REPRESENTATION OF ALGEBRAS WITH INVOLUTION

GEORGE MAXWELL

Introduction. Let K be a field with an involution J. A *-algebra over K is an associative algebra A with an involution $*$ satisfying $(\alpha \cdot a)^{*}=\alpha^{J} \cdot a^{*}$. A large class of examples may be obtained as follows. Let (V, φ) be an hermitian space over K consisting of a vector space V and a left hermitian (w.r.t. J) form φ on V which is nondegenerate in the sense that $\varphi(V, v)=0$ implies $v=0$. An endomorphism f of V may have an adjoint f^{*} w.r.t. φ, defined by $\varphi(f(u), v)=\varphi\left(u, f^{*}(v)\right)$; due to the nondegeneracy of φ, f^{*} is unique if it exists. The set $B(V, \varphi)$ of all endomorphisms of V which do have an adjoint is easily verified to be a $*$-algebra.

We shall prove, conversely, that every $*$-algebra A satisfying the mild restriction

$$
\begin{equation*}
A a=0 \text { implies } a=0 \tag{1}
\end{equation*}
$$

can be imbedded as a *-subalgebra of $B(V, \varphi)$ for some hermitian space (V, φ). Secondly, we shall investigate which $*$-algebras can still be imbedded in $B(V, \varphi)$ if φ is assumed to be "positive" in a certain sense.

Results of this type are well-known in the context of Banach algebras with involution; e.g., Gelfand and Naimark [2], Schatz [5]. Our methods of proof owe much to these sources.

1. The general case. Suppose A is a *-algebra over K. The dual space A^{\wedge} also has an "involution" $s \mapsto s^{*}$, where $s^{*}(a)=s\left(a^{*}\right)^{J}$. If s is hermitian w.r.t. this involution, $(a, b) \mapsto s\left(a^{*} b\right)$ is a left hermitian form on A. Its radical is the left ideal

$$
\begin{equation*}
I_{s}=\{b \in A \mid s(a b)=0 \text { for all } a \in A\} \tag{2}
\end{equation*}
$$

of A, so that it induces a nondegenerate left hermitian form φ_{s} on the left A-module A / I_{s}. Since $s\left((x a)^{*} b\right)=s\left(a^{*}\left(x^{*} b\right)\right)$, we have $\varphi_{s}(x . a, b)=\varphi_{s}\left(a, x^{*} . b\right)$. In other words, left multiplication by x has an adjoint w.r.t. φ_{s} equal to left multiplication by x^{*}.

Suppose J is nontrivial; let F be the fixed field of J and $\theta \in K$ such that $\theta^{J} \neq \theta$. The set A^{h} of hermitian elements of A is clearly a vector space over F. Every $a \in A$ can be written uniquely in the form

$$
\begin{equation*}
a=a_{1}+\theta \cdot a_{2}, \tag{3}
\end{equation*}
$$

Received June 24, 1971.
where a_{1} and $a_{2} \in A^{h}$, by taking

$$
a_{1}=\left(\theta \cdot a^{*}-\theta^{J} \cdot a\right) /\left(\theta-\theta^{J}\right), a_{2}=\left(a-a^{*}\right) /\left(\theta-\theta^{J}\right)
$$

An hermitian functional of A maps A^{h} into F and, conversely, every functional t of A^{h} induces an hermitian functional s of A, by defining $s(a)$ to be $t\left(a_{1}\right)+$ $\theta t\left(a_{2}\right)$, relative to the decomposition (3). Symbolically, we have shown that $A^{\wedge h} \cong A^{h \wedge}$.

If J is trivial, hermitian functionals are those which vanish on the subspace $A^{s}=\left\{a-a^{*} \mid a \in A\right\}$ of A. In this case, $A^{\wedge} \cong\left(A / A^{s}\right)^{\wedge}$.

Proposition 1. Let $I(A)=\cap I_{s}$, taken over all hermitian functionals s of A. If J is nontrivial, A.I $(A)=0$. If J is trivial, $A . I(A)$ is a *-ideal of A contained in A^{s} and such that $(A . I(A))^{3}=0$.

