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Abstract. We shall show that, for any positive integer D > 0 and any primes p1, p2,
the diophantine equation x2 + D = 2spk

1pl
2 has at most 63 integer solutions (x, k, l, s)

with x, k, l ≥ 0 and s ∈ {0, 2}.
1991 Mathematics Subject Classification. Primary 11D61, Secondary 11D45.

1. Introduction. It is known that the equation x2 + 7 = 2n has five solutions, as
conjectured by Ramanujan and shown by Nagell [26] and other authors. According to
this history, this diophantine equation has been called the Ramanujan–Nagell equation
and several authors have studied various analogues.

Apéry [1] showed that, for each integer D > 0 and prime p, the equation x2 + D =
pn has at most two solutions unless (p, D) = (2, 7) and, for any odd prime p, the
equation x2 + D = 4pn, which is equivalent to y2 + y + (D + 1)/4 = pn with y odd,
also has at most two solutions. Beukers [5] showed that if D > 0 and x2 + D = 2n has
two solutions, then D = 23 or D = 2k − 1 for some k > 3 and also gave an effective
upper bound: if w = x2 + D = 2n with D �= 0, then w < 2435 |D|10.

Further generalizations have been made by Le [18–20], Skinner [29] and Bender and
Herzberg [2] to prove that, for any given integers A, B, s, p with gcd(A, B) = 1, s ∈ {0, 2}
and p prime, Ax2 + B = 2spn has at most two solutions except 2x2 + 1 = 3k, 3x2 +
5 = 2k, x2 + 11 = 4 × 3k, x2 + 19 = 4 × 5k with three solutions and the Ramanujan–
Nagell one x2 + 7 = 2k with five solutions.

Bender and Herzberg [2] also found some necessary conditions for the equation
D1x2 + D2 = 2san with D1 > 0, D2 > 0, gcd(D1, D2) = gcd(D1D2, k) = 1, s ∈ {0, 2} to
have more than 2ω(a) solutions. With the aid of the primitive divisor theorem of
Bilu, Hanrot and Voutier [7] concerning Lucas and Lehmer sequences, Bugeaud and
Shorey [10] determined all instances for which D1x2 + D2 = 2man with D1 > 0, D2 >

0, gcd(D1, D2) = gcd(D1D2, k) = 1, m ∈ {0, 1, 2} has more than 2ω(a)−1 solutions,
although they erroneously refer to 2x2 + 1 = 3n as it has just two solutions n = 1, 2,
which in fact has exactly three solutions n = 1, 2, 5, as pointed out by Leu and Li
[23] (this fact immediately follows from Ljunggren’s result [24] since 2x2 + 1 = 3n is
equivalent to (3n − 1)/2 = x2).

We note that it is implicit in Le [15] that if D1 > 3, then D1x2 + 1 = pn has at
most one solution except (D1, p) = (7, 2). But it is erroneously cited in another work
of Le [21], stating that D1x2 + 1 = pn has at most one solution for each D1 ≥ 1 and
odd prime p. This may have caused the failure in [10] mentioned above.
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Le [16] studied another generalized Ramanujan–Nagell equation x2 + Dm = pn

with m, n, x > 0, p a prime not dividing D to show that this equation has at most
two solutions except for some special cases. Further studies by Bugeaud [8] and
Yuan and Hu [33] concluded that this equation has at most two solutions except
for (D, p) = (7, 2), (2, 5) and (4, 5), in which cases, this equation has, respectively,
exactly six, three and three. Hu and Le [14] showed that, for integers D1, D2 > 1
and a prime p not dividing D1D2, the equation D1x2 + Dm

2 = pn, x, m, n > 0 has
at most two solutions except for (D1, D2, p) = (2, 7, 13), (10, 3, 13), (10, 3, 37) and
((32l − 1)/a2, 3, 4 × 32l−1 − 1) with a, l ≥ 1, in which cases this equation has exactly
three solutions.

