REPRESENTATION OF ALGEBRAS WITH INVOLUTION

GEORGE MAXWELL

Introduction. Let K be a field with an involution J. A *-algebra over K is an associative algebra A with an involution * satisfying $(\alpha.a)^* = \alpha^J.a^*$. A large class of examples may be obtained as follows. Let (V, φ) be an hermitian space over K consisting of a vector space V and a left hermitian (w.r.t. J) form φ on V which is nondegenerate in the sense that $\varphi(V, v) = 0$ implies v = 0. An endomorphism f of V may have an adjoint f^* w.r.t. φ , defined by $\varphi(f(u), v) = \varphi(u, f^*(v))$; due to the nondegeneracy of φ , f^* is unique if it exists. The set $B(V, \varphi)$ of all endomorphisms of V which do have an adjoint is easily verified to be a *-algebra.

We shall prove, conversely, that every *-algebra A satisfying the mild restriction

(1)
$$Aa = 0$$
 implies $a = 0$

can be imbedded as a *-subalgebra of $B(V, \varphi)$ for some hermitian space (V, φ) . Secondly, we shall investigate which *-algebras can still be imbedded in $B(V, \varphi)$ if φ is assumed to be "positive" in a certain sense.

Results of this type are well-known in the context of Banach algebras with involution; e.g., Gelfand and Naimark [2], Schatz [5]. Our methods of proof owe much to these sources.

1. The general case. Suppose A is a *-algebra over K. The dual space A° also has an "involution" $s \mapsto s^*$, where $s^*(a) = s(a^*)^{J}$. If s is hermitian w.r.t. this involution, $(a, b) \mapsto s(a^*b)$ is a left hermitian form on A. Its radical is the left ideal

(2)
$$I_s = \{b \in A \mid s(ab) = 0 \text{ for all } a \in A\}$$

of A, so that it induces a nondegenerate left hermitian form φ_s on the left A-module A/I_s . Since $s((xa)^*b) = s(a^*(x^*b))$, we have $\varphi_s(x.a, b) = \varphi_s(a, x^*.b)$. In other words, left multiplication by x has an adjoint w.r.t. φ_s equal to left multiplication by x^* .

Suppose J is nontrivial; let F be the fixed field of J and $\theta \in K$ such that $\theta^{J} \neq \theta$. The set A^{h} of hermitian elements of A is clearly a vector space over F. Every $a \in A$ can be written uniquely in the form

$$a = a_1 + \theta a_2,$$

Received June 24, 1971.

592

where a_1 and $a_2 \in A^h$, by taking

 $a_1 = (\theta \cdot a^* - \theta^J \cdot a)/(\theta - \theta^J), a_2 = (a - a^*)/(\theta - \theta^J).$

An hermitian functional of A maps A^{h} into F and, conversely, every functional t of A^{h} induces an hermitian functional s of A, by defining s(a) to be $t(a_{1}) + \theta t(a_{2})$, relative to the decomposition (3). Symbolically, we have shown that $A^{h} \cong A^{h^{n}}$.

If J is trivial, hermitian functionals are those which vanish on the subspace $A^s = \{a - a^* \mid a \in A\}$ of A. In this case, $A^{\uparrow h} \cong (A/A^s)^{\uparrow}$.

PROPOSITION 1. Let $I(A) = \bigcap I_s$, taken over all hermitian functionals s of A. If J is nontrivial, A.I(A) = 0. If J is trivial, A.I(A) is a *-ideal of A contained in A^s and such that $(A.I(A))^s = 0$.

Proof. Suppose J is nontrivial. Let $a \in A$ be such that $ba \neq 0$ for some $b \in A$. We can write $ba = c_1 + \theta \cdot c_2$ with $c_1, c_2 \in A^h$. There exists a functional t of A^h for which either $t(c_1)$ or $t(c_2)$ is nonzero. Extending t to an hermitian functional s of A, we conclude that $s(ba) \neq 0$ so that $a \in I_s$. Hence $A \cdot I(A) = 0$.

Suppose J is trivial. If $x \in I(A)$ and $a \in A$, we have $ax \in A^s$ since, otherwise, we could find an hermitian functional s such that $s(ax) \neq 0$. In particular, $(ax)^* = -ax$; since A.I(A) is already a left ideal, this shows that it is in fact a *-ideal. If $x \in A.I(A)$ and $a \in A$ we have, as before, $(ax)^* = -ax$ or $xa^* = ax$ since now $x^* = -x$. Suppose $x, y \in A.I(A)$ and $a \in A$. Then

$$(xy)a^* = a(xy) = (ax)y = (xa^*)y = x(a^*y) = x(ya) = (xy)a$$

so that $xy(a - a^*) = 0$. Since $A.I(A) \subset A^s$, this implies that $(A.I(A))^3 = 0$.

