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Strong Converse Inequalities for Averages
in Weighted Lp Spaces on [−1, 1]

M. Felten

Abstract. Averages in weighted spaces Lp
φ[−1, 1] defined by additions on [−1, 1] will be shown to satisfy

strong converse inequalities of type A and B with appropriate K-functionals. Results for higher levels of
smoothness are achieved by combinations of averages. This yields, in particular, strong converse inequalities
of type D between K-functionals and suitable difference operators.

1 Introduction

In this section we introduce the concept of averages and give the main definitions needed
for the paper.

We will investigate the averaging operators

(At f )(x) :=
1

φ(t)

∫ t

0
f (x ⊕ u) dφ(u), x ∈ [−1, 1],(1.1)

for t > 0 where φ ∈ AC[−1, 1] is an odd function with φ ′(x) > 0 almost everywhere and
⊕ an inner addition on [−1, 1] suitably defined by means of the function φ (see below).
We denote by Lp

φ[−1, 1], p ∈ [1,∞), the set of all measurable functions f : [−1, 1] → R
for which the weighted norm

‖ f ‖Lp
φ

:=

(∫ 1

−1
| f (x)|p dφ(x)

) 1
p

is finite.
The smoothness of functions in Lp

φ[−1, 1] is described by the K-functional

Kr( f , tr) := inf{‖ f − g‖Lp
φ

+ tr ‖Drg‖Lp
φ
| Drg ∈ Lp

φ[−1, 1]}, t ≥ 0,(1.2)

in which the differential operator is given by

(D f )(x) :=
f ′(x)

φ ′(x)
x ∈ [−1, 1] a.e.(1.3)
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and Dr is defined by composition of D r times.
In this paper we will relate the approximation of f by At f (or linear combinations of

Au) with the K-functional (1.2). We will investigate strong equivalence relations of type A,
B and D in the classification introduced and discussed in [Di-Iv].

For first order r = 1, K( f , t) := K1( f , t), we will prove that the relation

K
(

f , φ(t)
)
∼ ‖At f − f ‖Lp

φ
(1.4)

holds for p > ln 2
ln(
√

13−1)−ln 2
= 2.62 . . . where a(t) ∼ b(t) means that there exists a constant

c > 0 with ca(t) ≤ b(t) ≤ c−1a(t). (1.4) is a strong converse inequality of type A in the
sense of [Di-Iv]. In addition, we will show the strong converse inequality of type B

K
(

f , φ(t)
)
∼ ‖At f − f ‖Lp

φ
+ ‖Aρt f − f ‖Lp

φ

for 1 ≤ p ≤ ln 2
ln(
√

13−1)−ln 2
, where ρ ∈ (0, 1] is a constant independent of t and f .

Equivalence relations with K-functionals of higher orders are achieved if the operators
Ar,t are defined as linear combinations of Au with different variables u. For that we need to
define a scalar multiplication n � t , n ∈ N0, which matches the addition ⊕. The multipli-
cation is given by

n� t := t ⊕ · · · ⊕ t︸ ︷︷ ︸
n times

, t ∈ [−1, 1],(1.5)

for n ∈ N and n� t := 0 for n = 0. For average operators Ar,t of order r ∈ N , defined by

Ar,t :=
r∑

k=1

(
r

k

)
(−1)k+1Ak�t(1.6)

we will show, in Section 5, that there exists a ρ ∈ (0, 1] such that

Kr
(

f , φ(t)r
)
∼ ‖Ar,t f − f ‖Lp

φ
+ ‖Ar,ρt f − f ‖Lp

φ
.(1.7)

From this strong converse inequality of type B we will show, in Section 6, a strong converse
relation of type D, namely

Kr
(

f , φ(t)r
)
∼ sup

0<u≤t
‖∆r

u f ‖Lp
φ

(1.8)

where (∆r
u f )(x) :=

∑r
k=0

(r
k

)
(−1)k+1 f

(
x⊕ (k�u)

)
is a difference operator of order r, that

is to say, the right hand side of (1.8) is a modulus of smoothness which is equivalent to the
K-functional in question.

The addition ⊕ in (1.1) is defined by means of the function φ as follows. From the
assumptions that φ ∈ AC[−1, 1] is odd and φ ′ > 0 a.e., it follows that φ maps the unit
interval [−1, 1] bijectively onto [−l, l], l = φ(1) and φ−1 : [−l, l] → [−1, 1] is also an
absolutely continuous function. Then⊕ : [−1, 1]2 → [−1, 1] is defined as

a⊕ b := φ−1
(
φ(a) + φ(b)

)
for a, b ∈ [−1, 1](1.9)
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where φ−1 : R→ [−1, 1] is interpreted as a 4l-periodic function (i.e., φ−1(t +4l) = φ−1(t),
t ∈ R) which satisfies

φ−1(t) = φ−1(2l − t) for t ∈ (l, 3l].(1.10)

The extension (1.10) of φ from [−l, l] to a 4l-periodic function on R makes (1.9) well-
defined because φ(a) + φ(b) can lie outside of the interval [−l, l]. Because of (1.10) the
inverse φ−1 satisfies the relations φ−1(l + x) = φ−1(l− x) and φ−1(−l− x) = φ−1(−l + x)
for all x ∈ [0, l].

The properties of the addition (1.9) have been discussed in [Fe1]. It should be men-
tioned that the addition does not yield a group in [−1, 1] because the associative law is not
fulfilled on the whole interval (see [Fe1]). However, ⊕ has the following group properties:
a⊕ b = b⊕ a, a⊕ 0 = a and a	 a = 0 if we define a	 b by a⊕ (−b). Further discussions
can be found in [Fe1].