The diophantine equation x2 + D = yn with only D given also has been studied.
Lebesgue [22] solved this equation for D = 1, Nagell solved for D = 3 and Cohn [11]
solved for many values of D. By the theorem of Shorey, van der Poorten, Tijdeman and
Schinzel [28], we have x, y, n ≤ C with an effectively computable constant C depending
only on D. Combining a modular approach developed by Taylor and Wiles [31, 32]
and Bennett and Skinner [3] and other methods, Bugeaud, Mignotte and Siksek [9]
solved x2 + D = yn in (x, y, n) with n ≥ 3 for each 1 ≤ D ≤ 100. Furthermore, Le
[17] showed that if x2 + 2m = yn with m, x > 0, n > 2 and y odd, then (x, m, y, n) =
(5, 3, 1, 3), (7, 3, 5, 4) or (11, 5, 2, 3). Pink [27] solved x2 + D = yn, n ≥ 3, gcd(x, y) = 1
for D = 2a3b5c7d except the case D ≡ 7 (mod 8) and y is even. A brief survey on further
results to such equations is given by Bérczes and Pink [4]. More recently, Godinho,
Marques and Togbé [13] solved x2 + D = yn, n ≥ 3, gcd(x, y) = 1 for D = 2a3b17c and
D = 2a13b17c.

In this paper, we shall study another generalization of the Ramanujan–Nagell
equation

x2 + D = 2spk
1pl

2 (1)

with s ∈ {0, 2}.
Evertse [12] showed that for every nonzero integer D and r prime numbers

p1, p2, . . . , pr, x2 + D = pk1
1 pk2

2 · · · pkr
r has at most 3 × 74r+6 solutions. Hence, (1) has

at most 3 × 714 solutions for any given D, p1, p2. The purpose of this paper is to
improve this upper bound for the number of solutions of (1).

THEOREM 1.1. For every positive integer D and primes p1, p2, (1) has at most 63
integral solutions (x, s, k, l) with k, l ≥ 0, s ∈ {0, 2}.

It seems that we cannot use the primitive divisor theory for such types of equations.
Instead, we shall use Beukers’ method. However, we need a more involved argument
than Beukers’ original argument in [5].

Let P(x) = x2 + D. Hence, (1) can be rewritten as P(x) = 2spk
1pl

2. In order
to extend Beukers’ argument for (1), we shall divide the set of solutions of
this equation. Let S(α, α + δ, X, Y ) = SP(x)(α, α + δ, X, Y ) be the set of solutions
of the equation P(x) = 2spk

1pl
2 with X ≤ P(x) < Y, s ∈ {0, 2} and (pk

1pl
2)α ≤ pk

1 ≤
(pk

1pl
2)α+δ and we write S(α, α + δ) = S(α, α + δ, 0,∞) for brevity. Moreover, for

u, v (mod 2), let S(α, α + δ, X, Y ; u, v) = SP(x)(α, α + δ, X, Y ; u, v) be the set of
solutions x2 + D = 2spkql ∈ S(α, α + δ, X, Y ) with k ≡ u (mod 2), l ≡ v (mod 2)
and S(α, α + δ; u, v) = S(α, α + δ, 0,∞; u, v). Finally, let us write S(X, Y ) =
S(0, 1, X, Y ), S(j) = S(j/4, (j + 1)/4, 0,∞), S(j)(X, Y ) = S(j/4, (j + 1)/4, X, Y ) and
S(j)(X, Y ; u, v) = S(j/4, (j + 1)/4, X, Y ; u, v) for j = 0, 1, 2, 3.
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Now, we shall state our result in more detail.

THEOREM 1.2. Let Y = 4883601 and W be the constant defined in Lemma 3.1 with
δ = 1/4 and δ1 = 0.04377667. Moreover, let y1 be the smallest solution of (1). For every
positive integer D and primes p1 < p2, we have the following:

(i) Each S(j)(W,∞; u, v) contains at most three solutions for j = 1, 2, two solutions
for j = 0, 3 and no solution for u ≡ v ≡ 0 (mod 2). Hence, there exist at most 30
solutions with x2 + D ≥ W.

(ii) If D ≥ Y or y1 ≥ Y, then S(j)(y1, W ) contains at most nine solutions for j =
1, 2 and five solutions for j = 0, 3. Hence, there exist at most 28 solutions with
x2 + D < W.

