𝑖 ,𝑢 }∈𝐸
Φ({𝑣𝑖 , 𝑢}),∀Φ ∈ ℓ2(𝐸 ;E).

We also define

𝑃1,2Φ ≡ 1
|𝐸 |

∑
{𝑢,𝑣 }∈𝐸

Φ({𝑢, 𝑣}),∀Φ ∈ ℓ2(𝐸 ;E).

Since 𝑃1,2 is a projection on the space of constant functions, it follows that 𝑃𝑖𝑃1,2 = 𝑃1,2. One can
also verify that 𝑃1,2𝑃𝑖 = 𝑃1,2 (we leave this to the reader). Thus, we can define cos(∠(𝑃1, 𝑃2)) as in
Definition 2.16.

Proposition 2.22. For a finite connected bipartite graph (𝑉, 𝐸) and a Banach space E, it holds that

cos(∠(𝑃1, 𝑃2)) = 𝜆E(𝑉 ,𝐸) ,bipartite,

where 𝑃1, 𝑃2 are the projections defined above.

Proof. For 𝑖 = 1, 2, define ℓ2
𝑖 (𝑉, 𝑚;E) to be the subspace of ℓ2(𝑉, 𝑚;E) composed of functions

supported on 𝑆𝑖 . Note every 𝜙 ∈ ℓ2(𝑉, 𝑚;E) can be decomposed to 𝜙 = 𝜙1 + 𝜙2 where 𝜙𝑖 ∈ ℓ2
𝑖 (𝑉, 𝑚;E)

by defining

𝜙𝑖 (𝑣) =
{

𝜙(𝑣) 𝑣 ∈ 𝑆𝑖

0 𝑣 ∉ 𝑆𝑖
.

Also note that for this decomposition ‖𝜙‖2 = ‖𝜙1‖2 + ‖𝜙2‖2 and that

‖((𝐴(𝐼 − 𝑀sides)) ⊗ idE)𝜙‖2 = ‖((𝐴(𝐼 − 𝑀sides)) ⊗ idE)𝜙1‖2 + ‖((𝐴(𝐼 − 𝑀sides)) ⊗ idE)𝜙2‖2.

Thus, for every non-zero 𝜙,

‖((𝐴(𝐼 − 𝑀sides)) ⊗ idE)𝜙‖2

‖𝜙‖2 =
‖((𝐴(𝐼 − 𝑀sides)) ⊗ idE)𝜙1‖2 + ‖((𝐴(𝐼 − 𝑀sides)) ⊗ idE)𝜙2‖2

‖𝜙1‖2 + ‖𝜙2‖2 .

It follows that

‖(𝐴(𝐼 − 𝑀sides)) ⊗ idE ‖ = max
𝑖=1,2

‖ (𝐴(𝐼 − 𝑀sides)) ⊗ idE |ℓ2
𝑖 (𝑉 ,𝑚;E) ‖.

Define 𝐿𝑖 : ℓ2
𝑖 (𝑉, 𝑚;E) → ℓ2(𝐸 ;E) by

𝐿𝑖𝜙({𝑣1, 𝑣2}) = 𝜙(𝑣𝑖),

for all {𝑣1, 𝑣2} ∈ 𝐸 such that 𝑣1 ∈ 𝑆1, 𝑣2 ∈ 𝑆2. Note that 𝐿𝑖 is an isometry onto Im(𝑃𝑖) ⊆ ℓ2(𝐸 ;E).
Observe that by the definitions of all the operators, it follows that

(𝐴(𝐼 − 𝑀sides)) ⊗ idE |ℓ2
1 (𝑉 ,𝑚;E) = 𝐿−1

2 𝑃2 (𝐼 − 𝑃1,2)𝐿1 = 𝐿−1
2 𝑃2 (𝐼 − 𝑃1,2)𝑃1𝐿1 = 𝐿−1

2 (𝑃2𝑃1 − 𝑃1,2)𝐿1,

and

(𝐴(𝐼 − 𝑀sides)) ⊗ idE |ℓ2
2 (𝑉 ,𝑚;E) = 𝐿−1

1 (𝑃1𝑃2 − 𝑃1,2)𝐿2.

Thus, using the fact that 𝐿𝑖 are isometries onto Im(𝑃𝑖), it follows that

‖ (𝐴(𝐼 − 𝑀sides)) ⊗ idE |ℓ2
1 (𝑉 ,𝑚;E) ‖ = ‖𝑃2𝑃1 − 𝑃1,2‖,
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and

‖ (𝐴(𝐼 − 𝑀sides)) ⊗ idE |ℓ2
2 (𝑉 ,𝑚;E) ‖ = ‖𝑃1𝑃2 − 𝑃1,2‖,

as needed. �

2.7. Partite simplicial complexes

Given a set V, an abstract simplicial complex X with a vertex set V is a family of subsets 𝑋 ⊆ 2𝑉 such
that if 𝜏 ∈ 𝑋 and 𝜂 ⊆ 𝜏, then 𝜂 ∈ 𝑋 . We will denote 𝑋 (𝑘) to be the sets in X of cardinality 𝑘 + 1. A
simplicial complex X is called n-dimensional if 𝑋 (𝑛+1) = ∅ and 𝑋 (𝑛) ≠ ∅. An n-dimensional simplicial
complex X is called pure n-dimensional if for every 𝜏 in X, there is 𝜎 ∈ 𝑋 (𝑛) such that 𝜏 ⊆ 𝜎.

A pure n-dimensional simplicial complex X is called gallery connected if for every 𝜎, 𝜎′ ∈ 𝑋 (𝑛),
there is a finite sequence 𝜎1, ..., 𝜎𝑙 ∈ 𝑋 (𝑛) such that 𝜎 = 𝜎1, 𝜎′ = 𝜎𝑙 and for every 1 ≤ 𝑖 ≤ 𝑙 − 1,
𝜎𝑖 ∩𝜎𝑖+1 ∈ 𝑋 (𝑛−1). Below, we will always assume that X is pure n-dimensional and gallery connected.

Given a simplex 𝜏 ∈ 𝑋 , the link of 𝜏 is the subcomplex of X, denoted 𝑋𝜏 , that is defined as

𝑋𝜏 = {𝜂 ∈ 𝑋 : 𝜏 ∩ 𝜂 = ∅, 𝜏 ∪ 𝜂 ∈ 𝑋}.

Below we will only be interested in the 1-dimensional links of X. We note that if 𝜏 ∈ 𝑋 (𝑘) and X is
pure n-dimensional, then 𝑋𝜏 is pure (𝑛− 𝑘 − 1)-dimensional. In particular, if 𝜏 ∈ 𝑋 (𝑛− 2), then 𝑋𝜏 is a
graph. Thus, we will refer to all links of the form 𝑋𝜏 where 𝜏 ∈ 𝑋 (𝑛−2) as the 1-dimensional links of X.

Given a pure n-dimensional simplicial complex X, we call X partite if there is a partition of the vertex
set V, 𝑉0 � ...�𝑉𝑛 = 𝑉 such that for every 𝜎 ∈ 𝑋 (𝑛) and every 0 ≤ 𝑖 ≤ 𝑛, it holds that |𝜎 ∩𝑉𝑖 | = 1 (i.e.,
every n-dimensional simplex has exactly one vertex in each of the sets 𝑉0, ..., 𝑉𝑛). A partite simplicial
complex is also sometimes called colorable, since we can think of the partition 𝑉0, ..., 𝑉𝑛 as a coloring
of the vertex sets with 𝑛+ 1 colors, such that each n-dimensional simplex has vertices with all the colors
(or equivalently, each n-dimensional simplex do not have two vertices with the same color). For an
n-dimensional partite simplicial complex, we define a type function type : 𝑋 → 2{0,...,𝑛} by

type(𝜏) = {𝑖 : ∃𝑣 ∈ 𝜏 ∩𝑉𝑖}.

Last, note that if X is a pure n-dimensional partite simplicial complex, then all the 1-dimensional links
of X are bipartite graphs.

3. Żuk’s criterion for partite links

Let X be a partite pure n-dimensional simplicial complex such that X is gallery connected and the 1-
dimensional links of X are connected finite graphs. Also, let G be a locally compact, unimodular group
acting on X such that the action is cocompact, and for every 𝜏 ∈ 𝑋 (𝑛 − 2) ∪ 𝑋 (𝑛 − 1) ∪ 𝑋 (𝑛) the
subgroup stabilizing 𝜏, denoted 𝐺𝜏 , is an open compact subgroup. We also assume that the action of
G is type-preserving (i.e., for every 0 ≤ 𝑘 ≤ 𝑛 and every 𝜏 ∈ 𝑋 (𝑘), it holds for every 𝑔 ∈ 𝐺 that
type(𝜏) = type(𝑔.𝜏)). Last, let 𝜋 be a continuous representation 𝜋 of G on a Banach space E.

Note that by the assumption that the action of G is type-preserving, it follows for each 𝜎 ∈ 𝑋 (𝑘)
that if 𝑔.𝜎 = 𝜎, then for each vertex 𝑣 ∈ 𝜎, it holds that 𝑔.𝑣 = 𝑣. For every 𝑛 − 2 ≤ 𝑘 ≤ 𝑛, we
choose a fundamental domain 𝐷 (𝑘) of the action of G on 𝑋 (𝑘) such that the following holds: for every
𝑛 − 2 ≤ 𝑘1 < 𝑘2 ≤ 𝑛 and every 𝜏 ∈ 𝐷 (𝑘1), there is 𝜎 ∈ 𝐷 (𝑘2) such that 𝜏 ⊆ 𝜎.

Define 𝐶 (𝑋 (𝑛), 𝜋) to be the space of maps 𝜙 : 𝑋 (𝑛) → E that are equivariant with respect to 𝜋 (i.e.,
for every 𝜎 ∈ 𝑋 (𝑛) and every 𝑔 ∈ 𝐺, 𝜋(𝑔)𝜙(𝜎) = 𝜙(𝑔.𝜎)). Define a norm on 𝐶 (𝑋 (𝑛), 𝜋) by

‖𝜙‖2 =
∑

𝜎∈𝐷 (𝑛)

1
𝜇(𝐺𝜎)

|𝜙(𝜎) |2,

where 𝐺𝜎 is the subgroup stabilizing 𝜎 and 𝜇 is the Haar measure of G.
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Define 𝐾 ⊆ 𝐺 to be the set

𝐾 = {𝑔 ∈ 𝐺 : ∃𝜎, 𝜎′ ∈ 𝐷 (𝑛), |𝑔.𝜎 ∩ 𝜎′ | ≥ 𝑛 − 1}.

Note that K is a compact symmetric set that generates G (the last fact is due to the assumption that X is
gallery connected).

The following Lemma is a variant of [13, Lemma 3.3]:

Lemma 3.1. Let 𝑛 − 2 ≤ 𝑘 < 𝑙 ≤ 𝑛 and

𝜓 : {(𝜏, 𝜂) ∈ 𝑋 (𝑘) × 𝑋 (𝑙) : 𝜏 ⊆ 𝜂} → [0,∞).

Assume that there is a constant 𝜅 ≥ 1 such that for every 𝑔 ∈ 𝐾 and every (𝜏, 𝜂) ∈ 𝑋 (𝑘) × 𝑋 (𝑙), 𝜏 ⊆ 𝜂,
it holds that 𝜓(𝑔.𝜏, 𝑔.𝜂) ≤ 𝜅𝜓(𝜏, 𝜂). Then∑

𝜂∈𝐷 (𝑙)

1
𝜇(𝐺𝜂)

∑
𝜏∈𝑋 (𝑘) ,𝜏⊆𝜂

𝜓(𝜏, 𝜂) ≤ 𝜅2
∑

𝜏∈𝐷 (𝑘)

1
𝜇(𝐺𝜏)

∑
𝜂∈𝑋 (𝑘) ,𝜏⊆𝜂

𝜓(𝜏, 𝜂)

and ∑
𝜂∈𝐷 (𝑙)

1
𝜇(𝐺𝜂)

∑
𝜏∈𝑋 (𝑘) ,𝜏⊆𝜂

𝜓(𝜏, 𝜂) ≥ 1
𝜅2

∑
𝜏∈𝐷 (𝑘)

1
𝜇(𝐺𝜏)

∑
𝜂∈𝑋 (𝑘) ,𝜏⊆𝜂

𝜓(𝜏, 𝜂).