Proof. Suppose J is nontrivial. Let $a \in A$ be such that $b a \neq 0$ for some $b \in A$. We can write $b a=c_{1}+\theta . c_{2}$ with $c_{1}, c_{2} \in A^{h}$. There exists a functional t of A^{h} for which either $t\left(c_{1}\right)$ or $t\left(c_{2}\right)$ is nonzero. Extending t to an hermitian functional s of A, we conclude that $s(b a) \neq 0$ so that $a \in I_{s}$. Hence $A \cdot I(A)=0$.

Suppose J is trivial. If $x \in I(A)$ and $a \in A$, we have $a x \in A^{s}$ since, otherwise, we could find an hermitian functional s such that $s(a x) \neq 0$. In particular, $(a x)^{*}=-a x$; since $A . I(A)$ is already a left ideal, this shows that it is in fact a $*$-ideal. If $x \in A . I(A)$ and $a \in A$ we have, as before, $(a x)^{*}=-a x$ or $x a^{*}=a x$ since now $x^{*}=-x$. Suppose $x, y \in A . I(A)$ and $a \in A$. Then

$$
(x y) a^{*}=a(x y)=(a x) y=\left(x a^{*}\right) y=x\left(a^{*} y\right)=x(y a)=(x y) a
$$

so that $x y\left(a-a^{*}\right)=0$. Since $A . I(A) \subset A^{s}$, this implies that $(A . I(A))^{3}=0$.
When J is trivial, it may happen that $A \cdot I(A) \neq 0$. For example, suppose $\operatorname{char}(K) \neq 2$ and let A be the algebra $K[T] /\left(T^{2}\right)$ with the involution $(\alpha+\beta T)^{*}=\alpha-\beta T$. Then $I(A)$ consists of all multiples of T.

To rectify this difficulty, we turn to the skew-hermitian functionals of A. If t is such a functional, one can verify that

$$
\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \mapsto t\left(x_{1}{ }^{*} y_{2}-x_{2}{ }^{*} y_{1}\right)
$$

is an hermitian form on $A \oplus A$ with radical $I_{t} \oplus I_{t}$, where I_{t} is given by (2), and therefore induces a nondegenerate hermitian form φ_{i} on the left A-module $A / I_{t} \oplus A / I_{t}$. As before, left multiplication by x has an adjoint w.r.t. φ_{t} equal to left multiplication by x^{*}.

Let $I^{\prime}(A)=\cap I_{\iota}$, taken over all skew-hermitian functionals of A. Suppose J is trivial and $\operatorname{char}(K) \neq 2$; skew-hermitian functionals are those which vanish on elements of the form $a+a^{*}$. If $x \in A$, and $a x \neq 0$ we know from Proposition 1 that $(a x)^{*}=-a x \neq a x$ so that $t(a x) \neq 0$ for some skewhermitian functional t; hence $x \notin I_{t}$. In other words,

$$
\begin{equation*}
A .\left(I(A) \cap I^{\prime}(A)\right)=0 \tag{4}
\end{equation*}
$$

is true in every case other than when J is trivial and $\operatorname{char}(K)=2$.

Proposition 2. Suppose A is a *-algebra over K satisfying (1). There exists an hermitian space (V, φ) over K and an injective $*$-algebra homomorphism $\lambda: A \rightarrow B(V, \varphi)$. If A is finite-dimensional, V may be chosen to be finite-dimensional, except possibly in the case when J is trivial and $\operatorname{char}(K)=2$.

Proof. Suppose that either J is nontrivial or $\operatorname{char}(K) \neq 2$. We conclude from (1) and (4) that $I(A) \cap I^{\prime}(A)=0$. Therefore there exists a family $\left\{s_{i}\right\}$ of hermitian or skew-hermitian functionals of A for which $\cap I_{s i}=0$. If A is finite-dimensional, we can choose a finite family with this property. Let V_{i} be either $A / I_{s i}$ if s_{i} is hermitian or $A / I_{s i} \oplus A / I_{s i}$ if s_{i} is skew-hermitian and put $V=\oplus V_{i}, \varphi=\oplus \varphi_{s_{i}}$. If A is finite-dimensional, so is V. For $a \in A$, define $\lambda(a)$ to be left multiplication by a; it follows from the preceding discussion that $\lambda(a)^{*}$ exists and equals $\lambda\left(a^{*}\right)$. If $\lambda(a)=0$, we have $a A \subset \cap I_{s i}=0$ so that $A a^{*}=0$. By (1), $a^{*}=0$ and hence $a=0$.