(iii) If D, y1, p2 < Y, then there exist at most 29 solutions with x2 + D < W.
(iv) If D, y1 < Y < p2, then S(j)(Y, W ) contains at most nine solutions for j = 1, 2

and five solutions for j = 0, 3. Hence, there exist at most 28 solutions with Y ≤
x2 + D < W. Moreover, there exist at most f ive solutions with x2 + D < Y.

In the next section, we prove a weaker gap principle using only elementary
argument using congruences, which is used to bound the number of middle solutions
(and as an auxiliary tool to prove a stronger gap principle in Section 4). In Section 3,
we use Beukers’ argument to show that if we have one large solution w = x2 + D in
a class S(j)(W,∞; u, v), then other solutions in the same class as w must be bounded
by w. Combining an gap argument proved in Section 4, we obtain an upper bound for
the number of solutions in each class. The number of small solutions can be checked
by computer search.

2. An elementary gap argument. In this section, we shall give the following two
gap principles shown by elementary arguments using congruence.

LEMMA 2.1. Let x1 < x2 be two integers such that yi = x2
i + D(i = 1, 2) belong to

the same set SP(x)(α, α + δ), where α, δ are two real numbers satisfying 0 ≤ δ < 1/4 and
α = 0 or 0 ≤ α ≤ 1 ≤ α + δ. Then, we have x2 > 1

2 (P(x1)/4)3/4.

Proof. Let x1 < x2 be two integers in SP(x)(3/4, 1). Then, we can easily see
that P(xi) ≡ 0 (mod pei

1 ) with pei
1 ≥ (P(x1)/4)3/4. This implies that P(x1) ≡ P(x2) ≡ 0

(mod pf
1), where f = min{e1, e2}. Hence, we have x1 + x2 ≥ pf

1 ≥ (P(x1)/4)3/4, and
therefore x2 > 1

2 (P(x1)/4)3/4. Similarly, if x1 < x2 are two integers in SP(x)(0, 1/4),
then x2 > 1

2 (P(x1)/4)3/4. This proves the lemma. �

LEMMA 2.2. Let x1 < x2 < x3 be three integers such that yi = x2
i + D(i = 1, 2, 3)

belong to the same set SP(x)(α, α + δ) for some 0 ≤ α ≤ 1 with 0 ≤ δ ≤ 1/4. Then, we
have x3 > 1

2 (P(x1)/4)3/4.

Proof. For each i = 1, 2, 3, we have P(xi) ≡ 0 (mod pf
1pg

2), where f =
	α log(P(x1)/4)/ log p1
 and g = ⌈( 3

4 − α
)

log(P(x1)/4)/ log p2
⌉

.

We see that the congruent equation X2 + D ≡ 0 (mod pf
1pg

2) has exactly four
distinct solutions 0 < X1 < X2 < X3 < X4 < pf

1pg
2 with X1 + X4 = X2 + X3 = pf

1pg
2.

Hence, we have X3, X4 > 1
2 pf

1pg
2 and x3 > 1

2 pf
1pg

2 ≥ 1
2 (P(x1)/4)3/4. �
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3. Hypergeometric functions and finiteness results. Let F(α, β, γ, z) be the
hypergeometric function given by the series

1 + α · β

1 · γ
z + α(α + 1)β(β + 1)

1 · 2 · γ (γ + 1)
z2 + · · · , (2)

converging for all |z| < 1 and for z = 1 if γ > α + β. Define G(z) = Gn1,n2 (z) = F(− 1
2 −

n2,−n1,−n, z), H(z) = Hn1,n2 (z) = F(− 1
2 − n1,−n2,−n, z) and E(z) = F(n2 + 1, n1 +

1
2 , n + 2, z)/F(n2 + 1, n1 + 1

2 , n + 2, 1) for positive integers n, n1, n2 with n = n1 + n2

and n1 ≥ n2.
We quote some properties from Lemmas 2–4 of [5]:

(a)
∣∣G(z) − √

1 − zH(z)
∣∣ < zn+1G(1),

(b)
( n

n1

)
G(4z) and

( n
n1

)
H(4z) are polynomials with integer coefficients of degree n1

and n2, respectively,
(c) G(1) < G(z) < G(0) = 1 for 0 < z < 1,
(d) G(1) = ( n

n1

)−1 ∏n1
m=1

(
1 − 1

2m

)
and

(e) Gn1+1,n2+1(z)Hn1,n2 (z) − Gn1,n2 (z)Hn1+1,n2+1(z) = czn+1 for some constant c �= 0.