Proof. Note that since K is symmetric, it follows that 𝜓(𝑔.𝜏, 𝑔.𝜂) ≥ 1
𝜅𝜓(𝜏, 𝜂) for every 𝑔 ∈ 𝐾 and

every (𝜏, 𝜂) ∈ 𝑋 (𝑘) × 𝑋 (𝑙), 𝜏 ⊆ 𝜂. Thus, the proofs of both inequalities are similar (only using reverse
inequalities), and we will only prove the first one.

For every 𝜏 ∈ 𝐷 (𝑘), 𝜂 ∈ 𝐷 (𝑙), we fix a maximal set 𝐴(𝜏,𝜂) ⊆ 𝐺 such that ∀𝑔 ∈ 𝐴(𝜏,𝜂) , 𝑔.𝜏 ⊆ 𝜂 and
for 𝑔, 𝑔′ ∈ 𝐴(𝜏,𝜂) , if 𝑔 ≠ 𝑔′, then 𝑔.𝜏 ≠ 𝑔′.𝜏 (it may be that set 𝐴(𝜏,𝜂) is the empty set). Note that by
the choice of 𝐷 (𝑘), 𝐷 (𝑙), there are simplices 𝜎, 𝜎′ ∈ 𝐷 (𝑛) such that 𝜏 ⊆ 𝜎 and 𝜂 ⊆ 𝜎′. It follows that
for every 𝑔 ∈ 𝐴(𝜏,𝜂) , it holds that 𝑔.𝜏 ⊆ 𝑔.𝜎 ∩ 𝜎′ and thus,

|𝑔.𝜎 ∩ 𝜎′ | ≥ |𝑔.𝜏 | = |𝜏 | ≥ 𝑛 − 1,

(i.e., 𝐴(𝜏,𝜂) ⊆ 𝐾). Thus,∑
𝜂∈𝐷 (𝑙)

1
𝜇(𝐺𝜂)

∑
𝜏∈𝑋 (𝑘) ,𝜏⊆𝜂

𝜓(𝜏, 𝜂) =
∑
𝜂∈𝐷 (𝑙)

1
𝜇(𝐺𝜂)

∑
𝜏∈𝐷 (𝑘)

∑
𝑔∈𝐴(𝜏,𝜂)

𝜓(𝑔.𝜏, 𝜂)

≤ 𝜅
∑

𝜂∈𝐷 (𝑙) ,𝜏∈𝐷 (𝑘)

1
𝜇(𝐺𝜂)

∑
𝑔∈𝐴(𝜏,𝜂)

𝜓(𝜏, 𝑔−1.𝜂)

≤ 𝜅2
∑

𝜂∈𝐷 (𝑙) ,𝜏∈𝐷 (𝑘)

1
𝜇(𝐺𝜂)

∑
𝑔∈𝐴(𝜏,𝜂)

1
𝜇(𝐺𝜏)

∫
𝐺𝜏

𝜓(𝜏, 𝑔′𝑔−1.𝜂)𝑑𝜇(𝑔′)

= 𝜅2
∑

𝜏∈𝐷 (𝑘)

1
𝜇(𝐺𝜏)

∑
𝜂∈𝐷 (𝑙)

1
𝜇(𝐺𝜂)

∫
𝑔′′,𝜏⊆𝑔′′.𝜂

𝜓(𝜏, 𝑔′′.𝜂)𝑑𝜇(𝑔′′)

= 𝜅2
∑

𝜏∈𝐷 (𝑘)

1
𝜇(𝐺𝜏)

∑
𝜂∈𝑋 (𝑙) ,𝜏⊆𝜂

𝜓(𝜏, 𝜂). �

Corollary 3.2. Let 𝜈 ⊆ {0, ..., 𝑛} such that |𝜈 | = 𝑛−1 or |𝜈 | = 𝑛. For every 𝜙 ∈ 𝐶 (𝑋 (𝑛), 𝜋), it holds that

‖𝜙‖2 ≤
(
sup
𝑔∈𝐾

‖𝜋(𝑔)‖2

) ∑
𝜏∈𝐷 ( |𝜈 |−1) ,type(𝜏)=𝜈

1
𝜇(𝐺𝜏)

∑
𝜎∈𝑋 (𝑛) ,𝜏⊆𝜂

|𝜙(𝜎) |2,
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and

‖𝜙‖2 ≥
(
sup
𝑔∈𝐾

‖𝜋(𝑔)‖2

)−1 ∑
𝜏∈𝐷 ( |𝜈 |−1) ,type(𝜏)=𝜈

1
𝜇(𝐺𝜏)

∑
𝜎∈𝑋 (𝑛) ,𝜏⊆𝜂

|𝜙(𝜎) |2,

Proof. The proofs of both the inequalities are similar, and we will prove only the first one. Let 𝜙 ∈
𝐶 (𝑋 (𝑛), 𝜋) and 𝜈 as above. Denote 𝑘 = |𝜈 | − 1 and define

𝜓 : {(𝜏, 𝜎) ∈ 𝑋 (𝑘) × 𝑋 (𝑛) : 𝜏 ⊆ 𝜎} → [0,∞)

as

𝜓(𝜏, 𝜎) =
{
|𝜙(𝜎) |2 type(𝜏) = 𝜈

0 type(𝜏) ≠ 𝜈
,

for all (𝜏, 𝜎) ∈ 𝑋 (𝑘) × 𝑋 (𝑛) with 𝜏 ⊆ 𝜎. Note that for every 𝑔 ∈ 𝐾 , it holds that

𝜓(𝑔.𝜏, 𝑔.𝜎) ≤
(
sup
𝑔∈𝐾

‖𝜋(𝑔)‖2

)
𝜓(𝜏, 𝜎)

(recall that the action is type-preserving). Thus, by Lemma 3.1, it follows that

‖𝜙‖2 =
∑

𝜎∈𝐷 (𝑛)

1
𝜇(𝐺𝜎)

|𝜙(𝜎) |2 =
∑

𝜎∈𝐷 (𝑛)

1
𝜇(𝐺𝜎)

∑
𝜏∈𝑋 (𝑘) ,𝜏⊆𝜎

𝜓(𝜏, 𝜎) ≤(
sup
𝑔∈𝐾

‖𝜋(𝑔)‖2

) ∑
𝜏∈𝐷 (𝑘)

1
𝜇(𝐺𝜏)

∑
𝜎∈𝑋 (𝑛) ,𝜏⊆𝜎

𝜓(𝜏, 𝜎) =(
sup
𝑔∈𝐾

‖𝜋(𝑔)‖2

) ∑
𝜏∈𝐷 (𝑘) ,type(𝜏)=𝜈

1
𝜇(𝐺𝜏)

∑
𝜎∈𝑋 (𝑛) ,𝜏⊆𝜎

|𝜙(𝜎) |2,

as needed. �

For 𝑥 ∈ E, define 𝜙𝑥 : 𝐷 (𝑛) → E by

𝜙𝑥 (𝜎) = 𝜋

(
1𝐺𝜎

𝜇(𝐺𝜎)

)
𝑥,∀𝜎 ∈ 𝐷 (𝑛),

where 1𝐺𝜎 is the indicator function of 𝐺𝜎 . Observe that 𝜙𝑥 (𝜎) ∈ E𝜋 (𝐺𝜎 ) for every 𝜎 ∈ 𝐷 (𝑛). Extend
𝜙𝑥 to 𝑋 (𝑛) as follows: for every 𝑔 ∈ 𝐺 and every 𝜎 ∈ 𝐷 (𝑛), define

𝜙𝑥 (𝑔.𝜎) = 𝜋(𝑔)𝜙𝑥 (𝜎) = 𝜋

(
1𝑔𝐺𝜎

𝜇(𝑔𝐺𝜎)

)
𝑥 = 𝜋

(
1𝑔𝐺𝜎

𝜇(𝐺𝜎)

)
𝑥.

Proposition 3.3. The map 𝜙𝑥 is well-defined and equivariant (i.e., 𝜙𝑥 ∈ 𝐶 (𝑋 (𝑛), 𝜋)).

Proof. To show that 𝜙𝑥 is well-defined, we need to show that for every 𝜎 ∈ 𝐷 (𝑛) and every 𝑔1, 𝑔2 ∈ 𝐺,
if 𝑔1.𝜎 = 𝑔2.𝜎, then 𝜋(𝑔1)𝜙𝑥 (𝜎) = 𝜋(𝑔2)𝜙𝑥 (𝜎), or equivalently, that 𝜋(𝑔−1

2 𝑔1)𝜙𝑥 (𝜎) = 𝜙𝑥 (𝜎). This
equality follows from the fact that 𝑔−1

2 𝑔1 ∈ 𝐺𝜎 and that 𝜙𝑥 (𝜎) ∈ E𝜋 (𝐺𝜎 ) .
The fact that 𝜙𝑥 is equivariant readily follows from its definition. �
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Define linear maps 𝑅1, 𝑅2 as follows:

𝑅1 : E→ 𝐶 (𝑋 (𝑛), 𝜋), 𝑅1𝑥 = 𝜙𝑥 ,

𝑅2 : 𝐶 (𝑋 (𝑛), 𝜋) → E, 𝑅2𝜙 =
1

|𝐷 (𝑛) |
∑

𝜎∈𝐷 (𝑛)
𝜙(𝜎).

Proposition 3.4. The maps 𝑅1, 𝑅2 are bounded and

‖𝑅1‖ ≤ ( max
𝜎∈𝐷 (𝑛)

sup
𝑔∈𝐺𝜎

‖𝜋(𝑔)‖)
√√ ∑
𝜎∈𝐷 (𝑛)

1
𝜇(𝐺𝜎)

,

‖𝑅2‖ ≤ max
𝜎∈𝐷 (𝑛)

√
𝜇(𝐺𝜎).

Proof. Note that for every 𝑥 ∈ E with |𝑥 | = 1 and every 𝜎 ∈ 𝐷 (𝑛),

|𝜙𝑥 (𝜎) | =




 1
𝜇(𝐺𝜎)

∫
𝐺𝜎

𝜋(𝑔)𝑥𝑑𝜇(𝑔)




 ≤ 1

𝜇(𝐺𝜎)

∫
𝐺𝜎

|𝜋(𝑔)𝑥 |𝑑𝜇(𝑔) ≤ sup
𝑔∈𝐺𝜎

‖𝜋(𝑔)‖.