Suppose now that J is trivial and $\operatorname{char}(K)=2$. The rational function field $K(X)$ possesses the involution $J^{\prime}(f(X))=f(1 / X)$. The algebra $A^{\prime}=$ $A \otimes_{K} K(X)$ with the involution $(a \otimes f)^{*}=a^{*} \otimes J^{\prime}(f)$ is a *-algebra over $K(X)$. Since J^{\prime} is nontrivial, the first part of the proof shows the existence of an imbedding $\lambda^{\prime}: A^{\prime} \rightarrow B\left(V^{\prime}, \varphi^{\prime}\right)$ for some hermitian space ($V^{\prime}, \varphi^{\prime}$) over $K(X)$. Choose a nonzero hermitian functional σ of $K(X)$, regarded as a $*$-algebra over K. Let V be V^{\prime} regarded as a vector space over K and φ the left hermitian form $\varphi(x, y)=\sigma\left(\varphi^{\prime}(x, y)\right)$ on V. For a fixed $x \neq 0, \varphi^{\prime}(x, y)$ assumes every value in $K(X)$ so that $\sigma\left(\varphi^{\prime}(x, y)\right) \neq 0$ for some y; i.e., φ is nondegenerate. Clearly $B\left(V^{\prime}, \varphi^{\prime}\right) \subset B(V, \varphi)$ and $*$ means the same in both algebras. Combining this inclusion with the canonical injection $A \rightarrow A^{\prime}$, we obtain the desired homomorphism $\lambda: A \rightarrow B(V, \varphi)$.

It seems reasonable to conjecture that the second assertion of Proposition 2 holds without exception. This is true, for example, if K has a finite algebraic extension K^{\prime} which has a nontrivial involution leaving K fixed.
2. Positive algebras. In this section we shall assume that F, the fixed field of J, is formally real and that K is either F or $F(\sqrt{ }(-\xi))$, where ξ is a sum of squares in F; in the latter case, $J(\sqrt{ }(-\xi))=-\sqrt{ }(-\xi)$. Let Ω be a fixed algebraic closure of $K,\left\{R_{\lambda}\right\}_{\lambda \in \Lambda}$ the set of real closures of F in Ω, and J_{λ} the involution of Ω which leaves R_{λ} fixed and sends $\sqrt{ }(-1)$ to $-\sqrt{ }(-1)$. The assumption on ξ implies that J_{λ} is always an extension of J. We shall denote by F^{+}the set of elements in F which are sums of squares. If $\alpha \in K$, it is clear that $\alpha^{J} \alpha \in F^{+}$.

A left hermitian form φ on a vector space V over K is called positive if $\varphi(v, v) \in F^{+}$for all $v \in V$. Starting from the fact that $\varphi(v+\alpha . u, v+\alpha . u) \in F^{+}$ for all $\alpha \in K$, the usual argument for the Cauchy-Schwarz inequality proves

Proposition 3. If φ is positive, then:
(a) $\varphi(v, v) \varphi(u, u)-\varphi(v, u)^{J} \varphi(v, u) \in F^{+}$;
(b) φ is nondegenerate if and only if $\varphi(v, v)=0$ implies $v=0$.

For each $\lambda \in \lambda$, let $V_{\lambda}=V \otimes_{K} \Omega$, regarded as a vector space over Ω, and φ_{λ} the left hermitian form (w.r.t. J_{λ}) on V_{λ} defined by

$$
\varphi_{\lambda}(v \otimes \alpha, u \otimes \beta)=J_{\lambda}(\alpha) \varphi(v, u) \beta
$$