Now, we obtain the following upper bound for solutions of (1) relative to a given
large one.

LEMMA 3.1. Let α, δ and δ1 be real numbers with 0 ≤ α < α + δ ≤ 1 and 0 <

δ1 < 1/12 and A, B, w, q, s1, k1, l1, s2, k2, l2 be nonnegative integers such that both
A2 + D = w = 2s1 pk1

1 pl1
2 and B2 + D = q = 2s2 pk2

1 pl2
2 belong to S(α, α + δ; u, v) with

B > A. Moreover, put W1 = (2772+210δD241)1/(35(2−3δ)−(3δ+1)/2), W2 = (222/9+2δ/337/3)1/δ1

and W = max{W1, W2}.
If w ≥ W, then q < 470w71 or

q1− 1
2 ( 5

3 +δ+δ1) < 2
31
9 +s1+ 2

3 δ3
16
3 Dw

19
6 + 3

2 δ− 1
2 ( 5

3 +δ+δ1). (3)

Proof. Substituting z = D
w

, we see that
√

1 − z = A

w
1
2

and it follows from the

property (b) that

(
n
n1

)
G(z) = P

(4w)n1
and

(
n
n1

)
H(z) = Q

(4w)n2
(4)

for some integers P and Q.
Now, the property (a) gives

∣∣∣∣∣
P

(4w)n1
− AQ

w
1
2 (4w)n2

∣∣∣∣∣ <

(
n
n1

) (
D
w

)n+1

G(1), (5)

and therefore

∣∣∣∣∣1 − AQ

w
1
2 (4w)n2−n1 P

∣∣∣∣∣ <
(4w)n1

|P|
(

n
n1

)(
D
w

)n+1

G(1). (6)
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Letting

K =
∣∣∣∣∣

B

q
1
2

− AQ

w
1
2 (4w)n2−n1 P

∣∣∣∣∣ , (7)

we have

K < ε + (4w)n1

|P|
(

n
n1

) (
D
w

)n+1

G(1), (8)

where

ε =
∣∣∣∣∣

B

q
1
2

− 1

∣∣∣∣∣ <
D

2B2
. (9)

Let λ be the integer such that (4w)λ−1 < (q/w)1/2 ≤ (4w)λ and choose n1, n2 such
that 2

3λ − 2
3 ≤ n1 ≤ 2

3λ + 1, n2 = n1 + λ and K �= 0. Following the proof of Theorem
1 in [5], the property (e) allows such a choice. Moreover, we may assume without loss
of generality that q ≥ 470w71, which yields that λ ≥ 35 and n1 ≥ 23.

Let R be the l.c.m. of q and w(4w)2λ. Then, since k1 ≡ l1, k2 ≡ l2 (mod 2) and
we have chosen n1, n2 such that K �= 0, we see that the denominator of K must divide
R1/2 |P|.

Since both w and q belong to S(α, α + δ; u, v), we have pk2
1 ≤ (q/2s2 )α+δ ≤

(24λ−s2w2λ+1)α+δ and pl2
2 ≤ (q/2s2 )1−α ≤ (24λ−s2w2λ+1)1−α, pk1

1 ≤ wα+δ and pl1
2 ≤ w1−α.

Hence, we see that R ≤ 28λ+(2λ+1)s1+(4λ−s2)δw(1+δ)(2λ+1) and

K ≥ 1

|P| √R
≥ 1

|P| w(1+δ)(λ+ 1
2 )2(4+2δ+s1)λ+ s1−s2δ

2

. (10)

Combining (8) and (10), we have

ε |P| w(1+δ)(λ+ 1
2 )2(4+2δ+s1)λ+ s1−s2δ

2

> 1 − 22n1+(4+2δ+s1)λ+ s1−s2δ

2 wn1+(1+δ)(λ+ 1
2 )

(
n
n1

) (
D
w

)n+1

G(1).
(11)