Thus, for 𝑥 ∈ E, with |𝑥 | = 1, it follows that

‖𝜙𝑥 ‖2 ≤
∑

𝜎∈𝐷 (𝑛)

1
𝜇(𝐺𝜎)

( sup
𝑔∈𝐺𝜎

‖𝜋(𝑔)‖)2,

and the bound on the norm of 𝑅1 follows.
Next, let 𝜙 ∈ 𝐶 (𝑋 (𝑛), 𝜋) with ‖𝜙‖ = 1. Then for every 𝜎 ∈ 𝐷 (𝑛), |𝜙(𝜎) |2 ≤ 𝜇(𝐺𝜎) and it follows

that

|𝑅2𝜙| ≤ 1
|𝐷 (𝑛) |

∑
𝜎∈𝐷 (𝑛)

√
𝜇(𝐺𝜎) ≤ max

𝜎∈𝐷 (𝑛)

√
𝜇(𝐺𝜎). �

For ∅ ≠ 𝜈 ⊆ {0, ...., 𝑛}, define an equivalence relation ∼𝜈 on 𝑋 (𝑛) as 𝜎 ∼𝜈 𝜎′ if |𝜎 ∩ 𝜎′| ≥ |𝜈 |,
and there is 𝜏 ∈ 𝑋 such that type(𝜏) = 𝜈 and 𝜏 ⊆ 𝜎 ∩ 𝜎′. Note that by the assumption that the 1-
dimensional links of X are finite graphs, it follows that for every ∅ ≠ 𝜈 ⊆ {0, ..., 𝑛}, |𝜈 | ≥ 𝑛 − 1 and
every 𝜎 ∈ 𝑋 (𝑛), the set {𝜎′ ∈ 𝑋 (𝑛) : 𝜎 ∼𝜈 𝜎′} is finite. For ∅ ≠ 𝜈 ⊆ {0, ..., 𝑛}, |𝜈 | ≥ 𝑛 − 1, define a
projection 𝑃𝜋𝜈 : 𝐶 (𝑋 (𝑛), 𝜋) → 𝐶 (𝑋 (𝑛), 𝜋) by

𝑃𝜋𝜈 𝜙(𝜎) = 1
|{𝜎′ ∈ 𝑋 (𝑛) : 𝜎 ∼𝜈 𝜎′}|

∑
𝜎′∼𝜈𝜎

𝜙(𝜎′),

(verifying that 𝑃𝜋𝜈 𝜙 is equivariant with respect to 𝜋 is straight-forward and left for the reader). Denote

𝐶 (𝑋 (𝑛), 𝜋)𝜈 = {𝜙 ∈ 𝐶 (𝑋 (𝑛), 𝜋) : ∀𝜎, 𝜎′, 𝜎 ∼𝜈 𝜎′ ⇒ 𝜙(𝜎) = 𝜙(𝜎′)},

and note that 𝑃𝜋𝜈 is a projection on 𝐶 (𝑋 (𝑛), 𝜋)𝜈 .

Lemma 3.5. The space
⋂
𝜈⊆{0,....,𝑛}, |𝜈 |=𝑛 Im(𝑃𝜋𝜈 ) is the space of all the constant maps 𝜙 ≡ 𝑥0, where

𝑥0 is a fixed point of the action of G on E.

Proof. Fix 𝜙 ∈
⋂
𝜈⊆{0,....,𝑛}, |𝜈 |=𝑛 Im(𝑃𝜋𝜈 ). As noted above, Im(𝑃𝜋𝜈 ) = 𝐶 (𝑋 (𝑛), 𝜋)𝜈 , and it follows that

if 𝜎 ∩ 𝜎′ ∈ 𝑋 (𝑛 − 1), then 𝜙(𝜎) = 𝜙(𝜎′). Thus, if 𝜎, 𝜎′ ∈ 𝑋 (𝑛) are connected by a gallery, then
𝜙(𝜎) = 𝜙(𝜎′). By assumption, X is gallery connected, and thus 𝜙 is a constant map (i.e., there is 𝑥0 ∈ E
such that 𝜙 ≡ 𝑥0). Since 𝜙 is equivariant, it follows that 𝑥0 is a fixed point of the action of G on E. �
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Proposition 3.6. For every 𝜈, 𝜈′ ⊆ {0, ..., 𝑛} such that |𝜈 | = |𝜈′ | = 𝑛 and 𝜈 ≠ 𝜈′, it holds that

Im(𝑃𝜋𝜈 ) ∩ Im(𝑃𝜋𝜈′ ) = Im(𝑃𝜋𝜈∩𝜈′ )

and

𝑃𝜋𝜈∩𝜈′𝑃
𝜋
𝜈 = 𝑃𝜋𝜈 𝑃𝜋𝜈∩𝜈′ = 𝑃𝜋𝜈∩𝜈′ .

Proof. Note that since 𝜈∩𝜈′ ⊆ 𝜈, 𝜈′, it follows that 𝐶 (𝑋 (𝑛), 𝜋)𝜈∩𝜈′ ⊆ 𝐶 (𝑋 (𝑛), 𝜋)𝜈 , 𝐶 (𝑋 (𝑛), 𝜋)𝜈′ . Thus,

Im(𝑃𝜋𝜈 ) ∩ Im(𝑃𝜋𝜈′ ) ⊇ Im(𝑃𝜋𝜈∩𝜈′ ).

For the reverse inclusion, note for every 𝜏 ∈ 𝑋 (𝑛 − 2) with type(𝜏) = 𝜈 ∩ 𝜈′, the link 𝑋𝜏 is connected,
and thus we can argue as in the proof of Lemma 3.5 above for the set {𝜎 : 𝜏 ⊆ 𝜎} and deduce that if
𝜙 ∈ Im(𝑃𝜋𝜈 ) ∩ Im(𝑃𝜋𝜈′ ), then 𝜙 is constant on 𝜏. This is true for every 𝜏 ∈ 𝑋 (𝑛−2) with type(𝜏) = 𝜈∩𝜈′,
and thus

Im(𝑃𝜋𝜈 ) ∩ Im(𝑃𝜋𝜈′ ) ⊆ Im(𝑃𝜋𝜈∩𝜈′ ).

Second, since 𝑃𝜋𝜈∩𝜈′ , 𝑃𝜋𝜈 are projections and Im(𝑃𝜋𝜈∩𝜈′ ) ⊆ Im(𝑃𝜋𝜈 ), it follows that 𝑃𝜋𝜈 𝑃𝜋𝜈∩𝜈′ = 𝑃𝜋𝜈∩𝜈′ .
Last, note that for every two 𝜎, 𝜎′ ∈ 𝑋 (𝑛), if 𝜎 ∼𝜈 𝜎′, then 𝜎 ∼𝜈∩𝜈′ 𝜎′. Thus, for every 𝜙 ∈

𝐶 (𝑋 (𝑛), 𝜋) and every 𝜎 ∈ 𝑋 (𝑛), it holds that

𝑃𝜋𝜈∩𝜈′𝑃
𝜋
𝜈 𝜙(𝜎) =

1
|{𝜎′ ∈ 𝑋 (𝑛) : 𝜎 ∼𝜈∩𝜈′ 𝜎′}|

∑
𝜎′∼𝜈∩𝜈′𝜎

1
|{𝜎′′ ∈ 𝑋 (𝑛) : 𝜎′ ∼𝜈 𝜎′′}|

∑
𝜎′′∼𝜈𝜎′

𝜙(𝜎′′) =

1
|{𝜎′ ∈ 𝑋 (𝑛) : 𝜎 ∼𝜈∩𝜈′ 𝜎′}|

∑
𝜎′′∼𝜈∩𝜈′𝜎

𝜙(𝜎′′)
∑

𝜎′∼𝜈𝜎′′

1
|{𝜎′′ ∈ 𝑋 (𝑛) : 𝜎′ ∼𝜈 𝜎′′}| = 𝑃𝜋𝜈∩𝜈′𝜙(𝜎).

Therefore, 𝑃𝜋𝜈∩𝜈′𝑃
𝜋
𝜈 = 𝑃𝜋𝜈∩𝜈′ as needed. �

The above Proposition implies that we can define cos(∠(𝑃𝜋𝜈 , 𝑃𝜋𝜈′ )) = cos𝑃𝜋
𝜈∩𝜈′

(∠(𝑃𝜋𝜈 , 𝑃𝜋𝜈′ )) for every
𝜈, 𝜈′ ⊆ {0, ..., 𝑛}, 𝜈 ≠ 𝜈′ with |𝜈 | = |𝜈′ | = 𝑛.

Lemma 3.7. For every 𝜈 ⊆ {0, ..., 𝑛}, |𝜈 | = 𝑛, it holds that

‖𝑃𝜋𝜈 ‖ ≤ sup
𝑔∈𝐾

‖𝜋(𝑔)‖2.

Proof. Fix 𝜈 ⊆ {0, ..., 𝑛}, |𝜈 | = 𝑛 and fix some 𝜙 ∈ 𝐶 (𝑋 (𝑛), 𝜋).
For every 𝜏 ∈ 𝐷 (𝑛 − 1) with type(𝜏) = 𝜈, it follows by the convexity of the norm that∑

𝜎∈𝑋 (𝑛) ,𝜏⊆𝜎
|𝑃𝜋𝜈 𝜙(𝜎) |2 ≤

∑
𝜎∈𝑋 (𝑛) ,𝜏⊆𝜎

1
|{𝜎′ ∈ 𝑋 (𝑛) : 𝜎 ∼𝜈 𝜎′}|

∑
𝜎′ ∈𝑋 (𝑛) ,𝜎∼𝜈𝜎′

|𝜙(𝜎′) |2 =∑
𝜎∈𝑋 (𝑛) ,𝜏⊆𝜎

1
|{𝜎′ ∈ 𝑋 (𝑛) : 𝜏 ⊆ 𝜎′}|

∑
𝜎′ ∈𝑋 (𝑛) ,𝜏⊆𝜎′

|𝜙(𝜎′) |2 =∑
𝜎′ ∈𝑋 (𝑛) ,𝜏⊆𝜎′

|𝜙(𝜎′) |2
∑

𝜎∈𝑋 (𝑛) ,𝜏⊆𝜎

1
|{𝜎 ∈ 𝑋 (𝑛) : 𝜏 ⊆ 𝜎}| =

∑
𝜎′ ∈𝑋 (𝑛) ,𝜏⊆𝜎′

|𝜙(𝜎′) |2.
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By Corollary 3.2 and the previous inequality, it holds that

‖𝑃𝜋𝜈 𝜙‖2 ≤
(
sup
𝑔∈𝐾

‖𝜋(𝑔)‖2

) ∑
𝜏∈𝐷 (𝑛−1) ,type(𝜏)=𝜈

1
𝜇(𝐺𝜏)

∑
𝜎∈𝑋 (𝑛) ,𝜏⊆𝜎

|𝑃𝜋𝜈 𝜙(𝜎) |2 ≤(
sup
𝑔∈𝐾

‖𝜋(𝑔)‖2

) ∑
𝜏∈𝐷 (𝑛−1) ,type(𝜏)=𝜈

1
𝜇(𝐺𝜏)

∑
𝜎′ ∈𝑋 (𝑛) ,𝜏⊆𝜎′

|𝜙(𝜎′) |2 ≤
(
sup
𝑔∈𝐾

‖𝜋(𝑔)‖4

)
‖𝜙‖2

as needed. �

We note that for every 𝜏 ∈ 𝑋 (𝑛 − 2), 𝑋𝜏 is a bipartite graph and we denote 𝜆E
𝜏,bipartite = 𝜆E

𝑋𝜏 ,bipartite.

Lemma 3.8. For every 𝜈, 𝜈′ ⊆ {0, ..., 𝑛} such that |𝜈 | = |𝜈′ | = 𝑛 and 𝜈 ≠ 𝜈′, denote

𝜆E𝜈∩𝜈′ = max
𝜏∈𝐷 (𝑛−2) ,type(𝜏)=𝜈∩𝜈′

𝜆E𝜏,bipartite.

Then it holds that

cos(∠(𝑃𝜋𝜈 , 𝑃𝜋𝜈′ )) ≤
(
sup
𝑔∈𝐾

‖𝜋(𝑔)‖2

)
𝜆E𝜈∩𝜈′ .

Proof. Let 𝜙 ∈ 𝐶 (𝑋 (𝑛), 𝜋) be some map. Without loss of generality, it is enough to show that

‖(𝑃𝜋𝜈 𝑃𝜋𝜈′ − 𝑃𝜋𝜈∩𝜈′ )𝜙‖ ≤
(
sup
𝑔∈𝐾

‖𝜋(𝑔)‖2

)
𝜆E𝜈∩𝜈′ ‖𝜙‖.