Below are some special cases of the measures dφ. Obviously, in all cases dφ is a positive
measure on the unit interval [−1, 1] and we can write dφ(x) = w(x)dx where w : [−1, 1]→
R is the weight w = φ′. If φ(x) = x, the weight w is equal to 1 and the averages (1.1), namely

(At f )(x) =
1

t

∫ t

0
f (x ⊕ u) du, x ∈ [−1, 1],

are Steklov functions and x ⊕ u is given by

x ⊕ u =

{
x + u, x + u ∈ [−1, 1]

2− (x + u), x + u ∈ [1, 2]

for u ∈ [0, t], which means that x ⊕ u is the ordinary addition x + u, if x + u lies within
[−1, 1], otherwise x + u is mirrored back to [−1, 1] at 1. The differential operator (1.3) is
equal to the ordinary derivative, i.e., D f = f ′ and it follows that ‖ f−Ar,t f ‖p +‖ f−Ar,ρt f ‖p

for some ρ ∈ (0, 1] is equivalent to the K-functional

Kr( f , tr) = inf{‖ f − g‖p + tr‖g(r)‖p | g(r) ∈ Lp[−1, 1]}

and to the modulus sup0<u≤t ‖∆
r
u f ‖Lp

φ
which is in essence the ordinary modulus of

smoothness. This shows that the unweighted case w = 1 gives results which are comparable
to those of the classical case.

If dφ is the arcsin measure, then w(x) = 1/
√

1− x2, (D f )(x) =
√

1− x2 f ′(x),

(At f )(x) =
1

arcsin t

∫ t

0
f (x ⊕ u)

du
√

1− u2
x ∈ [−1, 1],

and x⊕u = x ·
√

1− u2 +u ·
√

1− x2. This specific addition is connected with best approx-
imation by algebraic polynomials on [−1, 1] and has been considered in [Fe2] and [Fe3] in
relation with moduli of smoothness. This translation can be considered in a more general
frame (see [Fe1]) if we take as dφ the measure d arcsin g(x) where g : [−1, 1] → [−1, 1] is
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an odd and absolutely continuous function with g ′ > 0 a.e. Then (1.9) can be represented
by

a⊕ b = g−1

(
g(a) ·

√
1−
(
g(b)
)2

+ g(b) ·
√

1−
(
g(a)
)2
)

for each a, b ∈ [−1, 1]. For g(x) = xα, α = 1, 3, 5, . . . , in particular, we obtain

a⊕ b =
(

aα ·
√

1− b2α + bα ·
√

1− a2α
) 1
α

.

It should be noted that the investigation of the averages (1.1) and (1.6) was mainly in-
fluenced by the ideas of Ditzian and Runovskii in [Di-Ru]. Many of their techniques could
be transferred to the case of weighted spaces which will be considered here.

2 Preliminary Considerations

First we must obtain some elementary relations of derivatives of averages and properties
of the operator Ot , given in (2.4), which will be used frequently in the following sections.
Moreover, some properties and techniques of the addition (1.9) will be discussed.

We begin with

Theorem 2.1 Let f ∈ L1
φ[−1, 1] and t ∈ (0, 1]. Then At f , given in (1.1), is absolutely

continuous on [−1, 1] and fulfills

(DAt f )(x) =
f (x ⊕ t)− f (x)

φ(t)
, x ∈ [−1, 1] a.e.,(2.1)

D2At f = At D
2 f , if D2 f exists,(2.2)

At f − f = Ot (DAu f ),(2.3)

whereby the operator Ot is defined by

Ot (gu)(x) :=
1

φ(t)

∫ t

0
φ(u)gu dφ(u).(2.4)

Proof Equation (2.1) has been proved in [Fe1, Theorem 4].
Let t ∈ (0, 1] arbitrary but fixed. To prove (2.2) we introduce the translation

τu : [−1, 1]→ [−1, 1], τu(x) := x ⊕ u.

For the sake of brevity we omit x in the notation of (At f )(x) in (1.1) and write

At f =
1

φ(t)

∫ t

0
f ◦ τu dφ(u).(2.5)

The derivative of τu(x) with respect to x is given by (see [Fe1, Theorem 2])

τ ′u(x) =



φ ′(x)

φ ′(x ⊕ u)
, x ∈ [−1, 1	 u]

−
φ ′(x)

φ ′(x ⊕ u)
, x ∈ (1	 u, 1]

a.e.
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or rewritten

τ ′u(x) = µu(x) ·
φ ′(x)

φ ′(x ⊕ u)
a.e.(2.6)

if we define the sign function by µu(x) :=

{
+1, x ∈ [−1, 1	 u]

−1, x ∈ (1	 u, 1]
. Then (2.6) and defini-

tion (1.3) of D give

D( f ◦ τu) = µu · (D f ) ◦ τu(2.7)

and consequently

D2( f ◦ τu) = (µu)2 · (D2 f ) ◦ τu = (D2 f ) ◦ τu.(2.8)

Now, from (2.5) and (2.8) it follows that

D2(At f ) =
1

φ(t)

∫ t

0
(D2 f ) ◦ τu dφ(u) = At (D2 f ),

proving (2.2). Now, we use At 1 = 1 and (2.1) to obtain

(At f )(x)− f (x) =
1

φ(t)

∫ t

0

(
f (x ⊕ u)− f (x)

)
dφ(u)

=
1

φ(t)

∫ t

0
φ(u)(DAu f )(x) dφ(u)

= Ot (DAu f )

which leads to (2.3) and concludes the proof of our theorem.

The results of Theorem 2.1 will be crucial for direct and converse estimates. In par-
ticular, equation (2.3) will be the starting point for the investigation of properties of the
averages in Section 3. A similar connection between averages, derivatives and Ot of Theo-
rem 2.1 can be found in [Di-Ru] and [Di-Fe].

The notation of the operator Ot in (2.4) has shown itself to be useful (see [Di-Ru],
[Di-Fe]) because we do not have to write so many integration signs if we consider iterations

Ot

(
Ou(1)

)
, Ot

(
Ou

(
Oη(1)

))
, etc. Furthermore, for the sake of brevity, we will use the

notation Ot1 · · ·Otn (1) instead of Ot1

(
· · ·
(
Otn (1)

)
· · ·
)

.