Since G(1)
( n

n1

) = ∏
1≤m≤n1

(
1 − 1

2m

)
< 1

8 for n1 ≥ 23, the last term of (11) is at most

22n1+(4+2δ+s1)λ+ s1−s2δ

2 wn1+(1+δ)(λ+ 1
2 )

(
D
w

)n+1

≤ 22n1+(4+2δ+s1)λ+ s1−s2δ

2 wn2+δλ+ 1+δ
2 −(n+1)Dn+1

= 2(4+2δ+s1)λ+ s1−s2δ

2 wδλ+ δ−1
2 Dλ

(
4D2

w

)n1

≤ 2( 16
3 +2δ+s1)λ− 1

3 w(δ− 2
3 λ)+ δ

2 + 1
6 D

7
3 λ− 4

3

= w
1
6 + δ

2

2
1
3 D

4
3

(
216+6δ+3s1 D7

w2−3δ

) λ
3

≤ 1
2
,

(12)
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provided that w35(2−3δ)−(3δ+1)/2 ≥ 2562+210δ+105s1 D241, which follows from our
assumption that w ≥ W ≥ W1. Hence, we have

ε |P| w(1+δ)(λ+ 1
2 )2(4+s1)λ+ s1−s2

2 >
1
2
. (13)

By the property (c), we have, with the aid of Lemma 5 of [5],

|P| <(4w)n1

(
n
n1

)

<
1
2

(
3

41/3

) 7
3 λ+2

(4w)
2
3 λ+1

=2− 2
9 λ− 1

3 3
7
3 λ+2w

2
3 λ+1.

(14)

Now, by our assumption that w ≥ W ≥ W2, we have

2
4
9 + 2

3 δ+s1 3
7
3 < (4w)δ1 , (15)

and therefore

|P| w(1+δ)(λ+ 1
2 )2(4+2δ+s1)λ+1 <2( 34

9 +2δ+s1)λ+ 2
3 3

7
3 λ+2w( 5

3 +δ)λ+ 3+δ
2

=2
2
3 32w

3+δ
2 (2

4
9 +s1− 4

3 δ3
7
3 )λ(4w)(

5
3 +δ)λ

≤24+2δ32w
19
6 + 3

2 δ(2
4
9 +s1− 4

3 δ3
7
3 )λ

( q
w

) 1
2 ( 5

3 +δ)

≤2
40
9 +s1+ 2

3 δ3
13
3 w

19
6 + 3

2 δ
( q
w

) 1
2 ( 5

3 +δ+δ1)
.

(16)

Combining (13) and (16), we have

2
40
9 +s1+ 2

3 δ3
13
3 w

19
6 + 3

2 δ
( q
w

) 1
2 ( 5

3 +δ+δ1)
>

1
2ε

>
2q
3D

(17)

and (3) immediately follows. �

4. Arithmetic of quadratic fields and the stronger gap principle. In this section,
we shall prove a gap principle for larger solutions using some arithmetic of quadratic
fields.

Let d be the unique squarefree integer such that D = B2d for some integer B. If
pi(i = 1, 2) splits (or is ramified) in �(

√−d), then we can factor [pi] = pip̄i using some
prime ideal pi in �(

√−d) (we note that if pi is ramified in �(
√−d), then pi = p̄i).

Moreover, if [α] = [β] in �(
√−d), then α = θβ, where θ is a sixth root of unity if

d = 3, a fourth root of unity if d = 1 and ±1 otherwise.
Assume that A2 + D = A2 + B2d = 22epk

1pl
2 with e ∈ {0, 1}. If both of pi’s are

splitting or ramified, then, we must have [(A + B
√−d)/(2epk∗

1 pl∗
2 )] = pk′

1 pl′
2 , p̄

k′
1 pl′

2 , p
k′
1 p̄l′

2
or p̄k′

1 p̄l′
2 , where k∗, l∗, k′, l′ are some nonnegative integers with k = 2k∗ + k′ and

l = 2l∗ + l′. If p1, say, is inert in �(
√−d), then k is even and [p1] divides both

[(A + B
√−d)/2e] and [(A − B

√−d)/2e] exactly k/2 times. Hence, in any case, we
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have [
A + B

√−d

A − B
√−d

]
=

(
p̄1

p1

)±k′ (
p̄2

p2

)±l′

(18)

with 0 ≤ k′ ≤ k and 0 ≤ l′ ≤ l for some appropriate choices of signs.
We shall show a gap principle for solutions much stronger than Lemmas 2.1 and

2.2.