For every 𝜏 ∈ 𝐷 (𝑛 − 2) with type(𝜏) = 𝜈 ∩ 𝜈′ = {2, ..., 𝑛}, the link 𝑋𝜏 is a bipartite graph with sides

𝑆1 = {𝑣 ∈ 𝑋𝜏 (0) : type({𝑣}) = {0, ..., 𝑛} \ 𝜈},

𝑆2 = {𝑣 ∈ 𝑋𝜏 (0) : type({𝑣}) = {0, ..., 𝑛} \ 𝜈′}.

Let 𝑃1, 𝑃2, 𝑃1,2 : ℓ2(𝑋𝜏 (1);E) → ℓ2(𝑋𝜏 (1);E) be defined in section 2.6; that is,

𝑃𝑖Φ({𝑣1, 𝑣2}) =
1

𝑚(𝑣𝑖)
∑

{𝑣𝑖 ,𝑢 }∈𝐸
Φ({𝑣𝑖 , 𝑢}),∀Φ ∈ ℓ2(𝑋𝜏 (1);E),

and

𝑃1,2Φ ≡ 1
|𝑋𝜏 (1) |

∑
{𝑢,𝑣 }∈𝑋𝜏 (1)

Φ({𝑢, 𝑣}),∀Φ ∈ ℓ2(𝑋𝜏 (1);E).

Define the localization of 𝜙 on 𝑋𝜏 to be the function 𝜙𝜏 ∈ ℓ2(𝑋𝜏 (1);E) defined as

𝜙𝜏 ({𝑢, 𝑣}) = 𝜙(𝜏 ∪ {𝑢, 𝑣}).

One can verify that for every 𝜎 ∈ 𝑋 (𝑛) with 𝜏 ⊆ 𝜎, it holds that

𝑃𝜋𝜈 𝜙(𝜎) = 𝑃1𝜙𝜏 (𝜎 \ 𝜏), 𝑃𝜋𝜈′𝜙(𝜎) = 𝑃2𝜙𝜏 (𝜎 \ 𝜏), 𝑃𝜋𝜈∩𝜈′𝜙(𝜎) = 𝑃1,2𝜙𝜏 (𝜎 \ 𝜏).
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Let 𝜏 ∈ 𝐷 (𝑛 − 2) with type(𝜏) = 𝜈 ∩ 𝜈′. By Proposition 2.22, it follows that∑
𝜎∈𝑋 (𝑛) ,𝜏⊆𝜎

| (𝑃𝜋𝜈 𝑃𝜋𝜈′ − 𝑃𝜋𝜈∩𝜈′ )𝜙(𝜎) |2 =
∑

{𝑢,𝑣 }∈𝑋𝜏 (1)
| (𝑃1𝑃2 − 𝑃1,2)𝜙𝜏 ({𝑢, 𝑣}) |2 ≤

𝜆E𝜏,bipartite

∑
{𝑢,𝑣 }∈𝑋𝜏 (1)

|𝜙𝜏 ({𝑢, 𝑣}) |2 ≤ 𝜆E𝜏,bipartite

∑
𝜎∈𝑋 (𝑛) ,𝜏⊆𝜎

|𝜙(𝜎) |2 ≤ 𝜆E𝜈∩𝜈′
∑

𝜎∈𝑋 (𝑛) ,𝜏⊆𝜎
|𝜙(𝜎) |2.

By Corollary 3.2 (applied twice) and the above computation,

‖(𝑃𝜋𝜈 𝑃𝜋𝜈′ − 𝑃𝜋𝜈∩𝜈′ )𝜙‖2 ≤(
sup
𝑔∈𝐾

‖𝜋(𝑔)‖2

) ∑
𝜏∈𝐷 (𝑛−2) ,type(𝜏)=𝜈∩𝜈′

1
𝜇(𝐺𝜏)

∑
𝜎∈𝑋 (𝑛) ,𝜏⊆𝜎

| (𝑃𝜋𝜈 𝑃𝜋𝜈′ − 𝑃𝜋𝜈∩𝜈′ )𝜙(𝜎) |2 ≤(
sup
𝑔∈𝐾

‖𝜋(𝑔)‖2

) ∑
𝜏∈𝐷 (𝑛−2) ,type(𝜏)=𝜈∩𝜈′

1
𝜇(𝐺𝜏)

𝜆E𝜈∩𝜈′
∑

𝜎∈𝑋 (𝑛) ,𝜏⊆𝜎
|𝜙(𝜎) |2 ≤(

sup
𝑔∈𝐾

‖𝜋(𝑔)‖4

)
𝜆E𝜈∩𝜈′ ‖𝜙‖2,

as needed. �

Lemma 3.9. Let 𝜋 be a representation of G and define 𝑇𝜋 = 1
𝑛+1

∑
𝜈⊆{0,...,𝑛}, |𝜈 |=𝑛 𝑃𝜋𝜈 . For every 𝑘 ∈ N,

there is a real valued positive function 𝑓𝑘 ∈ 𝐶𝑐 (𝐺) such that
∫
𝐺

𝑓𝑘𝑑𝜇 = 1 (i.e., 𝑓𝑘 is a compactly
support probability function) and

𝑅2𝑇
𝑘
𝜋𝑅1 = 𝜋( 𝑓𝑘 ).

Proof. We start by noting that for every 𝜎 ∈ 𝐷 (𝑛) and every 𝑘 ∈ N, there is a probability function
𝑓 𝑘𝜎 : 𝑋 (𝑛) → [0, 1] such that 𝑓𝜎 is supported on a ball around 𝜎, and

𝑇 𝑘𝜋𝜙(𝜎) =
∑

𝜎′ ∈𝑋 (𝑛)
𝑓 𝑘𝜎 (𝜎′)𝜙(𝜎′)

for every 𝜙 ∈ 𝐶 (𝑋 (𝑛), 𝜋).
Define ℎ : 𝑋 (𝑛) → 𝐶𝑐 (𝐺) as follows: for every 𝜎′ ∈ 𝑋 (𝑛), choose 𝜎′′ ∈ 𝐷 (𝑛) and 𝑔 ∈ 𝐺 such that

𝑔.𝜎′′ = 𝜎′ and define

ℎ(𝜎′) =
1𝑔𝐺𝜎′′

𝜇(𝐺𝜎′′ ) .

From the definition of 𝜙𝑥 and Proposition 3.3, it follows that h is well-defined and that for every
𝜎′ ∈ 𝑋 (𝑛), 𝜙𝑥 (𝜎′) = 𝜋(ℎ(𝜎′))𝑥.

Recall that 𝑅2𝜙 = 1
|𝐷 (𝑛) |

∑
𝜎∈𝐷 (𝑛) 𝜙(𝜎). Thus, for every 𝑥 ∈ E,

𝑅2𝑇
𝑘
𝜋𝑅1𝑥 =

1
|𝐷 (𝑛) |

∑
𝜎∈𝐷 (𝑛)

𝑇 𝑘𝜋𝜙𝑥 (𝜎) = 1
|𝐷 (𝑛) |

∑
𝜎∈𝐷 (𝑛)

∑
𝜎′ ∈supp( 𝑓 𝑘

𝜎 )

𝑓 𝑘𝜎 (𝜎′)𝜙𝑥 (𝜎′) =

1
|𝐷 (𝑛) |

∑
𝜎∈𝐷 (𝑛)

∑
𝜎′ ∈supp( 𝑓 𝑘

𝜎 )

𝑓 𝑘𝜎 (𝜎′)𝜋(ℎ(𝜎′))𝑥 = 𝜋
��� 1
|𝐷 (𝑛) |

∑
𝜎∈𝐷 (𝑛)

∑
𝜎′ ∈supp( 𝑓 𝑘

𝜎 )

𝑓 𝑘𝜎 (𝜎′)ℎ(𝜎′)���𝑥
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and we take

𝑓𝑘 =
1

|𝐷 (𝑛) |
∑

𝜎∈𝐷 (𝑛)

∑
𝜎′ ∈supp( 𝑓 𝑘

𝜎 )

𝑓 𝑘𝜎 (𝜎′)ℎ(𝜎′). �

Theorem 3.10 (Żuk type criterion). Let G be a locally compact, unimodular group and X be a pure
n-dimensional, partite simplicial complex such that X is gallery connected and all the 1-dimensional
links of X are connected. Assume that G is acting on X by simplicial automorphisms and the the action
is cocompact, and that for every 𝜏 ∈ 𝑋 (𝑛 − 2) ∪ 𝑋 (𝑛 − 1) ∪ 𝑋 (𝑛), 𝐺𝜏 is an open compact subgroup.
Let E𝑋 be the class of Banach spaces such that for every E ∈ E𝑋 , it holds that

max
𝜏∈𝐷 (𝑛−2)

𝜆E𝜏,bipartite <
1

8𝑛 − 3
.

Then G has property (𝐹E𝑋 ).
Also, for 0 < 𝜀 < 1

8𝑛−3 , let E𝑋,𝜀 be the class of Banach spaces such that for everyE ∈ E𝑋 , it holds that

max
𝜏∈𝐷 (𝑛−2)

𝜆E𝜏,bipartite ≤ 1
8𝑛 − 3

− 𝜀.

Then for every 𝜀 > 0, G has robust property (T) with respect to E𝑋,𝜀 and property (𝐹E𝑋,𝜀).
Proof. Note that

E𝑋 =
⋃

0<𝜀< 1
8𝑛−3

E𝑋,𝜀 ,

and thus if we show that G has property (𝐹E𝑋,𝜀) for every 0 < 𝜀 < 1
8𝑛−3 , it will follow that G has

property (𝐹E𝑋 ). Below, we will show that for every 0 < 𝜀 < 1
8𝑛−3 , it holds that G has robust property

(T) with respect to E𝑋,𝜀 and property (𝐹E𝑋,𝜀).
Fix 0 < 𝜀 < 1

8𝑛−3 . If E𝑋,𝜀 = {{0}}, then robust property (T) with respect to E𝑋,𝜀 and property
(𝐹E𝑋,𝜀) holds trivially. Thus, we will assume below that E𝑋,𝜀 contains a non-trivial Banach space.

Note that by Lemma 2.7, E𝑋,𝜀 is closed under ℓ2 sums. It is also obvious that by its definition, E𝑋
is closed under passing to subspaces, and thus C ∈ E𝑋,𝜀 due to the fact that C is a subspace of every
non-trivial Banach space. It follows from Proposition 2.4 that if G has robust property (T) with respect
to E𝑋,𝜀 , then G has property (𝐹E𝑋,𝜀). Thus, it is sufficient to prove that G has robust property with
respect to E𝑋,𝜀 .

Denote

𝛽1 =

√√
1

8𝑛−3 − 𝜀
2

1
8𝑛−3 − 𝜀

, 𝛾 =
1

8𝑛 − 3
− 𝜀

2
,

and

𝛽2 =

√
1 + 1

2
1 − (8𝑛 − 3)𝛾

𝑛 − 1 + (3𝑛 − 1)𝛾 .

Further, denote 𝛽 = min{𝛽1, 𝛽2} and note that 𝛽 > 1.
Recall that 𝐾 ⊆ 𝐺 is a compact symmetric generating set of G. We will show that there is a Kazhdan

projection with respect to F (E𝑋,𝜀 , 𝐾, 𝛽). Explicitly, let 𝑓𝑘 ∈ 𝐶𝑐 (𝐺) be the probability functions in
Lemma 3.9; that is, the functions such that for every representation 𝜋,

𝜋( 𝑓𝑘 ) = 𝑅2𝑇
𝑘
𝜋𝑅1,
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where 𝑇 = 1
𝑛+1

∑
𝜈⊆{0,...,𝑛}, |𝜈 |=𝑛 𝑃𝜋𝜈 . We will show that ( 𝑓𝑘 ) converges in 𝐶F (E𝑋,𝜀 ,𝐾 ,𝛽) to p and

∀(𝜋,E) ∈ F (E , 𝐾, 𝛽), 𝜋(𝑝) is a projection on E𝜋 (𝐺) .
Fix 𝜋 ∈ F (E𝑋,𝜀 , 𝐾, 𝛽). By Lemma 3.7 and the choice of 𝛽2, it holds for every 𝜈 ⊆ {0, ..., 𝑛}, |𝜈 | = 𝑛

that

‖𝑃𝜋𝜈 ‖ ≤ 𝛽2
2 < 1 + 1 − (8𝑛 − 3)𝛾

𝑛 − 1 + (3𝑛 − 1)𝛾 .