It should be noted that the function Ot (gu)(x) does not depend on the variable u be-
cause u is just an inner variable for integration (see definition (2.4)). Moreover, if gu is
independent of x then so is Ot (gu)(x). In particular, the function Ot (1) is realvalued and
depends only on t . Hence, Ot1 · · ·Otn (1) is a function which depends only on t1 but not on
t2, . . . , tn. The following lemma gives an explicit representation of these functions.
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Lemma 2.1 For t1 ∈ (0, 1] and k ∈ N we have

Ot1 Ot2 · · ·Otk (1) =
1

(k + 1)!
φ(t1)k.(2.9)

Proof We will prove the statement by induction with respect to k. From

Ot1 (1) =
1

φ(t1)

∫ t1

0
φ(u)φ ′(u) du

=
1

φ(t1)

1

2

(
φ(t1)2 − φ(0)2

)
=

1

2
φ(t1)2

we obtain (2.9) for k = 1. Now let the statement hold true for k ≥ 1. Then

Ot1

(
Ot2 · · ·Otk+1 (1)

)
=

1

(k + 1)!
Ot1

(
φ(t2)k

)
=

1

(k + 1)!

1

φ(t1)

∫ t1

0

(
φ(t2)

)k+1
φ ′(t2) dt2

=
1

(k + 2)!
φ(t1)k+1.

Lemma 2.2 Let n ∈ N0 and suppose Dn f exists in Lp
φ[−1, 1]. Then

‖Ot1 Ot2 · · ·Otk (DnAt f )‖Lp
φ
≤

21/p

(k + 1)!
φ(t1)k ‖Dn f ‖Lp

φ

for k ∈ N and t1 ∈ (0, 1].

Proof For each t ∈ (0, 1] let gt : [−1, 1] → R be a function gt ∈ Lp
φ[−1, 1]. Taking into

account that

‖Ot1 (gt )‖Lp
φ
≤

1

φ(t1)

∫ t1

0
φ(t) ‖gt‖Lp

φ
dφ(t)

we obtain
‖Ot1 (gt )‖Lp

φ
≤ Ot1 (‖gt‖Lp

φ
) ≤ Ot1 (1) sup

0<t≤t1

‖gt‖Lp
φ

and

‖Ot1 Ot2 · · ·Otk (gt )‖Lp
φ
≤ Ot1 Ot2 · · ·Otk (‖gt‖Lp

φ
)

≤ Ot1 Ot2 · · ·Otk (1) · sup
0<t≤t1

‖gt‖Lp
φ

=
1

(k + 1)!
φ(t1)k sup

0<t≤t1

‖gt‖Lp
φ
,

(2.10)
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where we used Lemma 2.1 in the last step.
We need the inequality

‖ f (• ⊕ u)‖Lp
φ
≤ 21/p ‖ f ‖Lp

φ
, u ∈ [−1, 1],(2.11)

which was proved in [Fe1, eq. (19)]. From (2.7) and (2.11) it follows that

‖DnAt f ‖Lp
φ
=

∥∥∥∥ 1

φ(t)

∫ t

0
Dn{ f (• ⊕ u)} dφ(u)

∥∥∥∥
Lp
φ

=

∥∥∥∥ 1

φ(t)

∫ t

0
µn

u · (Dn f )(• ⊕ u) dφ(u)

∥∥∥∥
Lp
φ

≤ 21/p ‖Dn f ‖Lp
φ

which, with (2.10) for gt = DnAt f , concludes the proof of our lemma.

We have already mentioned in the introductory section that the associative law of the
addition ⊕ is not valid on [−1, 1], which means that the order of the parentheses of the
sum

(
· · · (x1 ⊕ x2) ⊕ · · ·

)
⊕ xn cannot in general be omitted. However, we find that the

associative law is satisfied on certain subintervals [−δn, δn] of [−1, 1] which depend on the
number n of summands. The following lemma makes this clear.

Lemma 2.3 Let n ∈ N and δn := φ−1
(
φ(1)

n

)
. Then the associative law of n summands in

[−δn, δn] with respect to ⊕ holds true, i.e., whenever x1, . . . , xn ∈ [−δn, δn] the parentheses
of
(
· · · (x1 ⊕ x2)⊕ · · ·

)
⊕ xn may be omitted without ambiguity.

Proof Obviously, [−δn, δn] ⊂ [−1, 1]. If x j ∈ [−δn, δn], j = 1, . . . , n, then n · φ(x j) ∈
[−φ(1), φ(1)] = [−l, l]. Since φ−1 maps [−l, l] onto [−1, 1] bijectively it follows, as can
be easily seen from (1.9), that

(
· · · (x1 ⊕ x2)⊕ · · ·

)
⊕ xn = φ

−1
(
φ(x1) + · · · + φ(xn)

)
.(2.12)

The order of the summands of the right hand side of (2.12) can be changed, which con-
cludes the proof of the lemma.

The next lemma shows a relationship between the �, given in (1.5), and the ordinary
multiplication.

Lemma 2.4 Let n ∈ N. We then obtain

φ(k� t) = k · φ(t)

for k = 0, . . . , n and t ∈ [0, δn] with δn := φ−1
(
φ(1)

n

)
.
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Proof We will prove the lemma by induction with respect to n. Obviously, for n = 1
the equation φ(k � t) = k · φ(t) holds for k ∈ {0, 1} and t ∈ [0, δ1] = [0, 1]. Let
the assertion hold true for n. We must now show that φ(k � t) = k · φ(t) is fulfilled for
k = 0, . . . , n + 1 and t ∈ [0, δn+1]. Because of [0, δn+1] ⊂ [0, δn] we must now show that
φ
(
(n + 1)� t

)
= (n + 1) · φ(t), t ∈ [0, δn+1]. Indeed,

φ
(
(n + 1)� t

)
= φ
(
(n� t)⊕ t

)
= φ
(
φ−1
(
φ(n� t) + φ(t)

))
= φ
(
φ−1
(

(n + 1)φ(t)
))
.

In view of (n + 1)φ(t) ∈ [0, φ(1)] = [0, l] for t ∈ [0, δn+1] and the fact that φ maps [0, l]
bijectively onto [0, 1] we obtain

φ
(
(n + 1)� t

)
= (n + 1)φ(t).

Lemma 2.5 Let n ∈ N. Then∫ k�t

0
f (u) dφ(u) = k

∫ t

0
f (k� u) dφ(u)

for k = 0, . . . , n and t ∈ [0, δn] with δn := φ−1
(
φ(1)

n

)
.