LEMMA 4.1. Let c denote the constant
√

log 2 log 3/27/2 = 0.2594 . . . If x3 > x2 >

x1 > 106D belong to the same set S(j) with j = 0 or 3 and yi = x2
i + D for i = 1, 2, 3,

then y3 > exp(cy1/8
1 ). Furthermore, if x4 > x3 > x2 > x1 > 106D belong to the same set

S(j) with j = 1 or 2 and yi = x2
i + D for 1 ≤ i ≤ 4, then y4 > exp(cy1/8

1 ).

Proof. Assume that S(j) has three elements x1 < x2 < x3 in the case j = 0, 3 and
four elements x1 < x2 < x3 < x4 in the case j = 1, 2. By Lemmas 2.1 and 2.2, we have
x3 > x2 > 1

2 (y1/4)3/4 > 1
25/2 x3/2

1 and we have x4 > x3 > 1
2 (y1/4)3/4 > 1

25/2 x3/2
1 in both

cases, respectively. So that, setting (X1, X2, X3) = (x1, x2, x3) in the case j = 0, 3 and
(X1, X2, X3) = (x1, x3, x4) in the case j = 1, 2, we have X3 > X2 > 1

25/2 X3/2
1 in any case.

Let X2
i + D = 2si pki

1 pli
2 for each i = 1, 2, 3 and K = max ki, L = max li. Then, (18)

yields that

[
Xi + √−D
Xi − √−D

]
=

(
p̄1

p1

)±k′
i
(

p̄2

p2

)±l′i
(19)

with 0 ≤ k′
i ≤ ki and 0 ≤ l′i ≤ li, for each i = 1, 2, 3. Now, we can take some integers

e1, e2, e3 which are not all zero so that

[
X1 + √−D
X1 − √−D

]e1 [
X2 + √−D
X2 − √−D

]e2 [
X3 + √−D
X3 − √−D

]e3

= [1]. (20)

Indeed, if (k′
1, k′

2, k′
3) and (l′1, l′2, l′3) are not proportional, then we can take e1 = ±k′

2l′3 ±
k′

3l′2, e2 = ±k′
3l′1 ± k′

1l′3, e3 = ±k′
1l′2 ± k′

2l′1 with appropriate signs. In the case (k′
1, k′

2, k′
3)

and (l′1, l′2, l′3) are proportional, we can take (ei1 , ei2 , ei3 ) = (k′
i2,−k′

i1 , 0) or (l′i2 ,−l′i1 , 0)
for some permutation (i1, i2, i3) of (1, 2, 3) so that ei’s are not all zero. In other words,
we have

(
X1 + √−D
X1 − √−D

)f e1 (
X2 + √−D
X2 − √−D

)f e2 (
X3 + √−D
X3 − √−D

)f e3

= 1, (21)

where f = 6 if d = 3, 4 if d = 1 and 2 otherwise. This implies that


 = e1 arg(X1 + √−D) + e2 arg(X2 + √−D) + e3 arg(X3 + √−D) (22)

must be a multiple of 2π/f .

If 
 �= 0, then we see that
(

|e1|
X1

+ |e2|
X2

+ |e3|
X3

) √
D > |
| ≥ 2π/f , and therefore

2.01f KL
√

D ≥ 2X1π and 1.92KL
√

D > X1. Since X1 = x1 > 106D, we have
1.92KL > 2

√
X1 > (X2

1 + D)1/4 = y1/4.
Assume that 
 = 0. If e1 = 0, then we must have 
 = e2 arg(X2 ±√−D) + e3 arg(X3 ± √−D) = 0 and (X2

2 + D)e2 = (X2
3 + D)e3 . Hence, we must

541

https://doi.org/10.1017/S0017089518000344 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000344


TOMOHIRO YAMADA

have |e2| > |e3| > 0 and
∣∣arg(X2 ± √−D)

∣∣ >
∣∣arg(X3 ± √−D)