Proposition 4. If φ is positive, so is φ_{λ}.
Proof. Let

$$
w=\sum_{i=1}^{n} v_{i} \otimes \alpha_{i}
$$

be an element of V_{λ}. We may assume $\varphi\left(v_{1}, v_{1}\right) \neq 0$ since, otherwise, $\varphi\left(v_{1}, u\right)=0$ for all u by Proposition $3(a)$ and the element $v_{1} \otimes \alpha_{1}$ makes no contribution to the value of $\varphi_{\lambda}(w, w)$. One can then write

$$
w=v_{1} \otimes \beta_{1}+\sum_{i>1} v_{i}^{\prime} \otimes \alpha_{i}
$$

where

$$
v_{i}^{\prime}=v_{i}-\left(\varphi\left(v_{1}, v_{i}\right) / \varphi\left(v_{1}, v_{1}\right)\right) v_{1}
$$

and

$$
\beta_{1}=\sum_{i=1}^{n}\left(\varphi\left(v_{1}, v_{i}\right) / \varphi\left(v_{1}, v_{1}\right)\right) \alpha_{i}
$$

Induction on n shows that $\varphi_{\lambda}(w, w) \in R_{\lambda}{ }^{+}$since this is clearly true for $n=1$.
We call a $*$-algebra A positive if it can be imbedded as a $*$-subalgebra of $B(v, \varphi)$ for some positive hermitian space (V, φ). Our aim is to find intrinsic conditions for positivity.

A functional s of A is called positive if it is hermitian and such that $s\left(a^{*} a\right) \in F^{+}$for all $a \in A$. Let $I^{+}(A)=\cap I_{s}$, taken over all positive functionals of A. Applying Proposition 3(a) to the positive left hermitian form $(a, b) \mapsto$ $s\left(a^{*} b\right)$ on A, we conclude that

$$
\begin{equation*}
s\left(a^{*} a\right) s\left(b^{*} b\right)-s\left(a^{*} b\right)^{J} s\left(a^{*} b\right) \in F^{+} . \tag{5}
\end{equation*}
$$

Therefore in this case

$$
\begin{equation*}
I_{s}=\left\{b \in A \mid s\left(b^{*} b\right)=0\right\} \tag{6}
\end{equation*}
$$

Proposition 5. $I^{+}(A)$ is an ideal of A. If A has a unit element, $I^{+}(A)$ is closed under $*$.

Proof. Being an intersection of left ideals, $I^{+}(A)$ is clearly a left ideal. Suppose $x \in I^{+}(A)$; for every positive functional s of A and every $a \in A$, the functional $s^{\prime}(b)=s\left(a^{*} b a\right)$ is also positive so that $s\left(a^{*} x^{*} x a\right)=$ $s\left((x a)^{*}(x a)\right)=0$. In view of (6), we must have $x a \in I^{+}(A)$; i.e., $I^{+}(A)$ is also a right ideal.

In particular, $s\left(x x^{*} x x^{*}\right)=0$ for each positive functional s. If A has a unit element then, using (5) with $a=1$ and $b=x x^{*}$, we conclude that $s\left(x x^{*}\right)=0$ so that $x^{*} \in I^{+}(A)$ by (6).

Proposition 6. A *-algebra A satisfying (1) is positive if and only if $I^{+}(A)=0$.
Proof. Suppose $I^{+}(A)=0$; since a positive functional s yields a positive form φ_{s} and a direct sum of positive forms is still positive, the same method as used in the proof of Proposition 2 shows that A is positive. (Furthermore, if A is finite-dimensional, the space V can also be chosen finite-dimensional.)

Conversely, suppose A is a *-subalgebra of $B(V, \varphi)$ for some positive hermitian space (V, φ). For each $v \in V, s_{v}(a)=\varphi(v, a(v))$ is a positive hermitian functional of A. If $x \in I^{+}(A)$,

$$
s_{v}\left(x^{*} x\right)=\varphi\left(v, x^{*} x(v)\right)=\varphi(x(v), x(v))=0
$$

for all $v \in V$ so that $x(v)=0$; i.e., $x=0$.
We now turn to an altogether different condition for positivity. Call a *-algebra A anisotropic if it satisfies

$$
\begin{equation*}
a^{*} a=0 \text { implies } a=0 \tag{7}
\end{equation*}
$$

and totally anisotropic if the algebra $A_{\lambda}=A \otimes_{K} \Omega$, with the involution $(a \otimes \alpha)^{*}=a^{*} \otimes J_{\lambda}(\alpha)$, is anisotropic for all $\lambda \in \Lambda$. Either property is obviously preserved in passing to a $*$-subalgebra.