By Lemma 3.8 and the choice of 𝛽1, it holds for every 𝜈, 𝜈′ ⊆ {0, ..., 𝑛}, 𝜈 ≠ 𝜈′, |𝜈 | = |𝜈′ | = 𝑛 that

cos(∠(𝑃𝜋𝜈 , 𝑃𝜋𝜈′ )) ≤ 𝛽2
1

(
1

8𝑛 − 3
− 𝜀

)
= 𝛾 <

1
8𝑛 − 3

.

It follows that the set of projections {𝑃𝜋𝜈 : 𝜈 ⊆ {0, ..., 𝑛}, |𝜈 | = 𝑛} fulfil the conditions of Theorem 2.17.
Denote as above 𝑇𝜋 = 1

𝑛+1
∑
𝜈⊆{0,...,𝑛}, |𝜈 |=𝑛 𝑃𝜋𝜈 . By Theorem 2.17, there is a projection 𝑇∞

𝜋 on⋂
𝜈⊆{0,...,𝑛}, |𝜈 |=𝑛 Im(𝑃𝜋𝜈 ) and constants 0 ≤ 𝑟 (𝛾, 𝛽) < 1, 𝐶 (𝛾, 𝛽) > 0, such that for every k,

‖𝑇 𝑘𝜋 − 𝑇∞
𝜋 ‖ ≤ 𝐶𝑟𝑘 .

Thus, it holds for every k that

‖𝑅2𝑇
∞
𝜋 𝑅1 − 𝜋( 𝑓𝑘 )‖ ≤ ‖𝑅2‖‖𝑅1‖𝐶𝑟𝑘 ≤Proposition 3.4 ���𝛽

√√ ∑
𝜎∈𝐷 (𝑛)

1
𝜇(𝐺𝜎)

max
𝜎∈𝐷 (𝑛)

√
𝜇(𝐺𝜎)

���𝐶𝑟𝑘 .

This shows that for every 𝜋 ∈ F (E𝑋,𝜀 , 𝐾, 𝛽), the sequence 𝜋( 𝑓𝑘 ) converges in norm and the rate of
convergence is bounded independently of 𝜋. Thus, the sequence ( 𝑓𝑘 ) converges in 𝐶F (E𝑋,𝜀 ,𝐾 ,𝛽) .

It remains to show that for every (𝜋,E) ∈ F (E𝑋,𝜀 , 𝐾, 𝛽), the operator 𝑅2𝑇
∞
𝜋 𝑅1 is a projection on

E
𝜋 (𝐺) . First, let 𝑥 ∈ E𝜋 (𝐺) . By the definition of 𝜙𝑥 , 𝑅1𝑥 = 𝜙𝑥 is the constant function 𝜙𝑥 ≡ 𝑥. By

Lemma 3.5,𝑇∞
𝜋 is a projection on the subspace of constant functions in 𝐶 (𝑋 (𝑛), 𝜋), and thus𝑇∞

𝜋 𝜙𝑥 = 𝜙𝑥 .
By the definition of 𝑅2, 𝑅2𝜙𝑥 = 𝑥 (since 𝜙𝑥 ≡ 𝑥). Combining all of the above, it follows that for every
𝑥 ∈ E𝜋 (𝐺) , 𝑅2𝑇

∞𝑅1𝑥 = 𝑥.
Second, for every 𝑥 ∈ E, 𝑇∞

𝜋 𝑅1𝑥 = 𝑇∞
𝜋 𝜙𝑥 and by Lemma 3.5, it follows that 𝑇∞

𝜋 𝜙𝑥 is a constant
equivariant function in 𝐶 (𝑋 (𝑛), 𝜋) (i.e., there is 𝑥0 ∈ E𝜋 (𝐺) such that 𝑇∞

𝜋 𝜙𝑥 ≡ 𝑥0). Thus, 𝑅2𝑇
∞
𝜋 𝜙𝑥 =

𝑥0 ∈ E𝜋 (𝐺) and it follows that Im(𝑅2𝑇
∞
𝜋 𝑅1) ⊆ E𝜋 (𝐺) . Therefore, we can conclude that 𝑅2𝑇

∞𝑅1 is a
projection on E𝜋 (𝐺) as needed. �

4. Application to random groups in the Gromov density model

The aim of this section is to apply our Banach Żuk criterion in the setting of random groups in the
Gromov density model. As a consequence, we will prove a generalized version of Theorem 1.5 that
appeared in the introduction. Some definitions below already appeared in the introduction and we recall
them for completeness.

A random group is a group chosen randomly according to some model, and one is interested in the
asymptotic properties of such randomly chosen group. The most famous model is the Gromov density
model:
Definition 4.1 (Gromov density model). Let 𝑘 ∈ N, 𝑘 ≥ 2 and 0 ≤ 𝑑 ≤ 1 be constants and 𝑙 ∈ N be a
parameter.

A random group is the Gromov density model D(𝑘, 𝑙, 𝑑) is a group Γ = 〈A|R〉 where |A| = 𝑘 and
R is a set of relators of length l (in A ∪A−1) randomly chosen from the set

{R is a set of cyclically reduced relators of length 𝑙 : |R| = �(2𝑘 − 1)𝑑𝑙�}

with uniform probability. We denote a random group in this model by Γ ∈ D(𝑘, 𝑙, 𝑑).

https://doi.org/10.1017/fms.2023.80 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.80


Forum of Mathematics, Sigma 23

For a group property P, we say that P holds asymptotically almost surely (a.a.s.) in D(𝑘, 𝑙, 𝑑) if

lim
𝑙→∞
P(Γ ∈ D(𝑘, 𝑙, 𝑑) has property 𝑃) = 1.

We will show that for certain class of Banach spaces, E property (𝐹E) holds a.a.s. in D(𝑘, 𝑙, 𝑑) (see
exact formulation below).

A closely related model to the density model is the binomial model:

Definition 4.2 (Gromov binomial model). Let 𝑘 ∈ N, 𝑘 ≥ 2 be a constant, 𝜌 : N→ [0, 1] be a function
and l be a parameter.

A random group is the Gromov binomial model B(𝑘, 𝑙, 𝜌) is a group Γ = 〈A|R〉 where |A| = 𝑘 and
R is a set of relators of cyclically reduced length l (in A ∪ A−1), where each relator in R is chosen
independently with probability 𝜌(𝑙). We denote a random group in this model by Γ ∈ B(𝑘, 𝑙, 𝜌).

For a group property P, we say that P holds asymptotically almost surely (a.a.s.) in B(𝑘, 𝑙, 𝜌) if

lim
𝑙→∞
P(Γ ∈ B(𝑘, 𝑙, 𝜌) has property 𝑃) = 1.

For a group property P, we say that P is monotone increasing if it is preserved under quotients. For our
purposes, it will be important that Proposition 2.5 implies that property (𝐹E) is monotone increasing.
The following Proposition appears in [16] (as part of a systematic study of random sets in both models):

Proposition 4.3 [16, Proof of Proposition 1.13]. Let P be a monotone increasing group property and
𝑘 ≥ 2, 0 < 𝑑 < 1 be constants. For 𝐶 ≥ 1, we denote

𝜌𝐶 (𝑙) = (2𝑘 − 1)−(1−𝑑)𝑙 − 𝐶 (2𝑘 − 1)−(
3
2−

𝑑
2 )𝑙 .

Then

P(Γ ∈ D(𝑘, 𝑙, 𝑑) has property 𝑃) ≥ P(Γ ∈ B(𝑘, 𝑙, 𝜌𝐶 ) has property 𝑃) − 3
𝐶

.

The following Corollary readily follows:

Corollary 4.4. Let P be a monotone increasing group property and 𝑘 ≥ 2, 0 < 𝑑 < 1 be constants.
Denote

𝜌(𝑙) = 1
2
(2𝑘 − 1)−(1−𝑑)𝑙 .

Then

P(Γ ∈ D(𝑘, 𝑙, 𝑑) has property 𝑃) ≥ P(Γ ∈ B(𝑘, 𝑙, 𝜌) has property 𝑃) − 6
(2𝑘 − 1) 𝑙

2
.

Following the ideas of [19] and assuming that l is divisible by 3, we introduce the model B′(𝑘, 𝑙, 𝜌)
as a variant of B(𝑘, 𝑙, 𝜌) defined as follows: Let 𝑊 ′′

𝑙
3

be reduced words in A ∪ A−1 of length 𝑙
3 with a

first and last letter in A. Define 𝑊 ′
𝑙 to be words in A∪A−1 of length l that are concatenations of 3 words

in 𝑊 ′′
𝑙
3

.

Definition 4.5. Let 𝑘 ≥ 2 be a constant and 𝜌 : N → [0, 1] be a function. A random group is the
model B′(𝑘, 𝑙, 𝜌) is a group Γ = 〈A|R〉, where |A| = 𝑘 and R is a set of relators chosen from 𝑊 ′

𝑙
independently with probability 𝜌(𝑙).
Proposition 4.6. Let P be a monotone increasing group property, 𝑘 ≥ 2 be a constant and 𝜌 : N→ [0, 1]
be a function. If a random group in B′(𝑘, 𝑙, 𝜌) has P a.a.s., then a random group in B(𝑘, 𝑙, 𝜌) has P
a.a.s. More explicitly,

P(Γ ∈ B(𝑘, 𝑙, 𝜌) has property 𝑃) ≥ P(Γ′ ∈ B′(𝑘, 𝑙, 𝜌) has property 𝑃).
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Proof. Denote 𝑊𝑙 to be the set of cyclically reduced words of length l in A ∪ A−1. The relators of
Γ ∈ B(𝑘, 𝑙, 𝜌) are chosen independently from 𝑊𝑙 , and thus one can start by first choosing relators from
𝑊 ′
𝑙 and then from 𝑊𝑙 \ 𝑊 ′

𝑙 . Thus, it is clear that Γ ∈ B(𝑘, 𝑙, 𝜌) is a quotient of Γ′ ∈ B′(𝑘, 𝑙, 𝜌) and by
the assumption that P is monotone increasing,

P(Γ ∈ B(𝑘, 𝑙, 𝜌) has 𝑃) ≥ P(Γ′ ∈ B′(𝑘, 𝑙, 𝜌) has 𝑃). �

The above Proposition shows that in order to prove property (𝐹E) holds a.a.s. for B(𝑘, 𝑙, 𝜌) (and
thus for D(𝑘, 𝑙, 𝑑) for 𝜌(𝑙) = 1

2 (2𝑘 − 1)−(1−𝑑)𝑙 by Corollary 4.4), it is sufficient to prove that property
(𝐹E) holds a.a.s. for B′(𝑘, 𝑙, 𝜌).

Last, again following [19], we define the model M+(𝑚, 𝜌) as follows:
Definition 4.7 (The positive triangular model). Let 𝑚 ∈ N be a parameter and 𝜌 : N → [0, 1] be a
function. A random group is the model M+(𝑚, 𝜌) is a group Γ = 〈𝑆 |𝑅〉 where |𝑆 | = 𝑚, 𝑆 ∩ 𝑆−1 = ∅
and R is a set of length 3 relators in the letters of S (not using the letters of 𝑆−1) chosen independently
with probability 𝜌(𝑚).

