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RATIONAL INTERPOLATION TO \x\ AT THE CHEBYSHEV NODES

LEV BRUTMAN AND ELI PASSOW

Recently the authors considered Newman-type rational interpolation to \x\ induced
by arbitrary sets of interpolation nodes and showed that under mild restrictions
on the location of the interpolation nodes, the corresponding sequence of rational
interpolants converges to \x\. In the present paper we consider the special case of
the Chebyshev nodes which are known to be very efficient for polynomial interpo-
lation. It is shown that, in contrast to the polynomial case, the approximation of
|x| induced by rational interpolation at the Chebyshev nodes has the same order
as rational interpolation at equidistant points.

1. INTRODUCTION

The function \x\ has been the focus of much research in approximation theory
over the years. Its fundamental role in polynomial approximation is well illustrated by
Lebesgue's proof of the Weierstrass approximation theorem, which is based solely on
the fact that the single function |a;| can be approximated. However, as was shown by
Bernstein [1], the order of the best uniform approximation of |x| by polynomials is only

0(0-
In contrast to this, Newman [5] demonstrated that rational approximation to \x\ is

much more favorable, namely \x\ may be approximated uniformly by rational functions
at an exponential rate. Newman's result generated a great deal of research, much of
which focused on the problem of sharpening the asymptotic results for the error in the
best rational approximation. The most recent result in this direction is the proof of the
so-called "8" conjecture by Stahl. (See [7], where the main result is presented and an
extensive historical review is given).

In a recent paper [2] the authors considered Newman-type rational approximation

induced by arbitrary sets of interpolation points. Let X = {0 < X™ < x^1 < . . . <

Xn < l} be a set of n distinct points in (0,1] and let p(x) = fj (x + xk ) • (*n f n e

fc=i v *
sequel, when there is no possibility for confusion, the superscript (n) will be omitted.)
The rational function, corresponding to the set X, is defined by

- r— x
p(x) + p(-x)
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It can be easily verified that rn(X;x) interpolates \x\ at the following set of In + 1
points: {—£„,... , - z i , 0, i i , . . . , £ „ } . Since rn(X;x) as well as |x| are even functions,
the study of the approximation error en(X;x) — \x\ — rn(X;x) may be restricted to
the interval [0,1], where it can be represented in the following form:

(1) en(X;x)=

where hn(X;x) -

;x)

-rr xk- x

) £ * xk + x

In the sequel we shall use the following general estimates which were proved in [2]:

STATEMENT 1.1. Let Si = s[n)(X) = £ x{
k
n). Then

k=\

(2) \hn{X;x)\ ^ e~xSl, 0 s? x sj 1,

(3) \en(X;x)\ ^ J-, - l ^ a ^ l .

STATEMENT 1.2. Let An = An{X) = l / £ xk-
x. Then

1 fc=i

(4) \en(X;x)\^l/An, i e [ - i i , 4

Note that (3) implies in particular that for the set E of equally spaced points

(5) \en(E;x)\^^—,
n + 1

and thus the function \x\ may be uniformly approximated by rational interpolation at
the equidistant points with the rate at least O(l/n). This is in striking contrast to the
classical result of Bernstein that the sequence of Lagrange interpolating polynomials
to |a;| at equally spaced points in [—1,1] diverges everywhere, except at zero and the
end-points. (See for example, [3].) It should be mentioned that estimate (5) is a bit
conservative, since it was proved by Werner in [8] that the exact order of rational
interpolation of |x| at equidistant points is O(l/nlogn).

In the present paper we consider rational interpolation to \x\ corresponding to the
set of the Chebyshev nodes which are known to be very efficient for polynomial interpo-
lation. We show that the exact order of approximation of |a;| by rational interpolation
at the Chebyshev nodes is also O(l /nlogn). Thus, in contrast to the polynomial case,
for rational interpolation of \x\ the Chebyshev nodes are not better than the equidistant
ones.

Finally we would like to mention that the method of our proof is rather general
and may be applied to other specific sets of interpolation points.
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2. RESULTS

Consider the case of the Chebyshev nodes, namely let

X = T := {xk} = sin{{2k - l)7r/(4n)), jfc = 1, 2 , . . . , n

be the roots of the Chebyshev polynomial T2n(x) of degree 2n, lying in (0,1). Then,
as can be easily verified,

and therefore we have

Since x and rn(X;x) are even functions in [-1,1] we can restrict ourselves to x £
[0,1]. The following estimate holds:

L E M M A 2 . 1 .