Proof Firstly, for n = 2, 3, . . . we will prove the following identity:

d

dx
(x ⊕ t) =

ω(x)

ω(x ⊕ t)
for x, t ∈ [0, δn](2.13)

in which w denotes the weight function φ ′. With respect to (2.6) we must show that x ∈
[−1, 1 	 t] or x ≤ 1 	 t respectively. This is done if we show that δn ≤ 1 	 δn because
x ≤ δn and t ≤ δn. Indeed, the inequality

δn = φ
−1

(
φ(1)

n

)
≤ 1	 φ−1

(
φ(1)

n

)
= φ−1

((
1−

1

n

)
φ(1)

)

is satisfied for n = 2, 3, . . . due to the monotonicity of φ−1. Hence, equation (2.13) is
established.

Let us now prove the assertion of our lemma. There is nothing to prove for n = 1. Let
n ≥ 2 and let us define the function

g : [0, δn]k → [−1, 1], g(u1, . . . , uk) := u1 ⊕ · · · ⊕ uk

whereby, in view of Lemma 2.3, the parentheses in the sum can be omitted, i.e., u1⊕· · ·⊕uk

is well-defined. Moreover, we can rearrange the order of the summands since⊕ is commu-
tative. Then, from (2.13) it follows that

dg

du j
(u1, . . . , uk) =

ω(uk)

ω(u1 ⊕ · · · ⊕ uk)
, j = 1, . . . , k,
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and consequently for u ∈ [0, δn]

d

du
(k� u) =

k∑
j=1

dg

du j
(u, . . . , u) =

k∑
j=1

ω(u)

ω(u⊕ · · · ⊕ u)
= k

ω(u)

ω(k� u)
.

Finally, this yields

∫ k�t

0
f (u) dφ(u) =

∫ k�t

0
f (u)ω(u) du

=

∫ t

0
f (k� u)

{
d

du
(k� u)

}
ω(k� u) du

= k

∫ t

0
f (k� u)ω(u) du.

A similar argument as in the last step of the previous proof shows that

∫ x⊕t

x
f (u) dφ(u) =

∫ t

0
f (x ⊕ u) dφ(u)(2.14)

is satisfied.

3 Properties of Averages

The relation (2.3) between the error of f − At f and the operator Ot given in (2.4) is the
motivation for the present paper and in particular this section. Here we will use (2.3) to
obtain Theorem 3.1 which will yield several other important results needed for strong con-
verse relations later on. The technique used in this section stems from the paper [Di-Ru].
Similar ideas have also been used in [Di-Fe].

We begin with the following Taylor-type formula.

Theorem 3.1 Suppose Dn f exists. Then, for t ∈ (0, 1] we have

At f − f −
n∑

j=1

D j f

( j + 1)!
φ(t) j = Ot Ot1 · · ·Otn Dn+1Atn+1 f

for n = 1, 2, . . . .

Proof For n = 1 it follows from (2.3) that

At f = Ot (DAt1 f ) + f
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and iteration of this formula gives

At f = Ot DOt1 (DAt2 f ) + Ot (D f ) + f

= Ot Ot1 (D2At2 f ) + Ot (1) · D f + f

...

= Ot Ot1 · · ·Otn Dn+1Atn+1 f +
n∑

j=1

Ot Ot1 · · ·Ot j−1 (1) · D j f .

Lemma 2.1 concludes the proof of our theorem.

To achieve results for higher levels of smoothness, combinations of averages are consid-
ered. We define the average operator of order n ∈ N by

An,t :=
n∑

k=1

(
n

k

)
(−1)k+1Ak�t , t ∈ (0, 1].(3.1)

In particular,

A1,t = At ,

A2,t = 2At − A2�t ,

A3,t = 3At − 3A2�t + A3�t .

As a consequence of Theorem 3.1 we obtain the following corollary for averages of higher
orders.

Corollary 3.1 Suppose Dn−1 f exists. Then,

An,t f − f =
n∑

k=1

(
n

k

)
(−1)k+1Ok�t Ot1 · · ·Otn−1 DnAtn f

for n = 2, 3, . . . and t ∈ (0, δn] with δn := φ−1
(
φ(1)

n

)
.

Proof With the aid of Theorem 3.1 and Lemma 2.4 we obtain

Ak�t f − f −
n−1∑
j=1

D j f

( j + 1)!
k jφ(t) j = Ok�t Ot1 · · ·Otn−1 DnAtn f

for k = 1, 2, . . . , n and n ≥ 2. Multiplication of both sides by
(n

k

)
(−1)k+1 and summation

from k = 1 up to n gives (using (3.1) and
∑n

k=1

(n
k

)
(−1)k+1 = 1)

An,t t − f −
n−1∑
j=1

D j f

( j + 1)!
φ(t) j

n∑
k=1

(
n

k

)
(−1)k+1k j

=

n∑
k=1

(
n

k

)
(−1)k+1Ok�t Ot1 · · ·Otn−1 DnAtn f .
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From
∑n

k=1

(n
k

)
(−1)k+1k j = 0 for j = 1, . . . , n− 1 we obtain the assertion.

Corollary 3.2 Suppose Dn f exists. Then,

An,t f − f −
Dn f

n + 1
φ(t)n =

n∑
k=1

(
n

k

)
(−1)k+1Ok�t Ot1 · · ·Otn Dn+1Atn+1 f

for n = 1, 2, . . . and t ∈ (0, δn] with δn := φ−1
(
φ(1)

n

)
.

Proof From Theorem 3.1 and Lemma 2.4 we see that

Ak�t f − f −
n∑

j=1

D j f

( j + 1)!
k jφ(t) j = Ok�t Ot1 · · ·Otn Dn+1Atn+1 f .

A similar argument to the one used in the proof of the previous Corollary 3.1 yields

An,t t − f −
n∑

j=1

D j f

( j + 1)!
φ(t) j

n∑
k=1

(
n

k

)
(−1)k+1k j

=

n∑
k=1

(
n

k

)
(−1)k+1Ok�t Ot1 · · ·Otn Dn+1Atn+1 f .

Since
∑n

k=1

(n
k

)
(−1)k+1kn = n! we obtain the corollary.

4 The Direct Result

Direct estimates for averages are obtained from the results in the previous sections, in par-
ticular from Corollary 3.1.