Fix some 𝑘 ≥ 2 and A with |A| = 𝑘 . Let 𝑊 ′′
𝑙
3
, 𝑊 ′

𝑙 be as above (with respect to A). For 𝑚 = |𝑊 ′′
𝑙
3
| and

𝑆 = {𝑠1, ..., 𝑠𝑚} fix a bijection 𝜑 : 𝑆 → 𝑊 ′′
𝑙
3

. This bijection extends to a bijection 𝜑 : {𝑠𝑖1 𝑠𝑖2 𝑠𝑖3 : 1 ≤
𝑖1, 𝑖2, 𝑖3 ≤ 𝑚} → 𝑊 ′

𝑙 . Thus, for Γ ∈ M+(𝑚, 𝜌), Γ = 〈𝑆 |𝑅〉 the map 𝜑 : Γ → 〈A|𝜑(𝑅)〉 extends to a
homomorphism. As the following Lemma states, 𝜑(Γ) is a finite index subgroup of 〈A|𝜑(𝑅)〉.
Lemma 4.8 [19, Lemma 3.15]. For every Γ in the support of M+(𝑚, 𝜌), 𝜑(Γ) is a finite index subgroup
of 〈A|𝜑(𝑅)〉.
Remark 4.9. The random group models considered in [19] are the density models, but the proof of [19,
Lemma 3.15] passes verbatim to the binomial models.

All the discussion above reduces the problem of proving (𝐹E) to D(𝑘, 𝑙, 𝑑) to proving (𝐹E) to
M+(𝑚, 𝜌) (with the correct choice of 𝜌):
Theorem 4.10. Let 1

3 < 𝑑 < 1, 𝑘 ≥ 2 be constants and E𝑙 be a class of Banach spaces (this class may
change as l increases). Define 𝑚(𝑙) = 1

2 (2𝑘 − 1) 𝑙
3 and 𝜌 : N→ [0, 1] to be 𝜌(𝑚) = 1

4𝑚3(1−𝑑) . For every
l divisible by 3,

P(Γ ∈ D(𝑘, 𝑙, 𝑑) has property (𝐹E𝑙)) ≥ P(Γ ∈ M+(𝑚(𝑙), 𝜌) has property (𝐹E𝑙)) −
6

(2𝑘 − 1) 𝑙
2

.

Proof. By Corollary 4.4, for 𝜌1 (𝑙) = 1
2 (2𝑘 − 1)−(1−𝑑)𝑙 , it holds that

P(Γ ∈ D(𝑘, 𝑙, 𝑑) has property (𝐹E𝑙)) ≥ P(Γ ∈ B(𝑘, 𝑙, 𝜌1) has property (𝐹E𝑙)) −
6

(2𝑘 − 1) 𝑙
2

.

By Proposition 4.6,

P(Γ ∈ B(𝑘, 𝑙, 𝜌1) has property (𝐹E𝑙)) ≥ P(Γ′ ∈ B′(𝑘, 𝑙, 𝜌1) has property (𝐹E𝑙)).

Thus, we are left to show that for every l divisible by 3, it holds that

P(Γ′ ∈ B′(𝑘, 𝑙, 𝜌1) has property 𝑃) ≥ P(Γ ∈ M+(𝑚(𝑙), 𝜌) has property (𝐹E𝑙)),

with 𝑚(𝑙) = 1
2 (2𝑘 − 1) 𝑙

3 and 𝜌(𝑚) = 1
4𝑚3(1−𝑑) .

Assume that l is divisible by 3. By Lemma 4.8, for every Γ′ ∈ B′(𝑘, 𝑙, 1
2 (2𝑘 − 1)−(1−𝑑)𝑙), there is a

group Γ ∈ M+(𝑚1, 𝜌2) with 𝑚1(𝑙) = |𝑊 ′′
𝑙
3
| = 𝑘2 (2𝑘 − 1) 𝑙

3−2 and 𝜌2 (𝑚1) = 1
2 (2𝑘 − 1)−(1−𝑑)𝑙 such that

𝜑(Γ) is a finite index subgroup in Γ′ and Γ, Γ′ occur in the same probability.
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By Proposition 2.6, if Γ has property (𝐹E𝑙), then Γ′ has property (𝐹E𝑙). Using the fact that property
(𝐹E𝑙) is monotone increasing it follows that we can replace 𝑚1 by

𝑚 =
1
2
(2𝑘 − 1)

𝑙
3 ≥ 𝑚1.

That is,

P(Γ′ ∈ B′(𝑘, 𝑙, 𝜌1) has property 𝑃) ≥ P(Γ ∈ M+(𝑚1, 𝜌2(𝑚1)) has property (𝐹E𝑙))
≥ P(Γ ∈ M+(𝑚, 𝜌2(𝑚1)) has property (𝐹E𝑙)).

Note that

𝜌2 (𝑚1) =
1
2
(2𝑘 − 1)−(1−𝑑)𝑙 = 1

2
1

((2𝑘 − 1) 𝑙
3 )3(1−𝑑)

=
1
2

1
2𝑚3(1−𝑑) =

1
4𝑚3(1−𝑑) .

It follows that for 𝜌(𝑚) = 1
4𝑚3(1−𝑑) , it holds that

P(Γ′ ∈ B′(𝑘, 𝑙, 𝜌1) has property 𝑃) ≥ P(Γ ∈ M+(𝑚, 𝜌(𝑚)) has property (𝐹E𝑙)),

as needed. �

Theorem 4.10 reduces the proof of Banach fixed point properties in the Gromov density to proving
Banach fixed properties in the positive triangular model. This model is convenient for us, since its
Cayley complex is a two-dimensional simplicial complex with bipartite links, and thus we can apply
our Theorem 3.10 above. For this, we will need to bound the second eigenvalue of the random walk
operator on the link of the Cayley complex of a group in M+(𝑚, 𝜌). Our approach for bounding the
second eigenvalue is heavily based on [1] and [11] and we claim very little originality here (a few
adaptations were needed in order to provide a sharp result in the triangular positive model). In order to
bound the second eigenvalue, we will first need some general lemmata regarding graphs and the bipartite
Erdös-Rényi graph.

Lemma 4.11. Let (𝑉, 𝐸1), ..., (𝑉, 𝐸𝑘 ) be connected graphs on the same vertex set V. Assume that
𝐸1, ..., 𝐸𝑘 are pairwise disjoint and that there are constants 𝑑, 0 < 𝜀 < 1 such that for every i, the
degree of a vertex in (𝑉, 𝐸𝑖) is between 𝑑 (1−𝜀) and 𝑑 (1+𝜀). Assume there is 𝜆 < 1 such that the second
eigenvalue of the random walk operator on each (𝑉, 𝐸𝑖) is less than 𝜆. Then the second eigenvalue of
the random walk operator on (𝑉, 𝐸1 ∪ ... ∪ 𝐸𝑘 ) is less that 𝜆 + 16𝜀2

(1−𝜀)4 .

Proof. For 𝑣 ∈ 𝑉 , denote 𝑚𝑖 (𝑣) to be the degree of v in (𝑉, 𝐸𝑖) and 𝑚(𝑣) to be the degree of v in
(𝑉, 𝐸1 ∪ ...𝐸𝑘 ). We need to prove that for 𝜙 : 𝑉 → R, if

∑
𝑣 ∈𝑉 𝑚(𝑣)𝜙(𝑣) = 0, then∑

𝑣 ∈𝑉
𝑚(𝑣) (𝑀𝜙(𝑣))𝜙(𝑣) ≤

(
𝜆 + 16𝜀2

(1 − 𝜀)4

) ∑
𝑣 ∈𝑉

𝑚(𝑣) |𝜙(𝑣) |2,

where M is the random walk operator on (𝑉, 𝐸1 ∪ ... ∪ 𝐸𝑘 ). Equivalently, we need to show that for the
normalized Laplacian 𝐼 − 𝑀 , it holds for 𝜙 as above that∑

𝑣 ∈𝑉
𝑚(𝑣) ((𝐼 − 𝑀)𝜙(𝑣))𝜙(𝑣) ≥

(
1 − 𝜆 − 16𝜀2

(1 − 𝜀)4

) ∑
𝑣 ∈𝑉

𝑚(𝑣) |𝜙(𝑣) |2.

Recall that ∑
𝑣 ∈𝑉

𝑚(𝑣) ((𝐼 − 𝑀)𝜙(𝑣))𝜙(𝑣) =
∑

{𝑢,𝑣 }∈𝐸1∪...∪𝐸𝑘

|𝜙(𝑢) − 𝜙(𝑣) |2,
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where double edges (if they exist) are added several times according to their multiplicity. Similarly, if
we denote 𝑀𝑖 to be the random walk operator on (𝑉, 𝐸𝑖), then for every i,∑

𝑣 ∈𝑉
𝑚(𝑣) ((𝐼 − 𝑀𝑖)𝜙(𝑣))𝜙(𝑣) =

∑
{𝑢,𝑣 }∈𝐸𝑖

|𝜙(𝑢) − 𝜙(𝑣) |2.

Thus,∑
𝑣 ∈𝑉

𝑚(𝑣) ((𝐼 − 𝑀)𝜙(𝑣))𝜙(𝑣) =
∑

{𝑢,𝑣 }∈𝐸1∪...∪𝐸𝑘

|𝜙(𝑢) − 𝜙(𝑣) |2 =
𝑘∑
𝑖=1

∑
{𝑢,𝑣 }∈𝐸𝑖

|𝜙(𝑢) − 𝜙(𝑣) |2

=
𝑘∑
𝑖=1

∑
𝑣 ∈𝑉

𝑚(𝑣) ((𝐼 − 𝑀𝑖)𝜙(𝑣))𝜙(𝑣) ≥ (1 − 𝜆)
𝑘∑
𝑖=1

∑
𝑣 ∈𝑉

𝑚𝑖 (𝑣)






𝜙(𝑣) − 1
𝑚𝑖 (𝑉)

∑
𝑢∈𝑉

𝑚𝑖 (𝑢)𝜙(𝑢)






2
= (1 − 𝜆)

𝑘∑
𝑖=1

∑
𝑣 ∈𝑉

𝑚𝑖 (𝑣) |𝜙(𝑣) |2 − (1 − 𝜆)
𝑘∑
𝑖=1

∑
𝑣 ∈𝑉

𝑚𝑖 (𝑣)






∑
𝑢∈𝑉

𝑚𝑖 (𝑢)
𝑚𝑖 (𝑉) 𝜙(𝑢)






2
= .(1 − 𝜆)

∑
𝑣 ∈𝑉

𝑚(𝑣) |𝜙(𝑣) |2 − (1 − 𝜆)
𝑘∑
𝑖=1

𝑚𝑖 (𝑉)






∑
𝑢∈𝑉

𝑚𝑖 (𝑢)
𝑚𝑖 (𝑉) 𝜙(𝑢)






2.

Thus, it is sufficient to prove that

𝑘∑
𝑖=1

𝑚𝑖 (𝑉)






∑
𝑢∈𝑉

𝑚𝑖 (𝑢)
𝑚𝑖 (𝑉) 𝜙(𝑢)






2 ≤ 16𝜀2

(1 − 𝜀)4

∑
𝑣 ∈𝑉

𝑚(𝑣) |𝜙(𝑣) |2.

Fix 1 ≤ 𝑖 ≤ 𝑘 . Note that for every 𝑢 ∈ 𝑉 ,

(1 − 𝜀)𝑑
𝑘 (1 + 𝜀)𝑑 ≤ 𝑚𝑖 (𝑢)

𝑚(𝑢) ≤ (1 + 𝜀)𝑑
𝑘 (1 − 𝜀)𝑑 .

Thus, (
1 − 𝜀

1 + 𝜀

)2
≤ 𝑚(𝑢)

𝑚𝑖 (𝑢)
𝑚𝑖 (𝑉)
𝑚(𝑉) ≤

(
1 + 𝜀

1 − 𝜀

)2
.