Proposition 7. A positive *-algebra A is totally anisotropic.
Proof. In view of the preceding remark, it suffices to verify that $B(V, \varphi)$ is totally anisotropic if (V, φ) is a positive hermitian space over K. On the other hand, we have an injective *-algebra homomorphism

$$
\pi: B(V, \varphi) \otimes_{K} \Omega \rightarrow B\left(V_{\lambda}, \varphi_{\lambda}\right)
$$

given by $\pi(f \otimes \alpha)(v \otimes \beta)=f(v) \otimes \alpha \beta$, so that again it suffices to prove that $B\left(V_{\lambda}, \varphi_{\lambda}\right)$ is anisotropic. Suppose $a^{*} a=0$ holds in $B\left(V_{\lambda}, \varphi_{\lambda}\right)$; then

$$
\varphi_{\lambda}\left(a^{*} a(v), v\right)=\varphi_{\lambda}(a(v), a(v))=0 .
$$

Since φ_{λ} is positive by Proposition 4, $a(v)=0$ for all $v \in V$; i.e., $a=0$.
As a partial converse, we have
Proposition 8. A finite-dimensional totally anisotropic *-algebra A is positive.
Proof. Starting from (7), a well-known argument [3] shows that A has no nil ideals-in our context, this means that A must be semi-simple. Furthermore, if B is a minimal ideal of A, so is B^{*} and thus either $B^{*}=B$ or $B^{*} B=0$; but the latter possibility is again excluded by (7). Since a product of positive algebras is easily seen to be positive, it is sufficient to prove the assertion in the case when A is simple.

Let $\operatorname{tr}: A \rightarrow K$ be the reduced trace. If $a \in A$, we may compute $\operatorname{tr}\left(a^{*} a\right)$ in the extended algebra A_{λ}. Suppose $A_{\lambda} \cong \operatorname{End}_{\Omega}(V)$ for some finite-dimensional vector space V over Ω. It is well-known [1] that the involution induced by

* on $\operatorname{End}_{\Omega}(V)$ must be the adjoint involution corresponding to a nondegenerate left hermitian or skew-hermitian (w.r.t. J_{λ}) form ψ on V. We claim that ψ is hermitian and that either ψ or $-\psi$ is positive. If not, there would exist a nonzero $w \in V$ such that $\psi(w, w)=0$. Choose a nonzero $f \in \operatorname{End}_{\Omega}(V)$ whose image is contained in $\Omega . w$. Then

$$
\psi\left(v, f^{*} f(u)\right)=\psi(f(v), f(u))=0
$$

for all $v, u \in V$ so that $f^{*} f=0$, which contradicts (7) since A_{λ} is assumed to be anisotropic.

Since both ψ and $-\psi$ induce the same involution on $\operatorname{End}_{\Omega}(V)$, we may assume that ψ is positive. A standard argument [4] now shows that $\operatorname{tr}\left(f^{*} f\right) \in R_{\lambda}{ }^{+}$. Since this holds for all $\lambda \in \Lambda$, we conclude that $\operatorname{tr}\left(a^{*} a\right) \in F^{+}$. Furthermore, $\operatorname{tr}\left(a^{*} a\right)=0$ implies $a=0$ since this is true in A_{λ}. In other words, $\operatorname{tr}: A \rightarrow K$ is a positive functional-it is obviously hermitian-such that $I_{\mathrm{tr}}=0$; therefore, $I^{+}(A)=0$ and A is positive by Proposition 6.

References

1. A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloquium Publ. (Amer. Math. Soc., Providence, R.I., 1939).
2. I. M. Gelfand and M. A. Naimark, On the imbedding of normed rings into the ring of operators in Hilbert space, Mat. Sbornik 12 (1943), 197-213.
3. I. Kaplansky, Rings of operators (Benjamin, New York, 1968).
4. M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities (Allyn \& Bacon, Boston, 1964).
5. J. A. Schatz, Representation of Banach algebras with an involution, Can. J. Math. 9 (1957), 435-442.

University of British Columbia, Vancouver, British Columbia