∣∣ > 0 from X3 >

X2 and 
 �= 0, which is a contradiction. Thus, e1 cannot be zero. The
triangle inequality immediately gives that

∣∣arg(X1 ± √−D)
∣∣ ≤ ∣∣e2 arg(X2 ± √−D)

∣∣ +∣∣e3 arg(X3 ± √−D)
∣∣, and therefore

1√
X2

1 + D
<

e2

X2
+ e3

X3
<

2KL
X2

<
8
√

2KL

(X2
1 + D)

3
4

. (23)

Thus, we obtain 8
√

2KL > (X2
1 + D)1/4 = y1/4

1 .
Hence, in any case we have 8

√
2KL > y1/4

1 and max{K log p1, L log p2} >

y1/8
1

√
log p1 log p2/(8

√
2). Thus, we conclude that

X2
3 + D ≥ max{pK

1 , pL
2 } > exp

(
y

1
8
1

√
log p1 log p2

8
√

2

)
≥ exp

(
cy

1
8
1

)
, (24)

proving the Lemma. �

5. Proof of the theorem. We set δ1 = 0.04377667. We shall begin by proving (i).
Let y1 = x2

1 + D be the smallest solution in a given class S(j)(W,∞; u, v) and
y2 = x2

2 + D be the third or fourth smallest one in this class for j = 0, 3 or j = 1, 2,
respectively. Lemma 3.1 with δ = 1/4 gives that

y2 < max
{

470y71
1 , (2

101
18 3

16
3 Dy

31
12 − δ1

2
1 )1/

(
1
24 − δ1

2

)}
. (25)

But Lemma 4.1 immediately yields that y2 > exp(cy1/8
1 ). We observe that these

two inequalities are incompatible for y1 ≥ W = max{W1, W2}. Hence, we see that
#S(j)(W,∞; u, v) ≤ 2 for each j, u, v for j = 0, 3 and #S(j)(W,∞; u, v) ≤ 3 for each
j, u, v for j = 1, 2. Combining these estimates, we obtain #S(0, 1, W,∞) ≤ 30 after the
easy observation that S(0, 1, W,∞; 0, 0) must be empty since W > D2. This proves (i).

Now, we shift our concern to smaller solutions. Let f (y) = y3/2/25/2, g(y) =
exp(cy1/8

1 ) and f (m) be the mth iteration of f . y1 = x2 + D = 2spk
1pl

2 denotes the smallest
solution. We have the following three cases.

Case 1. D ≥ Y or y1 ≥ Y .

If D ≥ Y , then W = W1 < g(f (3)(D)) ≤ g(f (3)(y1)). If D ≤ Y − 1 and y1 ≥ Y ,
then we have that W = W2 < g(f (3)(Y )) ≤ g(f (3)(y1)). Hence, we always have W ≤
g(f (3)(y1)) in Case 1, and therefore, using Lemmas 2.1 and 2.2, we obtain #S(j)(y1, W ) ≤
9 if j = 0, 3 and #S(j)(y1, W ) ≤ 5 if j = 1, 2. So that, #S(0, 1, 0,∞) ≤ 30 + 28 = 58.
This proves (ii).

Case 2. D, y1, p2 ≤ Y − 1.

Let W3 = f (2)(Y ) = 3545401233665.83 . . . Since y1 ≤ Y − 1, then D ≤ y1 ≤ Y −
1 and p1 ≤ y1 ≤ Y − 1. A computer search revealed that #S(0, 1, 0, W3) ≤ 13 for any
D, p1, p2 ≤ Y − 1. Since W < g(f (3)(Y )) = g(f (W3)), from Lemmas 2.1 and 2.2, we see
that #S(j)(W3, W ) ≤ 5 if j = 0, 3 and #S(j)(W3, W ) ≤ 3 if j = 1, 2. This proves (iii).
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Case 3. D, y1 ≤ Y − 1 and p2 ≥ Y .

If x2 + D = 2spk
1pl

2 ≤ Y − 1, then, since p2 ≥ Y , we must have x2 + D = 2spk
1,

which has at most five solutions from the results mentioned in the introduction. The
number of the other solutions can be bounded as in Case 2 and we obtain (iv). This
completes the proof of the Theorem.
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