Therefore, 



1 − 𝑚(𝑢)
𝑚𝑖 (𝑢)

𝑚𝑖 (𝑉)
𝑚(𝑉)





 ≤ max

{(
1 + 𝜀

1 − 𝜀

)2
− 1, 1 −

(
1 − 𝜀

1 + 𝜀

)2
}
=

4𝜀

(1 − 𝜀)2 .

It follows that

𝑘∑
𝑖=1

𝑚𝑖 (𝑉)






∑
𝑢∈𝑉

𝑚𝑖 (𝑢)
𝑚𝑖 (𝑉) 𝜙(𝑢)






2 =
𝑘∑
𝑖=1

𝑚𝑖 (𝑉)






∑
𝑢∈𝑉

(
𝑚𝑖 (𝑢)
𝑚𝑖 (𝑉) −

𝑚(𝑢)
𝑚(𝑉)

)
𝜙(𝑢)






2
=

𝑘∑
𝑖=1

𝑚𝑖 (𝑉)






∑
𝑢∈𝑉

𝑚𝑖 (𝑢)
𝑚𝑖 (𝑉)

(
1 − 𝑚(𝑢)

𝑚𝑖 (𝑢)
𝑚𝑖 (𝑉)
𝑚(𝑉)

)
𝜙(𝑢)






2 ≤
𝑘∑
𝑖=1

𝑚𝑖 (𝑉)
∑
𝑢∈𝑉

𝑚𝑖 (𝑢)
𝑚𝑖 (𝑉)





(1 − 𝑚(𝑢)
𝑚𝑖 (𝑢)

𝑚𝑖 (𝑉)
𝑚(𝑉)

)
𝜙(𝑢)





2
≤

𝑘∑
𝑖=1

∑
𝑢∈𝑉

𝑚𝑖 (𝑢)
(

4𝜀

(1 − 𝜀)2

)2
|𝜙(𝑢) |2 =

16𝜀2

(1 − 𝜀)4

∑
𝑢∈𝑉

𝑚(𝑢) |𝜙(𝑢) |2,

as needed. �
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Lemma 4.12. Let (𝑉, 𝐸1), (𝑉, 𝐸2) be finite graphs on the same vertex set V and 0 ≤ 𝜆 < 1, 0 ≤ 𝜀 < 1
be a constants. Denote 𝑚𝑖 (𝑣) to be the degree of v in (𝑉, 𝐸𝑖). Assume that (𝑉, 𝐸1 ∪ 𝐸2) is connected
and that the second eigenvalue of the random walk operator on it is less than 𝜆. If for every 𝑣 ∈ 𝑉 ,
𝑚2 (𝑣)
𝑚1 (𝑣) ≤ 𝜀 < 1−𝜆

4 , then (𝑉, 𝐸1) is connected and the second eigenvalue of the random walk operator on
it is less than 𝜆 + 4𝜀.

The proof is very similar to the proof of Lemma 4.11, and thus we allow ourselves to omit some
details.

Proof. Denote 𝑀𝑖 , 𝑖 = 1, 2 to be the random walk operator on (𝑉, 𝐸𝑖). Let 𝜙 : 𝑉 → R such that∑
𝑣 𝑚1(𝑣)𝜙(𝑣) = 0. We need to show that∑

𝑣 ∈𝑉
𝑚1 (𝑣) (𝑀1𝜙(𝑣))𝜙(𝑣) ≤ (𝜆 + 4𝜀)

∑
𝑣 ∈𝑉

𝑚1(𝑣) |𝜙(𝑣) |2

or, equivalently, that∑
𝑣 ∈𝑉

𝑚1 (𝑣) ((𝐼 − 𝑀1)𝜙(𝑣))𝜙(𝑣) ≥ (1 − 𝜆 − 4𝜀)
∑
𝑣 ∈𝑉

𝑚1 (𝑣) |𝜙(𝑣) |2.

Observe that∑
𝑣 ∈𝑉

𝑚(𝑣) ((𝐼 − 𝑀)𝜙(𝑣))𝜙(𝑣) =
∑
𝑣 ∈𝑉

𝑚1(𝑣) ((𝐼 − 𝑀1)𝜙(𝑣))𝜙(𝑣) +
∑
𝑣 ∈𝑉

𝑚2 (𝑣) ((𝐼 − 𝑀2)𝜙(𝑣))𝜙(𝑣)

≤
∑
𝑣 ∈𝑉

𝑚1(𝑣) ((𝐼 − 𝑀1)𝜙(𝑣))𝜙(𝑣) + 2
∑
𝑣 ∈𝑉

𝑚2 (𝑣) |𝜙(𝑣) |2

≤
∑
𝑣 ∈𝑉

𝑚1(𝑣) ((𝐼 − 𝑀1)𝜙(𝑣))𝜙(𝑣) + 2𝜀
∑
𝑣 ∈𝑉

𝑚1(𝑣) |𝜙(𝑣) |2.

Thus, ∑
𝑣 ∈𝑉

𝑚1(𝑣) ((𝐼 − 𝑀1)𝜙(𝑣))𝜙(𝑣) ≥
∑
𝑣 ∈𝑉

𝑚(𝑣) ((𝐼 − 𝑀)𝜙(𝑣))𝜙(𝑣) − 2𝜀
∑
𝑣 ∈𝑉

𝑚1 (𝑣) |𝜙(𝑣) |2,

and we are left to prove that∑
𝑣 ∈𝑉

𝑚(𝑣) ((𝐼 − 𝑀)𝜙(𝑣))𝜙(𝑣) ≥ (1 − 𝜆 − 2𝜀)
∑
𝑣 ∈𝑉

𝑚1(𝑣) |𝜙(𝑣) |2.

Note that for every 𝑢 ∈ 𝑉 , 1
1+𝜀 ≤ 𝑚1 (𝑢)

𝑚(𝑢) ≤ 1 and

1
1 + 𝜀

≤ 𝑚(𝑉)
𝑚(𝑢)

𝑚1(𝑢)
𝑚1 (𝑉) ≤ 1 + 𝜀.

Thus,∑
𝑣 ∈𝑉

𝑚(𝑣) ((𝐼 − 𝑀)𝜙(𝑣))𝜙(𝑣) ≥ (1 − 𝜆)
∑
𝑣 ∈𝑉

𝑚(𝑣) |𝜙(𝑣) |2 − (1 − 𝜆)𝑚(𝑉)






∑
𝑢∈𝑉

𝑚(𝑢)
𝑚(𝑉) 𝜙(𝑢)






2
≥ (1 − 𝜆)

∑
𝑣 ∈𝑉

𝑚1(𝑣) |𝜙(𝑣) |2 − 𝑚(𝑉)






∑
𝑢∈𝑉

𝑚(𝑢)
𝑚(𝑉) 𝜙(𝑢)






2
= (1 − 𝜆)

∑
𝑣 ∈𝑉

𝑚1 (𝑣) |𝜙(𝑣) |2 − 𝑚(𝑉)






∑
𝑢∈𝑉

𝑚(𝑢)
𝑚(𝑉)

(
1 − 𝑚(𝑉)

𝑚(𝑢)
𝑚1 (𝑢)
𝑚1(𝑉)

)
𝜙(𝑢)






2
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≤ (1 − 𝜆)
∑
𝑣 ∈𝑉

𝑚1(𝑣) |𝜙(𝑣) |2 − 𝜀2
∑
𝑢∈𝑉

𝑚(𝑢) |𝜙(𝑢) |2

≤ (1 − 𝜆)
∑
𝑣 ∈𝑉

𝑚1(𝑣) |𝜙(𝑣) |2 − 𝜀2(1 + 𝜀)
∑
𝑢∈𝑉

𝑚1 (𝑢) |𝜙(𝑢) |2

≤ (1 − 𝜆)
∑
𝑣 ∈𝑉

𝑚1(𝑣) |𝜙(𝑣) |2 − 2𝜀
∑
𝑢∈𝑉

𝑚1 (𝑢) |𝜙(𝑢) |2,

as needed. �

For 𝑛 ∈ N and 𝜌 : N → [0, 1], let Gbipartite(𝑛, 𝜌) be the bipartite Erdös-Rényi graph defined as
follows: The vertex set of V is 𝑆1 ∪ 𝑆2, where 𝑆1, 𝑆2 are disjoint sets of size n. We randomly choose
edges in the set {{𝑢, 𝑣} : 𝑢 ∈ 𝑆1, 𝑣 ∈ 𝑆2} where each edge is chosen independently with probability 𝜌(𝑛).

Theorem 4.13 [2, Theorem A]. If 𝜌(𝑛) ≥ log6 (𝑛)
𝑛 , then with probability tending to 1 as n grows to

infinity, the graph Gbipartite(𝑛, 𝜌) is connected and its second largest eigenvalue is less than 8√
𝑛𝜌(𝑛)

.

Lemma 4.14. Let 0 ≤ 𝛼 < 1 be a constant. Assume 𝜌(𝑛) ≥ 𝐶
𝑛𝛼 for some positive constant C. Then

lim
𝑛
P(|𝑚(𝑣) − 𝑛𝜌(𝑛) | ≥ 𝑛𝜌(𝑛)

𝑛
1−𝛼

3
for some 𝑣 in Gbipartite(𝑛, 𝜌)) = 0.

Proof. For every vertex v, 𝑚(𝑣) is a binomial random variable. For every 0 < 𝛿 < 1, it holds by Chernoff
bound that

P(𝑚(𝑣) ≥ (1 + 𝛿)𝑛𝜌(𝑛)) ≤ exp(−𝛿2

3
𝑛𝜌(𝑛)),

P(𝑚(𝑣) ≤ (1 − 𝛿)𝑛𝜌) ≤ exp(−𝛿2

3
𝑛𝜌(𝑛)).

Thus, if we choose 𝛿 = 1
𝑛

1−𝛼
3

, we have that for every large n,

P

(
|𝑚(𝑣) − 𝑛𝜌(𝑛) | ≥ 𝑛𝜌(𝑛)

𝑛
1−𝛼

3

)
≤ 2 exp

(
− 𝑛𝜌(𝑛)

3𝑛
2(1−𝛼)

3

)
≤ 2 exp

(
−𝐶𝑛

1−𝛼
3

3

)
.

By union bound, the probability the some vertex v has |𝑚(𝑣) − 𝑛𝜌(𝑛) | ≥ 𝑛𝜌(𝑛)

𝑛
1−𝛼

3
is less than

4𝑛 exp
(
−𝐶𝑛

1−𝛼
3

3

)
and this tends to 0 as n tends to infinity. �

After this setup, we argue as in [1]: Let Γ ∈ M+(𝑚, 𝜌). The relations of Γ are of the form 𝑠𝑖𝑠 𝑗 𝑠𝑘 ,
and thus the Cayley complex of Γ is a two-dimensional simplicial complex on which Γ acts transitively
on the vertices. The link of 𝑒 ∈ Γ is a bipartite graph with sides 𝑆0 = 𝑆, 𝑆1 = 𝑆−1, where each relation
𝑠𝑖𝑠 𝑗 𝑠𝑘 gives rise to 3 edges {𝑠 𝑗 , 𝑠−1

𝑖 }, {𝑠𝑘 , 𝑠−1
𝑗 }, {𝑠𝑖 , 𝑠−1

𝑘 }. Thus, the link is composed of 3 bipartite
graphs 𝐿1, 𝐿2, 𝐿3 on 𝑆 ∪ 𝑆−1:

1. The graph 𝐿1 is composed of all the edges {𝑠 𝑗 , 𝑠−1
𝑖 } where 𝑠𝑖𝑠 𝑗 𝑠𝑘 is a relation.

2. The graph 𝐿2 is composed of all the edges {𝑠𝑘 , 𝑠−1
𝑗 } where 𝑠𝑖𝑠 𝑗 𝑠𝑘 is a relation.

3. The graph 𝐿3 is composed of all the edges {𝑠𝑖 , 𝑠−1
𝑘 } where 𝑠𝑖𝑠 𝑗 𝑠𝑘 is a relation.

Note that we allow double edges (i.e., if 𝑠𝑖𝑠 𝑗 𝑠𝑘 , 𝑠𝑖𝑠 𝑗 𝑠𝑘′ are two relations of Γ, then the edge {𝑠 𝑗 , 𝑠−1
𝑖 }

will appear twice).
The idea of [1] is that each of these graphs behaves like Gbipartite(𝑚, 𝜌′), where 𝜌′ ≥ 𝜌, and thus

by Lemma 4.11 and Theorem 4.13, we can bound the second eigenvalue of the link. However, some
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analysis is needed to account for double edges and this will require Lemma 4.14. To sum up, we will
prove the following:

Theorem 4.15. Let 3
2 < 𝛼 < 2, 𝐶 > 0 be constants and 𝜌(𝑚) = 𝐶

𝑚𝛼 . For a random groupΓ ∈ M+(𝑚, 𝜌),
it holds a.a.s. that link of each vertex in the Cayley complex of Γ is a connected graph and the second
eigenvalue of the random walk operator on it is < 10√

𝐶𝑚1− 𝛼
2

.