(7) \hn(T;x)\ sj —, xe[xi,l].

PROOF: Since \Tn(x)\ ^ 1 for x e [-1,1], it follows from (6) that for x > xx

(8) \ h { T ) \ ^ ^ ^ ^

Let i?n := f[ (xi + xk). An easy computation reveals:
fc=i

fc=l

( j fc- 1)TT
cos

4n
fc=l L "• ' " " J fc=l " • ' fc=2

n 1 .— 2n 1

= y/2 TT 2 sin — cos — = TT sin —.
XL An 4n 2 X A 2n
fc=i fc=i

2n- l .
K7T

By using the well-known identity (see for example, formula (1.392) in [4])

2n- l

n
we find

(9) Bn = 52^3-

Combining (8) and (9) completes the proof of the lemma. D

Now we are in a position to prove the following estimate for the approximation
error:
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THEOREM 2 . 2 .

(10)

n log n '
Ci log n

0,sin
4nJ'

9 ' x\ e sin
L

. 7T Trlogn-i
i n — , ,

An n J

9 ' X
TTrlogn I
I n ' J-L n

PROOF: AS before we can restrict our analysis to x ^ 0. Consider first the case
x £ [0,xi] = [0,sin (?r/(4n))]. In order to apply (4), we have to estimate the following
sum:

(11)
1

2n
1

fc=l

= n

^ sin ({2k - l)n/An) 2 ̂  sin ((2k - l)7r/4n)

= nA2n_i(T).
2n^sin((2ifc-l)7r/4n)

Here A2n-i(r) is the Lebesgue constant for polynomial interpolation corresponding to
the set of the Chebyshev nodes, for which the following two-sided inequality holds (see
for example, [6]):

(12)

where

Thus

2
a o + -Iog2n < A2n_i(r)

7T

2
- Iog2n ,
7T

a0

2 / g
= — I 7 + log — I = 0.9625 . . . , 7 being Euler's constant.

|en(T;a;)|<
1 1
T) n(a0 + (2/7r)log2n) ^ nlogn'

Further consider the case a; > xi. Note first that in view of the lemma

\en{T;x)\^~\hn(T;x)\, i£[xi,l],

and therefore we can restrict ourselves to finding an upper bound for \hn(T;x)\. To
this end we apply (2) and take into account that for the Chebyshev nodes

(13)
i o

4n 2 sin (ix/An)

In (13) we have used the well-known formula

- \)t =
fc=i

sin 2nt
2sint '
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Thus we obtain

Now we can require
J_ _ e-21ogn
n

_ e

which will be satisfied assuming
Trlogn

x >
n

It remains to consider the intermediate interval x € [sin (n/4n), (TT log n) /n]. But
in this case it follows from (1), in view of the lemma, that

\2xhn(T;x)\ /27rlogn\ / 1 \ / 4 \ 2?rlogn

This completes the proof of the theorem. D

COROLLARY 2 . 3 . For any x e [-1,1] the following estimate holds:

C
(14) |en(T;a:)|< nlogn

Finally we show that the estimate (14) is sharp, namely, the following result holds:

THEOREM 2 . 4 . Let x* - 1/(nlogn). Then

(15) |en(T;a:*)| ^ — — , n ^ n0.
nlogn

PROOF: Note first that for n > 3, x* € [0,xi] and since in this interval 0 ^
hn(T; x) ^ 1, we can write:

Thus in order to prove (15) we have to show that the sequence {Fn}'^L1 defined by

F - l P2^*)2 2""1

hn(T;x*)

is bounded. To this end note that

lim [(-l)nr2n(x*)] - 1,
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and therefore it suffices to consider the behaviour of the numerator of (16). Let

(17) 2 f [ 2 f [ 4 n ( )

Then for the first factor we have

(18)
2n

= I I sin = n 1
sin

in 2 2 n - l '

where the last equality is a well-known formula (see for example, formula 1.392(2) from

[4])-
Thus it remains to verify that the sequence {-Rn}^^ is bounded. Taking into

account (11) and (12), we obtain

(19)

= 2z*nA2n_i(T) < - ? - ( l + -Iog2n ) sC C,
logn \ TT )

and the result follows.
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