When J is trivial, it may happen that $A.I(A) \neq 0$. For example, suppose char $(K) \neq 2$ and let A be the algebra $K[T]/(T^2)$ with the involution $(\alpha + \beta T)^* = \alpha - \beta T$. Then I(A) consists of all multiples of T.

To rectify this difficulty, we turn to the skew-hermitian functionals of A. If t is such a functional, one can verify that

$$((x_1, x_2), (y_1, y_2)) \mapsto t(x_1^*y_2 - x_2^*y_1)$$

is an hermitian form on $A \oplus A$ with radical $I_t \oplus I_t$, where I_t is given by (2), and therefore induces a nondegenerate hermitian form φ_t on the left A-module $A/I_t \oplus A/I_t$. As before, left multiplication by x has an adjoint w.r.t. φ_t equal to left multiplication by x^* .

Let $I'(A) = \bigcap I_t$, taken over all skew-hermitian functionals of A. Suppose J is trivial and char $(K) \neq 2$; skew-hermitian functionals are those which vanish on elements of the form $a + a^*$. If $x \in A$, and $ax \neq 0$ we know from Proposition 1 that $(ax)^* = -ax \neq ax$ so that $t(ax) \neq 0$ for some skew-hermitian functional t; hence $x \notin I_t$. In other words,

(4)
$$A.(I(A) \cap I'(A)) = 0$$

is true in every case other than when J is trivial and char(K) = 2.

PROPOSITION 2. Suppose A is a *-algebra over K satisfying (1). There exists an hermitian space (V, φ) over K and an injective *-algebra homomorphism $\lambda: A \rightarrow B(V, \varphi)$. If A is finite-dimensional, V may be chosen to be finite-dimensional, except possibly in the case when J is trivial and char(K) = 2.

Proof. Suppose that either J is nontrivial or $char(K) \neq 2$. We conclude from (1) and (4) that $I(A) \cap I'(A) = 0$. Therefore there exists a family $\{s_i\}$ of hermitian or skew-hermitian functionals of A for which $\cap I_{s_i} = 0$. If A is finite-dimensional, we can choose a finite family with this property. Let V_i be either A/I_{s_i} if s_i is hermitian or $A/I_{s_i} \oplus A/I_{s_i}$ if s_i is skew-hermitian and put $V = \bigoplus V_i, \varphi = \bigoplus \varphi_{s_i}$. If A is finite-dimensional, so is V. For $a \in A$, define $\lambda(a)$ to be left multiplication by a; it follows from the preceding discussion that $\lambda(a)^*$ exists and equals $\lambda(a^*)$. If $\lambda(a) = 0$, we have $aA \subset \cap I_{s_i} = 0$ so that $Aa^* = 0$. By (1), $a^* = 0$ and hence a = 0.

Suppose now that J is trivial and $\operatorname{char}(K) = 2$. The rational function field K(X) possesses the involution J'(f(X)) = f(1/X). The algebra $A' = A \otimes_{\kappa} K(X)$ with the involution $(a \otimes f)^* = a^* \otimes J'(f)$ is a *-algebra over K(X). Since J' is nontrivial, the first part of the proof shows the existence of an imbedding $\lambda': A' \to B(V', \varphi')$ for some hermitian space (V', φ') over K(X). Choose a nonzero hermitian functional σ of K(X), regarded as a *-algebra over K. Let V be V' regarded as a vector space over K and φ the left hermitian form $\varphi(x, y) = \sigma(\varphi'(x, y))$ on V. For a fixed $x \neq 0$, $\varphi'(x, y)$ assumes every value in K(X) so that $\sigma(\varphi'(x, y)) \neq 0$ for some y; i.e., φ is nondegenerate. Clearly $B(V', \varphi') \subset B(V, \varphi)$ and * means the same in both algebras. Combining this inclusion with the canonical injection $A \to A'$, we obtain the desired homomorphism $\lambda: A \to B(V, \varphi)$.

It seems reasonable to conjecture that the second assertion of Proposition 2 holds without exception. This is true, for example, if K has a finite algebraic extension K' which has a nontrivial involution leaving K fixed.