Proof. For clarity, in this proof we will denote the degree of a vertex by 𝑤(𝑣) and not 𝑚(𝑣), since the
letter m already appears as a parameter of the random group.

We first claim that a.a.s., for every 𝑖 = 1, 2, 3, each edge in 𝐿𝑖 appears with multiplicity ≤ 3. Indeed,
the probability that a specific edge appears four times or more is bounded by 𝑚4𝜌(𝑚)4. By union bound,
the probability that some edge appears four times or more is bounded by 𝑚6𝜌(𝑚)6 ≤ 𝐶4𝑚6−4𝛼, and
this tends to 0 since 𝛼 > 3

2 .
Second, we claim that a.a.s, for every for every 𝑖 = 1, 2, 3, each vertex in 𝐿𝑖 has at most 𝐾 = � 1

2𝛼−3 �+1
double/triple edges connected to it. Indeed, the probability that a specific vertex has K double/triple
edges connected to it is bounded by 𝑚3𝐾 𝜌(𝑚)2𝐾 . By union bound, the probability that some vertex has
K double/triple edges connected to it is bounded by 2𝑚3𝐾+1𝜌(𝑚)2𝐾 ≤ 2𝐶2𝐾𝑚3𝐾+1−2𝐾 𝛼, and this tends
to 0 since 𝐾 > 1

2𝛼−3 .
Let 𝐿 ′

𝑖 be the graph obtained from 𝐿𝑖 by deleting multiple edges. Then a.a.s., for every 𝑣 ∈ 𝑆 ∪ 𝑆−1,
the degree of v in 𝐿 ′

𝑖 differs than the degree of v in 𝐿𝑖 by at most 2𝐾 (which is constant and does not
depend on m).

Each of the 𝐿 ′
𝑖 is a random bipartite Erdös-Rényi graph Gbipartite(𝑚, 𝜌′) with

𝜌′(𝑚) = 1 − (1 − 𝜌(𝑚))𝑚 ≥ 𝐶

𝑚𝛼−1

for every large m.
By Theorem 4.13, it holds a.a.s. for every 𝑖 = 1, 2, 3 that 𝐿 ′

𝑖 is connected and the second eigenvalue
of the random walk operator on it is bounded from above by 8√

𝑚𝜌′ (𝑚)
≤ 8√

𝐶𝑚1− 𝛼
2

. By Lemma 4.14, for

every i and every vertex in 𝐿 ′
𝑖 , it holds a.a.s. that

|𝑤′
𝑖 (𝑣) − 𝑚𝜌′(𝑚) | ≤ 𝑚𝜌′(𝑚)

𝑚
2−𝛼

3
,

where 𝑤′
𝑖 denotes the degree of v in 𝐿 ′

𝑖 . Thus, by Lemma 4.11, it holds a.a.s. that for every large m, the
second largest eigenvalue of the random walk operator on 𝐿 ′

1 ∪ 𝐿 ′
2 ∪ 𝐿 ′

3 is bounded from above by

8
√

𝐶𝑚1− 𝛼
2
+ 20

𝑚
4
3 (1−

𝛼
2 )

<
9

√
𝐶𝑚1− 𝛼

2
.

Note that by the discussion above, 𝐿1 ∪ 𝐿2 ∪ 𝐿3 is a union of 𝐿 ′
1 ∪ 𝐿 ′

2 ∪ 𝐿 ′
3 and the graph H of the

deleted edges. Also note that a.a.s. it holds that every vertex v, H has at most 6𝐾 = 6� 1
2𝛼−3 � + 6 edges

connected to it. Therefore, if we denote 𝑤′ to be the degree of a vertex is 𝐿 ′
1 ∪ 𝐿 ′

2 ∪ 𝐿 ′
3 and 𝑤′′ to be the

degree of a vertex in H, it holds a.a.s. for every large m that

𝑤′′(𝑣)
𝑤′(𝑣) ≤ 6𝐾

3(𝑚𝜌′(𝑚) − 𝑚𝜌′ (𝑚)

𝑚
2−𝛼

3
)
≤ 4𝐾

𝐶𝑚2−𝛼 .

Thus, from Lemma 4.12, it follows that a.a.s. the second largest eigenvalue of the random walk operator
on 𝐿1 ∪ 𝐿2 ∪ 𝐿3 is bounded from above by
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9
√

𝐶𝑚1− 𝛼
2
+ 16𝐾

𝐶𝑚2−𝛼 <
10

√
𝐶𝑚1− 𝛼

2

as needed. �

After this, we can prove the following Theorem:

Theorem 4.16. Let 3
2 < 𝛼 < 2, 𝐶 > 0 be constants and 𝜌(𝑚) = 𝐶

𝑚𝛼 . Define a class of Banach spaces
EM+ (𝛼, 𝐶, 𝑚) as the union of all the classes Eu-curved

𝜔 for which 𝜔( 10√
𝐶𝑚1− 𝛼

2
) ≤ 1

26 .
Then M+(𝑚, 𝜌) has property (𝐹EM+ (𝛼, 𝐶, 𝑚)) a.a.s. In particular:

◦ For any uniformly curved space E, M+(𝑚, 𝜌) has property (𝐹 E) a.a.s.
◦ For 𝜃0 = log(26)

(1− 𝛼
2 ) log(𝑚)+ 1

2 log(𝐶)−log(10) , M+(𝑚, 𝜌) has property (𝐹E𝜃0 ) a.a.s.

◦ For 2 ≤ 𝑝 ≤ 2(1− 𝛼
2 ) log(𝑚)+log(𝐶)−2 log(10)

log(26) , M+(𝑚, 𝜌) has property (𝐹𝐿 𝑝) a.a.s.

Proof. Let Γ ∈ M+(𝑚, 𝜌) be a random group. Denote by X the Cayley complex of X. This is a
2-dimensional simplicial complex on which Γ acts freely and transitively on vertices and the links of X
are bipartite graphs. By Theorem 4.15, it holds a.a.s. that the second largest eigenvalue of the random
walk operator on the link of a vertex in X is < 10√

𝐶𝑚1− 𝛼
2

. Thus, by Corollary 2.21, it holds a.a.s. that for
every E ∈ EM+ (𝛼, 𝐶, 𝑚) and every 𝑣 ∈ 𝑋 (0),

𝜆E𝑋𝑣 ,bipartite < 2𝜔

(
10

√
𝐶𝑚1− 𝛼

2

)
≤ 1

13
.

Thus, by Theorem 3.10 (noting that C ∈ EM+ (𝛼, 𝐶, 𝑚)), it holds that a.a.s. that Γ has property
(𝐹EM+ (𝛼, 𝐶, 𝑚)).

Next, we derive the particular statements stated above.
First, for every uniformly curved space E, it holds that E ∈ M+(𝑚, 𝜌) given that m is large enough.

Thus, for every uniformly curved space, it holds a.a.s. that M+(𝑚, 𝜌) has property (𝐹 E).
Second, by Corollary 2.14, it holds for every 0 < 𝜃0 ≤ 1 that E𝜃0 ⊆ Eu-curved

𝜔 (𝑡)=𝑡 𝜃0
. Thus, if(

10
√

𝐶𝑚1− 𝛼
2

) 𝜃0

=
1
26

, (1)

it follows that E𝜃0 ⊆ EM+ (𝛼, 𝐶, 𝑚), and therefore a.a.s. M+(𝑚, 𝜌) has property (𝐹E𝜃0 ). The equation
(1) is equivalent to

𝜃0 =
log(26)

(1 − 𝛼
2 ) log(𝑚) + 1

2 log(𝐶) − log(10)

as needed.
Last, for every 2 ≤ 𝑝 < ∞, every 𝐿𝑝 space is 2

𝑝 -strictly Hilbertian. Thus, for 𝜃0 =
log(26)

(1− 𝛼
2 ) log(𝑚)+ 1

2 log(𝐶)−log(10) as above, if 2
𝑝 ≥ 𝜃0, it follows that

2
𝑝
≤ log(26)

(1 − 𝛼
2 ) log(𝑚) + 1

2 log(𝐶) − log(10)
,

it follows that a.a.s. M+(𝑚, 𝜌) has property (𝐹𝐿 𝑝). The condition 2
𝑝 ≥ 𝜃0 is equivalent to

𝑝 ≤
2(1 − 𝛼

2 ) log(𝑚) + log(𝐶) − 2 log(10)
log(26)

as needed. �
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Combining the above Theorem and Theorem 4.10 allows us to deduced fixed point properties for
random groups in the Gromov density model:

Theorem 4.17. Let 1
3 < 𝑑 < 1

2 , 𝑘 ≥ 2 be constants. Define a class of Banach spaces ED (𝑘, 𝑙, 𝑑) as the

union of all the classes Eu-curved
𝜔 for which 𝜔

(
20
√

2
(2𝑘−1)

𝑙
6 (3𝑑−1)

)
≤ 1

26 .

Then for l divisible by 3, D(𝑘, 𝑙, 𝑑) has property (𝐹ED (𝑘, 𝑙, 𝑑)) a.a.s. In particular:

◦ For any uniformly curved space E, D(𝑘, 𝑙, 𝑑) has property (𝐹 E) a.a.s. given that l is divisible by 3.
◦ For 𝜃0 = log(26)

𝑙
6 (3𝑑−1) log(2𝑘−1)−log(20

√
2)

, D(𝑘, 𝑙, 𝑑) has property (𝐹E𝜃0 ) a.a.s. given that l is divisible by 3.

◦ For 2 ≤ 𝑝 ≤ 𝑙 (𝑑− 1
3 ) log(2𝑘−1)−2 log(20

√
2)

log(26) , D(𝑘, 𝑙, 𝑑) has property (𝐹𝐿 𝑝) a.a.s. given that l is divisible
by 3.

Proof. Let 𝑚 = 𝑚(𝑘, 𝑙) = 1
2 (2𝑘 − 1) 𝑙

3 and 𝜌(𝑚) = 1
4

1
𝑚3(1−𝑑) . We can write 𝜌(𝑚) = 𝐶 1

𝑚𝛼 for 𝐶 = 1
4 ,

𝛼 = 3(1−𝑑). Then with this m and 𝜌, the class EM+ (𝛼, 𝐶, 𝑚) defined in Theorem 4.16 contains the class
ED (𝑘, 𝑙, 𝑑) defined above. By Theorem 4.10 for l divisible by 3, D(𝑘, 𝑙, 𝑑) has property (𝐹ED (𝑘, 𝑙, 𝑑))
a.a.s.

The particular statements are proven as in Theorem 4.16 and are left for the reader. �

Remark 4.18. By the proof of Theorem 4.10, a similar Theorem can also be proved in the Gromov
binomial model, and this is left for the reader.
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