Theorem 4.1 Let f ∈ Lp
φ[−1, 1]. Then, for averages (1.1) of first order, we have

‖At f − f ‖Lp
φ
≤ (1 + 21/p)K

(
f , φ(t)

)
, t ∈ (0, 1].

Let r ∈ N and r ≥ 2. Then, for averages Ar,t f , given in (1.6), we have

‖Ar,t f − f ‖Lp
φ
≤ cr2

1/pKr
(

f , φ(t)r
)
, t ∈ (0, δr],

where δr = φ−1
(
φ(1)

r

)
and cr = max{1 + 21/p(2r − 1), 1

(r+1)!

∑r
k=1

(r
k

)
kr}.

Proof We begin by proving direct estimates for smooth functions, namely

‖Ar,t g − g‖Lp
φ
≤ c̃r2

1/pφ(t)r ‖Drg‖Lp
φ
, t ∈ (0, δr],(4.1)

if Drg exists, r ∈ N and c̃r =
1

(r+1)!

∑r
k=1

(r
k

)
kr .
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If Dg exists, then equation (2.3) in Theorem 2.1 yields the direct estimate for the error
At g − g as follows: In conjunction with Lemma 2.2 for n = k = 1 we have

‖At g − g‖Lp
φ
≤

1

2
φ(t)21/p ‖Dg‖Lp

φ
, 0 < t ≤ 1.(4.2)

Because of A1,t = At , inequality (4.2) implies (4.1) for r = 1.
For r ≥ 2 we use Corollary 3.1, Lemma 2.2 and Lemma 2.4 to obtain

‖Ar,t g − g‖Lp
φ
≤

r∑
k=1

(
r

k

)∥∥Ok�t Ot1 · · ·Otr−1 DrAtr g
∥∥

Lp
φ

≤
r∑

k=1

(
r

k

)
21/p

(r + 1)!
krφ(t)r ‖Drg‖Lp

φ

= c̃r2
1/pφ(t)r ‖Drg‖Lp

φ

which establishes the validity of (4.1).
To prove the direct result for functions f ∈ Lp

φ[−1, 1] we estimate the norm of the
averages Ar,t f . From definition (1.1) and inequality (2.11) we obtain

‖At f ‖Lp
φ
≤ 21/p ‖ f ‖Lp

φ

and, analogously, from (1.6)

‖Ar,t f ‖Lp
φ
≤ 21/p(2r − 1) ‖ f ‖Lp

φ
.

Finally, by making use of (4.1), we arrive at

‖Ar,t f − f ‖Lp
φ
≤ ‖(Ar,t − I)( f − g) + (An,t − I)g‖Lp

φ

≤
(
21/p(2r − 1) + 1

)
‖ f − g‖Lp

φ
+ c̃r2

1/pφ(t)r ‖Drg‖Lp
φ

≤ cr2
1/p
(
‖ f − g‖Lp

φ
+ φ(t)r ‖Drg‖Lp

φ

)
.

Taking the infimum on both sides over all smooth functions g with Drg ∈ Lp
φ[−1, 1] we

obtain the result of our theorem for r = 1 and r ≥ 2.

The following Voronovskaja-type estimate will be of importance when proving strong
converse inequalities of type A and B in Section 5.

Theorem 4.2 Let r ∈ N and suppose that Dr+1g exists. Then∥∥∥∥Ar,t g − g −
φ(t)r

r + 1
Drg

∥∥∥∥
Lp
φ

≤ dr2
1/pφ(t)r+1

∥∥Dr+1g
∥∥

Lp
φ

for all t with 0 < t ≤ δr = φ−1
(
φ(1)

r

)
where dr =

1
(r+2)!

∑r
k=1

(r
k

)
kr+1.
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Proof With the aid of Corollary 3.2, Lemma 2.2 and Lemma 2.4 we have∥∥∥∥Ar,t g − g −
φ(t)r

r + 1
Drg

∥∥∥∥
Lp
φ

≤
r∑

k=1

(
r

k

)∥∥Ok�t Ot1 · · ·Otr D
r+1Atr+1 g

∥∥
Lp
φ

≤
r∑

k=1

(
r

k

)
21/p

(r + 2)!
kr+1φ(t)r+1

∥∥Dr+1g
∥∥

Lp
φ

= dr2
1/pφ(t)r+1

∥∥Dr+1g
∥∥

Lp
φ

.

From Theorem 3.1 we also have the estimate∥∥∥∥∥At g − g −
r∑

k=1

Dkg

(k + 1)!
φ(t)k

∥∥∥∥∥
Lp
φ

≤
21/p

(r + 2)!
φ(t)r+1

∥∥Dr+2g
∥∥

Lp
φ

,

if Dr+2g exists.

5 Strong Converse Inequalities of Types A and B

In this section we will investigate strong converse inequalities of types A and B in the sense
of [Di-Iv] for the approximation process Ar,t f − f . First we will establish type B, i.e., we will
relate the K-functional (1.2) by two terms, ‖Ar,t f − f ‖Lp

φ
and ‖Ar,ρt f − f ‖Lp

φ
with some ρ.

Later, we will establish type A (i.e., one term is sufficient) for averages At f of first order if
p is not too small, that is p > 2.62 . . . .

The strong converse inequality of type B is given in

Theorem 5.1 Suppose that f ∈ Lp
φ[−1, 1]. Suppose also that the weight ω = φ ′ is equiv-

alent to a positive constant in a neighborhood of 0, i.e., 0 < c ≤ ω(t) ≤ d for t ∈ (−t0, t0).
Then there exist constants C > 0 and ρ ∈ (0, 1] being independent of f and t such that

Kr
(

f , φ(t)r
)
≤ C(‖Ar,t f − f ‖Lp

φ
+ ‖Ar,ρt f − f ‖Lp

φ
)(5.1)

for all t with 0 < t ≤ t0.

Proof The proof follows a method in Ditzian and Ivanov [Di-Iv] which was developed for
proving strong converse inequalities of type B and A.