2. Positive algebras. In this section we shall assume that F, the fixed field of J, is formally real and that K is either F or $F(\sqrt{(-\xi)})$, where ξ is a sum of squares in F; in the latter case, $J(\sqrt{(-\xi)}) = -\sqrt{(-\xi)}$. Let Ω be a fixed algebraic closure of K, $\{R_{\lambda}\}_{\lambda \in \Lambda}$ the set of real closures of F in Ω , and J_{λ} the involution of Ω which leaves R_{λ} fixed and sends $\sqrt{(-1)}$ to $-\sqrt{(-1)}$. The assumption on ξ implies that J_{λ} is always an extension of J. We shall denote by F^+ the set of elements in F which are sums of squares. If $\alpha \in K$, it is clear that $\alpha^{J} \alpha \in F^+$.

A left hermitian form φ on a vector space V over K is called positive if $\varphi(v, v) \in F^+$ for all $v \in V$. Starting from the fact that $\varphi(v + \alpha.u, v + \alpha.u) \in F^+$ for all $\alpha \in K$, the usual argument for the Cauchy-Schwarz inequality proves

PROPOSITION 3. If φ is positive, then:

(a) $\varphi(v, v) \varphi(u, u) - \varphi(v, u)^J \varphi(v, u) \in F^+;$

(b) φ is nondegenerate if and only if $\varphi(v, v) = 0$ implies v = 0.

For each $\lambda \in \lambda$, let $V_{\lambda} = V \otimes_{K} \Omega$, regarded as a vector space over Ω , and φ_{λ} the left hermitian form $(w.r.t. J_{\lambda})$ on V_{λ} defined by

$$\varphi_{\lambda}(v \otimes \alpha, u \otimes \beta) = J_{\lambda}(\alpha)\varphi(v, u)\beta.$$

PROPOSITION 4. If φ is positive, so is φ_{λ} .

Proof. Let

$$w = \sum_{i=1}^{n} v_i \otimes \alpha_i$$

be an element of V_{λ} . We may assume $\varphi(v_1, v_1) \neq 0$ since, otherwise, $\varphi(v_1, u) = 0$ for all u by Proposition 3(a) and the element $v_1 \otimes \alpha_1$ makes no contribution to the value of $\varphi_{\lambda}(w, w)$. One can then write

$$w = v_1 \otimes \beta_1 + \sum_{i>1} v'_i \otimes \alpha_i,$$

where

$$v_{i}' = v_{i} - (\varphi(v_{1}, v_{i}) / \varphi(v_{1}, v_{1}))v_{1}$$

and

$$eta_1 = \sum_{i=1}^n \ (arphi(v_1, v_i) / arphi(v_1, v_1)) lpha_i.$$

Induction on n shows that $\varphi_{\lambda}(w, w) \in R_{\lambda}^{+}$ since this is clearly true for n = 1.

We call a *-algebra A positive if it can be imbedded as a *-subalgebra of $B(v, \varphi)$ for some positive hermitian space (V, φ) . Our aim is to find intrinsic conditions for positivity.

A functional s of A is called positive if it is hermitian and such that $s(a^*a) \in F^+$ for all $a \in A$. Let $I^+(A) = \bigcap I_s$, taken over all positive functionals of A. Applying Proposition 3(a) to the positive left hermitian form $(a, b) \mapsto s(a^*b)$ on A, we conclude that

(5)
$$s(a^*a)s(b^*b) - s(a^*b)^Js(a^*b) \in F^+.$$

Therefore in this case

(6)
$$I_s = \{b \in A \mid s(b^*b) = 0\}.$$

PROPOSITION 5. $I^+(A)$ is an ideal of A. If A has a unit element, $I^+(A)$ is closed under *.

Proof. Being an intersection of left ideals, $I^+(A)$ is clearly a left ideal. Suppose $x \in I^+(A)$; for every positive functional s of A and every $a \in A$, the functional $s'(b) = s(a^*ba)$ is also positive so that $s(a^*x^*xa) = s((xa)^*(xa)) = 0$. In view of (6), we must have $xa \in I^+(A)$; i.e., $I^+(A)$ is also a right ideal.

In particular, $s(xx^*xx^*) = 0$ for each positive functional s. If A has a unit element then, using (5) with a = 1 and $b = xx^*$, we conclude that $s(xx^*) = 0$ so that $x^* \in I^+(A)$ by (6).

GEORGE MAXWELL

PROPOSITION 6. A *-algebra A satisfying (1) is positive if and only if $I^+(A) = 0$.

Proof. Suppose $I^+(A) = 0$; since a positive functional s yields a positive form φ_s and a direct sum of positive forms is still positive, the same method as used in the proof of Proposition 2 shows that A is positive. (Furthermore, if A is finite-dimensional, the space V can also be chosen finite-dimensional.)