Obviously,

Kr
(

f , φ(t)r
)
≤
∥∥Ar+1

r,t f − f
∥∥

Lp
φ

+ φ(t)r
∥∥DrAr+1

r,t f
∥∥

Lp
φ

.(5.2)

For the first summand in (5.2) we have

∥∥Ar+1
r,t f − f

∥∥
Lp
φ

=
∥∥∥ r∑

k=0

Ak
r,t ( f − Ar,t f )

∥∥∥
Lp
φ

≤ C̃1 ‖ f − Ar,t f ‖Lp
φ

(5.3)
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where C̃1 is independent of f and t . Thus, the first summand in (5.2) is dominated by a
term as claimed in (5.1).

The rest of the proof is concerned with the second summand in (5.2). For an estimation
of the second summand we will use the following Voronovskaja inequality of Theorem 4.2
with Ar+1

r,t f taking the place of g:∥∥∥∥Ar,ρt A
r+1
r,t f − Ar+1

r,t f −
φ(ρt)r

r + 1
DrAr+1

r,t f

∥∥∥∥
Lp
φ

≤ dr2
1/pφ(ρt)r+1

∥∥Dr+1Ar+1
r,t f
∥∥

Lp
φ

for t ∈ (0, δr] and ρ ∈ (0, 1]. Let j ∈ N . Using (1.6), equation (2.1), with f (x⊕t)− f (x) =:
(∆t f )(x), and Lemma 2.4 we have∥∥∥D jA j

r,t f
∥∥∥

Lp
φ

=
∥∥∥D j−1DAr,t A

j−1
r,t f
∥∥∥

Lp
φ

=

∥∥∥∥∥D j−1
r∑

k=1

(
r

k

)
(−1)k+1 1

φ(k� t)
∆k�t A

j−1
r,t f

∥∥∥∥∥
Lp
φ

≤
1

φ(t)

r∑
k=1

(
r

k

)
1

k

∥∥∥D j−1∆k�t A
j−1
r,t f
∥∥∥

Lp
φ

.

(5.4)

We note that, by a simple calculation (using (2.11) and (2.7)),
∥∥D j−1∆hg

∥∥
Lp
φ

can be esti-

mated by (1 + 21/p)
∥∥D j−1g

∥∥
Lp
φ

. Therefore, with

er :=
r∑

k=1

(
r

k

)
1

k
,(5.5)

we observe from (5.4) that∥∥∥D jA j
r,t f
∥∥∥

Lp
φ

≤ (1 + 21/p)er
1

φ(t)

∥∥∥D j−1A j−1
r,t f
∥∥∥

Lp
φ

.(5.6)

Repeating inequality (5.6) yields∥∥∥D jA j
r,t f
∥∥∥

Lp
φ

≤ (1 + 21/p) j e j
r

1

φ(t) j
‖ f ‖Lp

φ

for j = 1, 2, . . . . Moreover,

∥∥Dr+1Ar+1
r,t f
∥∥

Lp
φ

≤
1 + 21/p

φ(t)
er

∥∥DrAr
r,t f
∥∥

Lp
φ

≤
1 + 21/p

φ(t)
er

(∥∥DrAr+1
r,t f
∥∥

Lp
φ

+
∥∥DrAr

r,t (Ar,t f − f )
∥∥

Lp
φ

)
≤

1 + 21/p

φ(t)
er

(∥∥DrAr+1
r,t f
∥∥

Lp
φ

+
(1 + 21/p)r

φ(t)r
er

r ‖Ar,t f − f ‖Lp
φ

)
.
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Hence, for ρ ∈ (0, 1]∥∥∥∥Ar,ρt A
r+1
r,t f − Ar+1

r,t f −
φ(ρt)r

r + 1
DrAr+1

r,t f

∥∥∥∥
Lp
φ

≤ 21/p(1 + 21/p)drerφ(ρt)r φ(ρt)

φ(t)

∥∥DrAr+1
r,t f
∥∥

Lp
φ

+ Cr ‖Ar,t f − f ‖Lp
φ
.

Now, by triangle inequality and (5.3){
1

r + 1
− 21/p(1 + 21/p)drer

φ(ρt)

φ(t)

}
φ(ρt)r

∥∥DrAr+1
r,t f
∥∥

Lp
φ

≤ Cr ‖Ar,t f − f ‖Lp
φ

+
∥∥Ar,ρt A

r+1
r,t f − Ar+1

r,t f
∥∥

Lp
φ

≤ (Cr + C̃1) ‖Ar,t f − f ‖Lp
φ

+
∥∥Ar,ρt A

r+1
r,t f − Ar,ρt f

∥∥
Lp
φ

+ ‖Ar,ρt f − f ‖Lp
φ

≤ (Cr + C̃1 + C̃2) ‖Ar,t f − f ‖Lp
φ

+ ‖Ar,ρt f − f ‖Lp
φ
.

We may choose ρ ∈ (0, 1] such that

21/p(1 + 21/p)drer
φ(ρt)

φ(t)
<

1

r + 1
, t ∈ (0, t0].(5.7)

This is possible because

φ(ρt)

φ(t)
=
φ(ρt)− φ(0)

φ(t)− φ(0)
= ρ ·

φ ′(ξ1)

φ ′(ξ2)

with 0 < ξ1 < ρt and 0 < ξ2 < t . Using the assumption 0 < c ≤ ω(t) ≤ d for t ∈ [0, t0)
we can find a ρ ∈ (0, 1], such that

c2ρ ≤
φ(ρt)

φ(t)
≤ c3ρ.(5.8)

Then, (5.7) implies

∥∥DrAr+1
r,t f
∥∥

Lp
φ

≤ c4
1

φ(ρt)r

(
(Cr + C̃1 + C̃2) ‖Ar,t f − f ‖Lp

φ
+ ‖Ar,ρt f − f ‖Lp

φ

)
,

showing, with (5.8), (5.3) and (5.2), that there is a C > 0, such that

Kr
(

f , φ(t)r
)
≤ C(‖Ar,t f − f ‖Lp

φ
+ ‖Ar,ρt f − f ‖Lp

φ
).

In a special case we can improve the result of Theorem 5.1 in the sense that we can choose
ρ = 1 in (5.1). We will prove that for first order r = 1 the second term ‖Ar,ρt f − f ‖Lp

φ

in (5.1) can be dropped if p is sufficiently large. This is a strong converse inequality of
type A.
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Theorem 5.2 Let f ∈ Lp
φ[−1, 1] and p > ln 2

ln(
√

13−1)−ln 2
= 2.62 . . . . Then there exists a

constant C > 0, such that
K
(

f , φ(t)
)
≤ C ‖At f − f ‖Lp

φ

for all t ∈ (0, 1].