Conversely, suppose A is a *-subalgebra of $B(V, \varphi)$ for some positive hermitian space (V, φ) . For each $v \in V$, $s_v(a) = \varphi(v, a(v))$ is a positive hermitian functional of A. If $x \in I^+(A)$,

$$s_{v}(x^{*}x) = \varphi(v, x^{*}x(v)) = \varphi(x(v), x(v)) = 0$$

for all $v \in V$ so that x(v) = 0; i.e., x = 0.

We now turn to an altogether different condition for positivity. Call a *-algebra A anisotropic if it satisfies

(7)
$$a^*a = 0$$
 implies $a = 0$

and totally anisotropic if the algebra $A_{\lambda} = A \otimes_{\mathbb{K}} \Omega$, with the involution $(a \otimes \alpha)^* = a^* \otimes J_{\lambda}(\alpha)$, is anisotropic for all $\lambda \in \Lambda$. Either property is obviously preserved in passing to a *-subalgebra.

PROPOSITION 7. A positive *-algebra A is totally anisotropic.

Proof. In view of the preceding remark, it suffices to verify that $B(V, \varphi)$ is totally anisotropic if (V, φ) is a positive hermitian space over K. On the other hand, we have an injective *-algebra homomorphism

$$\pi\colon B(V,\varphi) \otimes_{K} \Omega \to B(V_{\lambda},\varphi_{\lambda}),$$

given by $\pi(f \otimes \alpha)(v \otimes \beta) = f(v) \otimes \alpha\beta$, so that again it suffices to prove that $B(V_{\lambda}, \varphi_{\lambda})$ is anisotropic. Suppose $a^*a = 0$ holds in $B(V_{\lambda}, \varphi_{\lambda})$; then

$$\varphi_{\lambda}(a^{*}a(v), v) = \varphi_{\lambda}(a(v), a(v)) = 0.$$

Since φ_{λ} is positive by Proposition 4, a(v) = 0 for all $v \in V$; i.e., a = 0.

As a partial converse, we have

PROPOSITION 8. A finite-dimensional totally anisotropic *-algebra A is positive.

Proof. Starting from (7), a well-known argument [3] shows that A has no nil ideals—in our context, this means that A must be semi-simple. Furthermore, if B is a minimal ideal of A, so is B^* and thus either $B^* = B$ or $B^*B = 0$; but the latter possibility is again excluded by (7). Since a product of positive algebras is easily seen to be positive, it is sufficient to prove the assertion in the case when A is simple.

Let tr: $A \to K$ be the reduced trace. If $a \in A$, we may compute tr (a^*a) in the extended algebra A_{λ} . Suppose $A_{\lambda} \cong \operatorname{End}_{\Omega}(V)$ for some finite-dimensional vector space V over Ω . It is well-known [1] that the involution induced by

596

* on $\operatorname{End}_{\Omega}(V)$ must be the adjoint involution corresponding to a nondegenerate left hermitian or skew-hermitian (w.r.t. J_{λ}) form ψ on V. We claim that ψ is hermitian and that either ψ or $-\psi$ is positive. If not, there would exist a nonzero $w \in V$ such that $\psi(w, w) = 0$. Choose a nonzero $f \in \operatorname{End}_{\Omega}(V)$ whose image is contained in $\Omega.w$. Then

$$\psi(v, f^*f(u)) = \psi(f(v), f(u)) = 0$$

for all $v, u \in V$ so that $f^*f = 0$, which contradicts (7) since A_{λ} is assumed to be anisotropic.

Since both ψ and $-\psi$ induce the same involution on $\operatorname{End}_{\Omega}(V)$, we may assume that ψ is positive. A standard argument [4] now shows that $\operatorname{tr}(f^*f) \in R_{\lambda^+}$. Since this holds for all $\lambda \in \Lambda$, we conclude that $\operatorname{tr}(a^*a) \in F^+$. Furthermore, $\operatorname{tr}(a^*a) = 0$ implies a = 0 since this is true in A_{λ} . In other words, $\operatorname{tr}: A \to K$ is a positive functional—it is obviously hermitian—such that $I_{\operatorname{tr}} = 0$; therefore, $I^+(A) = 0$ and A is positive by Proposition 6.

References

- 1. A. A. Albert, *Structure of algebras*, Amer. Math. Soc. Colloquium Publ. (Amer. Math. Soc., Providence, R.I., 1939).
- 2. I. M. Gelfand and M. A. Naimark, On the imbedding of normed rings into the ring of operators in Hilbert space, Mat. Sbornik 12 (1943), 197-213.
- 3. I. Kaplansky, Rings of operators (Benjamin, New York, 1968).
- M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities (Allyn & Bacon, Boston, 1964).
- 5. J. A. Schatz, Representation of Banach algebras with an involution, Can. J. Math. 9 (1957), 435-442.

University of British Columbia, Vancouver, British Columbia