Proof Let r = 1 and ρ = 1 and follow the proof of Theorem 5.1. Since d1 = 1/6 and
e1 = 1 (see Theorem 4.2 and (5.5)) the inequality (5.7) reads

21/p(1 + 21/p)
1

6
<

1

2
(5.9)

and it can be easily seen that (5.9) is satisfied for p > ln 2
ln(
√

13−1)−ln 2
. It is clear that we can

choose t ∈ (0, 1].

Finally, we combine the results of Theorems 4.1, 5.1 and 5.2 and close this section with

Corollary 5.1 Let the assumptions of Theorem 5.1 hold. Then there exists a ρ ∈ (0, 1], such
that

Kr
(

f , φ(t)r
)
∼ ‖Ar,t f − f ‖Lp

φ
+ ‖Ar,ρt f − f ‖Lp

φ

for all t ∈ (0, t0]. In particular, if r = 1 and p > ln 2
ln(
√

13−1)−ln 2
then

K
(

f , φ(t)
)
∼ ‖At f − f ‖Lp

φ

for all t ∈ (0, 1].

6 Strong Converse Inequalities of Type D

From the strong converse inequality of type B for Ar,t f − f we will derive a strong converse
inequality of type D for the differences

(∆r
u f )(x) :=

r∑
k=0

(
r

k

)
(−1)k+1 f

(
x ⊕ (k� u)

)
, x, u ∈ [−1, 1],(6.1)

which is an estimate of the K-functional by sup0<u≤t ‖∆
r
u f ‖Lp

φ
.

The differences (6.1) are closely connected with the definition (1.6) of the averages Ar,t f .
Using (1.1), Lemma 2.4 and Lemma 2.5 we can write

(Ar,t f − f )(x) =
r∑

k=1

(
r

k

)
(−1)k+1(Ak�t f − f )(x)

=

r∑
k=1

(
r

k

)
(−1)k+1 1

kφ(t)

∫ k�t

0

(
f (x ⊕ u)− f (x)

)
dφ(u)
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=
r∑

k=1

(
r

k

)
(−1)k+1 1

φ(t)

∫ t

0

(
f
(
x ⊕ (k� u)

)
− f (x)

)
dφ(u)

=
1

φ(t)

∫ t

0
(∆r

u f )(x) dφ(u)

for t ∈ (0, δr]. Hence, we can represent Ar,t f − f by means of an integral over the difference
operator. This immediately yields the estimate

‖Ar,t f − f ‖Lp
φ
≤ sup

0<u≤t
‖∆r

u f ‖Lp
φ
.(6.2)

The right hand side of (6.2) is a modulus of smoothness. We now can relate the left hand
side to the K-functional Kr

(
f , φ(t)r

)
via the strong converse inequality of type B, i.e., from

Theorem 5.1 we deduce that

Kr
(

f , φ(t)r
)
≤ C sup

0<u≤t
‖∆r

u f ‖Lp
φ
.(6.3)

The following Corollary shows that also a lower estimate of the K-functional is possible.
Hence, K-functional Kr

(
f , φ(t)r

)
and modulus sup0<u≤t ‖∆

r
u f ‖Lp

φ
are equivalent, which is

a strong converse inequality of type D.

Theorem 6.1 Suppose that f ∈ Lp
φ[−1, 1] and suppose that the weight ω = φ ′ is equivalent

to a positive constant in a neighborhood of 0, i.e., 0 < c ≤ ω(t) ≤ d for t ∈ (−t0, t0). Then

Kr
(

f , φ(t)r
)
∼ sup

0<u≤t
‖∆r

u f ‖Lp
φ

(6.4)

for t ∈ [0, t0].

Proof It remains to show that a lower estimate of (6.3) is satisfied, i.e.,

sup
0<u≤t

‖∆r
u f ‖Lp

φ
≤ CKr

(
f , φ(t)r

)
.(6.5)

To establish the lower estimate (6.5), let us define the measure d(u1, . . . , ur) by
dφ(u1) · · · dφ(ur). Clearly, (6.5) holds true for t = 0. Therefore let t ∈ (0, t0] arbitrary
but fixed. Below, x is always in [−1, 1]. If Drg exists, we will prove that

∫ t

0
· · ·

∫ t

0
(Drg)

(
x ⊕ (u1 ⊕ · · · ⊕ ur)

)
d(u1, . . . , ur) = (∆r

t g)(x)(6.6)

holds for r = 0, 2, 4, . . . and

∫ t

0
· · ·

∫ t

0
µu1⊕···⊕ur (x)(Drg)

(
x ⊕ (u1 ⊕ · · · ⊕ ur)

)
d(u1, . . . , ur) = (∆r

t g)(x)(6.7)
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holds for r = 1, 3, 5, . . . (for definition of µ see (2.6)).
It is important to note that ∆r

t 6= (∆t )r , r ≥ 2. However, by defining an appropriate
functional we can represent∆r

t in terms of a power. If we let the functional ∆̄t f := f (t)−
f (0) we obtain

∆̄t f (x ⊕ •) = (∆t f )(x)

and

∆̄t∆̄t f
(

x ⊕ (•1 ⊕ •2)
)
= ∆̄t f

(
x ⊕ (t ⊕ •1)

)
− ∆̄t f (x ⊕ •1)

= f
(
x ⊕ (t ⊕ t)

)
− 2 f (x ⊕ t) + f (x)

(6.8)

which yields

∆̄t∆̄t f
(
x ⊕ (•1 ⊕ •2)

)
= (∆2

t f )(x).(6.9)

Without fear of confusion we write ∆̄r
t f
(
x ⊕ (•1 ⊕ · · · ⊕ •r)

)
instead of the composition

∆̄t · · · ∆̄t f
(
x ⊕ (•1 ⊕ · · · •r)

)
. From (6.9) it follows, by iteration, that

∆̄r
t f
(
x ⊕ (•1 ⊕ · · · ⊕ •r)

)
= (∆r

t f )(x)(6.10)

which we need for the proof of (6.6) and (6.7).
In view of (1.1) and (2.1) we can write

D

(
1

φ(t)

∫ t

0
g(x ⊕ u) dφ(u)

)
=

1

φ(t)

(
g(x ⊕ t)− g(x)

)
,(6.11)

i.e., (using (2.7))

∫ t

0
µu(x)(Dg)(x ⊕ u) dφ(u) = g(x ⊕ t)− g(x)(6.12)

if Dg exists. Furthermore, if D2g exists then

∫ t

0
(D2g)(x ⊕ u) dφ(u) = µt (x)(Dg)(x ⊕ t)− (Dg)(x).(6.13)

First let us consider the case where r is an even integer bigger than 1. Let u1, . . . , ur−1 be in
[0, δr] and let us bear in mind that the associative law of r summands in [0, δr] holds, that
is to say, we can write, for example, t⊕u1⊕· · ·⊕ur−1 without ambiguity (see Lemma 2.3).
Making use of (2.14) and (6.13) it follows that

∫ t

0
(Drg)

(
x ⊕ (u1 ⊕ · · · ⊕ ur)

)
dφ(ur)

=

∫ t⊕u1⊕···⊕ur−1

u1⊕···⊕ur−1

(Drg)(x ⊕ ur) dφ(ur)
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=

∫ t⊕u1⊕···⊕ur−1

0
(Drg)(x ⊕ ur) dφ(ur)

−

∫ u1⊕···⊕ur−1

0
(Drg)(x ⊕ ur) dφ(ur)

= µt⊕u1⊕···⊕ur−1 (x)(Dr−1g)
(

x ⊕ (t ⊕ u1 ⊕ · · · ⊕ ur−1)
)

− µu1⊕···⊕ur−1 (x)(Dr−1g)
(

x ⊕ (u1 ⊕ · · · ⊕ ur−1)
)

and (using (6.12))∫ t

0

∫ t

0
(Drg)

(
x ⊕ (u1 ⊕ · · · ⊕ ur)

)
d(ur−1, ur)

=

∫ t

0
µt⊕u1⊕···⊕ur−1 (x)(Dr−1g)

(
x ⊕ (t ⊕ u1 ⊕ · · · ⊕ ur−1)

)
dφ(ur−1)

−

∫ t

0
µu1⊕···⊕ur−1 (x)(Dr−1g)

(
x ⊕ (u1 ⊕ · · · ⊕ ur−1)

)
d(ur−1)

=

∫ t⊕t⊕u1⊕···⊕ur−2

t⊕u1⊕···⊕ur−2

µur−1 (x)(Dr−1g)(x ⊕ ur−1) dφ(ur−1)

−

∫ t⊕u1⊕···⊕ur−2

u1⊕···⊕ur−2

µur−1 (x)(Dr−1g)(x ⊕ ur−1) dφ(ur−1)

= (Dr−2g)
(
x ⊕ (t ⊕ t ⊕ u1 ⊕ · · · ⊕ ur−2)

)
− 2(Dr−2g)

(
x ⊕ (t ⊕ u1 ⊕ · · · ⊕ ur−2)

)
+ (Dr−2g)

(
x ⊕ (u1 ⊕ · · · ⊕ ur−2)

)
.

This can be written (using (6.8)) as∫ t

0

∫ t

0
(Drg)

(
x⊕(u1⊕· · ·⊕ur)

)
d(ur−1, ur) = ∆̄

2
t {(Dr−2g)

(
x⊕(u1⊕· · ·⊕ur−2 •2⊕•1)

)
}

and so iteration of this equation gives∫ t

0
· · ·

∫ t

0
(Drg)

(
x ⊕ (u1 ⊕ · · · ⊕ ur)

)
d(u1, . . . , ur)

= ∆̄2
t

{∫ t

0
· · ·

∫ t

0
(Dr−2g)

(
x ⊕ (u1 ⊕ · · · ⊕ ur−2 •2 ⊕•1)

)
d(u1, . . . , ur−2)

}
...

= ∆̄2
t · · · ∆̄

2
t {g
(
x ⊕ (•r ⊕ · · · ⊕ •1)

)
}

= (∆r
t g)(x)

(6.14)
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where in the last step we used (6.10). Therefore (6.6) is proved.
Now, let r be an odd positive integer. As in (6.14) we obtain by using (2.7), (6.10) and

(6.11), such that∫ t

0
· · ·

∫ t

0
µu1⊕···⊕ur (x)(Drg)

(
x ⊕ (u1 ⊕ · · · ⊕ ur)

)
d(u1, . . . , ur)

= D

∫ t

0

(∫ t

0
· · ·

∫ t

0
(Dr−1g)

(
x ⊕ (u1 ⊕ · · · ⊕ ur)

)
d(u1, . . . , dur−1)

)
dφ(ur)

= D

∫ t

0
∆̄r−1

t {g
(
x ⊕ (•r−1 ⊕ · · · ⊕ •1 ⊕ ur)

)
} dφ(ur)

= ∆̄r−1
t {g

(
x ⊕ (•r−1 ⊕ · · · ⊕ •1 ⊕ t)

)
} − ∆̄r−1

t {g
(
x ⊕ (•r−1 ⊕ · · · ⊕ •1)

)
}

= ∆̄r
t{g
(
x ⊕ (•r ⊕ · · · ⊕ •1)

)
}

= (∆r
t g)(x),

proving (6.7). After having established equations (6.6) and (6.7), the difference operator
can be estimated as

‖∆r
t g‖Lp

φ
≤

∫ t

0
· · ·

∫ t

0
21/p ‖Drg‖Lp

φ
d(u1, . . . , ur)

≤ 21/pφ(t)r ‖Drg‖Lp
φ

which leads to

‖∆r
t f ‖Lp

φ
≤ ‖∆r

t ( f − g)‖Lp
φ

+ ‖∆r
t g‖Lp

φ

≤ 21/p(2r − 1) ‖ f − g‖Lp
φ

+ 21/pφ(t)r ‖Drg‖Lp
φ
.

Taking the infimum over all g with Drg ∈ Lp
φ[−1, 1] we obtain the lower inequality (6.5)

which concludes the proof of our theorem.
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